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1 Introduction

This thesis falls under the broad category of ‘systems and control’. In the
thesis we study a number of control system design problems for dynamical
systems from the viewpoint of control in the behavioral framework.

Roughly speaking, control system design deals with the problem of mak-
ing a system (the to-be-controlled system) behave according to certain de-
sired specifications. The result of this design problem is another system that,
if connected to the to-be-controlled system, makes it behave according to
the specifications. This system is called a controller. Starting from a to-be-
controlled system, the procedure of obtaining a controller can be divided
into five main steps. First step is to obtain a mathematical model of the
to-be-controlled system. Such a mathematical model can take many forms.
For example, the model could be in the form of a system of ordinary and/or
partial differential equations, together with a number of algebraic equations,
relating the relevant variables of the system. The model could also involve
difference equations, some of the variables could be related by transfer func-
tions, etc. The usual way to obtain a mathematical model of a system is by
applying basic laws that the system satisfies. Often, this method is called
first principles modeling. For example, if one deals with an electro-mechanical
system, the set of basic physical laws (Newton’s laws, Kirchhoff’s laws, etc.)
that the variables in the system satisfy form a mathematical model. Another
way to get a mathematical model is called system identification. In this case
a mathematical model is obtained by doing experiments on the system: cer-
tain variables in the physical system are set to particular values from the
outside, and at the same time other variables are measured. In this way,
one attempts to estimate (‘identify’) the laws governing the system, thus
obtaining a model. Very often, a combination of first principles modeling
and system identification is used to obtain a model.

The second step in a control system design problem is to formulate
desirable properties that we want the to-be-controlled system to satisfy. Very
often, these properties can be formulated mathematically by requiring the
mathematical model to have certain qualitative or quantitative mathematical
properties. Together, these properties form the design specifications.

Often, due to physical constraints we have some restrictions on the con-
trollers which are admissible to alter the behavior of the to-be-controlled
system. For example,
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a) if we want to visualize the interconnection of the to-be-controlled system
and the controller as a feedback interconnection, then only those con-
trollers are admissible whose laws governing the interconnection variable
are independent from the laws governing the plant,

b) if certain components of the to-be-controlled system interconnection
variables represent sensor measurements, then only those controllers
are admissible in which these variables are not constrained, and

c) if certain components of the to-be-controlled system variables represent
external disturbances which are not constrained by the plant, then only
those controllers are admissible that leave these external disturbances
unconstrained in the interconnection of plant and controller, etc..

Thus, the third step in a control system design problem is to identify the set
of admissible controllers which we can use to modify the system behavior to
achieve the given specification.

Obviously, for a given to-be-controlled system not all given specifications
may be achievable with the given set of admissible controllers. Therefore, the
fourth important step in a control system design problem is to check whether
the given design specification is indeed achievable.

After 1) obtaining a mathematical model of the to-be-controlled sys-
tem, 2) listing the design specifications, 3) specifying a set of admissible
controllers, and 4) checking that the given design specification is achievable
by using an admissible controller, the fifth and most important step in con-
trol system design is to obtain a mathematical model of a controller. It is the
fourth and the fifth step in the control design problem that we deal with in
this thesis: they deal with mathematical control theory, in other words, with
the mathematical theory of existence and design of models of an admissible
controller. The problem of getting from a model of the to-be-controlled sys-
tem, and a list of design specifications to a model of an admissible controller
is called a control synthesis problem. Of course, for a given model, each
particular list of design specifications will give rise to a particular control
synthesis problem.

In this thesis we will study control synthesis problems for design speci-
fications like stabilization, regulation, H∞-control, and robust stabilization.
Of course, these problems have been studied before in the literature, in
an input/output framework, where control is viewed as feedback. In this
thesis we solve these problems in the behavioral framework. In the behav-
ioral framework, controlling a system means intersecting its behavior with a
controller behavior. The intersection is then called the controlled behavior,
which is required to satisfy the design specifications. In terms of represen-
tations, control means that additional laws (e.g. in the form of differential
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equations representing the controller behavior) are put on the plant vari-
ables. Thus, the plant and controller are interconnected by sharing their
variables. In our context we do not distinguish between inputs and outputs,
so the interconnection does not necessarily involve feedback.

1.1 Outline of the thesis

We now proceed to give a summary of the contents of this thesis. The mate-
rial presented in this thesis is based on the following papers: Fiaz & Trentel-
man [[35], [11]], Trentelman, Fiaz & Takaba [[36], [37], [38]], Fiaz, Takaba &
Trentelman [[8], [9], [10]]. Here we summarize the contents of the thesis.

Chapter 2. In this chapter we lay the mathematical foundation for the
discussion in the subsequent chapters. We review some basic concepts
from the behavioral theory for modeling and studying properties of
dynamical systems. Notions like elimination, controllability, autonomy,
stability, observability are dealt with in this chapter. We consider dy-
namical systems that can be modeled by differential equations and give
characterizations of properties of dynamical systems in terms of the
polynomial matrices arising from the differential equations. Most of the
contents of this chapter can be found in Polderman & Willems [26].

Chapter 3. In this chapter we discuss the notion of interconnection of sys-
tems from the behavioral perspective. We review different types of inter-
connections like full and partial interconnections and also their regular-
ity. We also study several concepts of control in the behavioral frame-
work starting from the viewpoint arising in the context of control as
interconnection. We review the important control objective of stabiliza-
tion. The material presented in this chapter can be found in Willems
and Trentelman [50], Belur and Trentelman [2], Julius, et al [ [20], [19]],
Fiaz & Trentelman [11].

Chapter 4. In this chapter we discuss how in some situations the struc-
tural constraint of pre-specified input/output partition on the con-
trollers achieving a given specification arises naturally. We show that
in these situations not all regularly implementable specifications need
to be physically realizable. We obtain necessary and sufficient condi-
tions for a given specification to be regularly implementable by using
controllers with pre-specified input/output structure. We use these re-
sults to obtain necessary and sufficient conditions for stabilization of
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the plant by using controllers with pre-specified input/output struc-
ture. The conditions obtained are representation free and depend only
upon the required input/output structure on the controller, the plant
behavior and the given specification. The material presented in this
chapter is based on the papers Fiaz & Trentelman [11] and Trentelman
& Fiaz [35].

Chapter 5. Given a plant, together with an exosystem generating the dis-
turbances and the reference signals, the problem of asymptotic tracking
and regulation is to find a controller such that the plant variable tracks
the reference signal regardless of the disturbance acting on the system.
If a controller achieves this design objective, we call it a regulator for
the plant with respect to the given exosystem. In this chapter we formu-
late the asymptotic tracking and regulation problem in the behavioral
framework, with control as interconnection. The problem formulation
and its resolution are completely representation free, and specified only
in terms of the plant and exosystem dynamics. In the process of solving
this problem, in this chapter we also discuss the behavioral version of
the internal model principle. The material presented in this chapter is
based on the papers Fiaz, Takaba & Trentelman [[8], [9], [10]].

Chapter 6. In this chapter we review the notion of rational representa-
tions of behaviors introduced recently in Willems & Yamamoto [51].
We characterize important properties of behaviors in terms of the ra-
tional matrices defining the behaviors. These characterizations will be
used in the subsequent chapters. The material presented in this chapter
is based on the papers Willems & Yamamoto [51], Trentelman, Fiaz &
Takaba [[36], [37], [38]].

Chapter 7. In H∞-control, the main desired property of the controlled sys-
tem is that certain components (called the to-be-controlled variables)
of the system’s manifest variables are small (in an appropriate sense),
regardless of the values that certain other components (called the dis-
turbances) take. In addition, the controlled system should be stable, in
the sense that if the disturbance happens to be zero then the to-be-
controlled variables should converge to zero as time tends to infinity.
In this chapter we formulate the H∞-control problem in the behavioral
framework. To solve this problem, we use the theory of dissipative sys-
tems with respect to supply rates given by quadratic differential forms
(QDF’s). H∞-control problem in the behavioral framework was studied
before in Trentelman & Willems [41]. In Trentelman & Willems [41]
it was assumed that the to-be-controlled variables are observable from
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the interconnection variables, and the interconnection of plant and con-
troller need not be regular. In this chapter we consider the case where
the to-be-controlled variables are only detectable from the interconnec-
tion variables, and the interconnection of plant and controller is regular.
These results will be instrumental in solving the robust stabilization
problem in chapter 8. The material presented in this chapter is based
on the papers Trentelman, Fiaz & Takaba [[36], [37], [38]].

Chapter 8. Given a nominal plant, together with a fixed neighborhood of
this plant, the problem of robust stabilization is to find a controller that
stabilizes all plants in that neighborhood (in an appropriate sense).
If a controller achieves this design objective, we say that it robustly
stabilizes the nominal plant. In this chapter we formulate the robust
stabilization problem in a behavioral framework, with control as inter-
connection. We use both rational as well as polynomial representations
for the behaviors under consideration. Necessary and sufficient condi-
tions for the existence of robustly stabilizing controllers are obtained
using the theory of dissipative systems. In the process of solving this
problem, in this chapter, we also discuss the behavioral version of the
small gain theorem. We will also find the optimal stability radius, i.e.
the smallest upper bound on the radii of the neighborhoods for which
there exists a robustly stabilizing controller. This smallest upper bound
is expressed in terms of certain storage functions associated with the
nominal control system. The material presented in this chapter is based
on the papers Trentelman, Fiaz & Takaba [[36], [37], [38]].

Chapter 9. This chapter contains the conclusions that can be drawn from
the discussion so far and highlights the contributions made in this thesis.
We also point out some directions for future research.

We conclude this chapter with a section on the notation used in this thesis
and some preliminary background on polynomial and rational matrices.

1.2 Notation and properties of polynomial and rational ma-
trices

We now devote a few words to the notation used in this thesis. We use
standard symbols for the fields of real and complex numbers R and C . C−
and C̄+ will denote the open left half plane and closed right half plane,
respectively. We use Rn, Rm×n, etc., for the real linear spaces of vectors
and matrices with components in R. C∞(R,Rw) denotes the set of infinitely
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often differentiable functions from R to Rw, and its subspace consisting of
functions with compact support is denoted by D(R,Rw), or sometimes simply
by D. The space of all measurable functions w from R to Rw such that∫∞
−∞ ‖w‖

2dt < ∞ is denoted by L2(R,Rw). The L2-norm of w is ‖w‖2 :=
(
∫∞
−∞ ‖w‖

2dt)1/2. If the domain and co-domain are obvious from the context,
we denote L2(R,Rw) simply by L2.

We use rowdim(S) to indicate the row dimension of a matrix S, or just
dim(S) if S is a column vector or a square matrix. In denotes the iden-
tity matrix with dim(In) = n. Similarly, 0m×n denotes the zero matrix with
m rows and n columns. We use diag(d1,d2) to denote the diagonal matrix[

d1 0
0 d2

]
, again suitably generalized to more than two arguments. We

use the notations det(S) and λmax(S) to denote the determinant of a square
matrix S and its largest eigenvalue, respectively. Given a matrix M ∈ Rm×n,
the Moore-Penrose inverse M † of M is the unique n×m matrix that satisfies
the following properties: MM †M = M , M †MM † = M+, (MM †)% = MM †,
and (M †M)% = M †M .

R[ξ] denotes the ring of polynomials in the indeterminate ξ with real
coefficients, and R(ξ) denotes its quotient field of real rational functions in
the indeterminate ξ. We use R[ξ]n, R[ξ]m×n, R(ξ)n, R(ξ)m×n, etc. for the spaces
of vectors and matrices with components in R[ξ] and R(ξ), respectively.
Elements of R[ξ]m×n are called real polynomial matrices, elements of R(ξ)m×n
are called real rational matrices .

R ∈ Rm×• (R ∈ R•×n) denotes a matrix R with m rows ( n columns)
and the number of columns (rows) depending on the context, i.e., we use •
when it is unnecessary to specify the number of columns (rows), and we use
R ∈ R•×• when it is unnecessary to specify both the number of rows and
columns, again suitably generalized to polynomial and rational matrices.

We call a polynomial p ∈ R[ξ] monic if the coefficient of its highest order
term is 1. For any a, b ∈ R[ξ], we abbreviate the greatest common divisor
of a,b to gcd(a,b). We call two monic polynomials a, b ∈ R[ξ] coprime if
gcd(a,b) = 1. We now come to some properties of polynomial and rational
matrices. A square, nonsingular real polynomial matrix R is called Hurwitz if
all roots of det(R) lie in the open left half complex plane C−. It is called anti-
Hurwitz if all roots of det(R) lie in the closed right half complex plane C̄+.
U ∈ R[ξ]p×p is called unimodular over R[ξ] if U−1 exists and U−1 ∈ R[ξ]p×p.
This is equivalent to det(U) being equal to a non-zero constant. Unimodular
polynomial matrices play a ubiquitous role in this thesis. We shall use them
here for the construction of the Smith-McMillan form (Smith form) of a
rational matrix (polynomial matrix).
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Proposition 1.2.1. Let M ∈ R(ξ)n1×n2. There exist U ∈ R[ξ]n1×n1 ,V ∈
R[ξ]n2×n2, both unimodular, Π ∈ R[ξ]n1×n1, and Z ∈ R[ξ]n1×n2 such that

UMV = Π−1Z, Π = diag(π1,π2, . . . ,πn1),

Z =
[

diag(z1,z2, . . . ,zr) 0r×(n2−r)
0(n1−r)×r 0(n1−r)×(n2−r)

]

with z1,z2, . . . ,zr,π1,π2, . . . ,πn1 non-zero monic elements of R[ξ], the pairs
zk,πk coprime for k = 1,2, . . . ,r, πk = 1 for k = r + 1,r + 2, . . . ,n1, and
where zk−1 is a factor of zk and πk is a factor πk−1, for k = 2, . . . ,r.

In the above proposition

Π−1Z =
[

diag( z1
π1

, z2
π2

, z3
π3

, . . . , zr
πr

) 0r×(n2−r)
0(n1−r)×r 0(n1−r)×(n2−r)

]

is called the Smith-McMillan form of M . We say that U and V bring M to
Smith-McMillan form. In general, the unimodular matrices U and V are not
unique.

Of course, r = rank(M), and in the special case that M has full row rank
(i.e. r = n1) the zero rows are absent. Similarly, when R has full column
rank then the zero columns are absent. Since for a given matrix, the column
rank and the row rank are equal, we shall specify full row rank or full column
rank only to indicate whether the matrix is wide or tall, respectively.

The roots of the πk’s (hence of π1 disregarding the multiplicity issue)
are called the poles of M , and the roots of the zk’s (hence of zr, disregarding
the multiplicity issue) the zeros of M .

In the above proposition, if M is a polynomial matrix, the πk’s are absent
(they are equal to 1). We then speak of the Smith form

UMV = Z =
[

diag(z1,z2, . . . ,zr) 0r×(n2−r)
0(n1−r)×r 0(n1−r)×(n2−r)

]
.

Here the polynomials zi for i = 1,2, . . . ,r are called the invariant polynomi-
als of M .

Any real polynomial matrix can be written as a finite sum X(ξ) =∑N
k=0 Xkξk. The real matrix

(
X0 X1 . . . XN

)
is called the coefficient

matrix of X(ξ), and is denoted by X̃.
A proper real rational matrix G is called stable if all its poles are in C−.

A square, nonsingular real rational matrix M is called minimum phase, if
all its poles and zeros are in C−.

We denote by R(ξ)S the ring of all proper stable real rational functions.
R(ξ)nS and R(ξ)n×mS denote the spaces of vectors and matrices with compo-
nents in R(ξ)S .
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Definition 1.2.2. A proper, stable real rational matrix G is called left prime
over the ring R(ξ)S if it has a proper, stable right inverse, i.e. if there exists
a proper, stable rational matrix H such that GH = I. A proper, stable real
rational matrix G is called co-inner if G(ξ)G%(−ξ) = I.

Equivalent characterizations of left primeness can be found in Willems &
Yamamoto [51].

If G is a proper rational matrix and has no poles on the imaginary axis,
then its L∞ norm is defined as ‖G‖∞ := supω∈R‖G(iω)‖. If G is proper and
stable, then ‖G‖∞ = supλ∈C̄+‖G(λ)‖, the H∞-norm of G.
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2 Behaviors

In this chapter we introduce the basic concepts of the behavioral frame-
work which shall be used in this thesis. We explain that the strength of the
behavioral approach comes from its formal setting which makes the treat-
ment of dynamical systems fairly general. Properties of a dynamical system
(for example linearity, time/shift invariance) can be defined in this formal
setting without using a specific model of the dynamical system in terms of
differential equations (section 2.1). We consider the class of linear differential
systems, i.e. those linear dynamical systems that can be modeled by linear
differential equations with constant coefficients. We then review the notion
of minimal representation of a behavior and the notion of equivalence of
representations, i.e. the issue that two representations represent one and the
same behavior, in section 2.2. We review various kinds of representations for
linear differential systems and explain how so-called latent variables arise
naturally. The important aspect of elimination is also considered (section
2.3). In sections 2.4 and 2.5 we review important properties of behaviors like
observability, detectability, controllability and stabilizability. We then con-
sider autonomous dynamical systems and define stability and anti-stability
for these systems in section 2.6. In section 2.7 we will review the notion of
controllable part of a given behavior. We will also discuss the decomposition
of a given behavior into its controllable and autonomous parts. In section
2.8 we review state representations of behaviors. Further, we review the no-
tion of inputs and outputs in section 2.9, and we then end the chapter by
introducing some invariants associated with a behavior.

2.1 Linear differential systems

We start our study with a set theoretic level definition of a dynamical system.
When modeling a system, we are trying to describe the way in which the
variables of a system evolve. Let w denote a vector-valued variable whose
components consists of the system variables. We define the signal space W
as the space where the variable w takes its values. Generally w itself is a
function of an independent variable called time, which takes its values in a
set called the time axis. This time axis is denoted by T. Let WT denote the
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set of all functions from T to W. Therefore, w is an element of WT. Not every
element in WT is allowed by the laws governing the behavior/dynamics of the
system. The set of functions that are allowed by the system is precisely the
object of our study, and this set is called the behavior. The laws that govern
a system bring about this restriction of WT to its behavior. Thus a system
is viewed as an exclusion law indicating which trajectories are admissible
for the system. This leads to the following definition of a dynamical system
(Willems [45]).

Definition 2.1.1. A dynamical system Σ is a triple Σ = (T,W,B) with T a
set, called the time axis; W a set, called the signal space, and B ⊆ WT the
behavior of the system.

We call the set of functions WT the universum U. The behavior of a system
is a subset of the universum U. An element of the behavior is a function with
domain T and co-domain W. In this thesis we focus on dynamical systems
which have the following three properties:

1. linear,

2. time-invariant,

3. described by ordinary differential equations.

We now discuss these properties of the dynamical systems.

Definition 2.1.2. A dynamical system Σ = (T,W,B) is called linear if

1. W is a vector space over R, and,

2. the behavior B is a subspace of WT, i.e.

if w1,w2 ∈ B and α1,α2 ∈ R then α1w1 + α2w2 ∈ B.

The latter is called the superposition principle.

If the time axis T is a semi-group under addition operation ’+’ (i.e., if a,x ∈ T
then a + x ∈ T), and σtw is defined by (σtw)(τ) := w(t + τ) for all t,τ ∈ T,
then we can also define time invariance of a behavior.

Definition 2.1.3. A dynamical system Σ = (T,W,B) is called time-
invariant if for each trajectory w ∈ B the shifted trajectory σtw is again an
element of B, for all t ∈ T.
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We note that a dynamical system whose behavior is equal to the set of
all solutions of a system of constant coefficient linear differential equations
satisfies linearity and time invariance.

In this thesis we will restrict ourselves to a special class of linear time-
invariant dynamical systems, called linear differential systems. In the behav-
ioral framework these systems are defined by a triple Σ = (R,Rw,B), where
R is the time axis, Rw is the signal space, and the behavior B is a subset of
C∞(R,Rw) consisting of all solutions of a set of higher order, linear, constant
coefficient differential equations. More precisely, there exist a positive integer
g and a polynomial matrix R ∈ R[ξ]g×w such that

B = {w ∈ C∞(R,Rw) | R( d
dt )w = 0}.

We shall denote the set of all linear differential systems by Lw.( The su-
perscript w in Lw refers to the dimension of the co-domain of w ∈ B.) The
behavioral approach makes a distinction between the behavior as the space of
all solutions to a set of (differential) equations, and the set of equations itself.
A set of equations in terms of which the behavior is defined, is called a rep-
resentation of the behavior. If the behavior B is represented by R( d

dt )w = 0
then we call this a kernel representation of B. Since the behavior B of the
system Σ is the central item, we will mostly speak about the system B ∈ Lw

(instead of Σ ∈ Lw). Henceforth, we speak of a system as the behavior B,
one of whose representations is given by R( d

dt )w = 0 or just B = ker(R( d
dt )).

2.2 Minimal and equivalent representations

The equation R( d
dt )w = 0 is also called a behavioral equation. A behavioral

equation is the outcome of modeling. Our goal in modeling a system is to
describe the behavior of the system and not in obtaining just a behavioral
equation. While a behavioral equation describes the behavior uniquely, the
converse is not true. The same behavior can be described in general by many
models, and a specific model takes a back stage as compared to the behavior
itself. In other words, when understanding a system, we usually take care
not to get drowned in a behavioral equation that describes the behavior.

Keeping this in mind, we make a distinction between the behavior as
the set of solutions to a system of equations, and the system of equations
itself. A specified set of equations is called a representation of the behavior.
Having distinguished a behavior from a representation we do consider the
following questions:

Q1. When do we call a representation minimal (in some sense) for a given
behavior?
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Q2. When do two representations describe the same behavior?

In the remainder of this section we address the above questions.

2.2.1 Minimal representation

Consider a behavior B ∈ Lw represented by R( d
dt )w = 0. The system of

equations R( d
dt )w = 0 may have redundancies of the following nature:

1. Some equations may be identically zero.

2. A subset of the equations may be linearly dependent on the other equa-
tions.

Therefore, such redundant equations can be removed without affecting the
behavior, which motivates us to define a minimal kernel representation.

Definition 2.2.1. Let B ∈ Lw be given by the kernel representation
R( d

dt )w = 0, with R ∈ R[ξ]g×w. Then this kernel representation is said to be
minimal if every other kernel representation of B has at least g rows.

The following proposition (Polderman & Willems [26], Theorem 3.6.4) shows
that kernel representations of a behavior that do not contain any redundant
equations are minimal.

Proposition 2.2.2. Let B = {w ∈ C∞(R,Rw) | R( d
dt )w = 0}. Then R(ξ)

induces a minimal kernel representation of B if and only if R(ξ) has full
row rank.

Beginning with a non-minimal kernel representation of a given behavior the
following proposition given in Polderman & Willems [26] gives a procedure
for obtaining a minimal kernel representation.

Proposition 2.2.3. Let B ∈ Lw be given by the kernel representation

R( d
dt )w = 0. Then, choose U , unimodular, such that UR =

[
R′

0

]
and

R′ has full row rank. Then R′( d
dt )w = 0 is a minimal kernel representation

of B.
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Ic1

Ic2

C1

C2

R1

R2
VoVi

Figure 2.1 Band pass filter

2.2.2 Equivalent representations

A given behavior may be represented by more than one representation. An
example is the following:

Example 2.2.4. Consider the band pass filter circuit shown in Figure 2.1.
Let R1,R2,C1 and C2 denote the values of the two resistors and the val-
ues of capacitance of the capacitors. Assume that we are interested in the
voltages Vi,Vo and currents Ic1 ,Ic2 which are admissible, i.e. the four-tuple
(Vi,Vo,Ic1 ,Ic2) that respects the laws defined by the circuit. It is clear that
the time axis T in this case is R, and the signal space W is R4. The use of
Kirchoff’s voltage and current laws tells us that only those (Vi,Vo,Ic1 ,Ic2) are
admissible that satisfy the ODE’s

Ic1 = C1
d
dt (Vi −R1(Ic1 − Ic2)),

Ic2 = C2
d
dt Vo,

Vo = R1(Ic1 − Ic2)−R2Ic2 .

Define

G1(ξ) :=




−C1ξ 0 1 + R1C1ξ −R1C1ξ

0 C2ξ 0 −1
0 1 −R1 R1 + R2



 . (2.1)

Then the behavior B ∈ L4 of the band pass filter circuit can be given by
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B =





(Vi,Vo,Ic1 ,Ic2) ∈ C∞(R,R4)

∣∣∣∣∣∣∣∣
G1( d

dt )





Vi

Vo

Ic1
Ic2



 = 0





. (2.2)

It is easy to verify that G1 has full row rank. Therefore the representation
in Equation 2.2 is minimal.

Another set of equations which describes the same system is given by

C1
d
dt Vi − C1

d
dt Vo − Ic1 −R2C1

d
dt Ic2 = 0,

Vo −R1Ic1 + (R1 + R2)Ic2 = 0,

C2
d
dt Vo − Ic2 = 0.

Define

G2(ξ) :=




C1ξ −C1ξ −1 −R2C1ξ
0 1 −R1 R1 + R2

0 C2ξ 0 −1



 . (2.3)

Then the behavior B ∈ L4 of the band pass filter circuit can also be given
by

B =





(Vi,Vo,Ic1 ,Ic2) ∈ C∞(R,R4)

∣∣∣∣∣∣∣∣
G2( d

dt )





Vi

Vo

Ic1
Ic2



 = 0





. (2.4)

It is easy to verify that G2 has full row rank. Therefore the representation
in Equation 2.4 is also minimal.

From the above example it is clear that a given behavior can be represented
by more than one representation. We call two representations equivalent if
they define the same behavior. In the remainder of this section we will give
some results related to equivalent kernel representations.

Before we move on to the issue when the behaviors defined by two kernel
representations are equal, we state the following important result (Polderman
& Willems [26], section 3.6), that concerns the issue of inclusion of one
behavior in another.

Proposition 2.2.5. Let B1,B2 ∈ Lw be represented by the kernel represen-
tations R1( d

dt )w = 0 and R2( d
dt )w = 0, respectively. Then B1 ⊆ B2 if and

only if there exists an F ∈ R[ξ]•×• such that FR1 = R2.
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The following proposition (Polderman & Willems [26]) relates two minimal
kernel representations of a given behavior.

Proposition 2.2.6. Let B1 = ker(R1( d
dt )) and B2 = ker(R2( d

dt )) be min-
imal kernel representations. Then B1 = B2 if and only if there exists a
unimodular matrix U such that R1 = UR2.

It is easy to verify that in Example 2.2.4, G1 and G2 are related by the
unimodular matrix U as G1 = UG2, where

U =




−1 −C1ξ 0
0 0 1
0 1 0



 .

This explains why G1 and G2 represent the same behavior in Example 2.2.4.

2.3 Latent variables and their elimination

Most systems that we encounter during modeling are made up of smaller,
simpler subsystems that are interconnected via their terminals. A systematic
procedure for modeling a system can be to first model every subsystem and
then use the interconnection relations to build a model for the entire sys-
tem. This procedure is called modeling by tearing and zooming (see Willems
[48]). As a result of this systematic procedure, we invariably obtain a set of
equations with additional variables called latent variables. The latent vari-
ables are different from the variables that we are really interested in which
we usually call the manifest variables. We have defined a dynamical system
in Definition 2.1.1 using just manifest variables, but it is also possible to
define a dynamical system using both latent and manifest variables. Such a
definition gives rise to what is called a “full behavior”:

Definition 2.3.1. A dynamical system with latent variables is a quadruple
ΣL = (T,W,L,Bfull) where T is the time axis, W is the space of manifest
variables, L is the space of latent variables and Bfull ⊆ (W × L)T, i.e. Bfull

is a set of functions from T to W× L, called the “full behavior”.

In the framework of linear differential systems a dynamical system with
latent variables is represented by an equation of the form

R( d
dt )w = M( d

dt )( (2.5)

where ( is the latent variable, and R(ξ), M(ξ) are polynomial matrices of
appropriate dimensions.
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Let w ∈ WT and ( ∈ LT. We consider the projection operator Πw :
(W × L)T to WT defined as Πw(w,() := w. Then, the behavior (Bfull)w :=
Πw(Bfull) is called the manifest behavior induced by Bfull. If, for a given
behavior B, we have B = (Bfull)w, i.e. B is the manifest behavior induced
by Bfull, then we call Bfull a latent variable representation of B. The question
whether (Bfull)w is again a linear differential system depends on the function
space under consideration. In the context of linear differential systems that
we consider, we have Bfull ⊆ C∞(R,Rw+l), and in that case the manifest
behavior (Bfull)w can indeed be expressed as the solution set of a system
of linear differential equations. This is a consequence of the all important
elimination theorem:

Theorem 2.3.2. Let Bfull ∈ Lw+l. Consider the behavior (Bfull)w defined
by (Bfull)w := {w ∈ C∞(R,Rw) | ∃( ∈ C∞(R,Rl) such that (w,() ∈ Bfull}.
Then (Bfull)w ∈ Lw.

Given a full behavior, in the following proposition we give a procedure for
eliminating the latent variable. We shall utilize this method often in this
thesis.

Proposition 2.3.3. Let Bfull ∈ Lw+l with system variable w = (w,() be
given by R( d

dt )w = M( d
dt )( with R ∈ R[ξ]g×w and M ∈ R[ξ]g×l. Let U ∈

R[ξ]g×g be a unimodular matrix such that UM =
[

M1

0

]
with M1 ∈ R[ξ]•×l

full row rank. Let UR be partitioned correspondingly into UR =
[

R1

R2

]
.

Then a kernel representation of (Bfull)w is given by R2( d
dt )w = 0.

The elimination theorem has important consequences in the context of mod-
eling. As explained in the introduction to this section, during the process of
modeling we need to introduce additional variables that come up naturally.
As a consequence of the elimination theorem, these latent variables are not
a problem since they can always be eliminated.

We now illustrate the concepts behind elimination using the band pass
filter circuit given in the Example 2.2.4.

Example 2.3.4. We refer to the circuit in Figure 2.1, which has been re-
drawn in Figure 2.2 to emphasize the “tearing and zooming” approach to
modeling. As before, R1,R2,C1 and C2 denote the values of the resistors and
the values of the capacitance of the capacitors. Assume that we are inter-
ested in the “behavior” of Vi and Vo, thereby declaring the manifest variables
to be Vi and Vo. Proceeding from first principles we introduce some latent
variables to model the circuit. These could be
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V2c1 V1r2 VoVi

Ir2

Ir1

Ic1

Ic2

• •
V1r1

•
V1c2

C1

C2

R1

R2

• • •
Figure 2.2 Band pass filter

1. Currents Ir1 , Ir2 flowing in the resistance branches R1 and R2 respec-
tively.

2. Currents Ic1 , Ic2 flowing in the capacitance branches C1 and C2 respec-
tively.

3. Potential V2c1 at one terminal of capacitance C1 (the other terminal of
the capacitance C1 is at potential Vi, which is a manifest variable).

4. Potential V1r1 at one terminal of the resistance R1 (in order to reduce the
number of variables, we assume that the other terminal of the resistor
R1 is at ground potential 0, but a priori such an assumption is not
necessary).

5. Potential V1r2 at one terminal of the resistance R2 (the other terminal of
the resistance R1 is at potential Vo, which is again a manifest variable).

6. Potential V1c2 at one terminal of the capacitance C2. Again, we assume
that the other terminal of C2 is at ground potential.

The subsystems R1,R2,C1 and C2 satisfy the following equations:

1. V1r1 = R1Ir1 .

2. V1r2 − Vo = R2Ir2 .

3. C1
d
dt (Vi − V2c1) = Ic1 .
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4. C2
d
dt V1c2 = Ic2 .

The subsystems are interconnected in such a way that the following con-
straints are imposed:

5. V2c1 = V1r2 ,

6. V1r2 = V1r1 ,

7. Vo = V1c2 ,

8. Ic1 = Ir1 + Ir2 , and

9. Ir2 = Ic2 .

The nine equations that we have just written define the “full behavior”
which includes our variables of interest Vi,Vo and variables that we have
introduced during the course of modeling. We eliminate the extra variables
that have been introduced and obtain the manifest behavior that describes
the evolution of Vi and Vo. Using fairly straightforward calculations, the
following equations in terms of V1r1 ,Ic1 and Ic2 can be obtained

C1
d
dt (Vi − V1r1) = Ic1 ,

V1r1 = R1(Ic1 − Ic2),
V1r1 − Vo = R2Ic2 ,

C2
d
dt Vo = Ic2 .

The above equations can be rewritten in latent variable representation as
follows





C1
d
dt 0

0 0
0 −1
0 C2

d
dt





[
Vi

Vo

]
=





C1
d
dt 1 0

−1 R1 −R1

−1 0 R2

0 0 1








V1r1

Ic1
Ic2



 .

Applying Proposition 2.3.3, we obtain the manifest behavior as

[
−R1C1

d
dt R1C2

d
dt + (1 + R1C1

d
dt )(1 + R2C2

d
dt )

] [
Vi

Vo

]
= 0.



2.3 Latent variables and their elimination 19

Remark 2.3.5. The above example illustrates the general ideas behind the
tearing and zooming approach to modeling. Of course, in this simple exam-
ple, defining just three latent variables V1r1 ,Ic1 and Ic2 would probably be
enough for someone familiar with how to identify equipotential terminals in
the circuit. One particularly clever way of choosing the latent variables in
this case is to define as the latent variables the voltage across the capacitors
C1 and C2. We will see in Example 2.8.3 that the equations take a particu-
larly simple and appealing form using these latent variables. However, such
simplifications are the result of insight into the nature of the problem and
are therefore not included in a systematic method for modeling (done for
example with the help of a computer). Therefore, the number of latent vari-
ables that could be introduced in the course of modeling may vary depending
on, among others the experience of the modeler. Hence, given Bfull (which
presumes a particular choice of latent variables) it makes sense to ask what
is B, however the converse question is meaningless in general, since as we
have seen, Bfull is highly non-unique and depends on the number of latent
variables a modeler may choose to add in the course of modeling. Having
said that Bfull is highly non-unique, we must however add that there are
some special “full behaviors” associated with a given behavior B that are of
immense practical and theoretical significance. An example of this are state
space representations of B, which we review in Section 2.8.

Before ending this section we illustrate how the concept of latent vari-
ables and their elimination are useful in obtaining representations of the sum
of two behaviors. Let B1,B2 ∈ Lw. Then the behavior B1 +B2 is defined by
B1 + B2 = {w | ∃(1 ∈ B1 and (2 ∈ B2 such that w = (1 + (2}. Let B1 and
B2 be given by the minimal kernel representations B1 = ker(R1( d

dt )) and
B2 = ker(R2( d

dt )), respectively. Then




0
0
I



w =




R1( d

dt ) 0
0 R2( d

dt )
I I




[

(1

(2

]
(2.6)

gives a latent variable representation of B1 + B2, where (1 and (2 are the
latent variables. A kernel representation of B1 + B2 is then obtained by
eliminating the latent variables (1 and (2 from Equation 2.6.

The following lemma will be useful in Section 3.2.

Lemma 2.3.6. Let B1,B2 ∈ Lw be given by the minimal kernel repre-
sentations B1 = ker(R1( d

dt )) and B2 = ker(R2( d
dt )), respectively. Then

B1 + B2 = C∞(R,Rw) if and only if
[

R1

R2

]
has full row rank.
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Proof: The proof of this lemma will be straightforward after introducing the
concept of free variable and after stating Lemma 2.9.3. !

2.4 Observability and detectability

We often encounter behaviors in which the signal space comes as a prod-
uct space. In the previous sections we already saw two kinds of variables,
namely, the manifest variable w and the latent variable (. More generally,
suppose the signal space is a Cartesian product W1 × W2 of two spaces
W1 and W2. Assume that the first component w1 is viewed as an observed
(measured) variable, and the second component w2 as a to-be-deduced vari-
able. We are interested in the question whether knowledge of w1 along with
the knowledge of the laws of the system is sufficient to deduce w2. This
question is formalized by the concept of observability. Consider the system
Σ = (T,W1 ×W2,B). Each element of the behavior B hence consists of a
pair of trajectories (w1,w2) : T → W1 ×W2.

Definition 2.4.1. Let Σ = (T,W1 ×W2,B), with system variable (w1,w2).
We say that w2 is observable from w1 in B if, whenever (w1,w2), (w1,w′2) ∈ B,
then w2 = w′2.

Clearly, for linear systems observability of w2 from w1 is equivalent to

(0,w2) ∈ B⇒ w2 = 0.

When considering linear differential systems, the following proposition (Pol-
derman & Willems [26]) characterizes observability in terms of a represen-
tation of the behavior.

Proposition 2.4.2. Let B ∈ Lw1+w2 with system variable (w1,w2) be repre-
sented by the kernel representation R1( d

dt )w1 + R2( d
dt )w2 = 0. Then w2 is

observable from w1 in B if and only if R2(λ) has full column rank for all
λ ∈ C.

From the proposition above we see that the condition for observability of
w2 from w1 depends only on R2. This motivates us to refer to the property
of R2(λ) having full column rank for all λ ∈ C, as R2 being “observable”.
Observability of R2 is equivalent to R2 having a polynomial left inverse,
i.e. there exists a R2L ∈ R[ξ]•×• such that R2LR2 = I. Using this R2 one
can obtain w2, the to-be-deduced variable from w1, the observed variable.
Precisely, if (w1,w2) ∈ B then w2 = R2L( d

dt )R1( d
dt )w1. We conclude from

this that observability of w2 from w1 in B is equivalent to the existence of
a map from w1 to w2 for all (w1,w2) ∈ B.
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For linear differential systems we also need a property called detectabil-
ity which is weaker than the property of observability.

Definition 2.4.3. Let B ∈ Lw1+w2 with system variable (w1,w2). We say
that w2 is detectable from w1 in B if, whenever (w1,w2), (w1,w′2) ∈ B, then
limt→∞(w2 − w′2)(t) = 0.

This formalizes that we can deduce the to-be-deduced variables from the ob-
served variables asymptotically i.e. if two to-be-deduced variable trajectories
w2 and w′2 correspond to the same observed variable trajectory w1 in the
behavior, then the difference between w2(t) and w′2(t) converges to zero as
t tends to infinity. Clearly, for linear systems detectability of w2 from w1 is
equivalent to

(0,w2) ∈ B⇒ lim
t→∞

w2(t) = 0.

Detectability can also be characterized in terms of kernel representations of
the behavior as given in the following proposition (Polderman & Willems
[26], Theorem 5.3.17).

Proposition 2.4.4. Let B ∈ Lw1+w2 with system variable (w1,w2) be repre-
sented by the kernel representation R1( d

dt )w1 + R2( d
dt )w2 = 0. Then w2 is

detectable from w1 in B if and only if R2(λ) has full column rank for all
λ ∈ C̄+.

2.5 Controllability and stabilizability

Controllability plays a central role in systems and control. This intuitive
notion was given a strong foundation when it was introduced and formalized
for state space systems by Kalman in 1960. Consider the state space system

d
dt x = Ax + Bu

with A ∈ Rn×n and B ∈ Rn×m. The Rn-valued variable x is called the state.
This system is called state controllable if for every x0,x1 ∈ Rn there exists
some τ ≥ 0 and some u1 : R → Rm such that the solution to the above
differential equation with u = u1 and x(0) = x0 satisfies x(τ) = x1. This
definition of controllability has been the starting point for many important
developments in systems theory.

We now provide the behavioral definition of controllability. In the behav-
ioral approach, controllability is an intrinsic property of the behavior, i.e.,
controllability is a property of the set of trajectories allowed by the system.
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Definition 2.5.1. The time-invariant system Σ = (R,W,B) is said to be
controllable if for all w1,w2 ∈ B, there exist T ≥ 0 and w ∈ B such that
w(t) = w1(t) for t ≤ 0, and w(t) = w2(t− T ) for t ≥ T .

A characterization of representations of controllable systems is important.
Controllable behaviors turn out to be exactly those that admit a special rep-
resentation called image representation. The latent variable representation
w = M( d

dt )( is said to be an image representation of the manifest behavior
B ∈ Lw, if we have

B = {w ∈ C∞(R,Rw) | ∃( ∈ C∞(R,Rl) such that w = M( d
dt )(}.

This is also written as B = im(M). The following important result
(Polderman & Willems [26], Theorem 5.2.10) gives a characterization of rep-
resentations of a controllable behavior:

Proposition 2.5.2. Let B ∈ Lw be given by the kernel representation
R( d

dt )w = 0. Then the following statements are equivalent:

1. B is controllable.

2. rank(R(λ)) = rank(R) for all λ ∈ C.

3. there exists an integer l and M ∈ R[ξ]w×l such that w = M( d
dt )( is an

image representation of B.

We remark here that if B is controllable, it is possible to find an image
representation in which the latent variable is observable from w. Such an
image representation is called an observable image representation. A second
remark deals with the case that in the theorem above R( d

dt )w = 0 is a min-
imal kernel representation. Then statement 2 is equivalent to the existence
of a polynomial right inverse of the polynomial matrix R.

Controllability of behaviors will play an important role in this thesis. We
shall use Lw

cont to denote the subset of Lw consisting of all the controllable
behaviors.

Controllability of a behavior enables us to steer a trajectory to a desired
trajectory within some finite time. We now come to the notion of stabiliz-
ability, which is weaker than that of controllability. Stabilizability enables us
to steer a trajectory towards a desired one asymptotically. When considering
linear systems it is sufficient to be able to steer a trajectory to zero. The
following is a definition for linear differential systems.

Definition 2.5.3. B ∈ Lw is called stabilizable if for every w ∈ B there
exists w′ ∈ B such that w′(t) = w(t) for t ≤ 0, and limt→∞w′(t) = 0.
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Analogous to Proposition 2.5.2 we state the following proposition (Polder-
man & Willems [26] Theorem 5.30) which relates stabilizability to kernel
representations.

Proposition 2.5.4. Let B ∈ Lw be given by the kernel representation
R( d

dt )w = 0. Then the following statements are equivalent:

1. B is stabilizable.

2. rank(R(λ)) = rank(R) for all λ ∈ C̄+.

Clearly, if B ∈ Lw
cont then it is stabilizable. Stabilizability will play an im-

portant role when we discuss the issue of stabilization of a plant in section
3.5.

2.6 Autonomous behaviors

Autonomous behaviors are in a sense the opposite of controllable behaviors.
If a behavior is autonomous there is no possibility of moving from a given
trajectory to a different trajectory.

Definition 2.6.1. A time-invariant dynamical system Σ = (R,W,B) is
called autonomous if for all w1,w2 ∈ B

w1(t) = w2(t) for t ≤ 0⇒ w1 = w2.

The above definition says that in autonomous systems, the future of every
trajectory is entirely determined by its past. Many physical systems are
autonomous, e.g. the motion of planets around the sun, the rotation of the
earth along its axis etc.

In the context of linear differential systems, the following result (Pold-
erman & Willems [26], Section 3.2) gives a characterization of autonomous
systems in terms of their kernel representations.

Proposition 2.6.2. Let B ∈ Lw be given by the kernel representation
R( d

dt )w = 0. Then the following statements are equivalent:

1. B is autonomous.

2. rank(R) = w.

3. B is a finite dimensional vector space over R.



24 2 Behaviors

Furthermore, if R( d
dt )w = 0 is a minimal kernel representation then any of

these statements is equivalent to R being square and nonsingular.

We denote the set of all autonomous linear differential systems with w vari-
ables by Lw

aut. We now introduce some important subclasses of Lw
aut, namely:

stable, unstable and anti-stable behaviors.

Definition 2.6.3. B ∈ Lw with system variable w is called stable if we have
limt→∞w(t) = 0 for all w ∈ B.

An autonomous behavior which is not stable is called unstable. As the name
suggests, an anti-stable behavior is in a sense the opposite of a stable behav-
ior:

Definition 2.6.4. Let B ∈ Lw
aut. Then B is called anti-stable if for all

non-zero w ∈ B we have either limt→∞w(t) .= 0 or limt→∞w(t) does not
exist.

The following proposition characterizes stable and anti-stable behaviors in
terms of their kernel representations.

Proposition 2.6.5. Let B ∈ Lw
aut be given by the kernel representation

R( d
dt )w = 0. Then

1. B is stable if and only if R(λ) has full column rank for all λ ∈ C̄+, and

2. B is anti-stable if and only if R(λ) has full column rank for all λ ∈ C−.

Furthermore, if R( d
dt )w = 0 is a minimal kernel representation then B is

stable if and only if R is Hurwitz and is anti-stable if and only if R is anti-
Hurwitz.

Definition 2.6.6. A function of the form h(t) =
∑N

i=1 pi(t)eait cos(bit) +
qi(t)eait sin(bit), with pi,qi real vector valued polynomials in the indetermi-
nate t, and ai,bi ∈ R, is called a Bohl function. A Bohl function h(t) is called
stable if limt→∞ h(t) = 0. A nonzero Bohl function h(t) is called anti-stable
if we have either limt→∞ h(t) .= 0 or limt→∞ h(t) does not exist.

The following proposition follows immediately from Polderman & Willems
[26], Theorem 3.2.16:

Proposition 2.6.7. Let B ∈ Lw
aut. Then

1. every w ∈ B is a Bohl function,

2. B is stable if and only if every w ∈ B is a stable Bohl function, and
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3. B is anti-stable if and only if every non-zero w ∈ B is an anti-stable
Bohl function.

The next proposition states that every autonomous behavior can be written
as a direct sum of a stable and an anti-stable behavior:

Proposition 2.6.8. Let B ∈ Lw
aut. Then there exists a stable Bs ∈ Lw

aut,
and an anti-stable Ba ∈ Lw

aut such that B = Bs ⊕Ba.

Proof: Let B = ker(R( d
dt )) be a minimal kernel representation of B.

Then there exists unimodular matrices U,V such that R = UΣ−Σ+V where
Σ− = diag(p−1 ,p−2 , . . . p−w ) and Σ+ = diag(p+

1 ,p+
2 , . . . p+

w ) are diagonal polyno-
mial matrices such that Σ− is Hurwitz and Σ+ is anti-Hurwitz. From Propo-
sition 2.2.6 we have B = ker(Σ−Σ+V ( d

dt )). Define Bs := ker(Σ−V ( d
dt ))

and Ba := ker(Σ+V ( d
dt )), then we have Bs ∩ Ba = ker

([
Σ−
Σ+

]
V ( d

dt )
)

.

It is easy to see that Bs ⊆ B, Ba ⊆ B and Bs is stable, Ba is anti-stable
and Bs ∩ Ba = {0}. As Bs ⊆ B and Ba ⊆ B we have Bs ⊕ Ba ⊆ B.
To prove the converse inclusion let w ∈ B. We have Σ−Σ+V ( d

dt )w = 0.
Define w′ := V ( d

dt )w. Then we have λ−i λ+
i ( d

dt )w
′
i = 0 for all i ∈ w where

w′ = col(w′1,w′2, . . . ,w′w). There exists w′−i and w′+i such that w = w′−i +w′+i ,
λ−i ( d

dt )w
′−
i = 0 and λ+

i ( d
dt )w

′+
i = 0. Define (′1 := col(w′−1 ,w′−2 , . . . ,w′−w )

and (′2 := col(w′+1 ,w′+2 , . . . ,w′+w ). We have w′ = (′1 + (′2. Therefore w =
V −1( d

dt )(
′
1 + V −1( d

dt )(
′
2 where V −1( d

dt )(
′
1 ∈ Bs and V −1( d

dt )(
′
2 ∈ Ba, which

implies that w ∈ Bs + Ba. Hence B ⊆ Bs ⊕Ba. !

2.7 Controllable part

As discussed in the previous sections, controllable behaviors and autonomous
behaviors are two extremes. As a trivial case, the zero behavior B = {0}
is both controllable and autonomous. In general, behaviors fall in between
these two extremes. Behaviors which are neither controllable nor autonomous
have a controllable sub-behavior within them. Of course, it is easy to find a
controllable sub-behavior within every behavior, namely, the zero behavior.
In this section we shall discuss the largest controllable behavior contained
in a given behavior. This largest sub-behavior is defined as the controllable
part of the behavior.

Definition 2.7.1. Let B ∈ Lw. The controllable part of B is defined as the
behavior Bcont ∈ Lw satisfying the following three properties:
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1. Bcont is controllable,

2. Bcont ⊆ B, and

3. if B′ ∈ Lw is controllable and B′ ⊆ B then B′ ⊆ Bcont.

As the sum of two controllable behaviors is also controllable, the existence of
the largest controllable sub-behavior Bcont is guaranteed. Since Bcont is the
largest controllable sub-behavior, uniqueness of Bcont is also guaranteed.

It is shown in Polderman & Willems [26] that a given behavior B ∈ Lw

can always be decomposed as B = Bcont⊕Baut where Baut is an autonomous
sub-behavior of B. Though Bcont is unique, Baut is not.

Let B = ker(R( d
dt )) be a minimal kernel representation of B. A proce-

dure to obtain a representation of Bcont is given as follows (see Polderman
& Willems [26]): Factorize R = FR′, where F is square and nonsingular and
R′(λ) has full row rank for all λ ∈ C, then Bcont = ker(R′( d

dt )).

2.8 State representation

States are intuitively related to the “memory” of a dynamical system. In the
behavioral framework, the state x of a system is a latent variable with the
special property that if the values of the state corresponding to two manifest
variable trajectories are equal at a certain time t, then the two manifest
variable trajectories can be concatenated at time t. Roughly speaking, this
means that while going from the “past” into the “future”, one only needs
to see that the states match. Hence, the value of the states at time t can be
thought of as capturing the entire history of evolution of a system from rest
up to time t. In the sequel by w1 ∧τ w2 we mean the concatenation of w1(t)
and w2(t) at t = τ .

Definition 2.8.1. Let ΣX = (R,Rw,Rx,Bfull) be a time invariant latent
variable system. The latent variable x is said to have the property of state if

{(w1,x1),(w2,x2) ∈ Bfull} and {x1(0) = x2(0)}
and {x1,x2 continuous at t = 0}
⇒ {(w1 ∧0 w2,x1 ∧0 x2) ∈ Bfull}.

Latent variable systems in which the latent variable has the property of
state will be called state systems. The connection of state systems with those
systems that admit a representation which is first order in the state variable
and zeroth order in the manifest variable w was established in Rapisarda &
Willems [29], Proposition 3.1.
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Proposition 2.8.2. Let ΣX = (R,Rw,Rx,Bfull) be a linear differential system
with latent variable x taking values in Rx. Then ΣX is a state system if and
only if there exist matrices E,F,G ∈ R•×• such that

Bfull = {(w,x) ∈ C∞(R,Rw) | E d
dt x + Fx + Gw = 0}.

Note that if Bfull is a linear differential system, then B := (Bfull)w can be
obtained by eliminating the states from Bfull using the elimination theo-
rem. By a state representation of B we mean a state system with behavior
Bfull such that B = (Bfull)w. We demonstrate state representations with an
example.

Example 2.8.3. Consider the band pass filter circuit shown in Figure 2.2.
Let us re-do Example 2.3.4 with latent variables Vc1 := Vi−Vo, which is the
voltage across the capacitor C1 and Vc2 := Vo, which is the voltage across
the capacitor C2. Then we get the following equations relating Vi,Vo,Vc1 and
Vc2 .

Vi = Vc1 + R1C1
d
dt Vc1 −R1C2

d
dt Vc2

Vi = Vc1 − Vc2 −R2C2
d
dt Vc2

Vo = Vc2

After re-writing these equations we have



R1C1 −R1C2

0 −R2C2

0 0




[

d
dt Vc1
d
dt Vc2

]
+




1 0
1 −1
0 −1




[

Vc1
Vc2

]

+




−1 0
1 0
0 1




[

Vi

Vo

]
= 0.

We see that this equation is first order in the latent variable (Vc1 ,Vc2) and ze-
roth order in the manifest variable (Vi,Vo). Hence, it is a state representation
of the manifest behavior of the filter circuit.

It can be shown that several state representations are possible for a given
behavior B. Therefore, we now consider the notion of a minimal state rep-
resentation:

Definition 2.8.4. A state system ΣX1 = (R,Rw,Rx1 ,B1
full) with manifest be-

havior B and Rx1-valued states x1 is said to be a minimal state representation
of B if whenever ΣX2 = (R,Rw,Rx2 ,B2

full) is another state representation of
B with Rx2-valued states x2 then x1 ≤ x2. This minimal number of states is
called the McMillan degree of B and is denoted by n(B).
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In order to deduce when a given state representation of B with behavior
Bfull is state minimal, we need the notion of trimness of Bfull.

Definition 2.8.5. Consider a behavior B ∈ Lw with system variable w, and
a state representation of B with behavior Bfull ∈ Lw+x with system variable
(w,x). Then, Bfull is called state trim if for every a a ∈ Rx there exists a
(w,x) ∈ Bfull such that x(0) = a.

State trimness means that there are no algebraic constraints among the
states. Together with observability of x from w in Bfull, trimness of Bfull has
been shown to be sufficient for state minimality (see Proposition 7.8 from
Willems [46]).

Proposition 2.8.6. Let Bfull ∈ Lw+x be a state representation of B ∈ Lw.
Then Bfull is state minimal if and only if Bfull is state trim and x is observ-
able from w in Bfull.

Thus, when Bfull is state minimal, because of observability it is possible to
deduce x from w. As discussed in section 2.4 this implies that there exists a
map induced by, say, X ∈ R[ξ]x×w such that x = X( d

dt )w for all (w,x) ∈ Bfull.
Notice that such a map exists whenever x is observable from w, and

state-minimality is not essential for the existence of such a map. X ∈ R[ξ]x×w
is said to induce a state map X( d

dt ) for B ∈ Lw if x := X( d
dt )w is a state

for B. A state map X ∈ R[ξ]x×w is minimal if every other state map has at
least as many rows as X. From Proposition 2.8.6 we get that a state map X
is minimal if and only if it induces a trim state system. If B is controllable
and if w = M( d

dt )( is an image representation it is often useful to consider
a state map X( d

dt )M( d
dt ) which acts on the latent variable instead of the

manifest variable w as defined above. Trimness of X( d
dt ) with respect to B

then translates to the polynomial matrix XM having rows that are linearly
independent over R.

2.9 Inputs and outputs

The concept of “free variable”, i.e. a variable that is not constrained by the
laws defining the system, plays an important role in defining the concept of
input. The idea underlying the definition is that an input is unconstrained
by the system and therefore can be fixed by the environment. The existence
of “free” variables in a behavior is related to the fact that in general a
behavior is described by an under-determined system of equations. This
leaves some components of the solutions unconstrained. These components
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are free to assume arbitrary C∞-functions. The following definition formalizes
this concept.

Definition 2.9.1. Let B ∈ Lw1+w2 with system variable (w1,w2). We will
call w2 free in B if for any choice of w2 ∈ C∞(R,Rw2) there exists a w1 ∈
C∞(R,Rw1) such that (w1,w2) ∈ B. We call w2 maximally free if it is free,
and we can not enlarge this set with components from w1 and still continue
to have freeness for this enlarged set of variables.

We use the concept of maximally free variables to define an “input-output
partition” of the variable w of a behavior B:

Definition 2.9.2. Let B ∈ Lw with system variable w. Partition w (after
possibly a permutation of its components) as w = (wi,wo). The partition
w = (wi,wo) is said to be an input-output partition of w if the variable wi is
maximally free in B.

The following Proposition (Polderman & Willems [26]) characterizes free and
maximally free variables of a behavior in terms of its kernel representations.

Proposition 2.9.3. Let B ∈ Lw1+w2 with system variable (w1,w2), and let
R1( d

dt )w1 + R2( d
dt )w2 = 0 be a minimal representation of B. Then

1. w2 is free in B if and only if R1 has full row rank,

2. w2 is maximally free in B if and only if R1 is square and non-singular.

We now address briefly three “invariants” associated with a linear differential
behavior B with manifest variables w.

1. Input cardinality: Let w = (wi,wo) be a input-output partition of B.
Clearly, several input-output partitions are possible for a behavior. How-
ever, it turns out that the cardinality of every set of maximally free
variables in B is the same. The cardinality of the set wi of inputs in a
given input-output partition of B is called the input cardinality of B,
denoted by m(B). m(B) is intrinsic to a behavior and does not depend
on a particular representation. Therefore, we say it is an invariant as-
sociated with B. If B is controllable, m(B) is also the minimal number
of latent variables in an image representation for B.

2. Output cardinality: If B has w manifest variables and input cardinality
m(B) then p(B):=w − m(B) is called the output cardinality of B. The
output cardinality is completely determined by the number of mani-
fest variables and the input cardinality, both of which are intrinsic to
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a behavior. Therefore, p(B) is an invariant associated with B. Sup-
pose R( d

dt )w = 0 is a kernel representation of B then p(B) = rank(R)
[Willems [47]]. It is easy to see that B = C∞(R,R•) if and only if
p(B) = 0 and B ∈ Lw is autonomous if and only if p(B) = w.

3. McMillan degree: Given a behavior B, the number of states in a min-
imal state representation for B is defined as the McMillan degree of
B (see Definition 2.8.4), and is denoted by n(B). The McMillan de-
gree of a behavior is an invariant associated with the behavior. Suppose
R( d

dt )w = 0 is a kernel representation of B then the McMillan degree
of B is equal to the maximal degree minor of R(ξ) (see Rapisarda &
Willems [29]).
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3 Control in the behavioral framework

We have covered the preliminary concepts of the behavioral theory in chap-
ter 2. In the present and the forthcoming chapters we use these concepts to
study control problems in the behavioral framework. In general, control of
a plant (to-be-controlled system) is nothing but restriction of the plant be-
havior to a desired subset of the behavior. This restriction is brought about
by interconnecting the plant with a controller that we design. In the inter-
connected system the plant variables have to obey the laws of both the plant
and the controller. This interconnected system is also called the controlled
system, in which the controller is an embedded subsystem. In this chapter
we study several concepts of control in the behavioral framework starting
from this viewpoint of control as interconnection.

The outline of this chapter is as follows. We start with a review of the
concept of interconnection of behaviors for both the full and the partial
interconnection case (section 3.1). In section 3.2 we consider the important
concept of regular interconnection, which was introduced in Willems [47]. We
then review the concepts of implementability and regular implementability
of a desired behavior both in the full and the partial interconnection case
(see section 3.3). In section 3.4 we give a characterization of all controllers
that (regularly) implement a desired behavior. We then review the parame-
terization of all controllers regularly implementing a desired behavior given
in Praagman, Trentelman & Zavala Yoe [27]. Finally, in section 3.5 we review
stabilization by interconnection both in the full and the partial interconnec-
tion case.

3.1 Interconnection of systems

The concept of interconnection plays an important role in modeling and
control of systems in the behavioral framework. Let P1 and P2 be linear
differential systems. Then the interconnection of P1 and P2 through a shared
variable will result in a system in which the shared variable satisfies the
dynamics of both P1 and P2. Depending upon the shared variable between
the plants there are two types of interconnection. The first case is when P1

and P2 have the same system variables and they are interconnected through
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all these variables. This is called full interconnection. The second case is when
P1 and P2 have only some variables in common and they are interconnected
through only these variables. This is called partial interconnection. These
concepts are formalized as follows:

1. Full interconnection: Let P1, P2 ∈ Lw with system variable w. Then
the full interconnection of P1 and P2, P1 ∩ P2, is defined as the inter-
section

P1 ∩ P2 := {w | w ∈ P1 and w ∈ P2}.

2. Partial interconnection: Let P1 ∈ Lw1+w2 and P2 ∈ Lw2+w3 with sys-
tem variable (w1,w2) and (w2,w3) respectively. Then the partial inter-
connection of P1 and P2 though the shared variable w2, P1 ∧w2 P2, is
defined as

P1 ∧w2 P2 := {(w1,w2,w3) | (w1,w2) ∈ P1 and (w2,w3) ∈ P2}.

The above definitions can be easily generalized to the interconnection of
more than two plants in the following way:

1. Let Pi ∈ Lw with system variable w for i = 1,2, . . . n. Then the full
interconnection of these plants is given by

∩ni=1Pi := {w | w ∈ Pi, ∀i ∈ n}.

2. Let Pi ∈ Lwi+wi+1 with system variable (wi,wi+1) for i = 1,2, . . . n.
Then the partial interconnection P1 ∧w2 P2 · · · ∧wn Pn is given by

P1∧w2P2 · · ·∧wnPn := {(w1,w2, . . . ,wn,wn+1) | (wi,wi+1) ∈ Pi, ∀i ∈ n}.

3.2 Regular interconnections

Consider two plants P1 ∈ Lw1+w2 and P2 ∈ Lw2+w3 with system variable
(w1,w2) and (w2,w3) respectively, and their projected behaviors (P1)w2 and
(P2)w2 . In general, we have (P1)w2 + (P2)w2 ⊆ C∞(R,Rw2). The special case
that (P1)w2 + (P2)w2 = C∞(R,Rw2) plays an important role in control by
regular interconnection (see section 3.2.2).

Definition 3.2.1. Let P1 ∈ Lw1+w2 and P2 ∈ Lw2+w3 with system variable
(w1,w2) and (w2,w3) respectively. Then the interconnection of P1 and P2

through w2, P1 ∧w2 P2, is called regular if (P1)w2 + (P2)w2 = C∞(R,Rw2).
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In the full interconnection case, where P1,P2 ∈ Lw, the regularity of the
interconnection P1 ∩P2 is equivalent to P1 +P2 = C∞(R,Rw). The following
proposition shows the relation between the regularity of interconnection and
the output cardinalities of the behaviors involved in interconnection.

Proposition 3.2.2. Let P1 ∈ Lw1+w2 and P2 ∈ Lw2+w3 with system variable
(w1,w2) and (w2,w3) respectively. Then the following statements are equiva-
lent.

1. The interconnection P1 ∧w2 P2 is regular.

2. p((P1)w2 + (P2)w2) = 0.

3. p((P1)w2 ∩ (P2)w2) = p((P1)w2) + p((P2)w2).

4. p(P1 ∧w2 P2) = p(P1) + p(P2).

Proof: The equivalence of statements 1 and 2 is straightforward from the
definition of regularity of interconnection and the definition of output cardi-
nality of a behavior.

Let P1 = ker
([

R1( d
dt ) R2( d

dt )
])

and P2 = ker
([

G1( d
dt ) G2( d

dt )
])

be minimal kernel representations of P1 and P2. Then there exist uni-

modular matrices U and V such that U
[

R1 R2
]

=
[

R11 R12

0 R22

]
and

V
[

G1 G2
]

=
[

G11 0
G21 G22

]
, where R11,R22,G11 and G22 have full row

rank. We then have

P1 = ker
([

R11( d
dt ) R12( d

dt )
0 R22( d

dt )

])
,

P2 = ker
([

G11( d
dt ) 0

G21( d
dt ) G22( d

dt )

])
,

P1 ∧w2 P2 = ker









R11( d
dt ) R12( d

dt ) 0
0 R22( d

dt ) 0
0 G11( d

dt ) 0
0 G21( d

dt ) G22( d
dt )







 ,

(P1)w2 = ker(R22( d
dt )),

(P2)w2 = ker(G11( d
dt )), and

(P1)w2 ∩ (P2)w2 = ker
([

R22( d
dt )

G11( d
dt )

])
.
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From the above we have p(P1) = rank(R11) + rank(R22), p(P2) =
rank(G11) + rank(G22), p(P1 ∧w2 P2) = rank(R11) + rank(G22) +

rank
([

R22

G11

])
, p((P1)w2) = rank(R22), p((P2)w2) = rank(G11) and

p((P1)w2 ∩ (P2)w2) = rank
([

R22

G11

])
.

((1) ⇔ (3)) We have p((P1)w2 ∩ (P2)w2) = p((P1)w2) + p((P2)w2) if

and only if rank
([

R22

G11

])
= rank(R22) + rank(G11). Using the fact that

R22 and G11 have full row rank, we have rank
([

R22

G11

])
= rank(R22) +

rank(G11) if and only if
[

R22

G11

]
has full row rank. Using the definition of

regularity of interconnection and Lemma 2.3.6, the equivalence of statements
1 and 3 of the proposition is straightforward.

((3) ⇔ (4)) Let p(P1 ∧w2 P2) = p(P1) + p(P2). This implies that

rank(R11) + rank(G22) + rank
([

R22

G11

])
= rank(R11) + rank(R22) +

rank(G11) + rank(G22). Therefore we have rank
([

R22

G11

])
= rank(R22) +

rank(G11), from which we conclude that p((P1)w2 ∩ (P2)w2) = p((P1)w2) +
p((P2)w2). The converse implication follows along similar lines. !

Given kernel representations of P1 and P2, it is easy to check con-
dition 4 of Proposition 3.2.2. If P1 = ker

([
R1( d

dt ) R2( d
dt )

])
and

P2 = ker
([

G1( d
dt ) G2( d

dt )
])

, then condition 4 is equivalent to

rank
([

R1 R2 0
0 G1 G2

])
= rank

([
R1 R2

])
+ rank

([
G1 G2

])
.

Hence for this reason in this thesis we use condition 4 more often as a
check for regularity of interconnection P1 ∧w2 P2 than the other equiva-
lent conditions, i.e., the interconnection P1 ∧w2 P2 is regular if and only if
p(P1 ∧w2 P2) = p(P1) + p(P2).

Remark 3.2.3. Using Proposition 3.2.2 the following facts are easy to verify.

1. Let P1 ∈ Lw1+w2 with system variable (w1,w2). Assume w2 is free in
P1 (equivalently (P1)w2 = C∞(R,Rw2)). Then for all P2 ∈ Lw2+w3 with
system variable (w2,w3), the interconnection P1 ∧w2 P2 is regular.

2. Let P1 ∈ Lw1+w2 with system variable (w1,w2). If (P1)w2 is autonomous
then for P2 ∈ Lw2+w3 the interconnection P1 ∧w2 P2 is regular if and
only if w2 is free in P2.
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We shall use the above concepts of interconnection and regular intercon-
nection to study the concepts of control by interconnection in the behavioral
framework.

3.3 Implementability

An important issue in the behavioral approach to control is implementability.
The problem of implementability deals with the question which controlled
behaviors can be achieved by interconnecting a given plant with a controller.
This problem may actually be considered as a basic question in engineering
design: a behavior is prescribed, and the question is whether this “desired”
behavior can be achieved by inserting a suitably designed subsystem into the
over-all system. In the behavioral framework this is made precise as follows.
Let a system behavior with two types of variables, the variable w to-be-
controlled and the interconnection variable c be given. On the interconnec-
tion variable c we are allowed to put restrictions. In classical feedback control
the variables that can be measured and/or actuated upon play the role of in-
terconnection variables. In the behavioral approach we treat a controller as
an additional system behavior, called controller behavior. Interconnecting
the plant and the controller means that the trajectories of the intercon-
nection variable in the plant should also become elements of the controller
behavior. The space of all trajectories w possible after interconnecting the
plant with the controller is called the manifest controlled behavior. Often,
of course, there are some common components in w and c. A very special
case is when w = c. In this case there is no separation of plant variables into
w and c, and the controller is attached directly to the (manifest) variable
w. This corresponds to the full interconnection case. The case when w .= c
corresponds to the partial interconnection case. In this section we study the
problem of implementability both in the full and the partial interconnection
case.

3.3.1 Implementability: full interconnection case

In the full interconnection case we have a plant behavior P ∈ Lw, and a
controller for P is also a behavior C ∈ Lw. The full interconnection of P and
C is the system whose behavior is P ∩ C. This controlled behavior is again
a linear differential system. Indeed, if P = ker(R( d

dt )) and C = ker(C( d
dt )),

then P ∩ C = ker
([

R( d
dt )

C( d
dt )

])
∈ Lw.
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Definition 3.3.1. Let K ∈ Lw be a given behavior, to be interpreted as a
desired behavior. If K can be achieved as controlled behavior, i.e., if there
exists C ∈ Lw such that K = P ∩ C, then we call K implementable by full
interconnection (with respect to P).

Obviously, a given K ∈ Lw is implementable by full interconnection with
respect to P if and only if K ⊆ P. Indeed, if K ⊆ P, then with ’controller’
C = K we have K = P ∩ C. Using Proposition 2.2.5 we have the following.

Proposition 3.3.2. Let P ∈ Lw and K ∈ Lw. Let P = ker(R( d
dt )) and

K = ker(K( d
dt )) be kernel representations. Then the following statements

are equivalent:

1. K is implementable with respect to P by full interconnection.

2. There exists a polynomial matrix F such that R = FK.

3.3.2 Implementability: partial interconnection case

In addition to full interconnection, in Willems & Trentelman [50], and Belur
& Trentelman [2], results have been established on implementability by par-
tial interconnection (see also Julius, et al [[20] [19]]), Fiaz & Trentelman
[11]). In this section, we will first briefly review implementability by partial
interconnection. In control by partial interconnection, only a pre-specified
subset of the plant variables is available for interconnection. Let P ∈ Lw+c

be a linear differential system, with system variable (w,c), where w takes its
values in Rw and c in Rc. Before the controller acts, there are two behav-
iors of the plant that are relevant: the behavior P ∈ Lw+c (the full plant
behavior) of the variables w and c combined, and the behavior (P)w of the
to-be-controlled variables w (with the interconnection variable c eliminated).
Hence

(P)w = {w ∈ C∞(R,Rw) | ∃ c ∈ C∞(R,Rc) such that (w,c) ∈ P}.

By the elimination theorem, (P)w ∈ Lw. Let C ∈ Lc. The controller C
restricts the interconnection variable c. The full controlled behavior P ∧c C
is obtained by the interconnection of P and C through the variable c and is
given by:

P ∧c C = {(w,c) | (w,c) ∈ P and c ∈ C}.

Eliminating c from the full controlled behavior, we obtain its restriction
(P ∧c C)w to the behavior of the to-be-controlled variable w, given by
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(P ∧c C)w = {w ∈ C∞(R,Rw) | ∃ c ∈ C such that (w,c) ∈ P}.

Note that, again by the elimination theorem, (P ∧c C)w ∈ Lw.

Definition 3.3.3. Given P ∈ Lw+c and K ∈ Lw, we say that C ∈ Lc imple-
ments K through c if K = (P ∧c C)w. In that case, K is called implementable
(through c with respect to P).

The (partial interconnection) implementability problem is to characterize,
for given P ∈ Lw+c, all K ∈ Lw for which there exists a C ∈ Lc that im-
plements K through c. This problem has a very simple and elegant solution
(see Willems & Trentelman [50]): it depends only on the projected full plant
behavior (P)w and on the hidden behavior Nw(P) given by

Nw(P) := {w | (w,0) ∈ P}.

Theorem 3.3.4. Let P ∈ Lw+c be the full plant behavior. Then K ∈ Lw is
implementable by a controller C ∈ Lc acting on the interconnection variable
c if and only if Nw(P) ⊆ K ⊆ (P)w.

Theorem 3.3.4 shows that K can be any behavior that is wedged in be-
tween the given behaviors Nw(P) and (P)w. The implementability problem
was also studied in Julius, et al [20], Van der Schaft [43] and Praagman,
Trentelman & Zavala Yoe [27]. In particular, the question when a particular
controlled behavior can be implemented by a feedback processor remains a
very important one, and was discussed e.g. in Willems [47], Trentelman &
Willems [42].

3.3.3 Implementability by regular interconnection

In the behavioral framework one often needs to require that the intercon-
nection of plant and controller is a regular interconnection. We summarize
below the motivational reasons to work in the framework of regular inter-
connection.

1. Let P ∈ Lw+c with system variable (w,c), where w represents the to-
be-controlled variable and c represents the interconnection variable. In
most system models, an unknown external disturbance v also occurs.
While in P these disturbance variables are unmodeled, we can extend
P to Pext ∈ Lw+c+v with system variable (w,c,v) where v represent
the disturbances. We call Pext an extension of P that represents the
disturbance behavior of P if it satisfies the following conditions
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(a) v is free in Pext, and
(b) P = {(w,c) | (w,c,0) ∈ Pext}.

While modifying the system behavior P by using a controller C ∈ Lc

one should make sure that v remains free in Pext ∧c C for all extended
models Pext satisfying the above conditions. It was shown in Theorem
4.2.1 in Belur [1] that v remains free in Pext∧cC for all extended models
Pext if and only if the interconnection P ∧c C is regular.

2. Let P ∈ Lw+c and C ∈ Lc. We call the interconnection P ∧c C a feedback
interconnection if, after possible permutation of the components of the
interconnection variable c, there exists a partition of c in to c = (c1,c2,c3)
such that

(a) in (P)c, (c1,c2) is input and c3 output,
(b) in C, (c1,c3) is input and c2 output, and
(c) in (P)c ∩ C, c1 is input and (c2,c3) output.

Using Proposition 3.2.2 and Theorem 8 in Willems [47], it can be easily
shown that the interconnection P ∧c C is a feedback interconnection if
and only if the interconnection P ∧c C is regular.

Let P ∈ Lw be a plant behavior, and let C ∈ Lw be a controller. Then as
discussed in section 3.2, the interconnection of P and C is regular if and only
if

p(P) + p(C) = p(P ∩ C).

In other words, if and only if the output cardinalities of the plant and the
controller add up to the output cardinality of the controlled behavior. In
that case, we also call the controller C regular (with respect to P).

In terms of kernel representations this condition can be expressed as
follows. Let P = ker(R( d

dt )) and C = ker(C( d
dt )) be minimal kernel represen-

tations of plant and controller, respectively. Then P ∩C = ker
([

R( d
dt )

C( d
dt )

])

is a kernel representation of the controlled behavior. Since the output car-
dinality of a behavior is equal to the rank of the polynomial matrix in any
of its kernel representations, the interconnection of P and C is regular if

and only if
[

R
C

]
has full row rank, equivalently yields a minimal kernel

representation of P ∩ C.
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Definition 3.3.5. Given P ∈ Lw, a given behavior K ∈ Lw is called regularly
implementable by full interconnection (with respect to P) if there exists a
regular controller C ∈ Lw that implements K by full interconnection.

The following result from from Belur & Trentelman [2] gives a characteriza-
tion of all regularly implementable behaviors.

Proposition 3.3.6. Let P ∈ Lw. Let Pcont be its controllable part. Let K ∈
Lw. Then the following statements are equivalent:

1. K is regularly implementable by full interconnection with respect to P,

2. K + Pcont = P.

The previous result does not use representations of the behaviors involved.
The following result characterizes regular implementability in terms of kernel
representations (see Praagman, Trentelman & Zavala Yoe [27]):

Proposition 3.3.7. Let P ∈ Lw and K ∈ Lw. Let P = ker(R( d
dt )) and K =

ker(K( d
dt )) be minimal kernel representations of plant and desired behavior.

Then the following are equivalent:

1. K is regularly implementable by full interconnection with respect to P,

2. there exists a polynomial matrix F with F (λ) full row rank for all λ ∈ C
such that R = FK.

Next, we turn to regular implementability by partial interconnection.
Let P ∈ Lw+c and C ∈ Lw. From section 3.2 the interconnection of P

and C through c, P ∧c C, is regular if and only if

p(P ∧c C) = p(P) + p(C),

i.e., the output cardinalities of P and C add up to that of the full controlled
behavior P ∧c C. In that case we also call the controller C regular (with
respect to P).

Definition 3.3.8. A given K ∈ Lw is called regularly implementable through
c if there exists a C ∈ Lc such that K is implemented by C, and the inter-
connection of P and C is regular.

Similar to implementability by full interconnection, an important ques-
tion is under what conditions a given behavior K is regularly implementable
through c. The following theorem from Belur & Trentelman [2] provides a
solution to this problem:
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Theorem 3.3.9. Let P ∈ Lw+c. Let (P)w and Nw(P) be the correspond-
ing projected plant behavior and hidden behavior, respectively. Let (P)w,cont

be the controllable part of (P)w. Let K ∈ Lw. Then K is regularly imple-
mentable with respect to P by partial interconnection through c if and only
if the following two conditions are satisfied:

1. Nw(P) ⊆ K ⊆ (P)w

2. K + (P)w,cont = (P)w

The above theorem has two conditions. The first one is exactly the condi-
tion for implementability through c. The second condition formalizes the
notion that the autonomous part of (P)w is taken care of by K. While the
autonomous part of (P)w is not unique, (P)w,cont is. This makes verifying
the regular implementability of a given K computable. As a consequence of
this theorem, note that if (P)w is controllable, then K ∈ Lw is regularly im-
plementable if and only if it is implementable. The same holds in the partial
interconnection case. Let P ∈ Lw+c have system variable (w,c). Using the
fact that if P is controllable then (P)w is also controllable, the following
proposition is evident.

Proposition 3.3.10. Let P ∈ Lw+c with system variable (w,c). Let K ∈ Lw.
If P is controllable then K is regularly implementable by partial interconnec-
tion if and only if K is implementable by partial interconnection.

3.4 Parameterization of regularly implementing controllers

Having obtained necessary and sufficient conditions for implementability and
regular implementability of a given desired behavior K, we now aim at es-
tablishing characterization of all controllers C that (regularly) implement
it.

Lemma 3.4.1. Let P ∈ Lw and let K ∈ Lw. Assume that K is implementable.
Let P = ker(R( d

dt )) and K = ker(K( d
dt )) be minimal kernel representations

and let F be a polynomial matrix such that R = FK. Let C ∈ Lw and let C
be a polynomial matrix with w columns such that C = ker(C( d

dt )). Then the
following statements are equivalent:

1. C = ker(C( d
dt )) implements K by full interconnection,

2. there exists a polynomial matrix L such that C = LK, where
[

F (λ)
L(λ)

]

has full column rank for all λ ∈ C.
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Proof:
( (1) ⇒ (2) )
If ker(C( d

dt )) implements ker(K( d
dt )) by full interconnection, then

ker
([

R( d
dt )

C( d
dt )

])
= ker(K( d

dt )). Since K has full row rank, we must have

[
R
C

]
= U

[
K
0

]

for some unimodular matrix U =
[

U11 U12

U21 U22

]
and some zero-matrix 0 with

an appropriate number of rows. This implies R = U11K and C = U21K. It

follows that U11 = F . Define L := U21. Then
[

F (λ)
L(λ)

]
has full column rank

for all λ ∈ C.
( (2) ⇒ (1) )
Assume C = LK. We have

[
R
C

]
=

[
F
L

]
K.

Clearly, since
[

F (λ)
L(λ)

]
has full column rank for all λ ∈ C, we have

ker
([

R( d
dt )

C( d
dt )

])
= ker(K( d

dt )). !

Lemma 3.4.2. Let P ∈ Lw and let K ∈ Lw. Assume that K is regularly
implementable. Let P = ker(R( d

dt )) and K = ker(K( d
dt )) be minimal kernel

representations and let F be a polynomial matrix with F (λ) full row rank for
all λ ∈ C such that R = FK. Let C ∈ Lw and let C be a polynomial matrix
with w columns such that C = ker(C( d

dt )). Then the following statements are
equivalent:

1. C = ker(C( d
dt )) regularly implements K by full interconnection and

ker(C( d
dt )) is a minimal representation of C,

2. there exists a polynomial matrix L such that C = LK, where
[

F
L

]
is

unimodular.
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Proof:
( (1) ⇒ (2) )
If ker(C( d

dt )) regularly implements ker(K( d
dt )) by full interconnection, then

ker
([

R( d
dt )

C( d
dt )

])
= ker(K( d

dt )). Since the interconnection is regular, both

kernel representations are minimal. Hence there exists a unimodular matrix

U =
[

U1

U2

]
such that

[
R
C

]
= UK,

which implies that R = U1K and C = U2K. It follows that U1 = F . Define

L := U2. Then
[

F
L

]
is unimodular.

( (2) ⇒ (1) )
Assume C = LK. We have

[
R
C

]
=

[
F
L

]
K.

Clearly, since
[

F
L

]
is unimodular, we have ker

([
R( d

dt )
C( d

dt )

])
= ker(K( d

dt )),

so ker(C( d
dt )) implements K. Also, the interconnection is regular since

[
R
C

]

has full row rank. !

Given P,K ∈ Lw we now give a parameterization of all controllers C ∈ Lw

regularly implementing K with respect to P. This parameterization has been
established before in Praagman, Trentelman & Zavala Yoe [27], and will be
useful in chapter 4.

Lemma 3.4.3. Let P ∈ Lw and let K ∈ Lw. Assume that K is regularly
implementable. Let P = ker(R( d

dt )) and K = ker(K( d
dt )) be minimal kernel

representations and let F be a polynomial matrix with F (λ) full row rank for

all λ ∈ C such that R = FK. Choose any W such that
[

F
W

]
is unimod-

ular. Then for any C ∈ Lw, C = ker(C( d
dt )), the following statements are

equivalent

1. C = ker(C( d
dt )) regularly implements K by full interconnection and

ker(C( d
dt )) is a minimal representation of C,
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2. there exists a polynomial matrix G and a unimodular matrix U such
that C = GR + UWK.

For given P ∈ Lw+c, K ∈ Lw, in Praagman, Trentelman & Zavala Yoe [27],
also results on the parameterization of controllers C ∈ Lc regularly imple-
menting K with respect to P by partial interconnection have been obtained.

3.5 Stabilization by interconnection

There are many situations where we want to drive certain plant variables to
zero by using control action. As discussed in chapter 2, in a stable system all
trajectories tend to zero asymptotically. In a behavioral setup, to stabilize
a plant means to find a suitable (controlled) sub-behavior within the plant
behavior such that this controlled behavior is stable. In this section we will
study the problem of stabilization by interconnection both in the full and
the partial interconnection case.

We will first look at the full interconnection case, i.e. the case in which
all the plant variables are available for interconnection.

It turns out that a given plant is stabilizable (in the sense of Definition
2.5.3) if and only if we can stabilize it by interconnecting it with a suitable
controller, called a stabilizing controller, which is defined as follows (Willems
& Trentelman [50]).

Definition 3.5.1. Let P ∈ Lw. A controller C ∈ Lw is said to be a stabilizing
controller for P if the behavior P ∩ C is stable and the interconnection is
regular.

The following result was shown in Willems [47].

Proposition 3.5.2. Let P ∈ Lw. Then the following statements are equiva-
lent:

1. P is stabilizable,

2. there exists a stabilizing controller for P,

3. there exists a stable K ∈ Lw that is regularly implementable with respect
to P.

We now give a parameterization of all stabilizing controllers in the full
interconnection case (Praagman, Trentelman & Zavala Yoe [27]).
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Proposition 3.5.3. Let P ∈ Lw be stabilizable. Let P = ker(R) be a minimal
representation. Factor R as R = DR1 where D is Hurwitz and R1(λ) has

full row rank for all λ ∈ C. Let S be such that
[

R1

S

]
is unimodular. Then

for any C ∈ Lw with C = ker(C) the following statements are equivalent:

1. P ∩ C is autonomous and stable, the interconnection is regular and the
representation C = ker(C) is minimal,

2. there exist a polynomial matrix G and a Hurwitz polynomial matrix H
such that C = GR1 + HS.

Next, we recall the definition of stabilizing controller for the partial
interconnection case, see Belur & Trentelman [2]:

Definition 3.5.4. Let P ∈ Lw+c. The controller C ∈ Lc is said to stabilize
P through c if the manifest controlled behavior (P ∧c C)w is stable and the
interconnection of P and C is regular. The controller C is then called a
stabilizing controller.

The following result was shown in Belur & Trentelman [2]:

Proposition 3.5.5. Let P ∈ Lw+c. The following statements are equivalent:

1. there exists a stabilizing controller for P,

2. there exists a stable K ∈ Lw that is regularly implementable through c
with respect to P,

3. (P)w is stabilizable, and in P w is detectable from c.
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4 Regular implementability with a
priori input/output partition

4.1 Introduction

In many cases, certain components of the plant interconnection variables
represent plant sensor measurements and control inputs. In such cases the
controller used to modify the plant behavior is designed such that the con-
troller takes the sensor measurements of the plant as inputs and generates
the control inputs of the plant as controller outputs. In the behavioral frame-
work this is formalized by requiring the plant sensor measurement variables
to be free and the plant control input variables to be a part of output in
the controllers that are allowed. Thus the input/output partition of the con-
troller gets fixed a priori by the plant’s sensor and actuator variables. It is
an important question whether a controller that we have obtained (using the
theory of the previous chapter, for example) adheres to such an input/output
configuration. In case our controller does not adhere, then the question arises
whether there exists one that does adhere to the given input/output parti-
tion.

In this chapter we deal with the problems of finding necessary and suf-
ficient conditions for a behavior to be regularly implementable using a con-
troller in which an a priori given subset of the plant interconnection vari-
ables is free or maximally free, respectively. In other words, we require a
pre-specified subset of the components of the plant interconnection variable
to be part of the controller input, or even coincide with the controller input.
The complementary subset in the set of all plant interconnection variables
then necessarily contains or coincides with the controller output. This prob-
lem was introduced in Julius [18] (see also Julius, Polderman & Van der
Schaft [19]). In the work of Julius, only sufficient conditions were obtained,
and these conditions were formulated in terms of particular representations
of the plant and the desired behavior. In the present chapter we give nec-
essary and sufficient conditions in terms of the plant behavior and desired
behavior. We also introduce the related problem of stabilization by means of
controllers in which an a priori given subset of the plant interconnection vari-
ables is free or maximally free. We derive necessary and sufficient conditions
for a system to be stabilizable using this kind of controllers. We resolve all
these problems for the full as well as for the partial interconnection case. The
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material presented in this chapter is based on the papers Fiaz & Trentelman
[11] and Trentelman & Fiaz [35].

The outline of this chapter is as follows. In section 4.2 we formulate the
problems of regular implementability and stabilization using controllers in
which an a priori given subset of the plant interconnection variables is free
or even maximally free. In sections 4.3 and 4.4 we resolve these problems for
both the full and the partial interconnection case. In section 4.5 we provide
some examples to illustrate the theory presented in this chapter.

4.2 Problem formulation

In Chapter 3 we have given necessary and sufficient conditions for regular im-
plementability (see Proposition 3.3.6 and Proposition 3.3.9). There, we dealt
with controllers without a priori given constraints on their input/output
structure, in other words, any (regular) controller from the class of linear
differential systems was allowed. Often, by physical considerations, a con-
troller should take information on the plant measurements as its input, and,
clearly, such set of measured variables is not allowed to be constrained by
the controller. In other words, it is a naturally emerging requirement that
a given subset of the plant interconnection variables should be free in the
controller. In such situations, not all regular controllers are admissible, and,
consequently, not all regularly implementable behaviors will be regularly im-
plementable by using admissible controllers. Consider the following example
from Julius [18]:

Example 4.2.1. Consider a single tank system as shown in Figure 4.1. On
top of the tank there is an inlet from which a variable flow of water u gets
into the tank. There is an opening at the bottom of the tank connected to
a pump through which we can pump in/out water from the tank. The flow
which is pumped out of the tank is denoted by y. The tank is also equipped
with a sensor which measures the change in volume inside the tank, the
measurement of the sensor is denoted by h. The mathematical model of the
plant is given by

h = u− y. (4.1)

Consider the following control problem. Given h and y as plant intercon-
nection variables we want to design a controller such that the level of water
inside the tank is constant, i.e., h = 0 or equivalently y = u. In other words
we aim at perfect tracking of u by y. The problem is mathematically formu-
lated as follows:
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Pump Controller

u(t)

h(t)

y(t)

Figure 4.1 Single tank system

Given are P = {(u,y,h) | −u + y + h = 0} with plant variable (w,c)
where w = (u,y), c = (y,h), K = {(u,y) | −u + y = 0}. Here the variable h is
the measurement coming from the system sensor. Therefore h is free in all
the admissible controllers. From Proposition 3.3.9 one can check that this K
is regularly implementable by partial interconnection through c with respect
to P, and a controller which accomplishes this task is given by C = {(h,y) |
h = 0}. Clearly C is not an admissible controller, as h is not free in C. In fact
from Theorem 4.3.9, we can show that K is not regularly implementable by
using a controller in which h is free (see Example 4.5.1).

The above example shows that in situations in which, by physical consid-
erations, we have to impose that certain components of the plant interconnec-
tion variable should be free in the controller, not all regularly implementable
behaviors need to be achievable. Likewise, in the problem of stabilization by
interconnection we might have to restrict ourselves to controllers in which
some of the plant interconnection variables should be free, or maximally free.

Motivated by the above, the problems that we solve in this chapter may
succinctly be formulated as follows: let P ∈ Lw+c be a plant behavior, with
system variable (w,c). Partition the interconnection variable as c = (c1,c2).
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Let a desired behavior K ∈ Lw be given.

Problem 1: Find necessary and sufficient conditions such that K is regu-
larly implementable by a controller in which c2 is free.

Problem 2: Find necessary and sufficient conditions such that K is regu-
larly implementable by a controller in which c2 is maximally free, i.e.,
in which c2 is input and c1 is output.

Problem 3: Find necessary and sufficient conditions for the existence of a
stabilizing controller in which c2 is free.

Problem 4: Find necessary and sufficient conditions for the existence of a
stabilizing controller in which c2 is maximally free.

In Julius [18] and Julius, Polderman & Van der Schaft [19] preliminary re-
sults for a behavior to be regularly implementable using controllers in which
an a priori given subset of the plant interconnection variables is free were
obtained. In the present chapter we will treat these problems in their full
generality, and establish necessary and sufficient conditions for the existence
of controllers with freeness constraints, both for the problem of regular im-
plementability and for the stabilization problem.

4.3 Regular implementability with pre-specified in-
put/output structure

In this section we study Problems 1 and 2 above. We study these problems
for the full interconnection case first.

4.3.1 Full interconnection case

Let P, K ∈ Lw1+w2 with plant variable (w1,w2). In the full interconnection
case, a controller is a system C ∈ Lw1+w2 acting on the entire plant variable
(w1,w2). We impose that the variable w2 should be free in the controller C,
and we want to find conditions on the desired behavior K to be regularly
implementable by such controller C. Of course, a necessary condition is that
K should be regularly implementable. However, an additional condition will
play a role.

In the following theorem, let (K)w2 denote the projection of K onto the
variable w2. We have:



4.3 Regular implementability with pre-specified input/output structure 49

Theorem 4.3.1. Let P, K ∈ Lw1+w2 with plant variable (w1,w2). Then K
is regularly implementable by full interconnection with respect to P using a
controller C in which w2 is free if and only if the following conditions hold:

1. K is regularly implementable by full interconnection with respect to P,

2. p((K)w2
) ≤ p(P).

Before proving this theorem we will establish some results that are useful
in the proof. Associated with K ∈ Lw1+w2 with plant variable (w1,w2), we
define Nw1(K) := {w1 | (w1,0) ∈ K}. Then we have the following lemma:

Lemma 4.3.2. Let K ∈ Lw1+w2 with system variable (w1,w2). Then we have
p((K)w2

) = p(K)− p(Nw1(K)).

Proof: Let K1( d
dt )w1 +K2( d

dt )w2 = 0 be a minimal representation of K. We
have p(K) = rank

([
K1 K2

])
. Let U be a unimodular matrix such that

U
[

K1 K2
]

=
[

K11 K12

0 K22

]

and K11, K22 have full row rank. Then

Nw1(K) = ker(K11( d
dt )), (4.2)

and

(K)w2 = ker(K22( d
dt )). (4.3)

We have p(Nw1(K)) = rank(K11) and p((K)w2) = rank(K22). Since

rank(K11) = rank
([

K1 K2
])
− rank(K22)

= p(K)− p((K)w2
),

we obtain p(Nw1(K)) = rank(K11) = p(K)− p((K)w2). !

We also use an important result obtained as Lemma 4.73 in Julius [18] to
prove our Theorem 4.3.1 (see also Julius, Polderman & Van der Schaft [19]).
This result is stated as a lemma here.

Lemma 4.3.3. Let C and M be polynomial matrices with the same number
of columns. There exists a polynomial matrix V such that C + V M has full
row rank if and only if

rank
([

M
C

])
≥ rowdim(C).
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Using the above lemmas we now give a proof of Theorem 4.3.1.

Proof of Theorem 4.3.1: Let R1( d
dt )w1 + R2( d

dt )w2 = 0, and K1( d
dt )w1 +

K2( d
dt )w2 = 0 be minimal representations of the behaviors P and K, respec-

tively. Define R :=
[

R1 R2
]

and K :=
[

K1 K2
]
.

(if) From Proposition 3.3.7, if K is regularly implementable with respect
to P then there exists F such that

R = FK (4.4)

and F (λ) has full row rank for all λ ∈ C. Take W such that
[

F
W

]

forms a unimodular matrix. From Lemma 3.4.2, WK has full row rank and
ker(WK( d

dt )) regularly implements K. From the above arguments, we have

K = ker
([

R1( d
dt ) R2( d

dt )
WK1( d

dt ) WK2( d
dt )

])
, (4.5)

Nw1(K) = ker
([

R1( d
dt )

WK1( d
dt )

])
.

Therefore

p(Nw1(K)) = rank
([

R1

WK1

])
. (4.6)

Since ker(WK( d
dt )) regularly implements K, we have

p(K) = p(P) + rank(WK)
= p(P) + rowdim(WK1),

which implies

p(P) = p(K)− rowdim(WK1). (4.7)

From condition 2 of Theorem 4.3.1, we have p((K)w2
) ≤ p(P). Equation

(4.7) together with Lemma 4.3.2, then implies that

p(K)− p(Nw1(K)) ≤ p(K)− rowdim(WK1),

which in turn implies that

p(Nw1(K)) ≥ rowdim(WK1).
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Using Equation (4.6) we have

rank
([

R1

WK1

])
≥ rowdim(WK1). (4.8)

Using the inequality (4.8) and Lemma 4.3.3 there exists a G0 such that
G0R1 + WK1 has full row rank. Define C0 := ker((G0R + WK)( d

dt )). It is
clear that w2 is free in C0. From Lemma 3.4.3 we conclude that C0 regularly
implements K.

(only if) Let C1( d
dt )w1 +C2( d

dt )w2 = 0 be a minimal representation of a
controller C in which w2 is free and which regularly implements K. We know
that w2 is free in C if and only if C1 has full row rank, which implies

p(C) = rank(C1). (4.9)

Then

K = ker
([

R1( d
dt ) R2( d

dt )
C1( d

dt ) C2( d
dt )

])

and

Nw1(K) = ker
([

R1( d
dt )

C1( d
dt )

])
,

which in turn implies that

p(Nw1(K)) = rank
([

R1

C1

])
. (4.10)

Regularity of the interconnection P∩C implies that p(K) = p(P)+rank(C1).
Using Lemma 4.3.2 and Equation (4.10) we have

p((K)w2
) = p(K)− p(Nw1(K))

= p(P) + rank(C1)− rank
([

R1

C1

])
.

As rank
([

R1

C1

])
≥ rank(C1) we conclude that p((K)w2) ≤ p(P). !

We now derive conditions on K to be regularly implementable by a
controller C in which w2 is maximally free, equivalently, in C w2 is input and
w1 is output. It is evident that for w2 to be maximally free in C it should
be free in C. Therefore the set of controllers which regularly implement K
and in which w2 is maximally free forms a subset of the controllers which
regularly implement K and in which w2 is free. This fact is used in proving
the following theorem which gives necessary and sufficient conditions for K
to be regularly implementable by a controller C in which w2 is maximally
free.
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Theorem 4.3.4. Let P, K ∈ Lw1+w2 with plant variable (w1,w2). Then K
is regularly implementable by full interconnection with respect to P using a
controller C in which w2 is input and w1 is output if and only if the following
conditions hold:

1. K is regularly implementable by full interconnection with respect to P,

2. p((K)w2
) = p(P),

3. p(K) = w1 + p(P).

Proof: (only if) Let

R1( d
dt )w1 + R2( d

dt )w2 = 0

be a minimal kernel representation of P, and let

C1( d
dt )w1 + C2( d

dt )w2 = 0

be a minimal kernel representation of C which regularly implements K and
in which w2 is maximally free. We know that w2 is maximally free in C if
and only if C1 is square and nonsingular. Therefore we have

p(C) = rank
([

C1 C2
])

= rank(C1)
= w1.

We have

K = ker
([

R1( d
dt ) R2( d

dt )
C1( d

dt ) C2( d
dt )

])
,

Nw1(K) = ker
([

R1( d
dt )

C1( d
dt )

])
,

and

p(Nw1(K)) = rank
([

R1

C1

])

= rank(C1)
= p(C)
= w1.

From Lemma 4.3.2 we have
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p((K)w2
) = p(K)− p(Nw1(K))

= p(P) + p(C)− w1

= p(P).

From regularity of the interconnection P ∩ C we have

p(K) = p(P) + p(C)
= p(P) + w1.

(if) Let K1( d
dt )w1 + K2( d

dt )w2 = 0 and R1( d
dt )w1 + R2( d

dt )w2 = 0 be
minimal representations of K and P, respectively. Then, using Proposition
3.3.7, condition 1, K regularly implementable with respect to P implies that
there exists a F such that

F
[

K1 K2
]

=
[

R1 R2
]
,

and F (λ) has full row rank for all λ ∈ C. Choose W such that
[

F
W

]
forms

a unimodular matrix. From Lemma 3.4.2, W
[

K1 K2
]

has full row rank
and ker

([
WK1( d

dt ) WK2( d
dt )

])
regularly implements K.

Using similar arguments as given in the proof of Theorem 4.3.1 (if part),
condition 2 of Theorem 4.3.4, p((K)w2

) = p(P), implies that there exists a
G such that GR1 + WK1 has full row rank and

C := ker
([

(GR1 + WK1)( d
dt ) (GR2 + WK2)( d

dt )
])

(4.11)

regularly implements K with respect to P. Therefore we have

K = ker
([

R1( d
dt ) R2( d

dt )
(GR1 + WK1)( d

dt ) (GR2 + WK2)( d
dt )

])
,

and

p(K) = rank
([

R1 R2

GR1 + WK1 GR2 + WK2

])

= rank
([

R1 R2
])

+ rank
([

GR1 + WK1 GR2 + WK2
])

= p(P) + rowdim(GR1 + WK1). (4.12)

From condition 3 of Theorem 4.3.4 we have p(K) − p(P) = w1. Therefore
from Equation (4.12) it is easy to see that

rowdim(GR1 + WK1) = w1.

This implies that GR1+WK1 is square and nonsingular. Therefore C defined
in Equation (4.11) is a controller in which w2 is input and w1 is output and
it regularly implements K by full interconnection with respect to P. !
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Remark 4.3.5. In the special case that K is autonomous we have
p((K)w2) = w2. In that case condition 2 of Theorem 4.3.1 becomes w2 ≤ p(P)
and conditions 2 and 3 of Theorem 4.3.4 reduce to the single condition
p(P) = w2. Thus, K is regularly implementable using a controller with w2

free (maximally free), if and only if it is regularly implementable and the
number of components of w2 does not exceed (is equal to) the output car-
dinality of the plant. It is remarkable that these conditions do not involve
which components, but only the number of components of w that should be
free.

Starting with polynomial kernel representations of P, K ∈ Lw1+w2 with
system variable (w1,w2), in the following algorithm we outline a procedure
to check the existence of a controller C ∈ Lw1+w2 in which w2 is free (input)
and which regularly implements K by full interconnection with respect to
P. If there exists such a controller, this algorithm also gives a procedure to
construct one.

Algorithm-1: Let R1( d
dt )w1 + R2( d

dt )w2 = 0 and K1( d
dt )w1 +

K2( d
dt )w2 = 0 be minimal kernel representations of P and K, respectively.

Then,

1. Solve
[

R1 R2
]

= F
[

K1 K2
]

for F such that F (λ) has full row rank for all λ ∈ C. If there exists
a solution continue further, else declare there exists no controller in
which w2 is free and regularly implements K by full interconnection
with respect to P.

2. Choose W such that
[

F
W

]
is unimodular.

3. If rank
([

R1

WK1

])
≥ rowdim(WK1) continue further, else declare

there exists no controller in which w2 is free and regularly implements
K by full interconnection with respect to P.

4. Find G0 such that G0R1 + WK1 has full row rank.

5. Define

C := {(w1,w2) | (G0R1 +WK1)( d
dt )w1 +(G0R2 +WK2)( d

dt )w2 = 0}.
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6. Declare C to be a controller in which w2 is free and that regularly im-
plements K by full interconnection with respect to P. If a controller in
which w2 is input and that regularly implements K by full interconnec-
tion with respect to P is needed continue further, else exit.

7. If rank
([

K1 K2
])

= w1 + rank
([

R1 R2
])

declare C to be a con-
troller in which w2 is input and that regularly implements K by full
interconnection with respect to P, else declare there does not exists
such a controller.

4.3.2 Partial interconnection case

We now deal with Problems 1 and 2 as formulated in section 4.2 in the
partial interconnection case. We will solve these problems by reduction to
the full interconnection case.

We will first establish a number of results which will be useful in obtain-
ing the main results of this section.

Lemma 4.3.6. Let P ∈ Lw1+w2 with system variable (w1,w2). Let Pcont and
(P)w2,cont be the controllable parts of P and (P)w2, respectively. Then we
have (P)w2,cont = (Pcont)w2.

Proof: Let P = ker
([

R1( d
dt ) R2( d

dt )
])

be a minimal kernel representa-
tion of P. Then there exists a unimodular matrix U such that

U
[

R1 R2
]

=
[

R11 R12

0 R22

]
,

where R11 has full row rank. We have

P = ker
([

R11( d
dt ) R12( d

dt )
0 R22( d

dt )

])
, and

(P)w2 = ker(R22( d
dt )). (4.13)

Factorize
[

R11 R12

0 R22

]
=

[
D11 D12

D21 D22

] [
R′11 R′12
0 R′22

]
, (4.14)

where
[

D11 D12

D21 D22

]
is square and nonsingular,

[
R′11(λ) R′12(λ)

0 R′22(λ)

]
has

full row rank for all λ ∈ C and R′11 has full row rank. As R′11 has full row
rank, from Equation (4.14) we have D21 = 0, which in turn implies D22 is
square and nonsingular and R22 = D22R′22. As R′22(λ) has full row rank for
all λ ∈ C and from Equation (4.13), we have
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(P)w2,cont = ker(R′22(
d
dt )). (4.15)

From Equation (4.14) we have Pcont = ker
([

R′11(
d
dt ) R′12(

d
dt )

0 R′22(
d
dt )

])
. Also

we have (Pcont)w2 = ker(R′22(
d
dt )). Hence from Equation (4.15), we conclude

that (P)w2,cont = (Pcont)w2 . !

In the sequel, the interconnected behavior P∧wK plays an important role in
converting the problem of regular implementability in the partial intercon-
nection case to the full interconnection case. In fact, the behavior (P ∧w K)c

obtained from this interconnection by eliminating the variable w is often
called the canonical controller, see Van der Schaft [43], Julius, et al [20],
Julius, Polderman & Van der Schaft [19].

The following proposition was obtained in Rocha [30] (see also Trentel-
man & Napp Avelli [39]). Here, we provide an alternative proof of this result.

Proposition 4.3.7. Let P ∈ Lw+c with system variable (w,c). Then K ∈ Lw

is regularly implementable by partial interconnection through c with respect
to P if and only if the following two conditions hold:

1. K is implementable by partial interconnection through c with respect to
P,

2. (P∧wK)c is regularly implementable by full interconnection with respect
to (P)c.

Proof: (only if) From Theorem 3.3.9, condition 1 follows immediately and
we have

(P)w = K + (P)w,cont. (4.16)

To show that (P ∧w K)c is regularly implementable by full interconnection
with respect to (P)c we show (P)c = (P)c,cont + (P ∧w K)c. The inclusion
(P)c,cont + (P ∧w K)c ⊆ (P)c is trivial. To show the converse inclusion, let
c ∈ (P)c. Then there exists a w such that (w,c) ∈ P. This implies w ∈ (P)w.
From Equation (4.16), there exists a w1 ∈ (P)w,cont and w2 ∈ K such that
w = w1 + w2. As w1 ∈ (P)w,cont = (Pcont)w, there exists a c1 such that
(w1,c1) ∈ Pcont which in turn implies that c1 ∈ (Pcont)c = (P)c,cont. We
have (w1 + w2,c) − (w1,c1) ∈ P so (w2,c − c1) ∈ P. As w2 ∈ K we have
c− c1 ∈ (P ∧w K)c. Therefore c = c1 + (c− c1) ∈ (P)c,cont + (P ∧w K)c.

(if) From Theorem 3.3.9, (P ∧w K)c is regularly implementable by full
interconnection with respect to (P)c implies that

(P)c = (P)c,cont + (P ∧w K)c. (4.17)
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We now show that (P)w = K+(P)w,cont. The inclusion K+(P)w,cont ⊆ (P)w

is trivial from K ⊆ (P)w. To show the converse inclusion, let w ∈ (P)w. Then
there exists a c such that (w,c) ∈ P. This implies c ∈ (P)c. From Equation
(4.17), there exist a c1 ∈ (P)c,cont and c2 ∈ (P∧wK)c such that c = c1+c2. As
c1 ∈ (P)c,cont = (Pcont)c, there exists a w1 such that (w1,c1) ∈ Pcont, which in
turn implies that w1 ∈ (Pcont)w = (P)w,cont. As c2 ∈ (P ∧w K)c, there exists
a w2 such that (w2,c2) ∈ P and w2 ∈ K. Therefore (w,c1 + c2) − (w1,c1) −
(w2,c2) ∈ P. As a consequence (w − w1 − w2,0) ∈ P, which in turn implies
that w−w1−w2 ∈ Nw(P) ⊆ K. We have (w−w1−w2)+w2 = w−w1 ∈ K.
Therefore w = (w − w1) + w1 ∈ K + (P)w,cont. !

The next result was obtained in Trentelman & Napp Avelli [39], Corollary 14
(see also Rocha [30], Proposition 1). Again, we provide an alternative proof.

Proposition 4.3.8. Let P ∈ Lw+c with system variable (w,c). Let Nc(P) :=
{c | (0,c) ∈ P}. Let K ∈ Lw such that Nw(P) ⊆ K ⊆ (P)w. Then

1. If C ∈ Lc regularly implements K by partial interconnection (through c
with respect to P), then C′ = C+Nc(P) regularly implements (P ∧wK)c

with respect to (P)c by full interconnection.

2. If C ∈ Lc regularly implements (P∧wK)c with respect to (P)c by full in-
terconnection then C regularly implements K by partial interconnection
(through c with respect to P),

3. If C ∈ Lc regularly implements K by partial interconnection (through
c with respect to P), then C′ = C + Nc(P) regularly implements K by
partial interconnection (through c with respect to P).

Proof: Proof of statement 1: As C regularly implements K by partial
interconnection through c with respect to P, we have K = (P ∧c C)w. We
show that C′ regularly implements (P ∧w K)c with respect to (P)c in two
stages: First we show that C′ implements (P ∧w K)c with respect to (P)c

(equivalently (P)c∩C′ = (P∧wK)c) and subsequently we show the regularity
of the interconnection (P)c ∩ C′.

To show (P)c ∩ C′ = (P ∧w K)c, first let c ∈ (P)c ∩ C′. Then we have
c ∈ (P)c and c ∈ C + Nc(P). This implies that there exists a c1 ∈ C and
c2 ∈ Nc(P) (i.e., (0,c2) ∈ P) such that c = c1 + c2 and a w such that
(w,c1 + c2) ∈ P. As Nc(P) ⊆ (P ∧w K)c, we have c2 ∈ (P ∧w K)c. We have
(w,c1+c2)−(0,c2) = (w,c1) ∈ P. This implies that (w,c1) ∈ P∧cC and hence
w ∈ (P ∧c C)w = K. Therefore (w,c1) ∈ P ∧w K and hence c1 ∈ (P ∧w K)c.
Then we have c = c1+c2 ∈ (P∧wK)c. We conclude that (P)c∩C′ ⊆ (P∧wK)c.
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To show the converse inclusion let c ∈ (P ∧w K)c. Then there exists
a w such that (w,c) ∈ P and w ∈ K = (P ∧c C)w. Therefore c ∈ (P)c.
As w ∈ (P ∧c C)w there exists a c′ such that (w,c′) ∈ P, c′ ∈ C. We have
(w,c)− (w,c′) = (0,c− c′) ∈ P. This implies that c− c′ ∈ Nc(P). Therefore
c = (c − c′) + c′ ∈ Nc(P) + C. We conclude that c ∈ (P)c ∩ (C + Nc(P)) =
(P)c ∩ C′.

From Proposition 3.2.2, regularity of the interconnection P ∧c C implies
that (P)c + C = C∞(R,Rc). We have (P)c + C′ = (P)c + C + Nc(P) =
C∞(R,Rc) + Nc(P) = C∞(R,Rc). Therefore, again from Proposition 3.2.2,
we conclude that the interconnection (P)c ∩ C′ is regular.

Proof of statement 2: As C regularly implements (P∧wK)c with respect to
(P)c we have (P)c∩C = (P∧wK)c. Now we prove that (P∧cC)w = K. Let w ∈
(P ∧c C)w. Then there exists a c such that (w,c) ∈ P and c ∈ C. This implies
that c ∈ (P)c∩C = (P∧wK)c. Then there exists a w′ such that (w′,c) ∈ P and
w′ ∈ K. From linearity we have (w,c) − (w′,c) = (w − w′,0) ∈ P. Therefore
w−w′ ∈ Nw(P) ⊆ K. As w−w′,w′ ∈ K from linearity w−w′+w′ = w ∈ K,
which in turn implies that (P ∧c C)w ⊆ K.

To prove the converse inclusion, let w ∈ K. As K ⊆ (P)w there exists a
c such that (w,c) ∈ P. As (w,c) ∈ P and w ∈ K we have c ∈ (P ∧w K)c =
(P)c ∩ C. Therefore c ∈ C. As (w,c) ∈ P and c ∈ C we have w ∈ (P ∧c C)w.
Therefore K ⊆ (P ∧c C)w.

Regularity of the interconnection (P)c ∩ C implies that (P)c + C =
C∞(R,Rc), which in turn implies that the interconnection P ∧c C is regu-
lar.

Proof of statement 3: Statement 3 follows immediately from statements
1 and 2. !

In the partial interconnection case the following theorem now provides a
solution to Problem 1:

Theorem 4.3.9. Let P ∈ Lw+c with system variable (w,c). Partition c =
(c1,c2). Then K ∈ Lw is regularly implementable by partial interconnection
through c with respect to P using a controller in which c2 is free if and only
if the following conditions hold:

1. K is regularly implementable by partial interconnection through c with
respect to P,

2. p((P ∧w K)c2
) ≤ p((P)c).
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Proof: (only if) From Proposition 4.3.8, if C regularly implements K by
partial interconnection, then C′ = C + {c | (0,c) ∈ P} regularly implements
(P ∧w K)c with respect to (P)c by full interconnection. We note that C ⊆
C′. Let C1( d

dt )c1 + C2( d
dt )c2 = 0 and C ′1(

d
dt )c1 + C ′2(

d
dt )c2 = 0 be minimal

representations of C and C′ respectively. Define C :=
[

C1 C2
]

and C ′ :=[
C ′1 C ′2

]
. Then there exists a polynomial matrix F such that C ′ = FC.

As C and C ′ have full row rank, F also has full row rank. If c2 is free in
C then it is also free in C′ (since if C1 has full row rank then C ′1 = FC1

will also have full row rank). As C′ regularly implements (P ∧w K)c by full
interconnection with respect to (P)c, from Theorem 4.3.1 it directly follows
that p((P ∧w K)c2

) ≤ p((P)c).
(if) Using Theorem 4.3.1 and Proposition 4.3.7, condition 1 and 2 to-

gether imply that there exists a controller C in which c2 is free and that
regularly implements (P ∧w K)c with respect to (P)c through full intercon-
nection. From Proposition 4.3.8 the same C regularly implements K by par-
tial interconnection (through c with respect to P). !

Remark 4.3.10. Let R1( d
dt )w + R2( d

dt )c1 + R3( d
dt )c2 = 0 and K( d

dt )w = 0
be minimal representations of of P and K, respectively. Assume K is au-
tonomous. Hence, K is square and nonsingular. Then

N(c1,c2)(P) = ker
([

R2( d
dt ) R3( d

dt )
])

,

Nc1(P) = ker(R2( d
dt ))

P ∧w K = ker
([

R1( d
dt ) R2( d

dt ) R3( d
dt )

K( d
dt ) 0 0

])
, and

N(w,c1)(P ∧w K) = ker
([

R1( d
dt ) R2( d

dt )
K( d

dt ) 0

])
.

From Lemma 4.3.2 we have

p((P ∧w K)c2
) = p(P ∧w K)− p(N(w,c1)(P ∧w K))

= rank
([

R1 R2 R3

K 0 0

])
− rank

([
R1 R2

K 0

])

= rank
([

R2 R3
])
− rank(R2)

= p(N(c1,c2)(P))− p(Nc1(P)). (4.18)

Also from Lemma 4.3.2 we have

p((P)c) = p(P)− p(Nw(P)). (4.19)
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Using Equations (4.18) and (4.19), condition 2 of Theorem 4.3.9 becomes

p(N(c1,c2)(P))− p(Nc1(P)) ≤ p(P)− p(Nw(P)). (4.20)

Thus, a given autonomous K is regularly implementable using a controller in
which c2 is free if and only if it is regularly implementable, and the inequality
(4.20) holds. Note that, surprisingly, (4.20) is a condition only in terms of
P and the partition (c1,c2) of the plant interconnection variable, and is
independent of K.

Our next result provides a solution to Problem 2 in the partial intercon-
nection case:

Theorem 4.3.11. Let P ∈ Lw+c with system variable (w,c). Let K ∈ Lw.
Partition c = (c1,c2) with c1 of size c1, c2 of size c2 and c1 + c2 = c.
Consider the following three conditions:

1. K is regularly implementable by partial interconnection through c with
respect to P,

2. p((P ∧w K)c2
) = p((P)c),

3. p((P ∧w K)c) = c1 + p((P)c).

If 1, 2 and 3 hold then K is regularly implementable by means of a controller
in which c2 is maximally free. If Nc(P) := {c | (0,c) ∈ P} is autonomous,
then 1, 2, and 3 are also necessary for the existence of a controller C that
regularly implements K and in which c2 is maximally free.

Before proving the theorem we will establish a result that will be useful
in the proof. Let P ∈ Lw+c with plant variable (w,c), and let C regularly
implement K ∈ Lw through c with respect to P. Define C′ := C + Nc(P).
Then we have the following lemma:

Lemma 4.3.12. Let P ∈ Lw+c with system variable (w,c). Assume Nc(P) is
autonomous. Let C ∈ Lc regularly implement K ∈ Lw through c with respect
to P. Then m(C) = m(C′).

Proof:
From Proposition 4.3.8 both C and C′ regularly implement K by partial

interconnection with respect to P. We have K = (P ∧c C)w = (P ∧c C′)w.
Therefore

p((P ∧c C)w) = p((P ∧c C′)w) (4.21)
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From Lemma 4.3.2 we have

p((P ∧c C)w) = p(P ∧c C)− p(Nc(P ∧c C))
= p(P) + p(C)− p(Nc(P) ∩ C).

Since Nc(P) is autonomous, Nc(P) ∩ C and Nc(P) ∩ C′ are autonomous.
Therefore

p(Nc(P) ∩ C) = p(Nc(P) ∩ C′) = c. (4.22)

Hence we have

p((P ∧c C)w) = p(P) + p(C)− c. (4.23)

Similarly

p((P ∧c C′)w) = p(P) + p(C′)− c. (4.24)

Therefore using Equations (4.21), (4.23) and (4.24) we have

p(C) = p(C′).

Hence m(C) = m(C′). !

Using the above lemma we now prove Theorem 4.3.11.

Proof of Theorem 4.3.11: (only if) From Proposition 4.3.8, if C regularly
implements K then C′ = C + Nc(P) regularly implements (P ∧w K)c with
respect to (P)c. As c2 is maximally free in C we have m(C) = c2. As C ⊆ C′,
c2 free in C implies that c2 is also free in C′. From Lemma 4.3.12, we have
m(C) = m(C′) = c2. Therefore c2 is maximally free in C′. Conditions 2 and 3
of the theorem directly follow from Theorem 4.3.4.

(if) From condition 1 and using Proposition 4.3.7, (P ∧w K)c is regularly
implementable with respect to (P)c by full interconnection. Conditions 2
and 3 imply that there exists a controller C̃ which regularly implements
(P ∧w K)c with respect to (P)c by full interconnection and c2 is maximally
free in C̃. From Proposition 4.3.8, the same C̃ regularly implements K by
partial interconnection (through c with respect to P). !

Remark 4.3.13. In the special case that K is autonomous, conditions 2
and 3 in Theorem 4.3.11 become

1. p(Nc(P))− p(Nc1(P)) = p((P)c),
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2. p(Nc(P)) = c1 + p((P)c).

Moreover, if Nc(P) also happens to be autonomous, then these conditions
reduce to the single condition p((P)c) = c2. Hence we get the following: if P
is such that Nc(P) is autonomous, then a given autonomous K is regularly
implementable using a controller with c2 input and c1 output if and only if
it is regularly implementable and p((P)c) = c2, the number of components
of c2.

Starting with polynomial kernel representations of P ∈ Lw+c1+c2 and
K ∈ Lw with system variables (w,c1,c2) and w, respectively, in the following
algorithm we outline a procedure to check the existence of a controller C ∈
Lc1+c2 with system variable (c1,c2), in which c2 is free and which regularly
implements K by partial interconnection with respect to P. If there exists
such a controller, this algorithm also gives a procedure to construct one.

Algorithm-2: Let R1( d
dt )w+R2( d

dt )c1 +R3( d
dt )c2 = 0 and K( d

dt )w = 0

be minimal kernel representations of P and K, respectively. Then,

1. Solve

K = F1R1

for F1. If there exists a solution continue further, else declare there
exists no controller in which c2 is free and that regularly implements K
by partial interconnection through (c1,c2) with respect to P.

2. Find a unimodular matrix U1 such that

U1
[

R1 R2 R3
]

=
[

R11 0 0
R21 R22 R23

]

where
[

R22 R23
]

has full row rank.

3. Solve

R11 = F2K

for F2. If there exists a solution continue further, else declare there
exists no controller in which c2 is free and that regularly implements K
by partial interconnection through (c1,c2) with respect to P.

4. Find a unimodular matrix U2 such that

U2
[

R1 R2 R3
]

=
[

L11 L12 L13

0 L22 L23

]
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where L11 has full row rank, and find a unimodular matrix U3 such that

U3

[
R1 R2 R3

K 0 0

]
=




S11 S12 S13

0 S22 S23

0 0 0





where S11 and
[

S22 S23
]

have full row rank.

5. Solve
[

L22 L23
]

= F3
[

S22 S23
]

for F3 such that F3(λ) has full row rank for all λ ∈ C. If there exists a
solution continue further, else declare there exists no controller in which
c2 is free and that regularly implements K by partial interconnection
through (c1,c2) with respect to P.

6. Choose W such that
[

F3

W

]
is unimodular.

7. If rank
([

L22

WS22

])
≥ rowdim(WS22) continue further, else declare

there exists no controller in which c2 is free and that regularly imple-
ments K by partial interconnection through (c1,c2) with respect to P.

8. Find G0 such that G0L22 + WS22 has full row rank.

9. Define

C := {(c1,c2) | (G0L22 +WS22)( d
dt )c1 +(G0L23 +WS23)( d

dt )c2 = 0}.

10. Declare C to be a controller in which c2 is free and that regularly im-
plements K by partial interconnection through (c1,c2) with respect to
P. If a controller in which c2 is input and that regularly implements K
by partial interconnection through (c1,c2) with respect to P is needed
continue further, else exit.

11. If rank
([

S22 S23
])

= c1 + rank
([

L22 L23
])

declare C to be a
controller in which c2 is free and that regularly implements K by partial
interconnection through (c1,c2) with respect to P, else if R1 has full
column rank declare there does not exists such a controller.
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4.4 Stabilization using controllers with pre-specified in-
put/output structure

In this section we study Problems 3 and 4 as formulated in section 4.2. Again,
we consider the full interconnection case first.

4.4.1 Full interconnection case

Theorem 4.4.1. Let P ∈ Lw1+w2 with plant variable (w1,w2). There exists
a stabilizing controller C ∈ Lw1+w2 in which w2 is free if and only if P is
stabilizable and w2 ≤ p(P).

Proof: (only if) If there exists a stabilizing controller in which w2 is free then
by Proposition 3.5.2 there exists a stable K which is regularly implementable
by full interconnection with respect to P using a controller in which w2 is free.
Stabilizability follows from Proposition 3.5.2, while the inequality w2 ≤ p(P)
follows from Theorem 4.3.1 and Remark 4.3.5.

(if) If P is stabilizable then by Proposition 3.5.2 there exists a stable K
which is regularly implementable. Condition w2 ≤ p(P) along with Theorem
4.3.1 and Remark 4.3.5 implies that this K is indeed regularly implementable
by a controller in which w2 is free. !

The following theorem gives necessary and sufficient conditions in the full
interconnection case for the existence of a stabilizing controller in which a
given subset of the plant interconnection variables is maximally free.

Theorem 4.4.2. Let P ∈ Lw1+w2 with plant variable (w1,w2). There exists
a stabilizing controller C ∈ Lw1+w2 for which w2 is input and w1 is output if
and only if P is stabilizable and w2 = p(P).

Proof: A proof of this theorem can be given similar to the proof of Theorem
4.4.1, and again uses Theorem 4.3.4 and Remark 4.3.5. !

4.4.2 Partial interconnection case

The following theorem provides a solution to Problem 3 for the partial in-
terconnection case:

Theorem 4.4.3. Let P ∈ Lw+c with system variable (w,c). Partition c =
(c1,c2). There exists a stabilizing controller C ∈ Lc in which c2 is free if and
only if
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1. (P)w is stabilizable, and in P w is detectable from c,

2. p(Nc(P))− p(Nc1(P)) ≤ p((P)c).

Proof: (only if) If there exists a stabilizing controller in which c2 is free
then from Proposition 3.5.5 there exists a stable K which is regularly imple-
mentable by partial interconnection with respect to P using a controller in
which c2 is free. Condition 1 directly follows from Proposition 3.5.5, while
the inequality p(Nc(P))− p(Nc1(P)) ≤ p((P)c) follows from Theorem 4.3.9
and Remark 4.3.10.

(if) If (P)w is stabilizable and in P w is detectable from c then from
Proposition 3.5.5 there exists a stable K which is regularly implementable
by partial interconnection with respect to P. Condition 2 of the theorem
along with Remark 4.3.10 and Theorem 4.3.9 implies that this K is indeed
regularly implementable by a controller in which c2 is free. !

Finally, we give a solution to Problem (4):

Theorem 4.4.4. Let P ∈ Lw+c with system variable (w,c). Partition c =
(c1,c2) with c1 size c1, c2 size c2 and c1 + c2 = c. Consider the following
conditions

1. (P)w is stabilizable, and in P w is detectable from c,

2. p(Nc(P))− p(Nc1(P)) = p((P)c),

3. p(Nc(P)) = c1 + p((P)c).

If condition 1,2 and 3 hold, then there exists a stabilizing controller C ∈
Lc1+c2 for which c2 is input and c1 is output. If Nc(P) is autonomous then
these conditions are also necessary for the existence of such controller C, and
conditions 2 and 3 reduce to the single condition p((P)c) = c2.

Proof: (only if) If there exists a stabilizing controller in which c2 is input,
then there exists a stable K which is regularly implementable by partial
interconnection with respect to P using a controller in which c2 is input.
Condition 1 directly follows from Proposition 3.5.5. If Nc(P) is autonomous
then from Theorem 4.3.11 and Remark 4.3.13 we have p((P)c) = c2.

(if) If (P)w is stabilizable and in P w is detectable from c then from
Proposition 3.5.5, there exists a stable K which is regularly implementable
by partial interconnection with respect to P. Conditions 2 and 3 along with
Remark 4.3.13 and Theorem 4.3.11 imply that this K is indeed regularly
implementable by a controller in which c2 is input and c1 is output. !
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4.5 Worked out examples

In order to illustrate the theory developed in this chapter, we now present
some worked-out examples.

Example 4.5.1. Consider the single tank system given in Example 4.2.1.
Given are P = {(u,y,h)) | −u + y + h = 0} with plant variable (w,c) where
w = (u,y), c = (y,h), K = {(u,y)) | −u + y = 0}. It is easy to see that
(P)(y,h) = C∞(R,Ry+h) and p((P)(y,h)) = 0. We have P ∧(u,y) K = {(u,y,h) |
h = 0 and u = y}, (P ∧(u,y) K)h = {0}, and p((P ∧(u,y) K)h) = 1. As
p((P ∧(u,y) K)h) > p((P)(y,h)), using Theorem 4.3.9 there does not exist a
controller which regularly implements K and in which h is free.

Example 4.5.2. Let P with manifest variable w = (w1,w2) and intercon-
nection variable c = (c1,c2,c3) be represented by the equations

w1 + ẇ2 + c2 + ċ3 = 0,

w2 + c1 + c2 + c3 = 0,

ċ2 + c3 = 0.

Clearly p(P) = 3, and (P)w = C∞(R,R2). For K take the behavior repre-
sented by w1 + ẇ2 = 0. K is regularly implementable through (c1,c2,c3) with
respect to P. We have

R(ξ) =




1 ξ 0 1 ξ
0 1 1 1 1
0 0 0 ξ 1



 ,

K(ξ) =
[

1 ξ
]
.

Therefore

p((P)c) = rank(R(ξ))− rank

([
1 ξ
0 1
0 0

])

= 1.

Now

P ∧w K = ker(P ( d
dt )),

where
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P (ξ) =





1 ξ 0 1 ξ
0 1 1 1 1
0 0 0 ξ 1
1 ξ 0 0 0



 .

Then

p((P ∧w K)(c2,c3)) = rank(P )− rank









1 ξ 0
0 1 1
0 0 0
1 ξ 0









= 2,

and

p((P ∧w K)(c1,c2)) = rank(P )− rank









1 ξ ξ
0 1 1
0 0 1
1 ξ 0









= 1.

From these calculations it is evident that p((P ∧w K)(c1,c2)) = p(P)c and
p((P ∧w K)(c2,c3)) > p(P)c. From Theorem 4.3.9 we conclude that K is reg-
ularly implementable using a controller in which (c1,c2) is free. We also
conclude that there does not exist a controller which regularly implements
K and in which (c2,c3) is free. As

p((P ∧w K)c) = rank(P )− rank









1 ξ
0 1
0 0
1 ξ









= 2

and c3 (the cardinality of c3) = 1, we have p((P ∧w K)c) = c3 + p(P)c.
Therefore from Theorem 4.3.11, K is indeed regularly implementable using
a controller in which (c1,c2) is input (and c3 is output). A controller which
regularly implements K and in which (c1,c2) is input is found as follows. We
have (P)c = ker(Pc( d

dt )) and P ∧w K = ker(Pk( d
dt )) where

Pc(ξ) =
[

0 ξ 1
]

and

Pk(ξ) =





1 ξ 0 1 ξ
0 1 1 1 1
0 0 0 ξ 1
1 ξ 0 0 0



 ,
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respectively. Eliminating w from P ∧w K yields (P ∧w K)c which is given by

(P∧wK)c = ker(Pkc( d
dt )), where Pkc(ξ) =

[
0 ξ 1
0 1 ξ

]
. By direct inspection

we see that C := ker(C( d
dt )) where C(ξ) =

[
0 1 ξ

]
regularly implements

(P∧wK)c with respect to (P)c. The same C regularly implements K through
(c1,c2,c3) with respect to P and (c1,c2) is input in C.

Example 4.5.3. Let P with manifest variable w = (w1,w2) and intercon-
nection variable c = (c1,c2,c3) be represented by the equations

w1 + ẇ2 + ċ3 = 0
w2 + c1 + c2 + c3 = 0.

Clearly (P)w = C∞(R,R2) and (P)c = C∞(R,R2). (P)w is trivially stabiliz-
able, and w is detectable from c in P. Also p((P)c) = 0. We compute

Nc(P) = ker(N( d
dt )), (4.25)

N(c1,c2)(P) = ker(N12( d
dt )) (4.26)

and

N(c2,c3)(P) = ker(N23( d
dt )) (4.27)

where N(ξ) =
[

0 0 ξ
1 1 1

]
, N12(ξ) =

[
0 0
1 1

]
and N23(ξ) =

[
0 ξ
1 1

]
.

Then p(Nc(P)) = rank(N) = 2, p(N(c2,c3)(P)) = rank(N23) = 2, and
p(N(c1,c2)(P)) = rank(N12) = 1. From these calculations it is evident
that p(Nc(P)) − p(N(c2,c3)(P)) = p((P)c) and p(Nc(P)) − p(N(c1,c2)(P)) >
p((P)c). Therefore from Theorem 4.4.3 we conclude that the plant is sta-
bilizable using a controller in which c1 is free. We also conclude that there
does not exist a controller which stabilizes the plant and in which c3 is free.
A stabilizing controller in which c1 is free can be found in the same way as
in the previous example, for any given regularly implementable and stable
K.
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5 Asymptotic tracking and regulation

5.1 Introduction

In this chapter we consider the problem of asymptotic tracking and regulation
in the behavioral framework. This is the problem of finding, for a given
plant behavior, a regular (see Definition 3.2.1), free-disturbance, stabilizing
controller (see section 5.2 for definitions) that regulates the tracking error
to zero in the presence of a class of exogenous inputs.

The problem of asymptotic tracking and regulation has been studied be-
fore in the literature, in an input-output framework. See for instance Davison
[6], Davison & Goldenberg [7], Francis [12] and Francis & Wonham [13]. The
theory has also been extended to nonlinear systems in Isidori & Byrnes [17].
Many results have been collected in the book Saberi, Stoorvogel & Sannuti
[31] (see also Trentelman, Stoorvogel & Hautus [40], Chapter 9). In these,
the concept of internal model principle plays a pivotal role in obtaining a
solution to the asymptotic tracking and regulation problem. According to
the internal model principle, in order to achieve regulation the controller or
the plant must contain the dynamics of the exosystem.

Our work can be seen as the behavioral generalization of Davison &
Goldenberg [7], Francis [12] and Francis & Wonham [13]. We use polynomial
kernel representations of the plant without input-output considerations. This
problem was initially studied in Takaba [32]. In the work of Takaba only nec-
essary conditions were obtained for the existence of a controller which solves
the regulation problem. In this chapter we obtain necessary and sufficient
conditions for the existence of controllers which solve the asymptotic tracking
and regulation problem. These conditions are expressed, in a representation
free manner, in terms of the behaviors associated with the plant and the ex-
osystem which generates the disturbances and the reference signals. Also a
procedure to construct such controllers is given using the polynomial matri-
ces appearing in the kernel representations of the plant and the exosystem.
The material presented in this chapter is based on the papers Fiaz, Takaba
& Trentelman [[8], [9], [10]].

The outline of this chapter is as follows. In section 5.2 we introduce the
concept of regulator for the plant with respect to the exosystem generating
the disturbances and the reference signals. We then formulate the asymptotic
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tracking and regulation problem in the behavioral framework, with control
as interconnection. In section 5.3 we will give a behavioral version of the
internal model principle. Using this we will show that, in order to achieve
regulation, the plant must contain the dynamics of the exosystem. Given a
plant and exosystem, we will establish necessary and sufficient conditions
for the existence of a regulator only in terms of the plant and exosystem
dynamics. Starting with polynomial kernel representations of the plant and
the exosystem, we give an algorithm for checking the existence of a regulator
and if is exists, in the same algorithm we also give a procedure to construct
a regulator. In order to illustrate the theory at the end of the section we
give some worked-out examples. In section 5.4 we will modify the definition
of regulator and also the problem formulation when, apart from the to-be-
regulated variables, interconnection variables, and disturbance variables, the
plant description involves an extra set of variables (like, for example, state
variables in a state space description of the plant). For this case, we will again
obtain necessary and sufficient conditions for the existence of a regulator only
in terms of the plant and exosystem dynamics. The important special case
when the plant and the exosystem are represented in state space form is
considered in section 5.5. We re-obtain the classical results on tracking and
regulation in the context of state space systems.

5.2 Problem formulation

For a given plant behavior with its to-be-controlled variable w and reference
signal r, an important synthesis problem in control is to design a controller
such that the plant variable w follows the reference signal r in the resulting
system after interconnecting the plant and the controller. This is called the
asymptotic tracking problem. A classical approach to this problem is to let the
reference signal be generated by an autonomous system called the exosystem.
One then incorporates the dynamics of the exosystem into the dynamics of
the plant and defines a new variable e as the difference between the reference
signal r and w. The asymptotic tracking problem is then reformulated as:
design a controller which drives the signal e to zero if it is interconnected
with the plant.

A second important synthesis problem is the problem of regulation. For
a given plant with to-be-controlled variable w, and external disturbance act-
ing on the plant (which is assumed to be free in the plant), the problem
here is to design a controller such that in the resulting system after inter-
connection of the plant and the controller, the disturbance remains free and
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the plant variable w converges to zero as time tends to infinity, regardless of
the disturbance acting on the plant. A controller such that in the resulting
system, after interconnection of the plant and the controller, the disturbance
remains free is called a free-disturbance controller. Similar to the asymptotic
tracking problem, we approach this problem by assuming the disturbance to
be generated by some linear time invariant autonomous system, again called
the exosystem. Then one incorporates the dynamics of the exosystem into
the dynamics of the plant, and requires the variable w in this interconnected
system to converge to zero as time tends infinity.

Combining these two synthesis problems we can formulate a single new
synthesis problem by requiring the design of a controller such that the inter-
connected system variable tracks a given reference signal, regardless of the
disturbance. This is done by combining the two exosystems into a single one
and requires regulation of the tracking error.

In addition to the requirements of asymptotic tracking and regulation,
a realistic design requires the system to go to rest in the absence of dis-
turbances (if the disturbance signal is identically equal to zero). A free-
disturbance controller such that in the resulting system, after interconnec-
tion of the plant and the controller, takes the system to rest in the absence
of disturbances is called a stabilizing controller. A controller which achieves
all three requirements, i.e. asymptotic tracking, regulation, free-disturbance
and stabilization, is called a regulator. In this section we will introduce the

v

Plant

P

Exosystem
E

Controller
C

c

v

c

w

(b)(a) (c)

Figure 5.1 Exosystem, Plant and Controller

problem of asymptotic tracking and regulation in a behavioral context, with
control by general, regular, partial interconnection. We start with a plant
behavior P ∈ Lw+c+v, with plant variables (w,c,v), shown schematically in
Figure 5.1(b). The system variable has been partitioned into w, c and v.
These variables represent the to-be-controlled variable (including tracking
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error), the interconnection variable (such as sensor measurements and actu-
ator inputs), and external disturbances and reference signals, respectively.
The interconnection variable c is the system variable through which we are
allowed to interconnect P with the controller C ∈ Lc. As the components
of the variable v represent reference signals and external disturbances, we
assume v to be free in P. In addition to the plant P, let an exosystem E ∈ Lv

which generates the disturbance and the reference signal be given, as shown
schematically in Figure 5.1(a).

c

Controller
C

wv

Plant
P

Figure 5.2 Interconnection of the plant and the controller

Let C ∈ Lc, shown schematically in Figure 5.1(c). Then the interconnec-
tion of P with C (shown schematically in Figure 5.2) is given by

P ∧c C = {(w,c,v) | (w,c,v) ∈ P and c ∈ C}. (5.1)

In general, for a given P ∈ Lw1+w2 with system variable (w1,w2), in this
chapter, as before, we use the notation Nw1(P) to indicate the behav-
ior obtained by putting w2 = 0 and projecting onto the variable w1 i.e.,
Nw1(P) = {w1 | (w1,0) ∈ P}.

As v is interpreted as unknown disturbance, it should remain free (see
Definition 2.9.1) after interconnecting the plant with a controller. In order
to highlight this, we give the following definition:

Definition 5.2.1. Let P ∈ Lw+c+v. Assume v is free in P. Then C ∈ Lc is
called a free-disturbance controller for P if v is free in P ∧c C.

In the context of asymptotic tracking and regulation a controller is called
stabilizing if, whenever the disturbance v is zero, the to-be-regulated variable
w and interconnection variable c tend to zero as time runs off to infinity:

Definition 5.2.2. Let P ∈ Lw+c+v, with v free. A free-disturbance controller
C ∈ Lc is called stabilizing if limt→∞(w(t),c(t)) = (0,0) for all (w,c,0) ∈ P∧cC
(equivalently, N(w,c)(P) ∧c C is stable).
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In the following theorem we establish necessary and sufficient condi-
tions on the plant for the existence of a regular, free-disturbance, stabilizing
controller:

Theorem 5.2.3. Let P ∈ Lw+c+v. Assume v is free in P. Then there exists
a regular, free-disturbance, stabilizing controller for P if and only if

1. N(w,c)(P) is stabilizable, and

2. w is detectable from (c,v) in P.

Proof: Let R1( d
dt )w + R2( d

dt )c + R3( d
dt )v = 0 be a minimal representation

of P. Then there exists a unimodular matrix U such that

U
[

R1 R2 R3
]

=
[

R11 R12 R13

0 R22 R23

]
,

where R11 has full row rank. Then we have

P = ker
([

R11( d
dt ) R12( d

dt ) R13( d
dt )

0 R22( d
dt ) R23( d

dt )

])
, (5.2)

N(w,c)(P) = ker
([

R11( d
dt ) R12( d

dt )
0 R22( d

dt )

])
. (5.3)

(only if) Let C( d
dt )c = 0 be a minimal representation of a regular, free-

disturbance, stabilizing controller C for P. Then P ∧c C is given by

P ∧c C = ker








R11( d

dt ) R12( d
dt ) R13( d

dt )
0 R22( d

dt ) R23( d
dt )

0 C( d
dt ) 0







 . (5.4)

We have

N(w,c)(P ∧c C) = ker








R11( d

dt ) R12( d
dt )

0 R22( d
dt )

0 C( d
dt )







 . (5.5)

Since v is free in P ∧c C and N(w,c)(P ∧c C) is stable,




R11 R12

0 R22

0 C





is square and Hurwitz, which in turn implies that R11 is Hurwitz and[
R11(λ) R12(λ)

0 R22(λ)

]
has full row rank for all λ ∈ C̄+. From Equation (5.2)

and using Proposition 2.4.4, w is detectable from (c,v) in P. From Equation
(5.3) and using Proposition 2.5.4 we conclude that N(w,c)(P) is stabilizable.
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(if) From Equation (5.2) and using Proposition 2.4.4, w is detectable
from (c,v) in P implies that R11 is Hurwitz. From Equation (5.3) and using

Proposition 2.5.4, N(w,c)(P) stabilizable implies that
[

R11(λ) R12(λ)
0 R22(λ)

]

has full row rank for all λ ∈ C̄+, which in turn implies that R22(λ) has full

row rank for all λ ∈ C̄+. Choose C such that
[

R22

C

]
is Hurwitz. Then




R11 R12

0 R22

0 C



 is Hurwitz. Define C = ker(C( d
dt )). Then it is easy to verify

that this C is a regular, free-disturbance, stabilizing controller for P. !

The interconnection of the plant P with the exosystem E and controller C is
shown schematically in Figure 5.3 and is given by

P ∧v E ∧c C = {(w,c,v) | (w,c,v) ∈ P, v ∈ E and c ∈ C}. (5.6)

We have the following definition of a regulator.

Definition 5.2.4. Let P ∈ Lw+c+v. Assume v is free in P. Then C ∈ Lc is
called a regulator for P with respect to E ∈ Lv, if

1. C is a regular, free-disturbance, stabilizing controller for P

2. for all (w,c,v) ∈ P∧v E ∧cC we have limt→∞w(t) = 0, i.e., (P∧v E ∧cC)w

is stable.

Condition 2) in the above definition asks the controller to achieve regulation
of the system variable w.

c

Exosystem
E

Controller
C

wv

Plant
P

Figure 5.3 Interconnection of the plant, controller and the exosystem

We now formulate the main problem of this chapter:
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Problem 1: Given a plant P ∈ Lw+c+v with system variable (w,c,v), with v
free in P, and an autonomous system E ∈ Lv

aut with system variable v, find
a necessary and sufficient condition for the existence of a regulator C ∈ Lc

for P with respect to E .

5.3 Solution to the asymptotic tracking and regulation prob-
lem

As a first step in resolving Problem 1, we will show that without loss of
generality we can assume that in P ∧v E , the interconnection of plant and
exosystem, v is observable from (w,c), equivalently, E ∩ Nv(P) = 0.

Let

P = {(w,c,v) | R1( d
dt )w + R2( d

dt )c + R3( d
dt )v = 0}, and (5.7)

E = {v | V ( d
dt )v = 0}. (5.8)

be minimal representations of P and E respectively, where V is square and
nonsingular. Factorize

[
R3

V

]
=

[
R′3
V ′

]
D,

where D is square and nonsingular and
[

R′3(λ)
V ′(λ)

]
has full column rank for

all λ ∈ C. Define

P ′ := {(w,c,v) | R1( d
dt )w + R2( d

dt )c + R′3(
d
dt )v = 0}, and (5.9)

E ′ := {v | V ′( d
dt )v = 0}. (5.10)

We have

P ∧v E ′ = ker
([

R1( d
dt ) R2( d

dt ) R′3(
d
dt )

0 0 V ′( d
dt )

])
. (5.11)

It is easy to see that v is observable from (w,c) in P ∧v E ′ (use the fact that[
R′3(λ)
V ′(λ)

]
has full column rank for all λ ∈ C).

Let C ∈ Lc. The following theorem shows that for the solvability of
Problem 1 the assumption E ∩ Nv(P) = 0 can indeed be made without loss
of generality:



76 5 Asymptotic tracking and regulation

Theorem 5.3.1. Let P, E , P ′ and E ′ be given by Equations (5.7), (5.8),
(5.9) and (5.10), respectively. Then C is a regulator for P with respect to E
if and only if C is a regulator for P ′ with respect to E ′.

Proof: Let C( d
dt )c = 0 be a minimal representation of C. We have

P ∧c C = ker
([

R1( d
dt ) R2( d

dt ) R3( d
dt )

0 C( d
dt ) 0

])
, and (5.12)

P ′ ∧c C = ker
([

R1( d
dt ) R2( d

dt ) R′3(
d
dt )

0 C( d
dt ) 0

])
. (5.13)

From the above it is easy to see that the interconnection P ∧c C is regular,

v is free in P ∧c C, and N(w,c)(P) ∧c C is stable if and only if
[

R1 R2

0 C

]

is square, nonsingular and Hurwitz. In turn, this holds if and only if the
interconnection P ′ ∧c C is regular, v is free in P ′ ∧c C, and N(w,c)(P ′)∧c C is
stable. In order to proceed we now show (P ∧v E ∧c C)w = (P ′ ∧v E ′ ∧c C)w.

We have

P ∧v E ∧c C = ker








R1( d

dt ) R2( d
dt ) R′3D( d

dt )
0 C( d

dt ) 0
0 0 V ′D( d

dt )







 , and

P ′ ∧v E ′ ∧c C = ker








R1( d

dt ) R2( d
dt ) R′3(

d
dt )

0 C( d
dt ) 0

0 0 V ′( d
dt )







 .

There exists a unimodular matrix
[

U11 U12 U13

U21 U22 U23

]
such that

[
U11 U12 U13

U21 U22 U23

]


R1 R2 R′3D
0 C 0
0 0 V ′D



 =
[

G11 0 0
G21 G22 G23D

]
, and

(5.14)

[
U11 U12 U13

U21 U22 U23

]


R1 R2 R′3
0 C 0
0 0 V ′



 =
[

G11 0 0
G21 G22 G23

]
(5.15)

where
[

G22 G23
]

and
[

G22 G23D
]

have full row rank. Hence, from
Equations (5.14) and (5.15) we have
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P ∧v E ∧c C = ker
([

G11( d
dt ) 0 0

G21( d
dt ) G22( d

dt ) G23D( d
dt )

])
,

P ′ ∧v E ′ ∧c C = ker
([

G11( d
dt ) 0 0

G21( d
dt ) G22( d

dt ) G23( d
dt )

])
,

and (P ∧v E ∧c C)w = ker(G11( d
dt )) = (P ′ ∧c C ∧v E ′)w. From the above and

using Definitions 5.2.2, 5.2.4 we conclude that C is a regulator for P with
respect to E if and only if C is a regulator for P ′ with respect to E ′. !

Also the following theorem will be instrumental in solving Problem 1.

Theorem 5.3.2. Let K ∈ Lw+v with system variable (w,v). Assume v is free
in K. Let E ∈ Lv

aut be an anti-stable system with system variable v. Then
(K ∧v E)w is stable if and only if the following conditions hold.

1. limt→∞w(t) = 0 for all (w,0) ∈ K, i.e., Nw(K) is stable, and

2. (0,v) ∈ K holds for all v ∈ E, i.e., E ⊆ Nv(K).

Proof: (if) (w,v) ∈ K∧v E implies (w,v) ∈ K and v ∈ E . As (0,v) ∈ K for all
v ∈ E , from linearity, we have (w,v)− (0,v) ∈ K. Therefore (w,0) ∈ K. Since
we have limt→∞w(t) = 0 for all (w,0) ∈ K, we conclude that limt→∞w(t) = 0
holds for all (w,v) ∈ K ∧v E .

(only if) We have {(w,0) | (w,0) ∈ K} ⊆ K ∧v E . Since limt→∞w(t) = 0
for all (w,v) ∈ K ∧v E , we obtain limt→∞w(t) = 0 for all (w,0) ∈ K.

Let R1( d
dt )w+R2( d

dt )v = 0 be a minimal representation of K. Let v ∈ E .
As v is free in K there exists a w such that

R1( d
dt )w = −R2( d

dt )v. (5.16)

As (K ∧v E)w is stable, w is a stable Bohl function. Hence, the LHS of
Equation (5.16) is a stable Bohl function. Also, since E is anti-stable, v
is either identically equal to 0 or anti-stable Bohl. This implies that the
RHS of Equation (5.16) is either identically equal to 0, or an anti-stable
Bohl function. Equation (5.16) thus implies that R1( d

dt )w = −R2( d
dt )v = 0.

Consequently, (w,0) ∈ K. From linearity we have (w,v) − (w,0) ∈ K, which
implies that (0,v) ∈ K. Therefore v ∈ Nv(K). !

Remark 5.3.3. Condition 2) of Theorem 5.3.2 provides a version of the so
called internal model principle in the behavioral setting. That is, in order to
achieve regulation of the variable w subject to all exogenous signals v ∈ E ,
the controlled behavior (P ∧c C)(w,v) must contain the dynamics of E , in
the sense that E ⊆ Nv((P ∧c C)(w,v)). In this way, the behavioral approach
to asymptotic tracking and regulation brings forward the ‘internal model
principle’ very clearly and directly.
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As regulation is an asymptotic property, intuitively the stable part of the
exosystem does not affect regulation. Indeed, in the following theorem, we
show that we can reduce the general problem to the case that the exosystem
is anti-stable.

Theorem 5.3.4. Let P ∈ Lw+c+v and E ∈ Lv
aut. Assume v is free in P. Let

E = Es⊕Ea where Es ∈ Lv
aut is stable and Ea ∈ Lv

aut is anti-stable. Let C ∈ Lc.
Then the following statements are equivalent.

1. C is a regulator for P with respect to E.

2. C is a regulator for P with respect to Ea.

Proof: Before turning to the actual proof of this theorem, we will first prove
the following three lemmas.

Lemma 5.3.5. Let P ∈ Lw+v, E ∈ Lv
aut. Assume v is free in P. Let E =

E1 ⊕ E2 with E1,E2 ∈ Lv
aut. Then

(P ∧v E1) + (P ∧v E2) = (P ∧v E).

Proof: As E = E1 ⊕ E2 the inclusion (P ∧v E1) + (P ∧v E2) ⊆ (P ∧v E) is
straightforward. To prove the converse inclusion let (w,v) ∈ P ∧v E . Then
there exist v1 ∈ E1 and v2 ∈ E2 such that v = v1 + v2. Since v is free in P,
there exists w1 such that (w1,v1) ∈ P ∧v E1 ⊆ P ∧v E . Define w2 := w − w1.
By linearity, we have (w2,v2) = (w,v) − (w1,v1) ∈ P ∧v E ⊆ P. Moreover,
(w2,v2) ∈ P ∧v E2 since v2 ∈ E2. Consequently, (w,v) = (w1,v1) + (w2,v2) ∈
(P ∧v E1) + (P ∧v E2). This implies (P ∧v E1) + (P ∧v E2) ⊇ P ∧v E . !

Lemma 5.3.6. Let P ∈ Lw+v and let Es ∈ Lv
aut be stable. If Nw(P) is stable

then P ∧v Es is stable.

Proof: Let R1( d
dt )w + R2( d

dt )v = 0 and S( d
dt )v = 0 be minimal representa-

tions of P and Es respectively, where S is Hurwitz. We have

P ∧v Es = ker
([

R1( d
dt ) R2( d

dt )
0 S( d

dt )

])
(5.17)

and

Nw(P) = ker(R1( d
dt )). (5.18)

The stability of Nw(P) implies that R1(λ) has full column rank for all λ ∈

C̄+, which in turn implies that
[

R1(λ) R2(λ)
0 S(λ)

]
has full column rank for

all λ ∈ C̄+. Therefore P ∧v Es stable. !



5.3 Solution to the asymptotic tracking and regulation problem 79

Lemma 5.3.7. Let P ∈ Lw+c+v and E ∈ Lv
aut. Assume v is free in P. Let

E = Es⊕Ea where Es ∈ Lv
aut is stable and Ea ∈ Lv

aut is anti-stable. Let C ∈ Lc

be such that v is free in P∧cC. Then the following statements are equivalent:

1. (P ∧v E ∧c C)w is stable.

2. (P ∧v Ea ∧c C)w is stable.

Proof: ((1)⇒ (2)) As Ea ⊆ E we have P∧vEa∧cC ⊆ P∧vE∧cC which implies
(P ∧v Ea ∧c C)w ⊆ (P ∧v E ∧c C)w. Therefore, the stability of (P ∧v E ∧c C)w

implies that (P ∧v Ea ∧c C)w is stable.
((2) ⇒ (1)) We have (P ∧v Ea ∧c C)w = ((P ∧c C)(w,v) ∧v Ea)w stable.

From Theorem 5.3.2 we must have the stability of Nw((P ∧c C)(w,v)). As v
is free in P ∧c C, it is easy to see that v is free in (P ∧c C)(w,v). Therefore,
from Lemma 5.3.5 we have (P ∧v E ∧c C)(w,v) = (P ∧c C)(w,v) ∧v E = (P ∧c

C)(w,v) ∧v Es + (P ∧c C)(w,v) ∧v Ea. This implies that ((P ∧c C)(w,v) ∧v E)w =
((P ∧c C)(w,v) ∧v Es)w + ((P ∧c C)(w,v) ∧v Ea)w. Using that Nw((P ∧c C)(w,v))
is stable and Lemma 5.3.6 we have that (P ∧c C)(w,v) ∧v Es is stable, which
implies that ((P∧cC)(w,v)∧v Es)w is stable. From the above we conclude that
(P ∧v E ∧c C)w = ((P ∧c C)(w,v) ∧v E)w is stable. !

Finally, by combining these lemmas we arrive at:

Proof of Theorem 5.3.4:
It is evident from Lemma 5.3.7 and Definition 5.2.4 that C is a regulator

for P with respect to E if and only if C is a regulator for P with respect to
Ea. !

Based on Theorems 5.3.1 and 5.3.4, without loss of generality we hereafter
make the following assumptions:

Assumptions :

A1. E ∈ Lv
aut is an anti-stable system, and

A2. v is observable from (w,c) in P ∧v E , i.e., E ∩ Nv(P) = 0.

The following theorem is the main result of this chapter. It provides a
complete solution to Problem 1.

Theorem 5.3.8. Let P ∈ Lw+c+v with system variable (w,c,v). Assume v
is free in P. Let E ∈ Lv

aut with system variable v. Assume E is anti-stable
and v is observable from (w,c) in P ∧v E. Then there exists a regulator for
P with respect to E if and only if the following conditions hold:
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1. (w,v) is detectable from c in P ∧v E,

2. N(w,c)(P) is stabilizable, and

3. there exists a polynomial matrix X ∈ R[ξ]c×v such that (0,X( d
dt )v,v) ∈

P for all v ∈ E.

Proof: Let P and E be represented by the minimal kernel representations

P = {(w,c,v) | R1( d
dt )w + R2( d

dt )c + R3( d
dt )v = 0} (5.19)

and

E = {v | V ( d
dt )v = 0} (5.20)

respectively.
(only if)

1. We easily see that {(w,0,v) | (w,0,v) ∈ P ∧v E} ⊆ P ∧v E ∧c C. It then
follows from Definition 5.2.4 that limt→∞(w(t),0) = 0 for all (w,0,v) ∈
P ∧v E . Hence, if (w,0,v) ∈ P ∧v E then w is a stable Bohl function.
As v is observable from (w,c) in P ∧v E , v is a stable Bohl function for
all (w,0,v) ∈ P ∧v E . Therefore we have limt→∞(w(t),v(t)) = 0 for all
(w,0,v) ∈ P ∧v E , in other words, (w,v) is detectable from c in P ∧v E
(the condition 1).

2. Let C = ker(C( d
dt )) be a minimal representation of a regulator for

P with respect to E . From Definition 5.2.4 and using Theorem 5.2.3,
N(w,c)(P) is stabilizable (the condition 2).

3. In order to show that the condition 3. is necessary for the existence of a
regulator we make use of the internal model principle given in Theorem
5.3.2.
We have

P ∧c C = ker
([

R1( d
dt ) R2( d

dt ) R3( d
dt )

0 C( d
dt ) 0

])
. (5.21)

The facts that v is free in P ∧c C and that N(w,c)(P ∧c C) is stable imply

that
[

R1 R2

0 C

]
is Hurwitz. There exists a unimodular matrix U such

that

U

[
R1 R2 R3

0 C 0

]
=

[
R̃11 0 R̃13

R̃21 R̃22 R̃23

]
, (5.22)



5.3 Solution to the asymptotic tracking and regulation problem 81

where R̃11 and R̃22 are Hurwitz. Therefore we have

P ∧c C = ker
([

R̃11( d
dt ) 0 R̃13( d

dt )
R̃21( d

dt ) R̃22( d
dt ) R̃23( d

dt )

])
,(5.23)

(P ∧c C)(w,v) = ker
([

R̃11( d
dt ) R̃13( d

dt )
])

, and (5.24)

Nv((P ∧c C)(w,v)) = ker(R̃13( d
dt )). (5.25)

In order to proceed we need the following lemma.

Lemma 5.3.9. Let A ∈ R[ξ]p×p be Hurwitz and B ∈ R[ξ]q×q be anti-
Hurwitz. Then, for any C ∈ R[ξ]p×q, there exists a solution (X,Y ) of
the equation AX + Y B = C.

Proof: Let U1AU2 = Σ1 = diag(λ1,λ2,...,λp) and V1BV2 = Σ2 =
diag(γ1,γ2...,γq), where U1,U2,V1,V2 are unimodular matrices. As A
is Hurwitz and B is anti-Hurwitz we have Σ1 Hurwitz and Σ2 anti-
Hurwitz. Define X ′ := U−1

2 XV2, Y ′ := U1Y V −1
1 and C ′ := U1CV2.

It is easy to see that the following statements are equivalent for any
C ∈ R[ξ]p×q:

(a) there exists a solution (X,Y ) of the equation AX + Y B = C.
(b) there exists a solution (X ′,Y ′) of the equation Σ1X ′ + Y ′Σ2 = C ′.
(c) for any i ∈ p and j ∈ q there exists a solution (x′ij ,y

′
ij) of the

Bézout equation λix′ij + y′ijγj = c′ij where λi and γj are ith and jth

diagonal elements of Σ1 and Σ2 respectively.
(d) gcd(λi,γj) = 1 for all i ∈ p and j ∈ q.

As Σ1 is Hurwitz and Σ2 is anti-Hurwitz, gcd(λi,γj) = 1 for all i ∈ p and
j ∈ q. Hence if A is Hurwitz and B is anti-Hurwitz then the Equation
AX + Y B = C is universally solvable for (X,Y ). !

We continue with the proof of Theorem 5.3.8. From Lemma 5.3.9, since
R̃22 is Hurwitz and V is anti-Hurwitz, there exists a solution (X,Ỹ2) of
the equation

R̃22X + R̃23 = Ỹ2V. (5.26)

From Equations (5.20) and (5.23), we have

P ∧v E ∧c C = ker








R̃11( d

dt ) 0 R̃13( d
dt )

R̃21( d
dt ) R̃22( d

dt ) R̃23( d
dt )

0 0 V ( d
dt )







 . (5.27)
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It is easy to see that




R̃11( d

dt ) 0 R̃13( d
dt )

R̃21( d
dt ) R̃22( d

dt ) R̃23( d
dt )

0 0 V ( d
dt )



 has full row rank.

Then we have

(P ∧v E ∧c C)(w,v) = (P ∧c C)(w,v) ∧v E

= ker
([

R̃11( d
dt ) R̃13( d

dt )
0 V ( d

dt )

])
.

From Theorem 5.3.2, the internal model principle, the fact that (P ∧v

E ∧c C)w = ((P ∧v E ∧c C)(w,v))w = ((P ∧c C)(w,v)∧v E)w is stable implies
that E ⊆ Nv((P ∧c C)(w,v)). Hence from Equations (5.25) and (5.20)
there exists a polynomial matrix Ỹ1 such that

R̃13 = Ỹ1V. (5.28)

Using Equations (5.26) and (5.28) we have
[

0
R̃22

]
X +

[
R̃13

R̃23

]
=

[
Ỹ1

Ỹ2

]
V. (5.29)

Pre-multiplying both sides with U−1 in the above equation, we obtain
[

R2

C

]
X +

[
R3

0

]
=

[
Y1

Y2

]
V (5.30)

where
[

Y1

Y2

]
:= U−1

[
Ỹ1

Ỹ2

]
. Then we have

R2X + R3 = Y1V. (5.31)

Since E = ker(V ( d
dt )),

[
R2 R3

] [
X( d

dt )v
v

]
= 0 holds for all v ∈ E ,

i.e., (0,X( d
dt )v,v) ∈ P.

(if) Let P be given by the Equation (5.19). There exists a unimodular matrix
U such that

U
[

R1 R2 R3
]

=
[

R11 R12 R13

0 R22 R23

]
, (5.32)

where R11 has full row rank. Therefore we have



5.3 Solution to the asymptotic tracking and regulation problem 83

P = ker
([

R11( d
dt ) R12( d

dt ) R13( d
dt )

0 R22( d
dt ) R23( d

dt )

])
, (5.33)

N(w,c)(P) = ker
([

R11( d
dt ) R12( d

dt )
0 R22( d

dt )

])
, (5.34)

(N(w,c)(P))c = ker(R22( d
dt )), and (5.35)

P ∧v E = ker








R11( d

dt ) R12( d
dt ) R13( d

dt )
0 R22( d

dt ) R23( d
dt )

0 0 V ( d
dt )







 . (5.36)

There exists a polynomial matrix X ∈ R[ξ]c×v such that (0,X( d
dt )v,v) ∈

P for all v ∈ E . Hence V ( d
dt )v = 0 implies

[
R12( d

dt )
R22( d

dt )

]
X( d

dt )v +
[

R13( d
dt )

R23( d
dt )

]
v = 0. (5.37)

Therefore there exists a polynomial matrix Y =
[

Y1

Y2

]
such that

[
R12

R22

]
X +

[
R13

R23

]
=

[
Y1

Y2

]
V. (5.38)

This implies

R22X + R23 = Y2V. (5.39)

From Equation (5.34), the fact that N(w,c)(P) is stabilizable implies that[
R11(λ) R12(λ)

0 R22(λ)

]
has full row rank for all λ ∈ C̄+, which in turn implies

that R22(λ) has full row rank for all λ ∈ C̄+. From Equation (5.35), we
conclude that (N(w,c)(P))c is stabilizable. From Proposition 3.5.2 there exists
a C ∈ Lc such that (N(w,c)(P))c∩C is stable and regular. Factor R22 as R22 =
DK where D is Hurwitz and K(λ) has full row rank for all λ ∈ C. Let S be

such that
[

K
S

]
is unimodular. Then for an arbitrary polynomial matrix F

and an arbitrary Hurwitz polynomial matrix H of suitable dimensions, it is
easy to verify that

C = FR22 + HS (5.40)

serves as a stabilizing controller for (N(w,c)(P))c. Note that
[

R22

C

]
is Hur-

witz for all C given by the Equation (5.40).
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From Equation (5.36), (w,v) is detectable from c in P ∧v E implies that


R11(λ) R13(λ)

0 R23(λ)
0 V (λ)



 has full column rank for all λ ∈ C̄+. This implies that

R11 is square nonsingular and Hurwitz and
[

R23(λ)
V (λ)

]
has full column rank

for all λ ∈ C̄+. As V (λ) has full column rank for all λ ∈ C− (use the fact

that V is anti-Hurwitz) we conclude that
[

R23(λ)
V (λ)

]
has full column rank

for all λ ∈ C. Hence there exists a solution (F,M) of the equation

FR23 + MV = HSX. (5.41)

We now prove that any controller given by C = ker(C( d
dt )) where C =

FR22 +HS with F satisfying the Equation (5.41) serves as a regulator. The
following identities hold true.

CX = FR22X + HSX

= FR22X + FR23 + MV ( from Equation (5.41) )
= F (R22X + R23) + MV

= FY2V + MV ( from Equation (5.39))
= (FY2 + M)V.

Then, we define W := FY2 + M to rewrite the above equality as

CX = WV. (5.42)

We also have

P ∧c C = ker








R11( d

dt ) R12( d
dt ) R13( d

dt )
0 R22( d

dt ) R23( d
dt )

0 C( d
dt ) 0







 , (5.43)

N(w,c)(P ∧c C) = ker








R11( d

dt ) R12( d
dt )

0 R22( d
dt )

0 C( d
dt )







 . (5.44)

As C is chosen such that
[

R22

C

]
is Hurwitz,




R11 R12

0 R22

0 C



 is square,

nonsingular and Hurwitz. Hence, the interconnection P ∧c C is regular from
Equation (5.43), and N(w,c)(P ∧c C) is stable from Equation (5.44). It also
follows from Proposition 2.9.3 that v is free in P ∧c C. We have
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P ∧v E ∧c C =



(w,c,v)

∣∣∣∣∣∣

R11( d
dt )w + R12( d

dt )c + R13( d
dt )v = 0,

R22( d
dt )c + R23( d

dt )v = 0,
C( d

dt )c = 0, V ( d
dt )v = 0




 .

Substituting Equation (5.38) into the above equation yields

P ∧v E ∧c C =





(w,c,v)

∣∣∣∣∣∣∣∣∣∣

R11( d
dt )w + R12( d

dt )(c−X( d
dt )v)

+Y1V ( d
dt )v = 0,

R22( d
dt )(c−X( d

dt )v) + Y2V ( d
dt )v = 0,

C( d
dt )(c−X( d

dt )v) + CX( d
dt )v = 0,

V ( d
dt )v = 0






.

It further follows from Equation (5.42) that

P ∧v E ∧c C

=






(w,c,v)

∣∣∣∣∣∣∣∣∣∣

R11( d
dt )w + R12( d

dt )(c−X( d
dt )v)

+Y1V ( d
dt )v = 0,

R22( d
dt )(c−X( d

dt )v) + Y2V ( d
dt )v = 0,

C( d
dt )(c−X( d

dt )v) + WV ( d
dt )v = 0,

V ( d
dt )v = 0






.

=





(w,c,v)

∣∣∣∣∣∣∣∣

R11( d
dt )w + R12( d

dt )(c−X( d
dt )v) = 0,

R22( d
dt )(c−X( d

dt )v) = 0,
C( d

dt )(c−X( d
dt )v) = 0,

V ( d
dt )v = 0





.

From the above, we see that, for all (w,c,v) ∈ P∧v E ∧cC, (w,c−X( d
dt )v)

belongs to ker








R11( d

dt ) R12( d
dt )

0 R22( d
dt )

0 C( d
dt )







.

Since




R11 R12

0 R22

0 C



 is Hurwitz, limt→∞(w(t),c(t) − X( d
dt )v(t)) = 0

holds for all (w,c,v) ∈ P ∧v E ∧c C. This clearly implies that (P ∧v E ∧c C)w

is stable. This completes the proof of Theorem 5.3.8. !

Starting with polynomial kernel representations of P ∈ Lw+c+v and E ∈ Lv
aut,

in the following algorithm we outline a procedure to check the existence of a
regulator for P with respect to E . If there exists a regulator, this algorithm
also gives a procedure to construct one.
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Algorithm-1:

Let R1( d
dt )w+R2( d

dt )c+R3( d
dt )v = 0 and V ( d

dt )v = 0 be minimal kernel
representations of P and E , respectively, where

[
R1 R2

]
has full row rank

and V is square and nonsingular. Then,

1. If
[

R1(λ) R2(λ)
]

has full row rank for all λ ∈ C̄+ continue further,
else declare there exists no regulator for P with respect to E .

2. If R1(λ) has full column rank for all λ ∈ C̄+ continue further, else
declare there exists no regulator for P with respect to E .

3. If
[

R3(λ)
V (λ)

]
has full column rank for all λ ∈ C continue further, else

factorize
[

R3

V

]
=

[
R′3
V ′

]
D,

where D is square and nonsingular and
[

R′3(λ)
V ′(λ)

]
has full column rank

for all λ ∈ C. Assign R3 = R′3 and V = V ′.

4. If
[

R1(λ) R3(λ)
0 V (λ)

]
has full column rank for all λ ∈ C̄+ continue

further, else declare there exists no regulator for P with respect to E .

5. If V is anti-Hurwitz continue further, else factorize V = U1Σ−Σ+U2

where U1, U2 are unimodular matrices and Σ−, Σ+ are diagonal poly-
nomial matrices such that Σ− is Hurwitz and Σ+ is anti-Hurwitz. Assign
V = Σ+U2.

6. Solve

R2X + R3 = Y V (5.45)

for (X,Y ). If there exists no solution, declare there exists no regulator
for P with respect to E , else continue further.

7. Choose a unimodular matrix U such that

U
[

R1 R2 R3
]

=
[

R11 R12 R13

0 R22 R23

]
, (5.46)

where R11 has full row rank. Factor R22 as R22 = D1K where D1 is
Hurwitz and K(λ) has full row rank for all λ ∈ C. Choose S such that[

K
S

]
is unimodular.
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8. Solve

[
F M

] [
R23

V

]
= HSX (5.47)

for (F,M), where H is arbitrary Hurwitz polynomial matrix.

9. Construct controller C for P by

C := {c | C( d
dt )c = 0}.

10. Declare C as a regulator for P with respect to E .

In order to illustrate the theory developed so far in this chapter we now
present some worked-out examples.

Example 5.3.10. Let P with to-be-regulated variable w, interconnection
variable (c1,c2) and disturbance variable v be given by

P =










w
c1

c2

v





∣∣∣∣∣∣∣∣

[
1 d

dt + 3 1 d
dt + 1

d
dt + 2 0 0 d

dt + 4

]




w
c1

c2

v



 = 0





.

Let E with system variable v be given by

E = {v | d
dt v − v = 0}. (5.48)

We have

N(w,c1,c2)(P) =









w
c1

c2





∣∣∣∣∣∣

[
1 d

dt + 3 1
d
dt + 2 0 0

]


w
c1

c2



 = 0




 , and

P ∧v E =










w
c1

c2

v





∣∣∣∣∣∣∣∣




1 d

dt + 3 1 d
dt + 1

d
dt + 2 0 0 d

dt + 4
0 0 0 d

dt − 1









w
c1

c2

v



 = 0





.

1. It is easy to see that w is detectable from (c1,c2,v) in P and N(w,c1,c2)(P)
is stabilizable. Therefore from Theorem 5.2.3 there exists a free-
disturbance, stabilizing controller for P. It is easy to verify that C =
{(c1,c2) | c1 = 0} is a regular, free-disturbance, stabilizing controller for
P.
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2. It is also easy to see that E is an anti-stable system, v is observable
from (w,c1,c2) in P ∧v E and (w,v) is detectable from (c1,c2) in P ∧v E .

There exists a polynomial matrix
[

X1

X2

]
∈ R[ξ]2×1 such that

(0,X1( d
dt )v,X2( d

dt )v,v) ∈ P for all v ∈ E if and only if there exist poly-

nomial matrices
[

X1

X2

]
∈ R[ξ]2×1 and

[
Y1

Y2

]
R[ξ]2×1 satisfying the

equation
[

ξ + 3 1
0 0

] [
X1

X2

]
+

[
ξ + 1
ξ + 4

]
=

[
Y1

Y2

]
(ξ − 1). (5.49)

As ξ + 4 = Y2(ξ − 1) is not solvable for Y2 ∈ R[ξ], Equation (5.49) is
also not solvable. Therefore from Theorem 5.3.8 there does not exists a
regulator for P with respect to E .

Example 5.3.11. Let P with to-be-regulated variable w, interconnection
variable (c1,c2) and disturbance variable v and E with system variable v be
given by

P =










w[
c1

c2

]

v





∣∣∣∣∣∣∣∣

[
R11( d

dt ) R12( d
dt ) R13( d

dt )
0 R22( d

dt ) R23( d
dt )

]




w[
c1

c2

]

v



 = 0





,

E = {v | V ( d
dt )v = 0},

where R11 = ξ + 2, R12 =
[

0 1
]
, R13 = ξ + 1, R22 =

[
ξ − 2 −1

]
,

R23 = −ξ and V = ξ − 1.

1. It is easy to see that w is detectable from (c1,c2,v) in P and N(w,c1,c2)(P)
is stabilizable. Therefore from Theorem 5.2.3 there exists a free-
disturbance, stabilizing controller for P. It is easy to verify that C =
{(c1,c2) | c1 = 0} is a regular, free-disturbance, stabilizing controller for
P.

2. It is also easy to see that E is an anti-stable system, v is observ-
able from (w,c1,c2) in P ∧v E and (w,v) is detectable from (c1,c2) in

P ∧v E . There exists a polynomial matrix
[

X1

X2

]
∈ R[ξ]2×1 such that

(0,X1( d
dt )v,X2( d

dt )v,v) ∈ P for all v ∈ E if and only if there exist poly-

nomial matrices
[

X1

X2

]
∈ R[ξ]2×1 and

[
Y1

Y2

]
R[ξ]2×1 satisfying the

equation
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[
0 1

ξ − 2 −1

] [
X1

X2

]
+

[
ξ + 1
−ξ

]
=

[
Y1

Y2

]
(ξ − 1). (5.50)

It is easy to see that
[

X1

X2

]
=

[
1
−2

]
and

[
Y1

Y2

]
=

[
1
0

]
is a

solution to Equation (5.50). Therefore, from Theorem 5.3.8 there exists
a regulator for P with respect to E . We note here that the controller
C = {(c1,c2) | c1 = 0} is a free-disturbance, stabilizing controller for P
but not a regulator for P with respect to E .
Now we use Algorithm-1 to construct a free-disturbance, stabilizing
controller of P which also acts as a regulator for P with respect to E .
As the conditions in steps 1-6 of Algorithm-1 are already satisfied, we
here start from step 7. of Algorithm-1.

7. As R22(λ) has full row rank for all λ ∈ C, we have K = R22 and
D = 1. Then S defined by S :=

[
1 0

]
satisfies the condition

that
[

K
S

]
is unimodular.

8. For the choice H = 1, we have HSX =
[

1 0
] [

1
−2

]
= 1.

Then the solution to Equation (5.47) is given by
[

F M
]

=[
−1 −1

]
.

9. Then C = FR22 + HS = −1
[

ξ − 2 −1
]

+
[

1 0
]

=[
−ξ + 3 1

]
. The controller defined by

C = {(c1,c2) | − d
dt c1 + 3c1 − c2 = 0}

is a regulator for P with respect to E .

5.4 A modified asymptotic tracking and regulation problem

In the classical problem formulation of asymptotic tracking and regulation
(like in the state space case), apart from the to-be-regulated, interconnec-
tion, and disturbance variables, the plant description involves an extra set
of variables (like state variables in the state space description of the plant).
In that case, a regulator acting on the interconnection variable is required to
drive the to-be-regulated variable to zero in the presence of the disturbance
generated by the exosystem, and drive all of the remaining plant variables
(including the extra set of variables mentioned above) to zero if the distur-
bance signal is zero. In order to capture this set-up, we should modify our
definition of regulator given in Section 5.2.
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Let P ∈ Lw1+w2+c+v with system variables (w1,w2,c,v). The variables
w2, c, v represent the to-be-regulated variable, the interconnection variable,
and the external disturbances, respectively. w1 is an auxiliary variable of
the plant which only needs to be driven to zero in the absence of distur-
bances (e.g. the state variable in the state space set-up). Assume v is free
in P. Let E ∈ Lv be an autonomous system with system variable v. The
interconnection of the plant P with a controller C is given by

P ∧c C := {(w1,w2,c,v) | (w1,w2,c,v) ∈ P and c ∈ C}. (5.51)

The interconnection of the plant P, the exosystem E and a controller C is
given by

P ∧v E ∧c C := {(w1,w2,c,v) | (w1,w2,c,v) ∈ P, v ∈ E and c ∈ C}. (5.52)

Then, as before, we have the following definition of free-disturbance, stabi-
lizing controller.

Definition 5.4.1. Let P ∈ Lw1+w2+c+v. Assume v is free in P. Then C ∈ Lc

is called a free-disturbance, stabilizing controller for P if

1. v is free in P ∧c C,

2. limt→∞(w1(t),w2(t),c(t)) = (0,0,0) holds for all (w1,w2,c,0) ∈ P ∧c C,
i.e., N(w1,w2,c)(P ∧c C) is stable.

Now, we give the modified definition of a regulator.

Definition 5.4.2. Let P ∈ Lw1+w2+c+v and let E ∈ Lv
aut. A controller C ∈

Lc is called a regulator for P with respect to E if it satisfies the following
conditions:

1. C is a regular, free-disturbance, stabilizing controller for P, and

2. limt→∞w2(t) = 0 for all (w1,w2,c,v) ∈ P ∧v E ∧c C, i.e., (P ∧v E ∧c C)w2

is stable.

Problem 2 : Given a plant P ∈ Lw1+w2+c+v with system variable
(w1,w2,c,v), with v free in P, and an exosystem E ∈ Lv

aut with system
variable v, find a necessary and sufficient condition for the existence of a
regulator C ∈ Lc (in the sense of Definition 5.4.2) for P with respect to E .

As in Section 5.2, we make the following assumptions without loss of
generality.

Assumptions :
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B1. E ∈ Lv
aut is an anti-stable system, and

B2. v is observable from (w2,c) in (P∧vE)(w2,c,v), i.e. E∩Nv((P)(w2,c,v)) = 0.

Then we have the following Theorem.

Theorem 5.4.3. Let P ∈ Lw1+w2+c+v with system variable (w1,w2,c,v). As-
sume v is free in P. Let E ∈ Lv

aut with system variable v. Assume E is an
anti-stable and v is observable from (w2,c) in (P ∧v E)(w2,c,v). Then there
exists a regulator for P with respect to E (in the sense of Definition 5.4.2)
if and only if the following conditions hold.

1. (w1,w2,v) is detectable from c in P ∧v E,

2. N(w1,w2,c)(P) is stabilizable, and

3. there exist polynomial matrices L ∈ R[ξ]w1×v and M ∈ R[ξ]c×v such that
(L( d

dt )v,0,M( d
dt )v,v) ∈ P holds for all v ∈ E.

Proof: Let P and E be represented by the minimal kernel representations

P = {(w1,w2,c,v) | R1( d
dt )w1 +R2( d

dt )w2 +R3( d
dt )c+R4( d

dt )v = 0}, (5.53)

and

E = {v | V ( d
dt )v = 0}, (5.54)

respectively. There exists a unimodular matrix U such that

U
[

R1 R2 R3 R4
]

=
[

R11 R12 R13 R14

0 R22 R23 R24

]
,

where R11 has full row rank. Then we have

P = ker
([

R11( d
dt ) R12( d

dt ) R13( d
dt ) R14( d

dt )
0 R22( d

dt ) R23( d
dt ) R24( d

dt )

])
, (5.55)

N(w1,w2,c)(P) = ker
([

R11( d
dt ) R12( d

dt ) R13( d
dt )

0 R22( d
dt ) R23( d

dt )

])
, (5.56)

(P)(w2,c,v) = ker
([

R22( d
dt ) R23( d

dt ) R24( d
dt )

])
, (5.57)

N(w2,c)((P)(w2,c,v)) = ker
([

R22( d
dt ) R23( d

dt )
])

, (5.58)
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P ∧v E = ker








R11( d

dt ) R12( d
dt ) R13( d

dt ) R14( d
dt )

0 R22( d
dt ) R23( d

dt ) R24( d
dt )

0 0 0 V ( d
dt )







 , (5.59)

and

(P)(w2,c,v) ∧v E = ker
([

R22( d
dt ) R23( d

dt ) R24( d
dt )

0 0 V ( d
dt )

])
. (5.60)

For any C ∈ Lc represented by the minimal kernel representation C =
ker(C), we have

P ∧c C = ker








R11( d

dt ) R12( d
dt ) R13( d

dt ) R14( d
dt )

0 R22( d
dt ) R23( d

dt ) R24( d
dt )

0 0 C( d
dt ) 0







 , (5.61)

(P)(w2,c,v) ∧c C = ker
([

R22( d
dt ) R23( d

dt ) R24( d
dt )

0 C( d
dt ) 0

])
, (5.62)

and

N(w2,c)((P)(w2,c,v) ∧c C) = ker
([

R22( d
dt ) R23( d

dt )
0 C( d

dt )

])
. (5.63)

(if)

1. From Equation (5.59), the fact that (w1,w2,v) is detectable from c in

P ∧v E implies that




R11(λ) R12(λ) R14(λ)

0 R22(λ) R24(λ)
0 0 V (λ)



 has full column rank

for all λ ∈ C̄+. Therefore, R11 is square, non-singular and Hurwitz, and[
R22(λ) R24(λ)

0 V (λ)

]
has full column rank for all λ ∈ C̄+. It is evident

from Equation (5.60) that (w2,v) is detectable from c in (P)(w2,c,v)∧v E .

2. From Equation (5.56),
[

R11(λ) R12(λ) R13(λ)
0 R22(λ) R23(λ)

]
has full row

rank for all λ ∈ C̄+, if N(w1,w2,c)(P) is stabilizable. Therefore[
R22(λ) R23(λ)

]
has full row rank for all λ ∈ C̄+. It thus follows

from Equation (5.58) that N(w2,c)((P)(w2,c,v)) is stabilizable.

3. It is seen from Equation (5.55) that, if there exist polynomial matrices
L ∈ R[ξ]w1×v and M ∈ R[ξ]w1×v satisfying (L( d

dt )v,0,M( d
dt )v,v) ∈ P for

all v ∈ E , then there exists a polynomial matrix
[

N1

N2

]
satisfying
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[
R11

0

]
L +

[
R13

R23

]
M +

[
R14

R24

]
=

[
N1

N2

]
V. (5.64)

This implies

R23M + R24 = N2V. (5.65)

Since E = ker(V ( d
dt )), we conclude from Equations (5.57) and

(5.65) that there exists a polynomial matrix M ∈ R[ξ]c×v satisfying
(0,M( d

dt )v,v) ∈ (P)(w2,c,v) for all v ∈ E .

By Assumption B2 we have E ∩ Nv((P)(w2,c,v)) = 0, so from 1), 2), 3) and
Theorem 5.3.8, there exists a regulator C ∈ Lc (in the sense of Definition
5.2.4) for (P)(w2,c,v) with respect to E . Let C = ker(C( d

dt )) be a minimal
kernel representation of C. We now prove that the same C serves as a regulator
for P with respect to E (in the sense of Definition 5.4.2).

As C is a regulator for (P)(w2,c,v) with respect to E , we obtain the fol-
lowing.

a) From Equation (5.62), if the interconnection (P)(w2,c,v) ∧c C is regular

and v is free in (P)(w2,c,v) ∧c C, then
[

R22 R23

0 C

]
has full row rank,

which implies that




R11 R12 R13

0 R22 R23

0 0 C



 has full row rank. Hence, it is

evident from Equation (5.61) that the interconnection P ∧c C is regular
and v is free in P ∧c C.

b) From Equation (5.62), if N(w2,c)((P)(w2,c,v) ∧c C) is stable, then[
R22(λ) R23(λ)

0 C(λ)

]
has full column rank for all λ ∈ C̄+. Therefore




R11(λ) R12(λ) R13(λ)

0 R22(λ) R23(λ)
0 0 C(λ)



 has full column rank for all λ ∈ C̄+ (use

the fact that R11 is Hurwitz). It thus follows from Equation (5.61) that
N(w1,w2,c)(P ∧c C) is stable.

c) If ((P)(w2,c,v)∧v E ∧cC)w2 is stable, then (P∧v E ∧cC)w2 = ((P)(w2,c,v)∧v

E ∧c C)w2 is stable.

From a), b) and c), we conclude that C is a regulator for P with respect to
E (in the sense of Definition 5.4.2).
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(only if) Let C = ker(C( d
dt )) be a minimal kernel representation of a

regulator for P with respect to E (in the sense of Definition 5.4.2). From
Equation (5.61),


R11 R12 R13

0 R22 R23

0 0 C



 is square, nonsingular and Hurwitz, if the inter-

connection P ∧c C is regular, v is free in P ∧c C, and N(w1,w2,c)(P ∧c C) stable.

It follows that R11 and
[

R22 R23

0 C

]
are square, nonsingular and Hurwitz.

Therefore
[

R11(λ) R12(λ) R13(λ)
0 R22(λ) R23(λ)

]
has full row rank for all λ ∈ C̄+. As

a result, N(w1,w2,c)(P) is stabilizable from Equation (5.56) (the condition 2).

Since
[

R22 R23

0 C

]
is Hurwitz, the interconnection (P)(w2,c,v) ∧c C is

regular from Equation (5.62), and N(w2,c)((P)(w2,c,v) ∧c C) is stable from
Equation (5.63). We have (P ∧v E ∧c C)w2 = ((P)(w2,c,v) ∧v E ∧c C)w2 stable.
Therefore from Definition 5.2.4, C acts as a regulator for (P)(w2,c,v) with
respect E (as defined in Definition 5.2.4).

As E ∩ Nv((P)(w2,c,v)) = 0 and from Theorem 5.3.8, we conclude
that (w2,v) is detectable from c in (P)(w2,c,v) ∧v E . From Equation (5.60),[

R22(λ) R24(λ)
0 V (λ)

]
has full column rank for all λ ∈ C̄+, which in turn im-

plies that




R11(λ) R12(λ) R14(λ)

0 R22(λ) R24(λ)
0 0 V (λ)



 has full column rank for all λ ∈ C̄+

(use the fact that R11 is Hurwitz). Therefore, we conclude from Equation
(5.59) that (w1,w2,v) is detectable from c in P ∧v E (the condition 1).

Finally, we prove the necessity of the condition 3). Let U2 be a unimod-
ular matrix such that

U2




R11 R12 R13 R14

0 R22 R23 R24

0 0 C 0



 =
[

0 R̃12 0 R̃14

R̃21 R̃22 R̃23 R̃24

]
,

where R̃12 and
[

R̃21 R̃23

]
are square non-singular and Hurwitz. Then,

from Equation (5.61), we have

P ∧c C = ker
([

0 R̃12( d
dt ) 0 R̃14( d

dt )
R̃21( d

dt ) R̃22( d
dt ) R̃23( d

dt ) R̃24( d
dt )

])
,

(P ∧c C)(w2,v) = ker
([

R̃12( d
dt ) R̃14( d

dt )
])

, and (5.66)

Nv((P ∧c C)(w2,v)) = ker(R̃14( d
dt )). (5.67)
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Recall that, as shown above, C acts as a regulator for (P)(w2,c,v) with respect
to E . Therefore from Theorem 5.3.2, E ⊆ Nv((P ∧c C)(w2,v)) holds, if (P ∧v

E∧cC)w2 = ((P∧cC)(w2,v)∧vE)w2 is stable. From Equation (5.67) and (5.54),
there exists a polynomial matrix Ñ such that

R̃14 = ÑV. (5.68)

From Lemma 5.3.9, since
[

R̃21 R̃23

]
is Hurwitz and V is anti-Hurwitz,

there exists a solution
([

L
M

]
, P̃

)
of the equation

[
R̃21 R̃23

] [
L
M

]
+ R̃24 = P̃ V. (5.69)

By putting Equations (5.68) and (5.69) together, we obtain

[
0 0

R̃21 R̃23

] [
L
M

]
+

[
R̃14

R̃24

]
=

[
Ñ
P̃

]
V. (5.70)

Multiplying both sides of Equation (5.70) with U−1
2 yields




R11 R13

0 R22

0 C




[

L
M

]
+




R14

R24

0



 =




N1

N2

N3



V, (5.71)

where




N1

N2

N3



 := U−1
2

[
Ñ
P̃

]
. Therefore there exists a solution

(
L,M,N =

[
N1

N2

])
to the equation

[
R11

0

]
L +

[
R13

R23

]
M +

[
R14

R24

]
= NV. (5.72)

Since E = ker(V ( d
dt )), from Equation (5.55), we conclude that there exist

polynomial matrices L ∈ R[ξ]w1×v and M ∈ R[ξ]c×v such that for all v ∈ E
we have (L( d

dt )v,0,M( d
dt )v,v) ∈ P. This completes the proof of the theorem.

!

Remark 5.4.4. We note that the conditions given in Theorems 5.3.8 and
5.4.3 are representation free, and express only properties of the plant behav-
ior and the behavior of the exosystem, and not of any of their representations.
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5.5 The state space case

So far, we have derived necessary and sufficient conditions for the existence
of a regulator for a given plant with respect to a given exosystem. The condi-
tions obtained are representation free, and depend only on the plant behavior
and exosystem behavior. In this section, we look at these conditions in terms
of representations of the plant and the exosystem. For this purpose, we con-
sider the special case where the plant and the exosystem are represented by
first order linear state space equations.

The state space descriptions of the plant P ∈ Lx+w+(u+y)+v and the
exosystem E ∈ Lv are described by

P =




(x,w,(u,y),v) |
ẋ = A3v + A2x + Bu
y = C1v + C2x
w = D1v + D2x + Eu




 (5.73)

and

E = {v | v̇ = A1v}, (5.74)

respectively. Here, the variables x, w, v in the plant represent the state
variable, the to-be-regulated variable, and the external disturbances and
the reference signals, respectively, and the variable (u,y) represents the in-
terconnection variable available for interconnection with the controller. In
particular, u is the control input, and y is the measurement output. Here,
the assumptions B1 and B2 in Section 5.4 are translated into σ(A1) ⊂ C̄+

and the observability of v from (w,u,y) in (P ∧v E)(w,u,y,v), respectively.
Rewriting the behaviors in Equations (5.73) and (5.74) in kernel repre-

sentations, we have

P = ker








d
dt Ix −A2 0 −B 0 −A3

−C2 0 0 I −C1

−D2 I −E 0 −D1







 , (5.75)

and

E = ker( d
dt Iv −A1). (5.76)

It is easy to see that the above kernel representations are minimal. Then we
have

P ∧v E = ker









d
dt Ix −A2 0 −B 0 −A3

−C2 0 0 I −C1

−D2 I −E 0 −D1

0 0 0 0 d
dt Iv −A1







 (5.77)

The regulation problem here is to design a controller C ∈ Lu+y satisfying the
following conditions.



5.5 The state space case 97

1. the interconnection P ∧(u,y) C is regular,

2. v is free in P ∧(u,y) C,

3. limt→∞(x(t),w(t),u(t),y(t)) = (0,0,0,0) for all (x,w,u,y,0) ∈ P ∧(u,y) C,
i.e. N(x,w,u,y)(P ∧(u,y) C) is stable.

4. limt→∞w(t) = 0 for all (x,w,u,y,v) ∈ P∧vE∧(u,y)C, i.e., (P∧vE∧(u,y)C)w

is stable.

Definition 5.5.1. Let A ∈ Rn×n, B ∈ Rn×•, C ∈ R•×n. We call the pair
(A,B) stabilizable if the behavior defined by ker

([
d
dt I −A −B

])
is sta-

bilizable and we call the pair (C,A) detectable if the behavior defined by

ker
([

d
dt I −A

C

])
is stable.

We have the following Theorem.

Theorem 5.5.2. Let P and E be given by Equations (5.73) and (5.74). As-
sume σ(A1) ⊂ C̄+ and v is observable from (w,u,y) in (P ∧v E)(w,(u,y),v).
Then there exists a regulator for P with respect to E if the following condi-
tions hold true.

C1.
([

C2 C1
]
,

[
A2 A3

0 A1

])
is detectable,

C2. (A2,B) is stabilizable,

C3. There exist S ∈ Rx×v and T ∈ Ru×v such that

SA1 −A2S −BT = A3 (5.78)
D1 + D2S + ET = 0. (5.79)

Conditions C1 and C2 are also necessary for the existence of a regulator for
P with respect to E.

Proof: From Theorem 5.4.3, there exists a regulator C ∈ Lu+y for P with
respect to E if and only if the conditions given in Theorem 5.4.3 are satisfied
with (w1,w2,c,v) = (x,w,(u,y),v).
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C1. From Equation (5.77), (x,w,v) detectable from c in P ∧v E ⇔



λIx −A2 0 −A3

−C2 0 −C1

−D2 I −D1

0 0 λIv −A1



 has full column rank for all λ ∈ C̄+

⇔




λIx −A2 −A3

0 λIv −A1

−C2 −C1



 has full column rank for all λ ∈ C̄+ ⇔

the pair
([

C2 C1
]
,

[
A2 A3

0 A1

])
is detectable. Thus, C1 is equiva-

lent to the condition 1) in Theorem 5.4.3.

C2. From Equation (5.75), N(x,w,u,y)(P) stabilizable ⇔


λIx −A2 0 −B 0
−C2 0 0 I
−D2 I −E 0



 has full row rank for all λ ∈ C̄+ ⇔
[

λIx −A2 −B
]

has full row rank for all λ ∈ C̄+ ⇔ the pair (A2,B)
stabilizable. Thus, C2 is equivalent to the condition 2) in Theorem 5.4.3.

C3. We see from Equation (5.75) that, if there exist polynomial ma-

trices L ∈ R[ξ]x×v and M =
[

M1

M2

]
∈ R[ξ](u+y)×v satisfying

(L( d
dt )v,0,M1( d

dt )v,M2( d
dt )v,v) ∈ P for all v ∈ E , then there exists a

polynomial matrix




N1

N2

N3



 such that

(ξIx −A2)L−BM1 −A3 −N1(ξIv −A1) = 0, (5.80)
−C2L + M2 − C1 −N2(ξIv −A1) = 0, (5.81)

−D2L− EM1 −D1 −N3(ξIv −A1) = 0. (5.82)

We have the following Lemma:

Lemma 5.5.3. There exist polynomial matrices L, M1, M2, N1, N2 and N3

satisfying Equations (5.80), (5.81) and (5.82) if there exist S ∈ Rx×v and
T ∈ Ru×v satisfying Equations (5.78) and (5.79).

Proof: Assume that there exist S ∈ Rx×v and T ∈ Ru×v such that Equations
(5.78) and (5.79) hold. Choose L = S, N1 = S, N2 an arbitrary polynomial
matrix (with appropriate dimensions), N3 = 0, M1 = T and M2 = (ξIv −
A1)N2 + C1 + C2S. By direct calculation, it is easy to verify that these
L,M1,M2,N1,N2 and N3 satisfy the Equations (5.80), (5.81) and (5.82). !
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Proof of Theorem 5.5.2 (continued):
From the above lemma we deduce that condition C3 implies condition 3)

in Theorem 5.4.3, namely, there exist polynomial matrices L ∈ R[ξ]x×v and
M ∈ R[ξ](u+y)×v satisfying (L( d

dt )v,0,M( d
dt )v,v) ∈ P for all v ∈ E if there

exist S ∈ Rx×v and T ∈ Ru×v satisfying Equations (5.78) and (5.79).
This completes the proof of Theorem 5.5.2. !

Remark 5.5.4. The conditions in Theorem 5.5.2 coincide with the classi-
cal results on state space systems. For example, see Francis [12] and also
Theorem 9.2 of Trentelman, Stoorvogel & Hautus [40].
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6 Rational representations

Up to now, in this thesis we have been dealing with systems whose behavior
is specified as the set of solutions of a system of linear differential equations.
However, system equations involving integral equations (as convolutions) and
transfer functions are also common. In these situations, representations of
the system’s behavior involve rational matrices, and until recently it was not
always clear how the behavior was actually defined. Recently, in Willems &
Yamamoto [51], representations of linear differential systems using rational
matrices instead of polynomial matrices were introduced. In particular, in
Willems & Yamamoto [51], a meaning was given to the equation R( d

dt )w = 0
where R(ξ) is a real rational matrix. In this way, a class of representations of
linear differential systems was obtained that is richer than that of the poly-
nomial representations. We will exploit this richness in obtaining rational
representations with properties that can not be obtained using polynomial
representations. For example, in chapter 8 we will use rational representa-
tions to define neighborhoods of a given system behavior in order to be able
to treat the robust stabilization problem.

The outline of this chapter is as follows: In section 6.1 we review the
meaning given in Willems & Yamamoto [51] to the equation R( d

dt )w = 0,
where R(ξ) is a given real rational matrix. We then characterize some basic
properties of linear differential systems in terms of their rational representa-
tions in section 6.2. In section 6.3 we review the concepts of polynomial and
rational annihilators of a given behavior. Using these concepts in section 6.3
we show that if a system is controllable then its behavior can be described by
B = ker(R( d

dt )) where R is a proper, stable, left prime, co-inner real rational
matrix. Finally, in section 6.4 we obtain some results on the characterization
of interconnection of systems in terms of their rational representations which
we shall use in the subsequent chapters.

6.1 Rational representations

In Willems & Yamamoto [51], a meaning was given to the equation

R( d
dt )w = 0, (6.1)
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where R(ξ) is a given real rational matrix. In order to do this, we need the
concept of left coprime factorization.

Definition 6.1.1. Let R be a real rational matrix. The pair of real poly-
nomial matrices (P,Q) is called a left coprime factorization of R over R[ξ]
if

1. det(P ) .= 0,

2. R = P−1Q, and

3. the matrix
[

P (λ) Q(λ)
]

has full row rank for all λ ∈ C.

A meaning to the equation

R( d
dt )w = 0, (6.2)

with R a real rational matrix is then given as follows: Let (P,Q) be a left
coprime factorization of R over R[ξ]. Let w ∈ C∞(R,Rw). Then we define:

[w is a solution of Equation (6.2)] :⇔ [Q( d
dt )w = 0]. (6.3)

This space of solutions is independent of the particular left coprime factor-
ization. Indeed, if R = P−1

1 Q1 is a second left coprime factorization then by
[21], Theorem 6.5-4, there exists a unimodular U such that P1 = UP and
Q1 = UQ. Hence ker(Q1( d

dt )) = ker(Q( d
dt )). Thus, Equation (6.2) represents

the uniquely determined linear differential system Σ = (R,Rw, ker(Q( d
dt ))) ∈

Lw.
As a consequence of this definition, for a given R ∈ R(ξ)w1×w2 we can

also give a meaning to the equation

w2 = R( d
dt )w1. (6.4)

Indeed, we can view Equation (6.4) as a special case of Equation (6.2), by
writing it as

[
I −R( d

dt )
] [

w2

w1

]
= 0. (6.5)

A left coprime factorization R = P−1Q of R over R[ξ] yields a left coprime
factorization of

[
I −R

]
over R[ξ]:

[
I −R

]
= P−1

[
P −Q

]
.

Therefore
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[w2 = R( d
dt )w1]⇔ [P ( d

dt )w2 = Q( d
dt )w1].

The motivation for the definition given in Equation (6.3) for rational rep-
resentations is explained extensively in Willems & Yamamoto [51]. Since,
obviously, every polynomial matrix is a rational matrix, the class of rational
representations of L• is richer than that of the polynomial representations.
This richness can be used to obtain rational representations with properties
that cannot be obtained using polynomial representations.

If a behavior B is represented by R( d
dt )w = 0 (or: B = ker(R( d

dt ))), with
R(ξ) a real rational matrix, then we call this a rational kernel representation
of B. If R has p rows, then the rational kernel representation is called mini-
mal if every rational kernel representation of B has at least p rows. It can be
shown that a given rational kernel representation B = ker(R( d

dt )) is minimal
if and only if the rational matrix R has full row rank. As in the polynomial
case, every B ∈ Lw admits a minimal rational kernel representation. The
number of rows in any minimal rational kernel representation of B is equal
to the number of rows in any minimal polynomial kernel representation of
B, and therefore equal to p(B), the output cardinality of B. In general, if
B = ker(R( d

dt )) is a rational kernel representation, then p(B) = rank(R).
This follows immediately from the corresponding result for polynomial kernel
representations (see chapter 2).

6.2 Characterization of properties of behaviors in rational
representations

In this section we characterize some basic properties of linear differential
systems in terms of their rational representations.

Our first result gives a test in terms of the rational matrices appearing
in the rational representation for certain components of the system variable
to be free. The analogous result for polynomial kernel representations was
given in chapter 2 (Proposition 2.9.3).

Proposition 6.2.1. Let B ∈ Lw1+w2 with system variable (w1,w2). Let
a minimal rational kernel representation of B be given by R1( d

dt )w1 +
R2( d

dt )w2 = 0. Then w2 is free in B if and only if the rational matrix R1

has full row rank.

Proof: Let
[

R1 R2
]

= P−1
[

Q1 Q2
]

be a left coprime factorization
over R[ξ]. Then Q( d

dt )w1 + Q( d
dt )w2 = 0 is a minimal polynomial kernel

representation of B. Hence w2 is free if and only if Q1 has full row rank,
equivalently, R1 = P−1Q1 has full row rank. !
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Many properties of linear differential systems can be formulated in terms
of the poles and zeros of the rational matrices appearing in their rational
representations. For the notions of poles and zeros of rational matrices see
chapter 1, section 1.2. The following can be found in Willems & Yamamoto
[51]:

Proposition 6.2.2. Let R be a real rational matrix. Then we have:

1. The rational kernel representation R( d
dt )w = 0 represents a controllable

system if and only if R has no zeros.

2. The rational kernel representation R( d
dt )w = 0 defines a stabilizable

system if and only if R has no zeros in the closed right half plane C̄+.

In chapter 2 we have seen that if B = ker(R( d
dt )) is a minimal polynomial

kernel representation, then B is stable if and only if R is Hurwitz. Likewise,
for rational representations we have:

Lemma 6.2.3. Let B ∈ Lw. Then B is stable if and only if B admits a
kernel representation B = ker(R( d

dt )) such that R is square, nonsingular,
and has no zeros in C̄+.

Proof: Let R = P−1Q be a left coprime factorization over R[ξ]. Note that
the zeros of R coincide with the roots of det(Q). Since B = ker(Q( d

dt )) is
a minimal polynomial kernel representation, B is stable if and only if Q is
square and nonsingular, and det(Q) has no roots in C̄+, equivalently, R is
square, nonsingular, and has no zeros in C̄+. !

Next, we characterize the properties of observability and detectability
(for the definitions see chapter 2, section 2.4), see Willems & Yamamoto [51].

Proposition 6.2.4. Let B ∈ Lw1+w2 be given by the minimal rational rep-
resentation R1( d

dt )w1 + R2( d
dt )w2 = 0. Then w2 is observable from w1 in B

if and only if R2 has full column rank and has no zeros. Moreover, w2 is
detectable from w1 in B if and only if R2 has full column rank and has no
zeros in C̄+.

6.3 Stable and co-inner rational representations

Representations using rational matrices over the ring of proper, stable ra-
tional functions will play a very important role in our forthcoming chapter
8. We state this representability in the next proposition (see Willems &
Yamamoto [51]).
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Proposition 6.3.1. Let B ∈ Lw. There exists a proper, stable real rational
matrix R such that B = ker(R( d

dt )).

Recall Definition 1.2.2 of left primeness over the ring of all proper stable
real rational functions R(ξ)S . It was shown in Theorem 5 in Willems &
Yamamoto [51], that B ∈ Lw is stabilizable if and only if there exists a
proper, stable real rational matrix R which is left prime over R(ξ)S such
that B = ker(R( d

dt )). We will show now that if B is controllable, then R
can in addition be taken co-inner (see Definition 1.2.2):

Lemma 6.3.2. Let B ∈ Lw
cont. Then there exists a proper, stable, co-

inner real rational matrix R which is left prime over R(ξ)S such that
B = ker(R( d

dt )).

Proof: To prove this lemma, we need to prove some preliminary results on
rational representations of behaviors. First, from section 7 in Willems & Ya-
mamoto [51], we recall the concepts of polynomial and rational annihilators
of a given behavior. Here, we introduce proper stable rational annihilators:

Definition 6.3.3. Let B ∈ Lw.

1. n ∈ R[ξ]1×w is called a polynomial annihilator of B if n( d
dt )w = 0 for all

w ∈ B.

2. n ∈ R(ξ)1×wS is called a proper stable rational annihilator of B if
n( d

dt )w = 0 for all w ∈ B.

We denote the sets of polynomial and proper stable rational annihilators of
B ∈ Lw by B⊥R[ξ] and B⊥R(ξ)S respectively. It is a well-known result that for
B ∈ Lw, B⊥R[ξ] is a finitely generated R[ξ]-submodule of R[ξ]1×w. Moreover,
if B = ker(R( d

dt )) is a minimal polynomial kernel representation, then this
submodule is generated by the rows of R. In the context of proper, stable
real rational kernel representations with matrix R left prime over R(ξ)S we
need to impose controllability:

Lemma 6.3.4. Let B ∈ Lw
cont be represented by R( d

dt )w = 0, where R is
proper, stable real rational and left prime over R(ξ)S. Then B⊥R(ξ)S is an
R(ξ)S-submodule of R(ξ)1×wS , and the rows of R form a basis of B⊥R(ξ)S .

Proof: If B is controllable, then B⊥R(ξ)S forms a R(ξ)S-submodule of
R1×w

S (ξ). This can be proven along the same lines as the proof of Theorem
11 in Willems & Yamamoto [51].

Let R = P−1Q be a left coprime factorization over R[ξ] of R. Then

B = ker(Q( d
dt )) (6.6)
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is a minimal polynomial kernel representation. Let n ∈ B⊥R(ξ)S . Then by
Definition 6.3.3, n( d

dt )w = 0 for all w ∈ B. Let

n = u−1v (6.7)

be a left coprime factorization of n over R[ξ]. Note that u is Hurwitz. Then
by definition we have n( d

dt )w = 0 for all w ∈ B if and only if v( d
dt )w = 0 for

all w ∈ B. Thus, by Definition 6.3.3, v ∈ B⊥R[ξ] . Consequently, there exists
an l ∈ R[ξ]1×p such that

v = lQ. (6.8)

Therefore we have

n = u−1v

= u−1lQ

= (u−1lP )(P−1Q)
= (u−1lP )R.

Define m := u−1lP . Then we have

n = mR. (6.9)

As R is left prime over R(ξ)S , there exists a proper stable real rational matrix
M such that

RM = I. (6.10)

Multiplying Equation (6.9) on both sides with M we obtain

nM = mRM

= m.

As n and M are proper and stable, we conclude that m is proper and
stable. Hence the rows of R span the R(ξ)S-module B⊥R(ξ)S . Finally, as
B = ker(R( d

dt )) is a minimal proper stable rational kernel representation,
the rows of R are linearly independent over R(ξ)S . We conclude then that
these rows form a basis of B⊥R(ξ)S . !

The following lemma addresses the question under what conditions two
proper, stable, left prime rational kernel representations represent the same
controllable behavior:
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Theorem 6.3.5. Let B1, B2 ∈ Lw
cont. Let B1 = ker(R1( d

dt )) and B2 =
ker(R2( d

dt )) be minimal rational kernel representations, where R1 and R2

are proper, stable real rational and left prime over R(ξ)S. Then B1 = B2

if and only if there exists a square, nonsingular, proper, stable real rational
matrix W, with W−1 proper and stable, such that R1 = WR2.

Proof: As B1 = B2 we have B
⊥R(ξ)S
1 = B

⊥R(ξ)S
2 =: M. From Lemma 6.3.4,

the rows of R1 and R2 both form a basis for the module M. Then from
the theory of modules we conclude that there exists a square, nonsingular,
proper stable real rational matrix W with W−1 proper and stable such that
R1 = WR2.

Conversely, let R1 = P−1
1 Q1, R2 = P−1

2 Q2 be left coprime factorizations
over R[ξ] of R1 and R2. Let W = LM−1 be a right coprime factorization
over R[ξ] of W . Then both L and M are nonsingular. By definition we have
B1 = ker(Q1( d

dt )) and B2 = ker(Q2( d
dt )). Then,

R1 = WR2 ⇐⇒ P−1
1 Q1 = LM−1P−1

2 Q2

⇐⇒ L−1P−1
1 Q1 = M−1P−1

2 Q2

⇐⇒ (P1L)−1Q1 = (P2M)−1Q2.

Since B1 and B2 are controllable behaviors both Q1(λ) and Q2(λ)
have full row rank for all λ ∈ C. This implies that

[
P1L(λ) Q1(λ)

]
and[

P2M(λ) Q2(λ)
]

have full row rank for all λ ∈ C. Define

R̃ := (P1L)−1Q1 = (P2M)−1Q2. (6.11)

Equation 6.11 displays two left coprime factorizations of R̃, so

B1 = ker(Q1( d
dt ))

= ker(R̃( d
dt ))

= ker(Q2( d
dt ))

= B2.

!

Remark 6.3.6. An extensive treatment of equivalence of representations for
general, not necessarily controllable, behaviors was given in Gottimukkala,
Fiaz & Trentelman [[14],[15]].
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We are now in a position to prove Lemma 6.3.2:

Proof of Lemma 6.3.2: Since B is controllable, by Theorem 5 in Willems &
Yamamoto [51], it admits a representation

B = ker(R( d
dt )) (6.12)

such that R is proper, stable, real rational and left prime over R(ξ)S . Clearly,
R then has no zeros. Define

Z(ξ) := R(ξ)R%(−ξ). (6.13)

Obviously Z(ξ) = Z%(−ξ) and Z has no poles and zeros on the imaginary
axis, so

Z(iω) > 0 for all ω ∈ R. (6.14)

Thus, from Youla [52], there exists a square, nonsingular, proper stable real
rational matrix W with W−1 proper and stable such that

R(ξ)R%(−ξ) = W (ξ)W%(−ξ). (6.15)

Define

R′ := W−1R. (6.16)

Clearly R′ is co-inner. As R is left prime over R(ξ)S , there exists a proper,
stable real rational matrix M such that RM = I. We have

R′MW = W−1RMW

= I.

Hence from Definition 1.2.2 we conclude that R′ is left prime over R(ξ)S .
Finally, by Theorem 6.3.5, B = ker(R( d

dt )) = ker(R′( d
dt )). !

6.4 Characterization of interconnections

In this section we give a characterization of interconnections of systems in
terms of their rational representations.
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The problem that we consider is the following. Suppose P, C ∈ Lw, and
suppose P = ker(R( d

dt )) and C = ker(C( d
dt )) are rational kernel representa-

tions. Find now a rational kernel representation of the full interconnection
P ∩ C. For given polynomial kernel representations P = ker(R( d

dt )) and
C = ker(C( d

dt )), in chapter 3 we have seen that

P ∩ C = ker
([

R( d
dt )

C( d
dt )

])
. (6.17)

The following example shows that it is not always true in the case of rational
representations.

Example 6.4.1. Let P, C ∈ L2, with system variable (w1,w2). Let P =
ker(R( d

dt )) and C = ker(C( d
dt )), where

R =
[

ξ+1
ξ 1

]

and

C =
[

ξ+2
ξ 1

]
.

Then R = ξ−1
[

ξ + 1 ξ
]

and C = ξ−1
[

ξ + 2 ξ
]

are left coprime fac-
torizations over R[ξ]. Hence, from Definition 6.1.1, we have

P = ker
([

d
dt + 1 d

dt

])

C = ker
([

d
dt + 2 d

dt

])
and

P ∩ C = ker
([

d
dt + 1 d

dt
d
dt + 2 d

dt

])

= {(w1,w2) | w1 = 0 and d
dt w2 = 0}.

On the other hand, we have

[
R
C

]
=

[
ξ+1

ξ 1
ξ+2

ξ 1

]
.

Clearly,
[

R
C

]
=

[
−ξ ξ

ξ + 2 −(ξ + 1)

]−1 [
1 0
0 1

]
(6.18)

is a left coprime factorization over R[ξ]. Consequently,
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ker
([

R( d
dt )

C( d
dt )

])
= ker

([
1 0
0 1

])

= {(w1,w2) | w1 = 0 and w2 = 0}.

From the above it is clear that ker
([

R( d
dt )

C( d
dt )

])
⊆ P ∩ C but P ∩ C !

ker
([

R( d
dt )

C( d
dt )

])
.

In fact, we have the following lemma.

Lemma 6.4.2. Let P, C ∈ Lw. Let R( d
dt )w = 0 and C( d

dt )w = 0 be
minimal rational kernel representations of P and C, respectively. Then

ker
([

R( d
dt )

C( d
dt )

])
⊆ P ∩ C.

Proof: Let R = P−1Q and C = L−1M be left coprime factorizations over
R[ξ]. By Definition 6.1.1, we then have

C = ker(M( d
dt )),

P = ker(Q( d
dt )).

We also have
[

R
C

]
=

[
P 0
0 L

]−1 [
Q
M

]
. (6.19)

Let
[

R
C

]
= A−1B (6.20)

be a left coprime factorization over R[ξ]. Then by Definition 6.1.1 we have

ker
([

R( d
dt )

C( d
dt )

])
= ker(B( d

dt )). (6.21)

From Equations (6.19), (6.20) and Theorem 9.5-5 of Kailath [21], there exists
a square nonsingular polynomial matrix H such that

[
Q
M

]
= HB. (6.22)
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From Equation (6.22) and Proposition 2.2.5, it is clear that ker(B( d
dt )) ⊆

ker
([

Q( d
dt )

M( d
dt )

])
which implies that ker

([
R( d

dt )
C( d

dt )

])
⊆ P ∩ C. !

The following lemma shows that if at least one of the representations of P
or C is taken to be polynomial then the converse inclusion in Lemma 6.4.2
also holds.

Lemma 6.4.3. Let P, C ∈ Lw. Let R( d
dt )w = 0 and C( d

dt )w = 0 be a
minimal rational kernel representation of P and a minimal polynomial kernel

representation of C, respectively. Then P ∩ C = ker
([

R( d
dt )

C( d
dt )

])
.

Proof: Let R = P−1Q be a left coprime factorization over R[ξ]. Then
Q( d

dt )w = 0 is minimal polynomial kernel representation of P. Therefore

we have P ∩ C = ker
([

Q( d
dt )

C( d
dt )

])
. It is easy to check that

[
R
C

]
=

[
P 0
0 I

]−1 [
Q
C

]
(6.23)

is a left coprime factorization over R[ξ]. Therefore, by Definition 6.1.1, we
have

ker
([

R( d
dt )

C( d
dt )

])
= ker

([
Q( d

dt )
C( d

dt )

])
= P ∩ C.

!

Along similar lines as in the proof of Lemma 6.4.3 we can prove the following
corollary. We omit the details.

Corollary 6.4.4. Let P ∈ Lw+c and C ∈ Lc with system variables (w,c)
and c respectively. Let R1( d

dt )w + R2( d
dt )c = 0 and C( d

dt )c = 0 be a minimal
rational representation of P and a minimal polynomial representation of C,

respectively. Then P ∧c C = ker
([

R1( d
dt ) R2( d

dt )
0 C( d

dt )

])
.

If P = ker(R( d
dt )) and C = ker(C( d

dt )) are minimal rational kernel rep-

resentations then it is easy to see that P ∩ C is regular if and only if
[

R
C

]

has full row rank. Finally, our next proposition states under what conditions
a controller in polynomial kernel representation regularly stabilizes a given
plant:
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Proposition 6.4.5. Let P, C ∈ Lw. Let R( d
dt )w = 0 and C( d

dt )w = 0 be
a minimal rational kernel representation of P and a minimal polynomial
kernel representation of C, respectively. Then C is a stabilizing controller for

P if and only if
[

R
C

]
is square and nonsingular, and has no zeros in C̄+.

Proof: (only if) C is regular, so p(P ∩ C) = p(P) + p(C) = rowdim(R) +

rowdim(C). This implies that P∩C = ker
([

R( d
dt )

C( d
dt )

])
is a minimal rational

kernel representation. Since P ∩C is also stable, it follows from Lemma 6.2.3

that
[

R
C

]
is square and nonsingular, and has no zeros in C̄+.

(if) This part of the proof can be given along the same lines as the above
part of the proof. !
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7 H∞-control in the behavioral
framework

7.1 Introduction

In this chapter we will study the H∞ control problem in a behavioral frame-
work. Starting from a given to-be-controlled behavior, some components of
the system variable are assumed to be free, again in the sense that they are
not constrained by the model. These components are the disturbances acting
on the system. Other components of the system variable are variables that
we want to keep small. These are called the to-be-controlled variables. A
third group of components are the interconnection variables (some of them
are also free of course) as already explained before in this thesis. The control
problem that we consider in this chapter, is to design a controller behavior,
i.e. constraints on the interconnection variable, such that, roughly speaking,
the to-be-controlled variables are “small” whatever the disturbance that oc-
curs, provided of course the disturbance is bounded in magnitude. We want
to stress that this set-up generalizes the “classical” approach to H∞ control.
In that context, for the interconnection variable one would take the compos-
ite vector (u,y), with u the control inputs and y the measured outputs.

The H∞ control problem in the behavioral framework was studied before
in Trentelman & Willems [41] and in Meinsma [24]. In a more general per-
spective, it can be considered as a special case of the problem of dissipativity
synthesis (i.e. the problem of rendering a given plant dissipative by inter-
connection). This problem was studied extensively in Willems & Trentelman
[50], Trentelman & Willems [42] and Belur & Trentelman [3].

In the present chapter we extend the behavioral H∞ control problem
that was studied and resolved in Trentelman & Willems [41]. This extended
problem will be used in solving the robust stabilization problem in chapter
8. The material presented in this chapter is based on the papers Trentelman,
Fiaz & Takaba [[36], [37], [38]].

This chapter is structured as follows. In section 7.2 we formulate the
H∞-control problem in the behavioral framework. To solve this problem, we
use the theory of dissipative systems with respect to supply rates given by
quadratic differential forms (QDF’s). The concept of QDF and dissipative
systems are elaborated in section 7.3. Finally, in section 7.4 we give a solution
to our extended version of the behavioral H∞-control problem.
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7.2 Problem formulation

In this section, we will formulate the H∞-control problem in the behavioral
framework.

We start with a system behavior P ∈ Lw+c+v, with system variable
(w,c,v). The system variable has been partitioned into w, c and v. These
variables represent the to-be-controlled variable, the interconnection vari-
able, and an unknown disturbance, respectively. The interconnection vari-
able c is the system variable through which we are allowed to interconnect
P with a controller C ∈ Lc. Interconnection leads to the interconnection of
P and C through c:

P ∧c C = {(w,c,v) | (w,c,v) ∈ P and c ∈ C}. (7.1)

We recall (Proposition 3.2.2) that the interconnection in Equation (7.1) is
regular if and only if

p(P ∧c C) = p(P) + p(C).

Recall (see section 3.3.3) that in that case we call the controller C regular.
In our context, the variable v represents an unknown disturbance. This is
formalized by assuming v to be free in P. As v is interpreted as unknown
disturbance, it should remain free (see Definition 2.9.1) after interconnecting
the plant with a controller. In order to highlight this, we recall the following
definition of free-disturbance controller from chapter 5:

Definition 7.2.1. Let P ∈ Lw+c+v, with v free. A controller C ∈ Lc is called
free-disturbance if v is free in P ∧c C.

Following Trentelman & Willems [41], in the context of H∞ synthesis
a controller is called stabilizing if, whenever the disturbance v is zero, the
to-be-controlled variable w tends to zero as time runs off to infinity:

Definition 7.2.2. Let P ∈ Lw+c+v, with v free. A free-disturbance controller
C ∈ Lc is called stabilizing if [(w,0,c) ∈ P ∧c C] ⇒ [limt→∞w(t) = 0].

Remark 7.2.3. We note that the concept of stabilizing controller defined
above is different from the concept of stabilizing controller given in the con-
text of asymptotic tracking and regulation in chapter 5 (see Definition 5.2.2).
In contrast to the requirement that a stabilizing controller in the context of
asymptotic tracking and regulation drives the variables w and c to zero as
time tends to infinity, a stabilizing controller in the context of H∞ synthesis
is required to drive only the variable w to zero. Thus, every stabilizing con-
troller in the sense of Definition 5.2.2 is stabilizing in the sense of Definition
7.2.2, but the converse does not hold.
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The following result characterizes the property that a controller is free-
disturbance, stabilizing and regular in terms of the matrices appearing in
the kernel representations of the plant and the controller.

Proposition 7.2.4. Let P ∈ Lw+c+v and C ∈ Lc. Let R1( d
dt )w + R2( d

dt )c +
R3( d

dt )c = 0 and C( d
dt )c = 0 be a minimal rational kernel representation of

P and a minimal polynomial kernel representation of C, respectively. Assume
that in P c is observable from (w,v). Then the following are equivalent:

1. C is a free-disturbance, stabilizing, regular controller for P,

2.
[

R1 R2

0 C

]
is square, nonsingular and has no zeros in C̄+.

Proof: From Proposition 2.4.2, c is observable from (w,v) in P if and only
if R2(λ) has full column rank for all λ ∈ C. From Corollary 6.4.4 we have

P ∧c C = ker
([

R1( d
dt ) R2( d

dt ) R3( d
dt )

0 C( d
dt ) 0

])
. (7.2)

Define N(w,c)(P ∧c C) := {(w,c) | (w,c,0) ∈ P ∧c C}. It is easy to see that

N(w,c)(P ∧c C) = ker
([

R1( d
dt ) R2( d

dt )
0 C( d

dt )

])
. (7.3)

From Equation (7.3), it is easy to see that c is observable from w in

N(w,c)(P ∧c C) (use the fact that
[

R2(λ)
C(λ)

]
has full column rank for all

λ ∈ C).
(1) ⇒ (2) Since

[
R1 R2 R3

]
and C have full row rank, the in-

terconnection P ∧c C is regular if and only if
[

R1 R2 R3

0 C 0

]
has full

row rank. Thus, by Proposition 6.2.1, v is free in P ∧c C if and only if[
R1 R2

0 C

]
has full row rank. We will now show that N(w,c)(P ∧c C) is

stable. Since C is free-disturbance and stabilizing, (w,c) ∈ N(w,c)(P ∧c C) im-
plies w(t) → 0 (t →∞). This implies that the projection (N(w,c)(P ∧c C))w

of N(w,c)(P ∧c C) onto the variable w is stable. It is easily seen that in
N(w,c)(P ∧c C), c(t) → 0 (t → ∞) (use the fact that c is observable from w
in N(w,c)(P ∧c C)). Hence N(w,c)(P ∧c C) is stable. Therefore from Equation

(7.3) and Lemma 6.2.3,
[

R1 R2

0 C

]
is square, nonsingular and has no zeros

in C̄+. The converse implication (2) ⇒ (1) is proven in a similar way. !
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Definition 7.2.5. Let B ∈ Lw1+w2 with system variable w partitioned as
w = (w1,w2). Let γ > 0. B is called γ-contractive if for all (w1,w2) ∈
B∩L2(R,Rw1+w2) we have ‖w1‖2 ≤ γ‖w2‖2. It is called strictly γ-contractive
if there exists ε > 0 such that B is (γ − ε)-contractive.

Remark 7.2.6. Of course, by a density argument, B is γ-contractive if and
only if the contractivity condition ‖w1‖2 ≤ γ‖w2‖2 holds for all (w1,w2) ∈
B ∩D(R,Rw1+w2), i.e. for all trajectories in B of compact support.

Next, we characterize the property of strict contractiveness of a behavior
in terms of the rational matrices appearing in a rational representation of
the behavior:

Proposition 7.2.7. Let B ∈ Lw1+w2 with system variable (w1,w2). Let γ >
0. Let a minimal rational kernel representation of B be given by R1( d

dt )w1 +
R2( d

dt )w2 = 0. Assume that R1 is square and nonsingular. Then B is strictly
γ-contractive if and only if R−1

1 R2 is proper, has no poles on the imaginary
axis, and ‖R−1

1 R2‖∞ < γ.

Proof: (Only if) Let
[

R1 R2
]

= P−1
[

Q1 Q2
]

be a left coprime fac-
torization over R[ξ]. Then Q1( d

dt )w1 +Q( d
dt )w2 = 0 is a minimal polynomial

kernel representation, and Q1 is square, nonsingular. Clearly,

G := R−1
1 R2

= Q−1
1 Q2.

Let

G = −ND−1 (7.4)

be a right coprime factorization over R[ξ]. We have

Q1N + Q2D = 0.

Therefore
[

w1

w2

]
=

[
N( d

dt )
D( d

dt )

]
( ∈ B ∩D(R,Rw1+w2) for all ( ∈ D(R,Rl). (7.5)

Thus, by assumption, there exists ε > 0 such that

‖N( d
dt )(‖2 ≤ (γ − ε)‖D( d

dt )(‖2 for all ( ∈ D(R,Rl).

Taking Fourier transforms it follows from Parseval’s theorem that
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N%(−iω)N(iω) ≤ (γ − ε)D%(−iω)D(iω) for all ω ∈ R.

Using that ND−1 is a right coprime factorization, this implies that D(iω) is
nonsingular for all ω ∈ R. Thus G has no poles on the imaginary axis and

G%(−iω)G(iω) ≤ (γ − ε)I for all ω.

This implies that G is proper and ‖G‖∞ < γ.
(If) Conversely, in B w1 is output and w2 is input, and the transfer matrix
from w2 to w1 is equal to G = R−1

1 R2. Since G is proper and has no poles
on the imaginary axis, the system B induces a bounded operator that maps
w2 ∈ L2(R,Rw2) to w1 ∈ L2(R,Rw1). The norm of this operator is equal to
‖G‖∞ < γ, and therefore there exists ε > 0 such that

‖w1‖2 ≤ (γ − ε)‖w2‖2 for all (w1,w2) ∈ B ∩ L2(R,Rw1+w2).

!

Using the above notion of γ-contractiveness we define the following.

Definition 7.2.8. Let P ∈ Lw+c+v. Let γ > 0. A controller C ∈ Lc is called
strictly γ-contracting if (P ∧c C)(w,v) is strictly γ-contractive.

Before we introduce the main problem studied in this chapter, we re-
view the notion of orthogonal complement of a behavior (see Willems &
Trentelman [49]). Let B ∈ Lw be a controllable behavior. Then we define its
orthogonal complement B⊥ by

B⊥ := {w ∈ C∞(R,Rw) |
∫ ∞

−∞
w%w′dt = 0 for all w′ ∈ B ∩D(R,Rw)}.

B⊥ is again controllable. If R( d
dt )w = 0 is a minimal polynomial kernel

representation of B, then w̃ = R%(− d
dt )( is an observable polynomial image

representation of B⊥ (see Willems & Trentelman [49], Section 10).
Now we formulate the main problem studied in this chapter.

Problem: Let P ∈ Lw+c+v, with system variable (w,c,v). Assume that v is
free in P. Let γ > 0. Find necessary and sufficient conditions for the existence
of a free-disturbance, stabilizing, regular and strictly γ-contracting controller
C ∈ Lc for P.

This problem was studied before in Trentelman & Willems [41] without
the requirement of regular interconnection. The assumptions on the plant
behavior that were made in Trentelman & Willems [41] are however too
restrictive for our purposes, for example to solve the robust stabilization
problem in chapter 8. We will therefore in this chapter extend the results
from Trentelman & Willems [41] in order to make these applicable in chapter
8.
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7.3 Two-variable polynomial matrices, QDF’s and dissipa-
tive systems

A major role in our study of the H∞ control problem in this chapter and our
forthcoming study of the robust stabilization problem in chapter 8 will be
played by the notions of dissipativeness, strict dissipativeness and storage
function in a behavioral context. These notions have been studied before
in Willems [44], Willems and Trentelman [[49], [50]] and Trentelman and
Willems [42]. In this section we review these notions. An important role is
played by two-variable polynomial matrices and quadratic differential forms.
An extensive treatment can be found in Willems and Trentelman [49]. We
will give a brief review here.

An l1 × l2 two-variable polynomial matrix in the indeterminates ζ and
η is an expression of the form

Φ(ζ,η) =
N∑

h,k=0

Φh,kζ
hηk (7.6)

where Φh,k are real l1×l2 matrices, and where N ≥ 0 is an integer. With any
such two-variable polynomial matrix we can associate a bilinear functional

LΦ : C∞(R,Rl1)× C∞(R,Rl2)→ C∞(R,R) (7.7)

by defining

LΦ((1,(2) :=
N∑

h,k=0

(
dh(1

dth
)T Φh,k

dk(2

dtk
. (7.8)

The two-variable polynomial matrix Φ(ζ,η) is called symmetric if Φh,k = ΦT
k,h

for all h,k. In that case we also associate with Φ(ζ,η) the quadratic differential
form (QDF)

QΦ(() := LΦ((,(). (7.9)

The properties of the two-variable polynomial matrix Φ(ζ,η) are completely
determined by the real constant (N +1)l× (N +1) l matrix Φ̃ whose (h,k)th
block is equal to Φh,k. This matrix will be called the coefficient matrix asso-
ciated with Φ(ζ,η). Factorizations of the coefficient matrix immediately give
rise to corresponding factorizations of the associated two-variable polynomial
matrix and quadratic differential form.

The QDF QΦ is called non-negative if

QΦ(() ≥ 0,

in the sense that QΦ(()(t) ≥ 0 for all t ∈ R. It is easily seen that QΦ is
non-negative if and only if the coefficient matrix Φ̃ satisfies Φ̃ ≥ 0.
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7.3.1 Dissipativity

Consider, in general, a controllable linear differential system B ∈ Lw, repre-
sented by the observable polynomial image representation

w = W ( d
dt )( (7.10)

with W ∈ Rw×l[ξ]. In addition, let QΦ be the QDF associated with the
symmetric two-variable polynomial matrix Φ ∈ Rw×w[ζ,η]. QΦ will be called
the supply rate. The system B will be called dissipative with respect to the
supply rate QΦ if for all w ∈ B ∩D(R,Rw) we have

∫ ∞

−∞
QΦ(w)dt ≥ 0. (7.11)

B is called strictly dissipative with respect to the supply rate QΦ if there
exists ε > 0 such that for all w ∈ B ∩D(R,Rw)

∫ ∞

−∞
QΦ(w)dt ≥ ε2

∫ ∞

−∞
‖w(t)‖2dt. (7.12)

Given a polynomial image representation as in Equation (7.10) together
with a two-variable polynomial matrix Φ(ζ,η) we can define a new two-
variable polynomial matrix Φ′ ∈ Rl×l[ζ,η] by

Φ′(ζ,η) := W%(ζ)Φ(ζ,η)W (η). (7.13)

It is easily verified that, if w and ( are related by Equation (7.10), then
QΦ(w) = QΦ′((). Therefore, the system is dissipative if and only if for all
( ∈ D(R,Rl) we have

∫ ∞

−∞
QΦ′(()dt ≥ 0,

and strictly dissipative if and only if there exists ε > 0 such that, for all
( ∈ D(R,Rl) we have

∫ ∞

−∞
QΦ′(()dt ≥ ε2

∫ ∞

−∞
‖W ( d

dt )(‖
2dt.

These conditions are equivalent to

Φ′(−iω,iω) ≥ 0 for all ω ∈ R (7.14)
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and

Φ′(−iω,iω) ≥ ε2W%(−iω)W (iω) for all ω ∈ R (7.15)

respectively (see Willems & Trentelman [49]). It is well known (see Callier
[4], Coppel [5], Ran & Rodman [28], and Kwakernaak & Sebek [22]) that, if
Equation (7.14) holds then we can factorize

∂Φ′(ξ) := Φ′(−ξ,ξ) = F%(−ξ)F (ξ),

with F ∈ Rl×l[ξ]. If Equation (7.15) holds, then F can be chosen Hurwitz,
and also anti-Hurwitz. Introduce now the two-variable polynomial ∆, defined
by

∆(ζ,η) := Φ′(ζ,η)− F%(ζ)F (η). (7.16)

Since ∆(−ξ,ξ) = 0, the two-variable polynomial ∆ must contain a factor
ζ + η (see Willems & Trentelman [49], Theorem 3.1), and therefore we can
define the new two-variable polynomial Ψ by

Ψ(ζ,η) := (ζ + η)−1∆(ζ,η). (7.17)

Consider now the QDF’s QΨ and Q∆ associated with Ψ and ∆, respectively.
We have

Q∆(() = QΦ′(()− ‖F ( d
dt )()‖

2. (7.18)

Furthermore, Equation (7.17) is equivalent to:

dQΨ(()
dt

= Q∆(() for all ( ∈ C∞(R,Rl). (7.19)

Thus we obtain
dQΨ(()

dt
(t) ≤ QΦ′(()(t), (7.20)

for all ( ∈ C∞(R,Rl), for all t ∈ R.
If we interpret QΨ(()(t) as the amount of supply (e.g., energy) stored

inside the system at time t, then Equation (7.20) expresses the fact that
the rate at which the internal storage increases does not exceed the rate
at which supply flows into the system. The inequality in Equation (7.20) is
called the dissipation inequality. Any quadratic differential form QΨ(() that
satisfies this inequality is called a storage function for B. It can be shown
that B is dissipative if and only if there exists a symmetric two-variable
polynomial matrix Ψ(ζ,η) such that the corresponding QDF QΨ satisfies
Equation (7.20). In general, storage functions are not unique. In fact, we
quote Willems & Trentelman [49], Theorem 5.7:
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Proposition 7.3.1. Let B be represented by the observable image represen-
tation (7.10). Assume B is dissipative with respect to QΦ. Then there exist
storage functions QΨ− and QΨ+ such that any other storage function QΨ

satisfies

QΨ− ≤ QΨ ≤ QΨ+ .

If B is strictly dissipative then Ψ− and Ψ+ may be constructed as follows.
Let H and A be respectively Hurwitz and anti-Hurwitz factorizations of ∂Φ′.
Then

Ψ+(ζ,η) =
Φ′(ζ,η)−A%(ζ)A(η)

ζ + η

and

Ψ−(ζ,η) =
Φ′(ζ,η)−H%(ζ)H(η)

ζ + η
.

In this thesis the supply rate will always be given by a constant real
symmetric matrix, say Σ. In that case we have QΣ(w) = w%Σw. We say
that the system B is (strictly) Σ-dissipative if it is (strictly) dissipative
with respect to the supply rate QΣ(w).

The following proposition obtained in Willems & Trentelman [49] (also
see Trentelman and Willems [34]) gives the relation between storage func-
tions and states.

Proposition 7.3.2. Let B be represented by the observable image repre-
sentation (7.10). Assume B is Σ-dissipative, where Σ =Σ % ∈ Rw×w, and
let QΨ(() be a storage function. Let X ∈ Rn×l[ξ] define a minimal state
map of B. Then there exists a real symmetric matrix K ∈ Rn×n such that
Ψ(ζ,η) = X%(ζ)KX(η), equivalently, QΨ(() = (X( d

dt )()
%KX( d

dt )( for all
( ∈ C∞(R,Rl).

Finally, we define positive and negative definiteness of storage functions of
behaviors.

Definition 7.3.3. A storage function QΨ for B is called positive (negative)
definite if there exists a minimal state map X for B and a real symmetric
matrix K > 0 (K < 0) such that QΨ(() = (X( d

dt )()
%KX( d

dt )( for all ( ∈
C∞(R,Rl).
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7.4 A solution to the H∞ control problem

The H∞ control problem in the behavioral frame work was originally formu-
lated and solved in Trentelman & Willems [41]. In Trentelman & Willems
[41], only the full-information case was considered, i.e. the special case in
which the entire system variable is determined uniquely by knowledge of the
interconnection variable, equivalently, (w,v) is observable from c in P. In
this chapter we generalize this to the case where (w,v) is only detectable
from c in P. In contrast to Trentelman & Willems [41], we also require that
the interconnection of the plant and controller is regular, which plays an
important role in stabilization.

Let P ∈ Lw+c+v be controllable. Let γ > 0. It is well known that strict
contractiveness and strict dissipativeness are equivalent, in the sense that
a controller C ∈ Lc is strictly 1

γ -contracting if and only if (P ∧c C)(w,v) is
strictly Σγ-dissipative, where

Σγ :=
[
−Iw 0
0 1

γ2 Iv

]
. (7.21)

Note that

−Σ−1
γ =

[
Iw 0
0 −γ2Iv

]
. (7.22)

In Trentelman & Willems [41], necessary and sufficient conditions for the ex-
istence of a free-disturbance, stabilizing and strictly 1

γ -contracting controller
(however, without regularity condition) for P were established in terms of
−Σ−1

γ -dissipativeness of an orthogonal behavior associated with P. We sum-
marize the relevant results here as propositions. Recall from section 6.2 that
(P)(w,v) denotes the projection of P onto the variable (w,v), while (P)⊥(w,v)
denotes its orthogonal complement. Our first proposition is a restatement of
Lemma 9.2 from Trentelman & Willems [41]:

Proposition 7.4.1. Let P ∈ Lw+c+v
cont . Assume v is free in P. Let γ > 0.

If there exists a free-disturbance, stabilizing, strictly 1
γ -contracting controller

for P then (P)⊥(w,v) is strictly −Σ−1
γ -dissipative and has a negative definite

storage function.

The next proposition can be found as Theorem 9.1 in Trentelman & Willems
[41]. It states that if our synthesis problem is a full information problem (i.e.
(w,v) observable from c), then the conditions in Proposition 7.4.1 are also
sufficient:
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Proposition 7.4.2. Let P ∈ Lw+c+v
cont . Assume v is free P, and

1. (w,v) is observable from c in P,

2. c is observable from (w,v) in P.

Let γ > 0. Then there exists a free-disturbance, stabilizing, strictly 1
γ -

contracting controller for P if and only if (P)⊥(w,v) is −Σ−1
γ -dissipative and

has a negative definite storage function.

In this chapter we extend the above proposition in two directions. In the first
place, we relax condition 1) of the proposition to the condition that (w,v) is
only detectable from c in P. Secondly, we establish conditions under which
the controller in the statement of the proposition, in addition, can be taken
regular. The following theorem is the main result of this chapter. It states
that the necessary and sufficient conditions of Proposition 7.4.2 remain valid:

Theorem 7.4.3. Let P ∈ Lw+c+v
cont . Assume v is free P, and

1. (w,v) is detectable from c in P,

2. c is observable from (w,v) in P.

Let γ > 0. Then there exists a free-disturbance, stabilizing, regular, and
strictly 1

γ -contracting controller for P if and only if (P)⊥(w,v) is −Σ−1
γ -

dissipative and has a negative definite storage function.

In the remainder of this section we will give a proof of Theorem 7.4.3. The
idea is, starting from P, to construct a new full plant behavior P ′ that
satisfies the conditions of Proposition 7.4.2. We then apply this proposition
to P ′, and finally translate back to P to obtain a proof of Theorem 7.4.3.

In order to proceed we need the following lemma:

Lemma 7.4.4. Let B ∈ Lw1+w2
cont with system variable (w1,w2) be given by

the image representation

B =
{[

w1

w2

] ∣∣∣∣ ∃( ∈ C∞(R,Rl) such that
[

w1

w2

]
=

[
A( d

dt )
B( d

dt )

]
(

}
,

(7.23)

where
[

A(λ)
B(λ)

]
has full column rank for all λ ∈ C, i.e. the image represen-

tation is observable (see Proposition 2.5.2). Then
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1. w1 is observable from w2 in B if and only if B(λ) has full column rank
for all λ ∈ C (equivalently, the behavior ker(B( d

dt )) = {0}).

2. w1 is detectable from w2 in B if and only if B(λ) has full column rank
for all λ ∈ C̄+ (equivalently, the behavior ker(B( d

dt )) is stable).

Proof: 1. If w1 is observable from w2, from Definition 2.4.1 for all (w1,0) ∈
B we have w1 = 0. From Equation (7.23) this implies that for all ( ∈
ker(B( d

dt )) we have ( ∈ ker(A( d
dt )). In other words ker(B( d

dt )) ⊆ ker(A( d
dt )).

Consequently, we have

ker(B( d
dt )) = ker(A( d

dt )) ∩ ker(B( d
dt ))

= ker
([

A( d
dt )

B( d
dt )

])

= {0},

by observability. The converse implication is easy to prove, we skip the de-
tails.

2. From Definition 2.4.3, if w1 is detectable from w2, for all (w1,0) ∈ B
we have limt→∞w1(t) = 0. From Equation (7.23), this implies that if ( ∈
ker(B( d

dt )) then limt→∞w1(t) = 0. Therefore w1 is a stable Bohl function.
Also we have

[
w1

0

]
=

[
A( d

dt )
B( d

dt )

]
(. (7.24)

As
[

A(λ)
B(λ)

]
has full column rank for all λ ∈ C, there exists a polynomial

matrix
[

F1 F2
]

such that
[

F1 F2
] [

A
B

]
= I. From Equation (7.24),

we have

( = F1( d
dt )w1. (7.25)

As w1 is stable Bohl, by Equation (7.25) ( is a stable Bohl. Therefore for
all ( ∈ ker(B( d

dt )), we have ( stable Bohl. Hence ker(B( d
dt )) is stable. The

converse implication is easy to prove, again we skip the details here. !

Going back to the proof of Theorem 7.4.3, as P is controllable it admits an
observable polynomial image representation (see Proposition 6.2.2):

P =









w
c
v





∣∣∣∣∣∣
∃( ∈ C∞(R,Rl) such that




w
c
v



 =




W ( d

dt )
C( d

dt )
V ( d

dt )



 (




 .
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(7.26)

From Lemma 7.4.4, (w,v) is detectable from c in P if and only if the matrix
C(λ) has full column rank for all λ ∈ C̄+. Therefore we can factorize C
as C = C ′L, with L and C ′ polynomial matrices such that L is Hurwitz
and C ′(λ) has full column rank for all λ ∈ C. Define now a new behavior
P ′ ∈ Lw+c+v as follows:

P ′ :=









w
c′

v





∣∣∣∣∣∣
∃( ∈ C∞(R,Rl) such that




w
c′

v



 =




W ( d

dt )
C ′( d

dt )
V ( d

dt )



 (




 .

(7.27)

Clearly (P)(w,v) = (P ′)(w,v). Most important, from Lemma 7.4.4, in P ′, (w,v)
is observable from c′ (use the fact that C ′(λ) has full column rank for all
λ ∈ C). We now first prove the following lemma which states that, due to
the fact that in P ′ (w,v) is observable from c′, the full controlled behavior
corresponding to a given controller can also be implemented by a controller
of the form c′ = C ′( d

dt )(
′, K( d

dt )(
′ = 0:

Lemma 7.4.5. Let P ∈ Lw+c+v
cont be given by

P =









w
c
v





∣∣∣∣∣∣
∃( ∈ C∞(R,Rl) such that




w
c
v



 =




W ( d

dt )
C( d

dt )
V ( d

dt )



 (




 .

Assume (w,v) is observable from c in P. Let C1 ∈ Lc. There exists a full
row rank polynomial matrix K such that

C2 := {c | ∃(′ ∈ C∞(R,Rl) such that c = C( d
dt )(

′, K( d
dt )(

′ = 0}

satisfies P ∧c C1 = P ∧c C2.

Proof: Let C1 be represented by, say, S( d
dt )c = 0. Let K be a full row rank

polynomial matrix such that

ker(SC( d
dt )) = ker(K( d

dt )).

We claim that, with such K, the statement of the lemma holds. Indeed, let
(w,c,v) ∈ P ∧c C1. Then there exists ( such that

w = W ( d
dt )(, v = V ( d

dt )(, c = C( d
dt )(, and S( d

dt )c = 0.
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Since S( d
dt )C( d

dt )( = 0, we get K( d
dt )( = 0. Thus c ∈ C2, so (w,c,v) ∈ P∧cC2.

Conversely, let (w,c,v) ∈ P ∧c C2. Then there exist ( and (′ such that

w = W ( d
dt )(, v = V ( d

dt )(, c = C( d
dt )(, c = C( d

dt )(
′ and K( d

dt )(
′ = 0.

Since C(λ) has full column rank for all λ, this implies that ( = (′. Thus,
S( d

dt )c = S( d
dt )C( d

dt )(
′ = 0 since K( d

dt )(
′ = 0. We conclude that (w,c,v) ∈

P ∧c C1. !

Next, we formulate and prove the following theorem:

Theorem 7.4.6. Let P, P ′ ∈ Lw+c+v be as given in Equations (7.26) and
(7.27), respectively. Let γ > 0. If there exists a free-disturbance stabilizing,
strictly 1

γ -contracting controller for P ′ then there exists a free-disturbance,
stabilizing, strictly 1

γ -contracting controller for P.

Proof: The proof of this theorem will make use of a series of lemmas, Lemmas
7.4.7 to 7.4.11, to be formulated and proved in the sequel.

First, using Lemma 7.4.5, let

C′ = {c′ | ∃(′ such that c′ = C ′( d
dt )(

′, K( d
dt )(

′ = 0} (7.28)

be a free-disturbance, stabilizing, strictly 1
γ -contracting controller for P ′.

Using observability of (w,v) from c′ in P ′ we can prove the following:

Lemma 7.4.7. Let P ′ and C′ be as given in Equations (7.27) and (7.28),
respectively. Then

P ′ ∧c′ C′ =









w
c′

v





∣∣∣∣∣∣
∃(′ s. t




w
c′

v



 =




W ( d

dt )
C ′( d

dt )
V ( d

dt )



 (′, K( d
dt )(

′ = 0




 .

(7.29)

Proof: Let (w,c′,v) ∈ P ′ ∧c′ C′. Then (w,c′,v) ∈ P ′ and c′ ∈ C′. From
Equations (7.27) and (7.28), there exists (1 and (2 such that

w = W ( d
dt )(1, v = V ( d

dt )(1, c′ = C ′( d
dt )(1, c′ = C ′( d

dt )(2 and K( d
dt )(2 = 0.

Since C ′(λ) has full column rank for all λ, c′ = C ′( d
dt )(1 and c′ = C ′( d

dt )(2

implies that (1 = (2. Therefore



w
c′

v



 =




W ( d

dt )
C ′( d

dt )
V ( d

dt )



 (′, K( d
dt )(

′ = 0.
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The converse inclusion is trivial. !

Define K1 := (P ∧c′ C′)(w,v). Then from Equation (7.29), we have

K1 :=
{[

w
v

] ∣∣∣∣ ∃(
′ such that

[
w
v

]
=

[
W ( d

dt )
V ( d

dt )

]
(′, K( d

dt )(
′ = 0

}
.

(7.30)

Let L be the Hurwitz polynomial matrix obtained from the factorization
C = C ′L above. As L is Hurwitz, the matrix KL−1 is a stable rational
matrix. Factorize KL−1 as KL−1 = P1

−1Q1, where P1 is Hurwitz. Then we
have

P1K = Q1L. (7.31)

Define

C := {c | ∃( such that c = C( d
dt )(, P1( d

dt )K( d
dt )( = 0}. (7.32)

Lemma 7.4.8. Let P and C be given by Equations (7.26) and (7.32), re-
spectively. Then

P∧cC =









w
c
v





∣∣∣∣∣∣
∃( s. t.




w
c
v



 =




W ( d

dt )
C( d

dt )
V ( d

dt )



 (, P1( d
dt )K( d

dt )( = 0




 .

(7.33)

Proof: Let (w,c,v) ∈ P ∧c C. From the representations of P and C it is
evident that there exists an ( such that

w = W ( d
dt )(, v = V ( d

dt )(, and c = C ′( d
dt )L( d

dt )(,

and there exists an (̂ such that

c = C ′( d
dt )L( d

dt )(̂, P1( d
dt )K( d

dt )(̂ = 0.

As C ′(λ) has full column rank for all λ ∈ C we get

L( d
dt )( = L( d

dt )(̂. (7.34)

Using Equations (7.31) and (7.34) we have
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P1( d
dt )K( d

dt )( = Q1( d
dt )L( d

dt )(
= 0.

Therefore



w
c
v



 =




W ( d

dt )
C( d

dt )
V ( d

dt )



 (, P1( d
dt )K( d

dt )( = 0.

The converse inclusion is trivial. !

Define K2 := (P ∧c C)(w,v). From the above we have

K2 :=
{[

w
v

] ∣∣∣∣ ∃( such that
[

w
v

]
=

[
W ( d

dt )
V ( d

dt )

]
(, P1( d

dt )K( d
dt )( = 0

}
.

(7.35)

In order to proceed we need the following lemma.

Lemma 7.4.9. Let B ∈ Lw+c+v with system variable (w,c,v) be given by








w
c
v





∣∣∣∣∣∣
∃( s.t




w
c
v



 =




W ( d

dt )
C( d

dt )
V ( d

dt )



 (, K( d
dt )( = 0




 , (7.36)

where K has full row rank and
[

W (λ)
V (λ)

]
has full column rank for all λ ∈ C.

Define S := {w | ∃c such that (w,c,0) ∈ B}. Then

1. v is free in B if and only if
[

V
K

]
has full row rank.

2. S is stable if and only if
[

V (λ)
K(λ)

]
has full column rank for all λ ∈ C̄+.

Proof: 1. We have

(B)v = {v | ∃( s. t. v = V ( d
dt )(, K( d

dt )( = 0}. (7.37)

It is easy to check that

p((B)v) = rank
([

I V
0 K

])
− rank

([
V
K

])

= rowdim(V ) + rowdim(K)− rank
([

V
K

])
. (7.38)
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Recall that v is free in B if and only if (B)v = C∞(R,Rv), equivalently,
p((B)v) = 0. Therefore from Equation (7.38), v is free in B if and only if

rank
([

V
K

])
= rowdim(V )+rowdim(K), equivalently,

[
V
K

]
has full row

rank.
2. From Equation (7.36), we have

S =
{

w

∣∣∣∣ w = W ( d
dt )(,

[
V ( d

dt )
K( d

dt )

]
( = 0

}
. (7.39)

If
[

V (λ)
K(λ)

]
has full column rank for all λ ∈ C̄+,

[
V ( d

dt )
K( d

dt )

]
( = 0 implies

that ( is stable Bohl, which in turn implies that w = W ( d
dt )( is stable

Bohl. Hence S is stable. Conversely, if S is stable then for all ( such that[
V ( d

dt )
K( d

dt )

]
( = 0, we have

[
w
0

]
=

[
W ( d

dt )
V ( d

dt )

]
( (7.40)

is stable Bohl. As
[

W (λ)
V (λ)

]
has full column rank for all λ ∈ C there exists

[
F1 F2

)
such that

[
F1 F2

] [
W
V

]
= I. Therefore, from Equation

(7.40), we have

( = F1( d
dt )w. (7.41)

As w is stable Bohl, from the above ( is a stable Bohl. Hence
[

V (λ)
K(λ)

]
has

full column rank for all λ ∈ C̄+.
!

Lemma 7.4.10. Let the controllers C′ and C be given by Equations (7.28)
and (7.32), respectively. Then C is a free-disturbance, stabilizing controller
for P if and only if C′ is a free-disturbance, stabilizing controller for P ′.

Proof: Using Equation (7.33) along with Definition 7.2.2 and Lemma 7.4.9,

C is free-disturbance and stabilizing controller for P if and only if
[

V
P1K

]

is square, nonsingular and Hurwitz. In the same way, using Equation (7.29),
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C′ is free-disturbance and stabilizing controller for P ′ if and only if
[

V
K

]

is square, nonsingular and Hurwitz. The proof is then completed by noting

that
[

V
P1K

]
is square, nonsingular and Hurwitz if and only if

[
V
K

]
is

square, nonsingular and Hurwitz (use the fact that P1 is Hurwitz). !

In the following, recall that D(R,R•) denotes the space of compact support
functions from R to R•.

Lemma 7.4.11. Let K1 and K2 be given by Equations (7.30) and (7.35),
respectively. Then K1∩D(R,Rw+v) = K2∩D(R,Rw+v). Consequently, for any
γ > 0, K1 is strictly 1

γ -contractive if and only if K2 is strictly 1
γ -contractive.

Proof: We first prove that D(R,Rl)∩ker(K( d
dt )) = D(R,Rl)∩ker(P1K( d

dt )).
The implication D(R,Rl)∩ker(K( d

dt )) ⊆ D(R,Rl)∩ker(P1K( d
dt )) is obvious.

To show the converse inclusion, assume that ( ∈ D(R,Rl) ∩ ker(P1K( d
dt )).

Define y := K( d
dt )(. Then y ∈ D(R,Ry) ∩ ker(P1( d

dt )). As ker(P1( d
dt )) ∩

D(R,Ry) = 0 (since P1 is nonsingular) we have y = 0. Hence ( ∈ D(R,Rl) ∩
ker(K( d

dt )).

Since
[

w
v

]
=

[
W ( d

dt )
V ( d

dt )

]
( is an observable representation (due to the

assumption that c is observable from (w,v) in P), ( ∈ D(R,Rl) if and only if[
w
v

]
∈ D(R,Rw+v). Then, from the definitions of K1 and K2 we have the

equality K1 ∩ D(R,Rw+v) = K2 ∩ D(R,Rw+v). Therefore, immediately from
Definition 7.2.5, K1 is strictly 1

γ -contractive if and only if K2 is strictly 1
γ -

contractive. !

Applying the previous lemmas, we can now complete the proof of Theo-
rem 7.4.6: from Lemmas 7.4.8 to 7.4.11 we conclude that, starting with the
free-disturbance, stabilizing strictly 1

γ -contracting controller C′ for P ′, the
controller C is a free-disturbance, stabilizing strictly 1

γ -contracting controller
for P. !

We are now in a position to give a proof of Theorem 7.4.3:

Proof of Theorem 7.4.3: Starting with P, introduce the new behavior P ′
as above. We have (P)(w,v) = (P ′)(w,v). Thus, if (P)⊥(w,v) is strictly −Σ−1

γ -
dissipative and has a negative definite storage function, then the same holds
for (P ′)⊥(w,v). By Proposition 7.4.2 there exists a free-disturbance, stabilizing
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strictly 1
γ -contracting controller for P ′. Then there also exists such controller

for the original P. Finally, we should prove that also a regular controller for
P exists with these properties. Again, note that (P ∧c C)(w,v) = K2 (see
Lemma 7.4.8). Now, K2 is obviously implementable with respect to P. Since
P is assumed to be controllable, Proposition 3.3.10 then asserts that K2 is
also regularly implementable. Any regular controller that implements K2 is
then of course a free-disturbance, stabilizing strictly 1

γ -contracting controller
for P.

The converse implication follows immediately from Proposition 7.4.1. !

Remark 7.4.12. Without going into the details, in this remark we will
outline how to actually compute a free-disturbance, stabilizing, strictly 1

γ -
contracting, regular controller for P from the polynomial matrices W , V
and C appearing in its image representation (7.26) (see also Trentelman &
Willems [41]). In the following, let l denote the number of columns of W (i.e.
the dimension of the latent variable (). Let Σγ be given by (7.21). Denote
R∼(ξ) := R%(−ξ).

1. Factorize:
[

W
V

]∼
Σγ

[
W
V

]
=

[
F+

F−

]∼ [
Il−v 0

0 −Iv

] [
F+

F−

]

such that

(a)
[

F+

F−

]
is a Hurwitz polynomial matrix,

(b)
[

W
V

] [
F+

F−

]−1

is proper,

(c)
[

V
F+

]
is Hurwitz.

2. Factorize: C = C ′L with C ′ and L polynomial matrices such that C ′(λ)
has full column rank for all λ ∈ C, and L Hurwitz.

3. Factorize: F+L−1 = P−1
1 Q1 with P1,Q1 polynomial matrices, P1 Hur-

witz.

Define then a controller C for P by:

C := {c | ∃( ∈ C∞(R,Rl) such that c = C( d
dt )(, P1( d

dt )F+( d
dt )( = 0}, (7.42)
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The controller C is then free-disturbance, stabilizing and strictly 1
γ -

contracting. It can be shown that if c is free in P then the above controller C
is also regular. If c is not free in P then, starting with C given by the Equa-
tion (7.42), a regular, free-disturbance, stabilizing and strictly 1

γ -contracting
controller can be constructed using ideas from Belur [1].
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8 Robust stabilization in the behavioral
framework

8.1 Introduction

Often, a mathematical model precisely describing a physical phenomenon
is hard to obtain. Sometimes an exact model might be very complicated,
and is as hard as to deal with reality itself, thereby defeating the purpose
of modeling. Also from the principle of parsimony, we might have little faith
in detailed models. Therefore we pursue the model up to the extent that we
feel confident about its predictions while remaining reasonably simple, and
deliberately leave the rest as uncertainty. Thus, in general, a control system
that models a certain physical phenomenon will not be a precise descrip-
tion of that phenomenon. Therefore, a controller designed to asymptotically
stabilize the control system will not guarantee a stable behavior of the ac-
tual physical system. Sometimes it is reasonable to assume that the exact
description of the model lies in a neighborhood (in some appropriate sense)
of the control system with which we will work (this control system is often
called the nominal system). In order to assure that a controller also stabi-
lizes our real life system, we can formulate the following design specification:
given the nominal control system, together with a fixed neighborhood of this
system, find a controller that stabilizes all systems in that neighborhood. If
a controller achieves this design objective, we say that it robustly stabilizes
the nominal system.

Given a nominal plant behavior and a ball around it with a given radius,
in this chapter we will establish necessary and sufficient conditions for the
existence of a single stabilizing controller behavior (see Definition 3.5.1) for
all plants in the given ball. In other words, we consider the problem of robust
stabilization in a behavioral framework. We will also find the smallest upper
bound on the radii of these balls, i.e., the optimal stability radius.

Of course, the problem of robust stabilization has been studied before in
the literature, in an input-output framework, most prominently in McFarlane
& Glover [23] (see also Trentelman, Stoorvogel & Hautus [40], Chapter 15).
In McFarlane & Glover [23] representations based on coprime factors of
the transfer matrix of the nominal plant were used to obtain conditions for
the existence of robustly stabilizing controllers in terms of certain algebraic
Riccati equations. Also the optimal stability radius was computed in terms
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of solutions of these Riccati equations.
Our work can be seen as a behavioral generalization of McFarlane &

Glover [23]. We use rational kernel representations of the nominal plant
(see Willems & Yamamoto [51]) without any input-output considerations.
Necessary and sufficient conditions for the existence of robustly stabilizing
controllers are expressed in terms of strict dissipativity of an orthogonal be-
havior associated with the nominal plant behavior, and the optimal stability
radius is computed in terms of the extremal storage functions associated with
the orthogonal complement of the nominal plant. These can be obtained by
performing suitable polynomial spectral factorizations. The material pre-
sented in this chapter is based on the papers Trentelman, Fiaz & Takaba
[[36], [37], [38]].

The outline of this chapter is as follows. In section 8.2, we introduce the
problem of robust stabilization in the context of behaviors (which we call
Problem 1), and the problem of finding the optimal stability radius (called
Problem 2). In section 8.3 we show that similarly to the classical input-output
framework, our robust stabilization problem requires a behavioral version
of the small gain theorem and the solution to a behavioral H∞ synthesis
problem. Using the H∞ synthesis results obtained in chapter 7, we give
solutions to Problems 1 and 2. Finally, in section 8.4 we give a small worked-
out example.

8.2 Robust stabilization by interconnection

In this section we will introduce the problem of robust stabilization in a
behavioral context, with control by general, regular, interconnection.

Let P ∈ Lw, to be interpreted as the nominal plant. In the following, we
will make the assumption that our nominal plant P ∈ Lw is controllable. The
problem of robust stabilization is to find a controller C ∈ Lw that stabilizes all
plants in a given neighborhood of P. We make the concept of neighborhood
explicit as follows. Using Lemma 6.3.2, assume that the nominal plant P is
represented in rational kernel representation by

R( d
dt )w = 0, (8.1)

where R is a proper, stable, left prime and co-inner real rational matrix,
with left primeness over the ring R(ξ)S . For a given γ > 0, we now define
the ball B(P,γ) with radius γ around P as follows:
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B(P,γ) := {P∆ ∈ Lw
cont | there exists a proper, stable, real rational

R∆ of full row rank such that P∆ = ker(R∆)
and ‖R−R∆‖∞ ≤ γ }. (8.2)

Of course, one should check whether this definition of ball around P is in-
dependent of the chosen representation. Indeed, we have the following:

Theorem 8.2.1. Let P ∈ Lw
cont and represent P = ker(R1( d

dt )) =
ker(R2( d

dt )), with R1,R2 proper, stable, left prime over R(ξ)S and co-inner.
For i = 1,2, let

Bi(P,γ) := {P∆ ∈ Lw
cont | there exists a proper, stable, real rational

R∆ of full row rank such that P∆ = ker(R∆( d
dt ))

and ‖Ri −R∆‖∞ ≤ γ }.

Then we have B1(P,γ) = B2(P,γ).

Proof: Let P∆ ∈ B1(P,γ). Then there exists a proper, stable, real rational
R∆ of full row rank such that

P∆ = ker(R∆( d
dt ))

and ‖R1 −R∆‖∞ ≤ γ. We will now show that P∆ ∈ B2(P,γ). Since

P = ker(R1( d
dt )) = ker(R2( d

dt )) (8.3)

with R1, R2 proper, stable and left prime over RS(ξ), by Theorem 6.3.5 there
exists a proper stable W , with W−1 proper stable, such that R2 = WR1. As
R1 and R2 are co-inner we have

I = R2R
∼
2

= WR1R
∼
1 W∼

= WW∼.

This yields W∼W = I as well and hence

‖R2 −WR∆‖∞ = ‖W (R1 −R∆)‖∞
= ‖R1 −R∆‖∞
≤ γ.

Since, again by Theorem 6.3.5, ker(WR∆( d
dt )) = ker(R∆( d

dt )) = P∆, we
therefore have P∆ ∈ B2(P,γ). !
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We now formulate the first main problem of this chapter:

Problem 1 : Given P ∈ Lw
cont and γ > 0, find necessary and sufficient

conditions for the existence of a stabilizing controller C ∈ Lw for all plants
P∆ in the ball with radius γ around P, i.e. for all P∆ ∈ B(P,γ), P∆ ∩ C is
stable and P∆ ∩ C is a regular interconnection.

Of course, for a given nominal plant P, we would like to know the small-
est upper bound (if it exists) of those γ’s for which there exists a stabilizing
controller C for all perturbed plants P∆ in the ball with radius γ around P.
This is the problem of optimal robust stabilization.

Problem 2 : Find the optimal stability radius

γ∗ := sup{γ > 0 | ∃ controller C ∈ Lw that stabilizes (8.4)
all P∆ ∈ B(P,γ)}.

8.3 A solution to the optimal robust stabilization problem

In this section we study and resolve Problem 1 and Problem 2 introduced in
section 8.2.

8.3.1 A solution to the robust stabilization problem

Let P ∈ Lw be controllable, and let it be represented in rational kernel
representation by

R( d
dt )w = 0,

where R is proper, stable, real rational, left prime over R(ξ)S and co-inner
(see Lemma 6.3.2). Clearly, R has full row rank, and its number of rows is
equal to p := p(P).

Recall (see Equation (8.2)) that for given γ > 0 we have defined the ball
B(P,γ) with radius γ around P as:

B(P,γ) := {P∆ ∈ Lw
cont | there exists a proper, stable, real rational

R∆ of full row rank such that P∆ = ker(R∆)
and ‖R−R∆‖∞ ≤ γ }.

Define the auxiliary system Paux ∈ Lw+v+w as

Paux := {(w,c,v) | R( d
dt )w + v = 0, c = w}. (8.5)
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Let R(ξ) = P−1(ξ)Q(ξ) be a left coprime factorization over R[ξ], with P
Hurwitz. Then by definition

Paux = {(w,c,v) | Q( d
dt )w + P ( d

dt )v = 0, c = w}. (8.6)

It is important to note that the projection (Paux)(w,v) of Paux onto the vari-
able (w,v) is represented by

(Paux)(w,v) = {(w,v) | Q( d
dt )w + P ( d

dt )v = 0}, (8.7)

and that (Paux)(w,v) is controllable (see Proposition 6.2.2, item 1.). Thus,
the orthogonal complement of this projection, (Paux)⊥(w,v), is well-defined,
and given in polynomial image representation by

[
w̃
ṽ

]
=

[
Q%(− d

dt )
P%(− d

dt )

]
(, (8.8)

(see section 7.2). Note that this image representation is observable. The
following theorem provides a solution to Problem 1:

Theorem 8.3.1. Let γ > 0. There exists a controller C ∈ Lw such that
P∆ ∩ C is a regular interconnection and stable for all P∆ ∈ B(P,γ) if and
only if (Paux)⊥(w,v) is strictly −Σ−1

γ -dissipative and has a negative definite
storage function.

This theorem follows immediately from the equivalence of items (1.) and
(4.) in the following lemma, Lemma 8.3.2, after applying Theorem 7.4.3 to
the system Paux. Indeed, Theorem 7.4.3 applies to Paux since the following
conditions are satisfied:

1. v is free in Paux since R is a full row rank rational matrix (see Propo-
sition 6.2.1),

2. (w,v) is detectable from c in Paux: if c = 0 then w = 0 and limt→∞ v(t) =
0 (use the fact that in Equation (8.6) P is Hurwitz), and

3. c is observable from (w,v) in Paux since, trivially, (w,v) = 0 implies
c = 0.

The following lemma formulates a behavioral version of the small gain the-
orem:

Lemma 8.3.2. Let Paux be the auxiliary system represented by Equation
(8.5). Let C ∈ Lw be represented in minimal polynomial kernel representation
by C( d

dt )c = 0. Let γ > 0. Then the following statements are equivalent:
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1. C is a stabilizing controller for P∆ for all P∆ ∈ B(P,γ), i.e., P∆ ∩ C is
a regular interconnection and stable for all P∆ ∈ B(P,γ).

2.
[

R∆

C

]
is square, nonsingular and has no zeros in C̄+ for all stable,

proper real rational R∆ of full row rank such that ‖R−R∆‖∞ ≤ γ.

3.
[

R
C

]
is square, nonsingular and has no zeros in C̄+, and the rational

matrix G :=
[

R
C

]−1 [
I
0

]
is proper and satisfies ‖G‖∞ < 1

γ .

4. C is a disturbance-free, stabilizing, regular and strictly 1
γ -contracting

controller for Paux.

In the remainder of this section we will establish a proof of Lemma 8.3.2

Proof: (1.) ⇔ (2.) Since P∆ is represented minimally by R∆( d
dt )w = 0

and C by C( d
dt )w = 0, the equivalence between statements (1.) and (2.)

immediately follows from Proposition 6.4.5.
(2.)⇔ (3.) Our proof of the equivalence of statements (2.) and (3.) hinges

on the following lemma, that has appeared in the literature in various forms:

Lemma 8.3.3. Let N be a real rational matrix, and let E and F be stable,
proper real rational matrices. Then the following statements are equivalent:

1. N + E∆F is square, nonsingular and has no zeros in C̄+ for all stable,
proper real rational ∆ such that ‖∆‖∞ ≤ γ.

2. N is square, nonsingular and has no zeros in C̄+, FN−1E is proper,
and ‖FN−1E‖∞ < 1

γ .

Proof: (1.) ⇒ (2.) The claims about N are immediate (consider the case
∆ = 0).

Thus, FN−1E is stable. To show ‖FN−1E‖∞ < 1
γ , on the contrary

assume that there exists a λ such that Re(λ) ≥ 0, and a complex vector v,
‖v‖ = 1 such that

‖F (λ)N−1(λ)E(λ)v‖ = γ̃ >
1
γ

. (8.9)

Define

w := F (λ)N−1(λ)E(λ)v. (8.10)
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Then Equation (8.9) implies w∗w − γ̃2 = 0 which, in turn, implies det(I −
w 1

γ̃2 w∗) = 0. Define a constant complex matrix

W := − 1
γ̃2

vw∗. (8.11)

Then we have det
(
I + F (λ)N−1(λ)E(λ)W

)
= 0. Thus we obtain

det
(
I + E(λ)WF (λ)N−1(λ)

)
= det

(
I + F (λ)N−1(λ)E(λ)W

)

= 0,

and therefore I+E(λ)WF (λ)N−1(λ) is singular. Post-multiplying with N(λ)
results in N(λ)+E(λ)WF (λ) being singular. Using an idea similar to Section
8.2 of Zhou [53], we can now construct a stable, proper real rational matrix
∆ such that ‖∆‖∞ > γ, and ∆(λ) = W . We omit the details here. For this
∆, N + E∆F has a zero in C̄+, which is a contradiction.

(2.)⇒ (1.) On the contrary, assume that there exists a stable, proper ∆
such that ‖∆‖∞ ≤ γ, and λ such that Re(λ) ≥ 0 such that

det (N(λ) + E(λ)∆(λ)F (λ)) = 0. (8.12)

Since N(λ) is nonsingular, equation (8.12) implies that

det
(
I + F (λ)N−1(λ)E(λ)∆(λ)

)
= det

(
I + E(λ)∆(λ)F (λ)N−1(λ)

)

= 0.

Therefore, there exists a complex vector w .= 0, such that
(
I + F (λ)N−1(λ)E(λ)∆(λ)

)
w = 0.

Define

v := ∆(λ)w.

Then we have

w = −F (λ)N−1(λ)E(λ)v.

As ‖FN−1E‖∞ < 1
γ , we have ‖w‖ < 1

γ ‖v‖. This contradicts the assumption
‖∆‖∞ ≤ γ which requires ‖w‖ ≥ 1

γ ‖v‖. !

Denote ∆ := R∆ −R. Then
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[
R∆

C

]
=

[
R
C

]
+

[
I
0

]
∆.

Obviously,
[

R∆

C

]
is square, nonsingular and has no zeros in C̄+ for all

R∆ such that ‖R − R∆‖∞ ≤ γ if and only if
[

R
C

]
+

[
I
0

]
∆ is square,

nonsingular and has no zeros in C̄+ for all ∆ such that ‖∆‖∞ ≤ γ. The
equivalence of (2.) and (3.) then follows from Lemma 8.3.3 by taking N =[

R
C

]
, E =

[
I
0

]
and F = I.

(3.) ⇔ (4.) Finally we will prove the equivalence of (3.) and (4.). By
Proposition 7.2.4, C is a disturbance-free, stabilizing, regular controller for

Paux if and only if




R 0
I −I
0 C



 is square, nonsingular and has no zeros in

C̄+, which in turn is equivalent with:
[

R
C

]
is square, nonsingular and has

no zeros in C̄+.

We also have that
[

R( d
dt )

C( d
dt )

]
w +

[
I
0

]
v = 0 is a minimal rational

kernel representation of (Paux ∧c C)(w,v), which then, by Proposition 7.2.7 is

strictly γ-contractive if and only if ‖
[

R
C

]−1 [
I
0

]
‖∞ < γ. This completes

the proof of Lemma 8.3.2. !

Remark 8.3.4. Given the nominal plant P ∈ Lw
cont with minimal kernel

representation R( d
dt )w = 0, with R proper, stable, real rational, left prime

over R(ξ)S and co-inner, and given γ > 0, a robustly stabilizing controller is
computed as follows:

1. Factorize: let R = −V W−1 be a right coprime factorization over R[ξ].
Then W is Hurwitz, and it can be shown that an observable image
representation of Paux is given by




w
v
c



 =




W ( d

dt )
−V ( d

dt )
W ( d

dt )



 (.

Note that c is free in Paux (use the fact that W has full row rank).

By carefully following the steps in Remark 7.4.12, we see that the next steps
are:
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2. Factorize F+W−1 = P−1
1 Q1, with P1 Hurwitz,

3. Define C := ker(Q1( d
dt )).

Then C is a stabilizing controller for all P∆ in the ball B(P,γ). Indeed, from
Remark 7.4.12, a required controller is given by

C := {c | ∃( ∈ C∞(R,Rl) such that c = W ( d
dt )(, P1( d

dt )F+( d
dt )( = 0},

but, by noting that P1F+ = Q1W , we see that, in fact, C = ker(Q1( d
dt )).

8.3.2 The optimal stability radius

Again, consider a nominal plant P ∈ Lw
cont. Let

R( d
dt )w = 0

be a minimal rational kernel representation of P, with R proper, stable, left
prime over R(ξ)S and co-inner. Let R = P−1Q be a left coprime factorization
over R[ξ]. Then by definition P = ker(Q( d

dt )). This implies that

w̃ = Q%(− d
dt )(

is an observable polynomial image representation of the orthogonal behavior
P⊥ (note that by controllability of P, Q(λ) must have full row rank for all
λ).

Consider P⊥, together with the supply rate ‖w̃‖2. Clearly, by the form of
this supply rate, P⊥ is strictly dissipative. We denote by QΨ−(() and QΨ+(()
its smallest and largest storage function, respectively. We have QΨ− ≤ 0 and
QΨ+ ≥ 0 (see Willems & Trentelman [49]). We compute the underlying
two-variable polynomials Ψ− and Ψ+ as follows.

Since the rational matrix R is co-inner, R(ξ)R%(−ξ) = I, we have

Q(ξ)Q%(−ξ) = P (ξ)P%(−ξ). (8.13)

Note that P%(−ξ) is anti-Hurwitz. Thus, Equation (8.13) displays an anti-
Hurwitz polynomial spectral factorization of Q(ξ)Q%(−ξ). Consequently, by
Proposition 7.3.1,

Ψ+(ζ,η) =
Q(−ζ)Q%(−η)− P (−ζ)P%(−η)

ζ + η
(8.14)

yields the largest storage function of P⊥ with respect to the supply rate
‖w̃‖2. Next, we compute Ψ−(ζ,η).
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Let

Q(ξ)Q%(−ξ) = H%(−ξ)H(ξ), (8.15)

be a Hurwitz polynomial spectral factorization. Then we have

Ψ−(ζ,η) =
Q(−ζ)Q%(−η)−H(ζ)H%(η)

ζ + η
, (8.16)

for the smallest storage function of P⊥ with respect to the supply rate ‖w̃‖2.
We will now formulate the main theorem of this section, which yields a

solution to Problem 2, the problem of optimal robust stabilization. Recall
Equation (8.4):

γ∗ := sup{γ > 0 | ∃ controller C ∈ Lw that stabilizes all (8.17)
P∆ ∈ B(P,γ)}.

In fact, our theorem gives the optimum γ∗ in terms of the coefficient matrices
of Ψ− and Ψ+:

Theorem 8.3.5. Let Ψ̃− and Ψ̃+ be the coefficient matrices of Ψ− and
Ψ+ given by (8.16) and (8.14), respectively. Let Ψ̃†

+ be the Moore-Penrose
inverse of Ψ̃+. Then we have λmax(Ψ̃−Ψ̃†

+) < 0 and

γ∗ =

√√√√ |λmax(Ψ̃−Ψ̃†
+)|

1 + |λmax(Ψ̃−Ψ̃†
+)|

. (8.18)

In particular, for γ > 0 the following holds: there exists C ∈ Lw such that
P∆ ∩ C is a regular interconnection and stable for all P∆ ∈ B(P,γ) if and
only if γ < γ∗.

In the remainder of this section we will establish a proof of Theorem 8.3.5.

Proof: Consider (Paux)⊥(w,v), which, as we already know, has an observ-
able polynomial image representation given by Equation (8.8), together with
the supply rate ‖w̃‖2 − γ2‖ṽ‖2, where γ > 0. Recall that this supply rate is
associated with the matrix −Σ−1

γ given by Equation (7.22). We now inves-
tigate strict −Σ−1

γ -dissipativity of (Paux)⊥(w,v).
It turns out that the smallest storage function of (Paux)⊥(w,v) as a −Σ−1

γ -
dissipative system can be expressed in terms of the smallest and largest
storage functions Ψ− and Ψ+ of P⊥ with respect to the supply rate ‖w̃‖2:
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Lemma 8.3.6. Let γ > 0. Then (Paux)⊥(w,v) is strictly −Σ−1
γ -dissipative if

and only if 0 < γ < 1. The smallest storage function of (Paux)⊥(w,v) as a
−Σ−1

γ -dissipative system is given by the two-variable polynomial matrix

Ψγ
− = (1− γ2)Ψ− + γ2Ψ+, (8.19)

where Ψ− and Ψ+ are given by (8.16) and (8.14), respectively.

Proof: Let γ ∈ (0,1) and δ := 1− γ2. Since

Q(iω)Q%(−iω) = P (iω)P%(−iω), (8.20)

we have

Q(iω)Q%(−iω)− γ2P (iω)P%(−iω) = δP (iω)P%(−iω)
= ε(P (iω)P%(−iω)

+Q(iω)Q%(−iω))

for all ω ∈ R, with ε := δ/2 > 0. This shows strict −Σ−1
γ -dissipativeness

of (Paux)⊥(w,v) (see section 7.3, condition (7.15)). In a similar way, it follows
from strict −Σ−1

γ -dissipativeness of (Paux)⊥(w,v) that γ < 1.
For all γ ∈ (0,1) it follows from Equations (8.13) and (8.15) that

Q(ξ)Q%(−ξ)− γ2P (ξ)P%(−ξ) = (1− γ2)H%(−ξ)H(ξ). (8.21)

Define

H ′(ξ) :=
√

1− γ2H(ξ). (8.22)

Then Equation (8.21) displays a Hurwitz polynomial spectral factorization,
with Hurwitz spectral factor H ′(ξ). The smallest storage function Ψγ

− of
(Paux)⊥(w,v) must therefore be given by

Ψγ
− =

Q(−ζ)Q%(−η)− γ2P (−ζ)P%(−η)− (1− γ2)H%(ζ)H(η)
ζ + η

= (1− γ2)
Q(−ζ)Q%(−η)−H%(ζ)H(η)

ζ + η

+ γ2 Q(−ζ)Q%(−η)− P (−ζ)P%(−η)
ζ + η

= (1− γ2)Ψ−(ζ,η) + γ2Ψ+(ζ,η).
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This completes the proof of the lemma. !

Now, according to Theorem 8.3.1, there exists C ∈ Lw such that P∆ ∩ C
is stable for all P∆ ∈ B(P,γ) if and only if (Paux)⊥(w,v) is strictly −Σ−1

γ -
dissipative and its smallest storage function Ψγ

− is negative definite. Using
Lemma 8.3.6, we will now establish necessary and sufficient conditions for
the smallest storage function Ψγ

− of (Paux)⊥(w,v) to be negative definite.
In order to proceed we need the following lemma.

Lemma 8.3.7. Let B ∈ Lw
cont be given in image representation by w =

M( d
dt )(, with M ∈ R[ξ]w×l. Then there exists a minimal state map x =

X( d
dt )( with X ∈ R[ξ]n(B)×l such that the coefficient matrix X̃ of X(ξ)

satisfies X̃X̃% = I.

Proof: Let x = X ′( d
dt )( yield a minimal state map. Then X ′ ∈ R[ξ]n(B)×l

and the rows of X ′ are linearly independent over R (see Rapisarda & Willems
[29]), and hence its coefficient matrix X̃ has full row rank. Thus, there exists
a square nonsingular real n(B) × n(B) matrix S such that X̃X̃% = SS%.
Define now a new polynomial matrix X ′(ξ) by X ′(ξ) := S−1X(ξ). Clearly
X̃ ′X̃ ′% = I and X ′( d

dt ) also defines a minimal state map for B, since S
merely represents a nonsingular state transformation. !

Let X(ξ) be a polynomial matrix such that, X( d
dt ) is a minimal state map

for P⊥ and such that its coefficient matrix X̃ satisfies X̃X̃% = I. It is easily
seen that X( d

dt ) is also a minimal state map for (Paux)⊥(w,v). Let n be the
number of rows of X. Now, there exist real symmetric n × n matrices K−
and K+ such that

Ψ−(ζ,η) = X%(ζ)K−X(η) (8.23)

and

Ψ+(ζ,η) = X%(ζ)K+X(η). (8.24)

Since, by inspection, P⊥ is strictly dissipative both on R− and on R+ with
respect to the supply rate ‖w̃‖2, it follows from Lemma 6 of Belur & Trentel-
man [3], that K− < 0 and K+ > 0. As a consequence, the smallest storage
function Ψγ

−(ζ,η) of (Paux)⊥(w,v) is induced by the two-variable polynomial
matrix

Ψγ
−(ζ,η) = X%(ζ)

(
(1− γ2)K− + γ2K+

)
X(η).
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Therefore, Ψγ
− yields a negative definite storage function for (Paux)⊥(w,v) if

and only if

(1− γ2)K− + γ2K+ < 0. (8.25)

The latter can be expressed equivalently in terms of the largest eigenvalue
of K−K−1

+ :

Lemma 8.3.8. Let 0 < γ < 1. Then we have: (1 − γ2)K− + γ2K+ < 0 if

and only if γ2 <
|λmax(K−K−1

+ )|
1+|λmax(K−K−1

+ )| .

Proof: First note that K− < 0 < K+. Thus all eigenvalues of K−K−1
+ are

real and λmax(K−K−1
+ ) < 0. The following equivalent statements hold:

(1− γ2)K− + γ2K+ < 0 ⇐⇒
(1− γ2)λmax(K−K−1

+ ) < −γ2 ⇐⇒
λmax(K−K−1

+ ) < −[1− λmax(K−K−1
+ )]γ2 ⇐⇒

γ2 <
λmax(K−K−1

+ )
λmax(K−K−1

+ )− 1
⇐⇒

γ2 <
|λmax(K−K−1

+ )|
1 + |λmax(K−K−1

+ )|
.

!

Finally, we will show that the nonzero eigenvalues of K−K−1
+ and Ψ̃−Ψ̃†

+

coincide. Again let X̃ be the coefficient matrix of the polynomial matrix X(ξ)

such that X̃X̃% = I. Choose Ỹ such that
[

X̃
Ỹ

]
is orthogonal (such a Ỹ

exists since X̃X̃% = I). Let Ψ̃− and Ψ̃+ be the coefficient matrices of Ψ−
and Ψ+ respectively. Then we have

Ψ̃− = X̃%K−X̃

=
[

X̃
Ỹ

]% [
K− 0
0 0

] [
X̃
Ỹ

]
, and

Ψ̃+ = X̃%K+X̃

=
[

X̃
Ỹ

]% [
K+ 0
0 0

] [
X̃
Ỹ

]
.

It can be easily verified that
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Ψ̃†
+ =

[
X̃
Ỹ

]% [
K−1

+ 0
0 0

] [
X̃
Ỹ

]
(8.26)

is the Moore-Penrose inverse of Ψ̃+. Also, we can compute

Ψ̃−Ψ̃†
+ =

[
X̃
Ỹ

]% [
K−K−1

+ 0
0 0

] [
X̃
Ỹ

]
. (8.27)

Thus, the nonzero eigenvalues of K−K−1
+ and Ψ̃−Ψ̃†

+ coincide. In particular
this implies

λmax(Ψ̃−Ψ̃†
+) = λmax(K−K−1

+ ). (8.28)

Thus, Ψγ
− yields a negative definite storage function for (Paux)⊥(w,v) if and

only if

γ <

√√√√ |λmax(Ψ̃−Ψ̃†
+)|

1 + |λmax(Ψ̃−Ψ̃†
+)|

. (8.29)

This completes the proof of Theorem 5.3.8. !

8.4 Example

In order to illustrate the result of Theorem 5.3.8, we now present a simple
worked-out example.

Example 8.4.1. Let P ∈ L2
cont, the nominal plant, be given by P = {w |

R( d
dt )w = 0}, where

R(ξ) =
[

1
ξ+1

ξ
ξ+1

]
. (8.30)

A left coprime factorization of R(ξ) is given by R(ξ) = P−1(ξ)Q(ξ),
where

P (ξ) = ξ + 1 (8.31)

and

Q(ξ) =
[

1 ξ
]
. (8.32)
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Then the system P⊥ is given by the rational image representation w̃ =
R%(− d

dt )( and the polynomial image representation

w̃ = Q%(− d
dt )(. (8.33)

As argued in section 8.3.2, P⊥ is strictly dissipative with respect to sup-
ply rate ‖w̃‖2. We have, Q(ξ)Q%(−ξ) = P (ξ)P%(−ξ), and, Q(ξ)Q%(−ξ) =
H%(−ξ)H(ξ) as anti-Hurwitz and Hurwitz polynomial spectral factorization
respectively, where H(ξ) = ξ +1. The largest and smallest storage functions
of P⊥, as ‖w̃‖2 dissipative system, are obtained by using Equations (8.14),
(8.16), (8.31) and (8.32), as follows:

Ψ+(ζ,η) =
Q(−ζ)Q%(−η)− P (−ζ)P%(−η)

ζ + η
= 1,

Ψ−(ζ,η) =
Q(−ζ)Q%(−η)−H(ζ)H%(η)

ζ + η
= −1.

From this we get Ψ̃+ = 1, Ψ̃− = −1, and, Ψ̃†
+ = 1.

Thus, by Theorem 5.3.8, there exists C ∈ L2 such that P∆ ∩ C is stable,
and P∆ ∩ C is a regular interconnection for all P∆ ∈ B(P,γ) if and only if
γ < γ∗, where

γ∗ =

√√√√ |λmax(Ψ̃−Ψ̃†
+|)

1 + |λmax(Ψ̃−Ψ̃†
+)|

=
√

1
2
.
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9 Conclusions

We devote this chapter to summarizing the results obtained in this thesis.
In this thesis we have dealt with control synthesis problems for design spec-
ifications like stabilization, tracking and regulation, H∞-control, and robust
stabilization in the behavioral framework.

In chapter 4 we have dealt with the issue of regular implementability
using controllers with pre-specified input/output structure. We have shown
that, for a desired behavior to be regularly implementable using controllers
in which a pre-specified subset of the plant interconnection variables is con-
strained to be free, it has to satisfy certain inequality conditions along with
the usual regular implementability condition. As one expects, these con-
ditions are in terms of the plant behavior, the desired behavior, and the
pre-specified desired partition of the plant control variables. We have ex-
tended these results to the case where we give an a priori input/output
structure on the controllers used to regularly implement the desired behav-
ior. These results have been extended to study the problem of stabilization
using controllers in which a pre-specified subset of the plant control variables
is constrained to be free in the controller, and the problem of stabilization
using controllers with a priori given input/output structure. For this, it has
been shown that the plant has to satisfy certain inequality conditions along
with the usual stabilizability and detectability conditions. These results have
been obtained for both the full and the partial interconnection case.

For the full interconnection case, it has been shown that stabilization
of the plant using controllers in which a pre-specified subset of the plant
interconnection variables is free (or coincides with the controller input) is
possible if and only if the plant is stabilizable and the cardinality of this
subset of variables does not exceed (or is equal to) the output cardinality of
the plant. In the partial interconnection case the inequality condition is more
complex in nature. Future research involves extending the results obtained in
this chapter to regular implementability and stabilization using controllers
in which a pre-specified subset of the plant interconnection variables is con-
strained to be part of the controller output.

In chapter 5 we have formulated and resolved the problem of asymptotic
tracking and regulation in a completely representation free manner. We have
used the theory of behavioral control for this purpose. Given a plant and
exosystem, we have established necessary and sufficient conditions for the



150 9 Conclusions

existence of a regulator only in terms of the plant behavior and exosystem
behavior. Further, we have given a behavioral version of the internal model
principle, which plays a pivotal role in the solution of the regulation problem.
Using this we have shown that, in order to achieve regulation, the plant
behavior must contain the behavior of the exosystem. Future research here
involves applying the representation free conditions obtained in this chapter
to obtain conditions for the existence of a regulator in case the plant is
represented by an input/state/output, output nulling, driving variable or
descriptor representation.

In chapter 6 we have reviewed the concept of rational representation for
behaviors. We have shown that any controllable behavior B ∈ Lw

cont with
system variable w can be represented by R( d

dt )w = 0 where R is a proper,
stable, left prime and co-inner real rational matrix. We have exploited this
property in the robust stabilization problem solved in chapter 8. Further,
we have discussed how characterizations of interconnection of systems in
rational representations differ from those in polynomial representations.

In chapter 7, after a brief review of quadratic differential forms (QDF’s),
dissipativity and storage functions, we have formulated theH∞-control prob-
lem in the behavioral framework. We have extended the behavioral H∞ con-
trol problem that was studied and resolved in Trentelman & Willems [41]
in a direction such that the results obtained are useful in solving the ro-
bust stabilization problem in chapter 8. In Trentelman & Willems [41], the
full information case was considered i.e., the case that the interconnection
variable determines the entire system variable uniquely, equivalently, the
disturbance and to-be-controlled variables are observable from the intercon-
nection variable. We have shown that the conditions for the solvability of
the H∞-control problem remain unchanged when we relax the observability
condition to detectability. We have also shown that the solvability conditions
remain unchanged when we impose regularity of the interconnection of the
plant and the controller achieving the H∞-control objective.

In chapter 8 we have formulated and resolved the problems of robust
stabilization and of finding the optimal stability radius in the context of be-
havioral control. In this context, controllers act on the plant using general
interconnection, without a priori input-output considerations. We have re-
stricted ourselves to the full interconnection case, where all variables can be
used for interconnection. We have shown that a controller robustly stabilizes
a given nominal plant if and only if it solves a particular H∞ synthesis prob-
lem. This generalizes the well-known input-output small gain argument to
the behavioral context. We have shown that a robustly stabilizing controller
exists if and only if a given orthogonal behavior associated with the nominal
plant is strictly dissipative and has a negative definite storage function. Fi-
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nally, we have expressed the optimal stability radius in terms of eigenvalues
associated with the extremal storage functions of the orthogonal comple-
ment of the nominal plant, and have shown that this optimal radius can be
computed using polynomial spectral factorization. A very urgent problem
for future research is to interpret the concept of ball around a nominal plant
introduced in this chapter in terms of the gap between the nominal plant
and the behaviors contained in the ball. Future research will also involve the
extension of the theory presented to the case that the nominal plant behavior
is given in rational image representation, or in output nulling or driving vari-
able representation. A very challenging problem is also the extension of the
results in this chapter to the case of partial interconnection, where only part
of the nominal plant system variable can be used for interconnection, thus
establishing an extension to the robust stabilization context of the results in
Belur & Trentelman [2].
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Summary

In this thesis we consider a number of control synthesis problems within
the behavioral approach to systems and control. In particular, we consider
the problem of regulation, the H∞ control problem, and the robust stabi-
lization problem. We also study the problems of regular implementability
and stabilization with constraints on the input/output structure of the ad-
missible controllers.

The systems in this thesis are assumed to be open dynamical systems
governed by linear constant coefficient ordinary differential equations. The
behavior of such system is the set of all solutions to the differential equa-
tions. Given a plant with its to-be-controlled variable and interconnection
variable, control of the plant is nothing but restricting the behavior of the
to-be-controlled plant variable to a desired subbehavior. This restriction is
brought about by interconnecting the plant with a controller (that we design)
through the plant interconnection variable. In the interconnected system the
plant interconnection variable has to obey the laws of both the plant and
the controller. The interconnected system is also called the controlled sys-
tem, in which the controller is an embedded subsystem. The interconnection
of the plant and the controller is said to be regular if the laws govern-
ing the interconnection variable are independent from the laws governing
the plant. We call a specification regularly implementable if there exists a
controller acting on the plant interconnection variable, such that, in the in-
terconnected system, the behavior of the to-be-controlled variable coincides
with the specification and the interconnection is regular.

Within the framework of regular interconnection we solve the control
problems listed in the first paragraph of this summary. Solvability conditions
for these problems are independent of the particular representations of the
plant and the desired behavior.

The problem of regular implementability with pre-specified in-
put/output structure is to find necessary and sufficient conditions for a
specification to be regularly implementable using a controller in which an a
priori given subset of the plant interconnection variables is free or coincides
with the controller input, respectively. This problem is solvable if and only if
the specification satisfies certain inequality conditions along with the usual
regular implementability conditions. For the full interconnection case, stabi-
lization of the plant using controllers in which a pre-specified subset of the
plant interconnection variables is free (or coincides with the controller input)
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is possible if and only if the plant is stabilizable and the cardinality of this
subset of variables does not exceed (or is equal to) the output cardinality
of the plant. In the partial interconnection case the inequality condition is
more complex in nature.

Given a plant behavior P with its to-be-regulated variable, its intercon-
nection variable and a disturbance variable assumed to be free in the plant,
together with an exosystem E generating the disturbance signal, the problem
of regulation is to find a controller such that in the interconnected system
of the plant and the controller a) the disturbance variable remains free b)
the to-be-regulated variable and the interconnection variable tend to zero
when the disturbance is equal to zero, and in the interconnected system of
the plant, the exosystem and the controller c) the to-be-regulated variable
tends to zero regardless of the particular disturbance acting on the plant.
This problem is solvable if and only if 1) the to-be-regulated variable and
the disturbance variable, together, are detectable from the interconnection
variable in the interconnected system of the plant and the exosystem, 2) the
behavior obtained by projecting P onto its to-be-regulated variable and its
interconnection variable after putting the disturbance variable to zero is sta-
bilizable, and 3) there exists a differential map from the disturbance variable
function space to the interconnection variable function space such that when
the to-be-regulated variable is zero, using this map the plant interconnection
variable is constructible from the disturbance generated by the exosystem.

Given a plant behavior P with its to-be-controlled variable, intercon-
nection variable, disturbance variable assumed to be free in the plant, and
a given tolerance, the problem of H∞ control is to design a controller, such
that, in the interconnected system, a) the disturbance variable remains free
b) the to-be-controlled variable tends to zero when the disturbance is equal
to zero, and c) the magnitude of the to-be-controlled variable is bounded
by the product of the tolerance and magnitude of the disturbance variable
whatever the disturbance that occurs, provided of course the disturbance is
bounded in magnitude. This problem is solvable if and only if the orthog-
onal complement of projected plant behavior onto the to-be-controlled and
the disturbance variables is strictly dissipative and has a negative definite
storage function.

Given a nominal plant, together with a fixed neighborhood of this plant,
the problem of robust stabilization is to find a controller that stabilizes all
plants in that neighborhood. This problem is solvable if and only if a given
orthogonal behavior associated with the nominal plant is strictly dissipative
and has a negative definite storage function. The optimal radius of the neigh-
borhood for which the robust stabilization problem is solvable depends upon
eigenvalues associated with the extremal storage functions of the orthogonal
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complement of the nominal plant, and this optimal radius can be computed
using polynomial spectral factorization.
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Samenvatting

In dit proefschrift worden een aantal regeltheoretische problemen
bestudeerd binnen de zogenaamde ’behavioristische benadering’ van de
systeem- en regeltheorie. In deze benadering vormt niet het stelsel
differentiaal- of differentievergelijkingen dat het systeem beschrijft de kern
van het wiskundig model, maar wordt in plaats daarvan de verzameling van
alle oplossingen van dit stelsel vergelijkingen als de crux van het model
beschouwd. Dit de basisfilosofie van de zogenaamde behavioristische be-
nadering (the behavioral approach) van de systeem en regeltheorie. In de
behavioristische aanpak kunnen we op natuurlijke wijze regelproblemen for-
muleren waarin regelaars niet noodzakelijkerwijs feedback regelaars zijn,
maar waarin de regelaars door algemene interconnecties gekoppeld kunnen
zijn aan het te regelen systeem. Binnen deze aanpak spelen de begrippen
input en output niet langer een centrale rol, en worden de systeemvariabelen
in principe gelijkwaardig behandeld.

Binnen dit kader worden in dit proefschrift een aantal ontwerpproblemen
geformuleerd en opgelost. Na een uitgebreide introductie van de behavior-
istische aanpak in de eerste drie hoofdstukken, wordt in hoofdstuk 4 het
implementatie-probleem bestudeerd. Gegeven een te regelen systeem en een
gewenst systeem-behavior, bestuderen we de vraag of dit gegeven behavior
verkregen kan worden door reguliere interconnectie met een regelaar. Indien
dit mogelijk is heet het gewenste behavior regulier ’implementeerbaar’. In dit
hoofdstuk breiden we de bestaande theorie rond dit probleem uit door extra
eisen te stellen op de toegelaten regelaars: er is van te voren een partitie van
de interconnectie-variabelen gegeven in twee groepen van componenten, en
we eisen dat de eerste groep van componenten ’vrij’ blijft in de regelaar, of
zelfs samenvalt met de input van de regelaar. We bestuderen in dit kader ook
het stabilisatie-probleem, en breiden ook hier reeds bestaande resultaten uit
tot klasses van regelaars met a priori gegeven partitie van de interconnectie-
variabelen.

In hoofdstuk 5 introduceren we de behavioristische versie van het
klassieke regelprobleem van tracking en regulatie. In de klassieke versie van
dit probleem wordt altijd gezocht naar feedback-regelaars. In dit proefschrift
laten we algemene interconnecties toe. We formuleren het regelprobleem
volkomen ’behavioristisch’, in de zin dat zowel het te regelen systeem als
het autonome exosysteem gegeven zijn als behaviors, en dat de bijbehorende
differentiaalvergelijkingen en transfer matrices geen enkele rol spelen in de
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formulering van het probleem en in de formulering van nodige en voldoende
voorwaarden voor het bestaan van regulateurs. Dit heeft als voordeel dat
de resultaten breed toepasbaar zijn op alle mogelijke representaties van het
te regelen systeem en het exosysteem. Een belangrijke rol wordt gespeeld
door het zogenaamde ’interne modelprincipe’. In de behaviorische benader-
ing kan dit principe geformuleerd worden als de eis dat het behavior van het
exosysteem bevat is in het behavior van het te regelen systeem.

Hoofdstuk 6 gaat over rationale representaties van systemen. Het mate-
riaal in dit hoofdstuk wordt in hoofdstuk 8 gebruikt om de behavioristische
versie van het probleem van optimale robuuste stabilisatie te introduceren.
Het probleem is hier om voor een gegeven te regelen systeem, en een ’bol’ om
dit systeem met een gegeven straal, een regelaar te ontwerpen die niet alleen
het systeem zelf, maar ook alle systemen die bevat zijn in de gegeven bol
stabiliseert. Een dergelijke regelaar heet een robuuste regelaar. Nieuw in dit
proefschrift is dat we dit probleem oplossen voor algemene reguliere inter-
connectie, in plaats van feedback interconnectie. We lossen ook het optimale
robuuste stabilisatieprobleem op: we bepalen de maximale straal van de bol
rond het systeem waarvoor een stabiliserende regelaar bestaat. Het nieuwe
is dat we gebruik maken van dissipativiteitstheorie, en dat we de optimale
straal uitdrukken in termen van opslagfuncties van de systemen. Om tot een
oplossing van het robuuste stabilisatieprobleem te komen gebruiken we de
behavioristische versie van het klassieke H∞ regelprobleem. Dit probleem
wordt uitgebreid behandeld in hoofdstuk 7 van dit proefschrift.
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γ-contractive, 113
— strictly γ-contractive, 113

band pass filter, 13
behavior, 10
— anti-stable, 24
— autonomous, 23
— controllable, 22
— — orthogonal complement, 114
— controllable part, 25
— inclusion, 14
— input cardinality, 29
— manifest behavior, 16
— McMillan degree, 27
— output cardinality, 29
— polynomial annihilator, 102
— projection, 16
— proper stable rational annihilator,

102
— stabilizable, 22
— stable, 24
— sum, 19
— unstable, 24
Bohl function, 24
— anti-stable, 24
— stable, 24

concatenation, 26
coprime, 6

detectable, 21
dissipation inequality, 117
dissipative, 116
— Σ-dissipative, 118
— strictly Σ-dissipative, 118
— strictly dissipative, 116
dynamical system, 10

elimination theorem, 16

free, 29
free-disturbance controller, 69

— stabilizing, 69, 111
full controlled behavior, 36

hidden behavior, 37
Hurwitz, 6
— anti-Hurwitz, 6

image representation, 22
— observable image representation, 22
implementable, 35
— by full interconnection, 36
— by partial interconnection, 37
input-output partition, 29
interconnection, 31
— full, 32
— partial, 32
— regular, 32

kernel representation, 11
— equivalent representations, 13
— minimal representation, 12

latent variables, 15
left coprime factorization, 99
linear, 10
linear differential systems, 11

manifest variables, 15
maximally free, 29
monic polynomial, 6
Moore-Penrose inverse, 5, 139, 143

nominal system, 130

observable, 20
optimal stability radius, 133

quadratic differential form (QDF), 115
— non-negative, 115

real polynomial matrices, 6
— coefficient matrix, 7
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real rational matrices, 6
— co-inner, 7
— left prime, 7
— minimum phase, 7
— poles, 7
— stable, 7
— zeros, 7
regularly implementable, 37
— by full interconnection, 38
— by partial interconnection, 39
regulator, 71
robustly stabilizing controller, 130

signal space, 10
single tank system, 46
small gain theorem, 134
Smith form, 6
Smith-McMillan form, 6
stabilizing controller, 43
state system, 26
state trim, 28
storage function, 117
— negative definite, 118
— positive definite, 118
strictly γ-contracting controller, 114
superposition principle, 10

time axis, 10
time-invariant, 10
two-variable polynomial matrix, 115
— symmetric, 115
— — coefficient matrix, 115

unimodular, 6
universum, 10


