9,134 research outputs found

    Xylem surfactants introduce a new element to the cohesion-tension theory

    Get PDF
    Vascular plants transport water under negative pressure without constantly creating gas bubbles that would disable their hydraulic systems. Attempts to replicate this feat in artificial systems almost invariably result in bubble formation, except under highly controlled conditions with pure water and only hydrophilic surfaces present. In theory, conditions in the xylem should favor bubble nucleation even more: there are millions of conduits with at least some hydrophobic surfaces, and xylem sap is saturated or sometimes supersaturated with atmospheric gas and may contain surface-active molecules that can lower surface tension. So how do plants transport water under negative pressure? Here, we show that angiosperm xylem contains abundant hydrophobic surfaces as well as insoluble lipid surfactants, including phospholipids, and proteins, a composition similar to pulmonary surfactants. Lipid surfactants were found in xylem sap and as nanoparticles under transmission electron microscopy in pores of intervessel pit membranes and deposited on vessel wall surfaces. Nanoparticles observed in xylem sap via nanoparticle-tracking analysis included surfactant-coated nanobubbles when examined by freeze-fracture electron microscopy. Based on their fracture behavior, this technique is able to distinguish between dense-core particles, liquid-filled, bilayer-coated vesicles/liposomes, and gas-filled bubbles. Xylem surfactants showed strong surface activity that reduces surface tension to low values when concentrated as they are in pit membrane pores. We hypothesize that xylem surfactants support water transport under negative pressure as explained by the cohesion-tension theory by coating hydrophobic surfaces and nanobubbles, thereby keeping the latter below the critical size at which bubbles would expand to form embolisms

    Snow tussocks, chaos, and the evolution of mast seeding

    Get PDF
    One hitherto intractable problem in studying mast seeding (synchronous intermittent heavy flowering by a population of perennial plants) is determining the relative roles of weather, plant reserves, and evolutionary selective pressures such as predator satiation. We parameterize a mechanistic resource-based model for mast seeding in Chionochloa pallens (Poaceae) using a long-term individually structured data set. Each plant's energy reserves were reconstructed using annual inputs (growing degree days), outputs (flowering), and a novel regression technique. This allowed the estimation of the parameters that control internal plant resource dynamics, and thereby allowed different models for masting to be tested against each other. Models based only on plant size, season degree days, and/or climatic cues (warm January temperatures) fail to reproduce the pattern of autocovariation in individual flowering and the high levels of flowering synchrony seen in the field. This shows that resource-matching or simple cue-based models cannot account for this example of mast seeding. In contrast, the resource-based model pulsed by a simple climate cue accurately describes both individual-level and population-level aspects of the data. The fitted resource-based model, in the absence of environmental forcing, has chaotic (but often statistically periodic) dynamics. Environmental forcing synchronizes individual reproduction, and the models predict highly variable seed production in close agreement with the data. An evolutionary model shows that the chaotic internal resource dynamics, as predicted by the fitted model, is selectively advantageous provided that adult mortality is low and seeds survive for more than 1 yr, both of which are true for C. pallens. Highly variable masting and chaotic dynamics appear to be advantageous in this case because they reduce seed losses to specialist seed predators, while balancing the costs of missed reproductive events

    Optimal Output Regulation for Square, Over-Actuated and Under-Actuated Linear Systems

    Full text link
    This paper considers two different problems in trajectory tracking control for linear systems. First, if the control is not unique which is most input energy efficient. Second, if exact tracking is infeasible which control performs most accurately. These are typical challenges for over-actuated systems and for under-actuated systems, respectively. We formulate both goals as optimal output regulation problems. Then we contribute two new sets of regulator equations to output regulation theory that provide the desired solutions. A thorough study indicates solvability and uniqueness under weak assumptions. E.g., we can always determine the solution of the classical regulator equations that is most input energy efficient. This is of great value if there are infinitely many solutions. We derive our results by a linear quadratic tracking approach and establish a useful link to output regulation theory.Comment: 8 pages, 0 figures, final version to appear in IEEE Transactions on Automatic Contro

    An investigation into the merits of fuzzy logic control versus classical control.

    Get PDF
    A project report submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science in Engineering.Up to now the benefits and problems with fuzzy control have not been fully identified and its role in the control domain needs investigation. The past trend has been to show that a fuzzy controller can provide better control than classical control, without examining what is actually being achieved. The aim in this project report is to give a fair comparison between classical and fuzzy control. Robustness, disturbance rejection, noise suppression" nonminimurn phase and dead time are examined for both controllers. The comparison is performed through computer simulation of classical and fuzzy controlled plant models. Fuzzy control has the advantage of non-linear performance and the ability to capture linguistic information. Translating quantitative information into the fuzzy domain is difficult; therefore when the system is easily mathematically modelled and linear, classical control is usually better. Which controller should be used depends on the application, control designer and information available.Andrew Chakane 201

    Optimizing output regulation for a class of underactuated LPV systems

    Get PDF
    @ 2017 IEEE. Personal use of these materials is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating news collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksIn this paper the problem of optimizing the output regulation of an underactuated LPV system is considered. When the system is underactuated, only a subset of the outputs can be arbitrarily controlled, and the remaining ones are constrained. The problem of finding the input that minimizes a cost function of the overall output tracking error is investigated for a special class of LPV systems that admit steady-states. Moreover, it is shown how such solution is related to the inputs associated to the singularly optimal regulation of each output.Peer ReviewedPostprint (author's final draft

    Regulation and robust stabilization: a behavioral approach

    Get PDF
    In this thesis we consider a number of control synthesis problems within the behavioral approach to systems and control. In particular, we consider the problem of regulation, the H! control problem, and the robust stabilization problem. We also study the problems of regular implementability and stabilization with constraints on the input/output structure of the admissible controllers. The systems in this thesis are assumed to be open dynamical systems governed by linear constant coefficient ordinary differential equations. The behavior of such system is the set of all solutions to the differential equations. Given a plant with its to-be-controlled variable and interconnection variable, control of the plant is nothing but restricting the behavior of the to-be-controlled plant variable to a desired subbehavior. This restriction is brought about by interconnecting the plant with a controller (that we design) through the plant interconnection variable. In the interconnected system the plant interconnection variable has to obey the laws of both the plant and the controller. The interconnected system is also called the controlled system, in which the controller is an embedded subsystem. The interconnection of the plant and the controller is said to be regular if the laws governing the interconnection variable are independent from the laws governing the plant. We call a specification regularly implementable if there exists a controller acting on the plant interconnection variable, such that, in the interconnected system, the behavior of the to-becontrolled variable coincides with the specification and the interconnection is regular. Within the framework of regular interconnection we solve the control problems listed in the first paragraph. Solvability conditions for these problems are independent of the particular representations of the plant and the desired behavior.

    Performing heavy transfers for offshore wind maintenance

    Get PDF
    As offshore wind farms become larger and further from the shore, there are strong economic and climate incentives to perform transfers required for operations and maintenance from floating vessels, rather than employing expensive and slow jack up rigs. However, successful transfers of heavy and sensitive equipment from a floating vessel (in all but benign sea/wind conditions) are heavily dependent on multiple degrees of freedom, high performance control. This project aims to bring a novel modelling and simulation methodology in Simulink that could be used to assess offshore wind installation and maintenance procedures. More specifically, the goal is to demonstrate that a crane prototype assumed to be located on a floating ship can transfer loads of hundreds of tons onto a fixed platform. Furthermore, this process should be completed with good precision and minimal impact force during equipment loading onto the stand. This problem has not yet been answered in research, with the only relevant patent in the field being the Ampelmann platform, a motionless bridge allowing technicians to access the offshore turbine. The first main contribution to knowledge of this thesis was the design of a 90 m crane that could handle a 660 tons load. This thesis presents a procedure, based on both mechanical/hydraulics design as well as empirical findings, which could be re-used for scaling the crane model to a more realistic dimension. It is worth noting that the goal here was to assess whether a realistically weighing piece of equipment could be stably handled, while the actual size of the crane was deemed unimportant. Another missing gap in literature this project wanted to fill was achieving active motion compensation for a larger scale system such as the current one. This refers to balancing out the base motions on multiple axes, so the payload can be moved on a given trajectory unaffected by them. Currently, research in the field mainly consists of crane mechanisms that feature active heave compensation, which only refers to the vertical axis. Hence, two control design methods were employed to assess the viability of heavy payload positioning from floating vessels through the development of a simulation approach using Simulink. The crane prototype was designed and modelled to operate under simulated vessel motions given by sea states with a significant wave height of 5 m and maximum wave frequency of 1 rad/s. Then, traditional control (feedback and feedforward) was designed to achieve active motion compensation with steady-state position errors under 20 cm. A second controller architecture was then designed/implemented as a comparison basis for the first one, with the aim being to find the most robust solution of the two. The nonlinear generalised minimum variance (NGMV) control algorithm was chosen for control design in this application. Due to its ability to compensate for significant system nonlinearities and the ease of implementation, NGMV was a good candidate for the task at hand. Tuning controller parameters to stabilize the system could also be based on the previously determined traditional control solutions. An investigation of controllers’ robustness against model mismatch was carried out by introducing various levels of uncertainty which influence actuators’ natural frequency to assess system sensitivity. The outcome of the investigation determined that traditional and NGMV controllers provided comparable regulating performance in terms of reference tracking and disturbance rejection, for the nominal case. This confirmed the assertion that the PID-based NGMV weightings selection is a useful starting point for controller tuning. Increasing the mismatch between the nominal system based on which the controllers’ were designed and the actual plant showed that the traditional control was marginally more robust in this application. The final contribution to knowledge this thesis aimed to bring was minimising the impact force during load placement on a fixed and rigid platform. To that end, the contact forces between the payload and a platform were first successfully modelled and measured. A switching algorithm between position and force control was then developed based on a methodology found in literature but on a microscopic scale project. To execute smooth load placement, an automated hybrid force/position control scheme was implemented. The proposed algorithm enabled position control on x and y axes, while minimising impact forces on the z-axis. Unfortunately, preliminary findings showed that there is still work to be done to claim any success in this regard. However, the author hopes this offers a good starting point for future work.As offshore wind farms become larger and further from the shore, there are strong economic and climate incentives to perform transfers required for operations and maintenance from floating vessels, rather than employing expensive and slow jack up rigs. However, successful transfers of heavy and sensitive equipment from a floating vessel (in all but benign sea/wind conditions) are heavily dependent on multiple degrees of freedom, high performance control. This project aims to bring a novel modelling and simulation methodology in Simulink that could be used to assess offshore wind installation and maintenance procedures. More specifically, the goal is to demonstrate that a crane prototype assumed to be located on a floating ship can transfer loads of hundreds of tons onto a fixed platform. Furthermore, this process should be completed with good precision and minimal impact force during equipment loading onto the stand. This problem has not yet been answered in research, with the only relevant patent in the field being the Ampelmann platform, a motionless bridge allowing technicians to access the offshore turbine. The first main contribution to knowledge of this thesis was the design of a 90 m crane that could handle a 660 tons load. This thesis presents a procedure, based on both mechanical/hydraulics design as well as empirical findings, which could be re-used for scaling the crane model to a more realistic dimension. It is worth noting that the goal here was to assess whether a realistically weighing piece of equipment could be stably handled, while the actual size of the crane was deemed unimportant. Another missing gap in literature this project wanted to fill was achieving active motion compensation for a larger scale system such as the current one. This refers to balancing out the base motions on multiple axes, so the payload can be moved on a given trajectory unaffected by them. Currently, research in the field mainly consists of crane mechanisms that feature active heave compensation, which only refers to the vertical axis. Hence, two control design methods were employed to assess the viability of heavy payload positioning from floating vessels through the development of a simulation approach using Simulink. The crane prototype was designed and modelled to operate under simulated vessel motions given by sea states with a significant wave height of 5 m and maximum wave frequency of 1 rad/s. Then, traditional control (feedback and feedforward) was designed to achieve active motion compensation with steady-state position errors under 20 cm. A second controller architecture was then designed/implemented as a comparison basis for the first one, with the aim being to find the most robust solution of the two. The nonlinear generalised minimum variance (NGMV) control algorithm was chosen for control design in this application. Due to its ability to compensate for significant system nonlinearities and the ease of implementation, NGMV was a good candidate for the task at hand. Tuning controller parameters to stabilize the system could also be based on the previously determined traditional control solutions. An investigation of controllers’ robustness against model mismatch was carried out by introducing various levels of uncertainty which influence actuators’ natural frequency to assess system sensitivity. The outcome of the investigation determined that traditional and NGMV controllers provided comparable regulating performance in terms of reference tracking and disturbance rejection, for the nominal case. This confirmed the assertion that the PID-based NGMV weightings selection is a useful starting point for controller tuning. Increasing the mismatch between the nominal system based on which the controllers’ were designed and the actual plant showed that the traditional control was marginally more robust in this application. The final contribution to knowledge this thesis aimed to bring was minimising the impact force during load placement on a fixed and rigid platform. To that end, the contact forces between the payload and a platform were first successfully modelled and measured. A switching algorithm between position and force control was then developed based on a methodology found in literature but on a microscopic scale project. To execute smooth load placement, an automated hybrid force/position control scheme was implemented. The proposed algorithm enabled position control on x and y axes, while minimising impact forces on the z-axis. Unfortunately, preliminary findings showed that there is still work to be done to claim any success in this regard. However, the author hopes this offers a good starting point for future work

    Fuzzy PD control of an optically guided long reach robot

    Get PDF
    This thesis describes the investigation and development of a fuzzy controller for a manipulator with a single flexible link. The novelty of this research is due to the fact that the controller devised is suitable for flexible link manipulators with a round cross section. Previous research has concentrated on control of flexible slender structures that are relatively easier to model as the vibration effects of torsion can be ignored. Further novelty arises due to the fact that this is the first instance of the application of fuzzy control in the optical Tip Feedback Sensor (TFS) based configuration. A design methodology has been investigated to develop a fuzzy controller suitable for application in a safety critical environment such as the nuclear industry. This methodology provides justification for all the parameters of the fuzzy controller including membership fUllctions, inference and defuzzification techniques and the operators used in the algorithm. Using the novel modified phase plane method investigated in this thesis, it is shown that the derivation of complete, consistent and non-interactive rules can be achieved. This methodology was successfully applied to the derivation of fuzzy rules even when the arm was subjected to different payloads. The design approach, that targeted real-time embedded control applicat.ions from the outset, results in a controller implementation that is suitable for cheaper CPU constrained and memory challenged embedded processors. The controller comprises of a fuzzy supervisor that is used to alter the derivative term of a linear classical Proportional + Derivative (PD) controller. The derivative term is updated in relation to the measured tip error and its derivative obtained through the TFS based configuration. It is shown that by adding 'intelligence' to the control loop in this way, the performance envelope of the classical controller can be enhanced. A 128% increase in payload, 73.5% faster settling time and a reduction of steady state of over 50% is achieved using fuzzy control over its classical counterpart
    corecore