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Abstract— In this paper the problem of optimizing the output
regulation of an underactuated LPV system is considered.
When the system is underactuated, only a subset of the outputs
can be arbitrarily controlled, and the remaining ones are
constrained. Having identified a special class of LPV systems
admitting steady-states, the problem of finding the input that
minimizes a cost function of the overall output tracking error
has been investigated. Moreover, it has been shown how such
solution is related to the inputs associated to the singularly
optimal regulation of each output.

I. INTRODUCTION

Redundancy is a key feature in a control system, as
it provides additional degrees of freedom in the usage of
available devices, e.g. actuators, effectors and sensors [17].
In [31], input redundant linear systems (described as a
matrix quadruple {A,B,C,D}) are classified as strongly
redundant if the columns of matrix [B′ D′]′ are not all
linearly independent (which is equivalent to say that at least
one of the inputs can always be exactly replaced by a
suitable combination of the remaining inputs), and weakly
redundant otherwise. There are several ways to take advan-
tage of strong redundancy: among others, well established
setups are optimization of system performances [30] [11],
compensation for saturations and other input limitations [3]
[15], and fault tolerance [4] [8]. Conversely, in the context
of weak redundancy, the great majority of results aims at
using the additional degrees of freedom in the selection of
the control law to optimize the actuator states while keeping
the same output performances [13], [28], [7], [12], [20], [32].
The results reported in this paper fit instead the dual problem
of output redundancy or dual redundancy, that is the opposite
setup where a redundant number of outputs is present. In
this regard, we have also two different notions of dual re-
dundancy. A plant is referred to as strongly output redundant
when the output matrix C is not full rank, this corresponding
to a system equipped with a surplus of sensors. We will
instead refer to a plant as weakly output redundant when
the number of outputs is larger than the number of inputs,
namely m = rank(B) < rank(C) = p.
Strong dual redundancy can be exploited to enhance anti-
windup schemes for output saturated closed loops [27] by
enlarging stability regions and reducing the compensation
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load; moreover, strong redundancy is an useful tool for
accommodating sensor faults, and therefore it is a setup that
can be successfully adopted to improve safety and reliability
of systems for many applications such as dynamic position-
ing of ships [24]. Another possible way to take advantage
of a strongly redundant output setting is to consider the
problem of optimizing the output injected signal for an
observer [9]. Weak dual redundancy is a typical characteristic
of under-actuated systems. Classical examples of under-
actuated mechanical systems can found in the framework
of underwater robotics, such as ROVs and AUVs [10] [19].
It is well known that, in the presence of a under-actuated
system, the overall control action is in general insufficient
to shape, simultaneously and independently, the response of
all the outputs. On the other hand giving priority to one
output might severely penalize the performance of the others,
and the magnitude of such penalization depends on many
different factors, such as given output references, functional
controllability space structure, and system dimension. For
single input linear plants with constant references, a system-
atic method to optimize the overall output tracking error has
been proposed in [5] and then extended in [6] for the case of
periodic and quasiperiodic references. A simple framework
is weighting uniformly the error of each output, i.e. seeking
for the control input the minimizes the norm of the tracking
error. However, other solutions are possible, corresponding
to different priorities in the outputs; this can be naturally
addressed by introducing more general cost functions.
The aim of this paper is to apply the same ideas to the
more challenging context of linear parameter varying (LPV)
systems. LPV systems are a formalism which is established
as a standard for gain-scheduling analysis and controller
synthesis [29]. Many nonlinear systems can be converted into
a quasi-LPV form by embedding the nonlinearities within
appropriate varying parameters [18] (quasi refers to the de-
pendence of the varying parameters on endogenous signals,
i.e. the state and/or the input [22]), such that their control
can be performed using an extension of linear techniques
[1]. The LPV framework has been applied successfully in
many applications, e.g. [25], [26], and has been validated by
several experiments and high-fidelity simulations [16].
The outline of the paper is as follows. The formal problem
statement is given in Section II, while in Section III a class
of LPV systems admitting steady-states is analyzed. Input
design for the optimal output regulation of such class of LPV
systems is proposed in Section IV . Section V presents some
remarks on the existence of neutral reference spaces, i.e. sets
of references with the same optimal input. The superposition
of the optimized input with an error feedback controller is
investigated in Section VI. Finally, in Section VII, numerical
simulations illustrate the application of the proposed results.
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II. STATEMENT OF THE PROBLEM

Let Σ(θ) = (A(θ), b(θ), C(θ)) be a (tall) LPV system with
A(θ) ∈ Rn×n, b(θ) ∈ Rn×1 and C(θ) ∈ Rp×n, n ≥ p > 1

ẋ(t) = A(θ(t))x(t) + b(θ(t))u(t)
y(t) = C(θ(t))x(t)

(1)

The vector θ ∈ Rz , z ≥ 1, represents varying parameters,
and can take values in a closed and bounded set Θ ⊂ Rz .

The vector y(t) = [y1(t) y2(t) . . . yp(t)]
T ∈ C(R,Rp) is

the output of the system under the input u(t), which it is
assumed to belong to the set of piecewise continuous and
bounded functions U .

It is assumed that the origin is an exponentially stable
equilibrium state for arbitrary time variations of the varying
parameter θ(t) when u(t) = 0, i.e. there exists a Lyapunov
function of the form

V (x(t), θ(t)) = x(t)TP (x(t), θ(t))x(t) (2)

with the property that P (x(t), θ(t))
T

= P (x(t), θ(t)) =
P (ςx(t), θ(t)) > 0, ∀θ ∈ Θ, ∀x ∈ Rn, ∀ς > 0 [21]. Notice
that the Lyapunov condition V̇ (x(t), θ(t)) < 0 for (2) reads:

A(θ)TP (x, θ) + P (x, θ)A(θ) + Ṗ (x, θ) < 0 (3)

Let r(t) = [r1, . . . , rp]
T ∈ Rp be a constant reference

vector and let denote with e(t) = y(t)− r the tracking error
vector. Suppose to have as objective the regulation of the
outputs in order to reach the constant set points r. This can
be formulated formally as the following control problem.

Output Tracking Problem: Find an input u ∈ U
that guarantees the fulfillment of the following asymptotic
condition

lim
t→∞

e(t) = 0 ∈ Rp

Since the plant Σ(θ) in (1) is under-actuated, the existence
of a control u(t) that leads e(t)→ 0 is not granted and can
not be expected in general, even for frozen values of θ, i.e.
LTI (Linear Time Invariant) systems. For this reason, we are
interested in investigating the following relaxed problem.

Relaxed Output Tracking Problem: Let ‖·‖ : Rp →
R be a norm in the output space Rp. Given an under-
actuated single-input LPV system as in (1), find u ∈ U that
minimizes the steady-state tracking error, i.e. that minimizes
the following functional

J(u, r) = lim
t→∞

‖e(t)‖ (4)

For LPV systems, the fulfilment of a constant steady
output

lim
t→∞

y(t) = y∞ 6= 0

is not granted in general. Our purpose is to characterize a
special subset of LPV systems that admits a reachable space
of asymptotically stable outputs. Given this conditions on
the LPV system, we will search the solution of the relaxed
output tracking problem in the space of solutions that will
lead to constant stable outputs.

III. STEADY STATE CHARACTERIZATION

A. Non-unique solution of the relaxed tracking problem
The asymptotic nature of the functional and the stability

of the system lead to a non-unique minimum of (4). Indeed,
the following proposition holds.

Proposition 1: Define the following subset of U

U0 =

{
u ∈ Us.t. lim

t→+∞
u(t) = 0

}
(5)

Given u1, u2 ∈ U , let y1(t), y2(t) be the corresponding
outputs for the system (1). If u1(t) − u2(t) ∈ U0, then
y1(t)→ y2(t).

Proof: See Property 4 in [23].
As a consequence the hypothetical optimal solution u∗ ∈

U is not unique. Indeed, suppose that ∃u∗ ∈ U such that
J(u∗) is the minimum reachable value. Then, for every ū =
u∗+u′, with u′ ∈ U0, u′ 6= 0, J(ū) = J(u∗) despite ū 6= u∗.
To overcome this issue, let us define the equivalence relation

u1 ∼ u2 ⇐⇒ u1 − u2 ∈ U0 (6)

its relative quotient set

Ũ = U/ ∼ (7)

and let us denote the distinct elements of Ũ with ũ. Due
to Proposition 1, every two inputs u1, u2 ∈ U with u1 ∼
u2 drive asymptotically the system to the same trajectory.
Accordingly, if for a given u ∈ U the value of (4) is well-
defined, then it is so ∀v ∈ U with v ∼ u. In this regard,
as this paper concerns the minimization of the asymptotic
tracking error (4), one can restricted the focus on the
functional J(ũ, r) evaluated on the class of equivalent inputs
ũ ∈ Ũ . Moreover, 0̃ will denote the null element of Ũ .

B. Existence of Equilibrium States
For a general LPV system as in (1), the value of (4) is not

well-defined for every ũ 6= 0̃. In the following, a special class
of LPV systems that admit a non-zero control ũ ∈ Ũ with a
well-defined finite value of J(ũ, r) will be characterized.

Definition 1: Ũy∞ ⊂ Ũ is the set of inputs that lead to a
stable steady output y∞

Ũy∞ =
{
ũ ∈ Ũ : ∃ lim

t→∞
y(t) = y∞ ∈ Rp

}
⊂ Ũ (8)

By definition, if ũ ∈ Ũy∞, a well defined value of (4) is
granted for every reference vector r ∈ Rp and for every
norm function ‖·‖ : Rp → R, such that an optimal input (in
the sense of minimizing (4)) can be searched in Ũy∞. Even
though Ũy∞ = Ũ0 for most LPV systems, some sufficient
conditions for an LPV system as in (1) to have a non-trivial
set Ũy∞ 6= Ũ0 can be found.

If the LPV system in (1) has a constant output matrix
C(θ) = C, then the existence of an equilibrium state x∞ will
guarantee the existence of an equilibrium output y∞ = Cx∞.
Hence, sufficient conditions for the existence of equilibrium
states x∞ different from the origin can be found.

Definition 2: An under-actuated LPV system is Steady
Stable if

Ũx∞ =
{
ũ ∈ Ũ : ∃ lim

t→∞
x(t) = x∞ ∈ Rn

}
6= Ũ0 (9)



In other words, an LPV system is Steady Stable if there
exists an input function ũ 6= 0̃ that leads to a stable steady
state. A stable steady state has to be an equilibrium state
under the input ũ, so the next theorem provides sufficient
conditions for the existence of equilibrium states different
from the origin.

Theorem 1: Let Σ(θ) = (A(θ), b(θ), C(θ)) be an expo-
nentially stable1 single-input under-actuated LPV system. If
∃k ∈ Rn, k 6= 0 and a continuous function φ : Θ→ R such
that

−A(θ)−1b(θ) = kφ(θ) ∀θ ∈ Θ (10)

then there exist functions u(θ) such that x∞ = αk, α ∈ R,
are equilibrium states, i.e.

A(θ)x∞ + b(θ)u(θ) = 0 ∀θ ∈ Θ (11)
Proof: By choosing

x∞ = αk = −A(θ)−1b(θ)
α

φ(θ)

and u(θ) =
α

φ(θ)
, the following is obtained

A(θ)x∞ + b(θ)u(θ) =

= −A(θ)A(θ)−1b(θ) α
φ(θ) + b(θ) α

φ(θ) = 0

Notice that all the possible equilibrium states lie on a line
in Rn. This fact provides a geometric interpretation of the
vector k, which is the direction of this line.

Remark 1: In Theorem 1, the function φ(θ) can be chosen
such that φ(θ) > 0 ∀θ ∈ Θ. Indeed, if ∃θ̄ ∈ Θ such that
φ(θ̄) = 0, then x∞ = kφ(θ̄) = 0 and k can be chosen as
k = 0 ∈ Rp, therefore obtaining φ(θ) ≡ 1. On the other
hand, if ∃θ̄ ∈ Θ such that φ(θ) < 0, then x∞ = kφ(θ̄) =
−k(−φ(θ̄)). Choosing k̄ = −k ∈ Rp and φ̄(θ) = −φ(θ), a
new pair (k̄, φ̄) is obtained such that (10) holds and φ̄(θ) >
0 ∀θ ∈ Θ.

C. Reachability and Stability of the Equilibrium States
Theorem 1 provides sufficient conditions for the existence

of equilibrium states x∞. Hereafter, the exponential stability
of these states is derived from the exponential stability of
the origin for u(t) = 0.

Theorem 2: Suppose that ∃k ∈ Rn and a real function φ :
Θ→ R such that (10) holds. If the origin is an exponentially
stable equilibrium state for the LPV system (1) with u(t) =
0, then all the equilibrium states x∞ = αk are exponentially
stable with the inputs u(θ) = αφ(θ)−1.

Proof: Consider the Lyapunov function

Ψ(x, θ) = (x− αk)
T
P (x, θ) (x− αk) (12)

for which the derivative is given by

Ψ̇(x, u, θ) = 2 (x− αk)
T
P (x, θ) (A(θ)x+ b(θ)u) (13)

+ (x− αk)
T
Ṗ (x, θ) (x− αk)

From the hypothesis, it follows that

u =
α

φ(θ)
=⇒ αk = −A(θ)−1b(θ)u(θ)

1The stability of Σ(θ) assures the invertibility of the state matrix A(θ).

which means that (13) can be rewritten as

Ψ̇(x,u, θ) = 2 (x− αk)
T
P (x, θ)A(θ)

(
x+A(θ)−1b(θ)u(θ)

)
+ (x− αk)

T
Ṗ (x, θ) (x− αk)

= 2 (x− αk)
T
P (x, θ)A(θ) (x− αk)

+ (x− αk)
T
Ṗ (x, θ) (x− αk)

= (x− αk)
T (
A(θ)TP (x, θ) + P (x, θ)A(θ) · · ·

· · ·+ Ṗ (x, θ)
)

(x− αk) (14)

Hence, from (3), it follows that Ψ̇(x, u, θ) < 0∀x 6= αk,
which implies that the states x∞ = αk are exponentially
stable for the inputs u = αφ(θ)−1.

As consequence, using Theorem 1 and Theorem 2, if (3)
and (10) hold, the LPV system Σ(θ) = (A(θ), b(θ), C(θ))
is Steady Stable. Moreover, let us consider an LPV system
Σ(θ) = (A(θ), b(θ), C) where the output matrix does not
depend on the varying parameter θ. In this case a steady
state x∞ leads to a steady output y∞, hence Ũx∞ ⊂ Ũy∞, so
Ũx∞ 6= Ũ0 implies Ũy∞ 6= Ũ0. The next corollary summarizes
all the previous results.

Corollary 1: Let Σ(θ) = (A(θ), b(θ), C) be an under-
actuated single input LPV system.
If
• ∃k ∈ Rn, k 6= 0 and a continuous function φ : Θ→ R

such that (10) holds
• ∃P (x, θ) = P (x, θ)T ∈ Rn×n such that ∀θ ∈ Θ, ∀x ∈

Rn, ∀ς > 0 P (x, θ) = P (ςx, θ) and (3) holds
then

Ũy∞ 6= Ũ0. (15)

IV. OPTIMAL INPUT SYNTHESIS

In this section, the input ũ ∈ Ũ that minimizes (4) is
found for different norm functions ‖·‖ : Rp → R. The two
hypothesis of Corollary 1 are assumed to be satisfied, such
that the optimal input can be found in Ũy∞ 6= Ũ0. Let us
define

w = Ck ∈ Rp, (16)

which is the direction of all the possible equilibrium outputs.

A. Euclidean Distance
Theorem 3: Let Σ(θ) = (A(θ), b(θ), C) be an under-

actuated LPV system such that (3) and (10) hold, and let
us consider the norm function

J(u) = lim
t→∞

1

2
e(t)T e(t) (17)

If w = Ck 6= 0 ∈ Rp, then the input

u∗(θ) =
1

φ(θ)

wT

wTw
r (18)

is a minimum for (17).
Proof: A consequence of Theorem 1 is that the reach-

able stable outputs of the system are given by

y∞ = Cαk = αw

The functional in (17) can be written as a function of α

J(u) = J(α) =
1

2
(αw − r)T (αw − r) (19)



Deriving with respect to α and setting the derivative equal
to zero, the following is obtained

α =
wT

wTw
r

So the optimum input is given by (18).
Remark 2: If α = w−1i ri, then

ui =
w−1i ri
φ(θ)

(20)

and, consequently, yi(t) → αwi = ri. Hence, the different
ui, i = 1, . . . , p, are the inputs that ensure, respectively,
yi(t)→ ri. Let

λi =
w2
i

wTw
∈ [0, 1] (21)

then

u∗(θ) =
1

φ(θ)

wT r

wTw
=

p∑
i=1

1

φ(θ)

w2
i

wTw
w−1i ri =

p∑
i=1

λiu
i

(22)
Moreover, it is straightforward to verify that

∑p
i=1 λi = 1.,

which means that (18) can be seen as a convex combination
of the different inputs ui.

B. Weighted Euclidean Distance
A simple norm that allows to assign different priorities is

a weighted Euclidean squared norm. Let

Γ = diag(γ1, . . . , γp) γi ≥ 0 ∀i = 1, . . . , p (23)

be the weighting matrix. In this case, the error function to
minimize is the quadratic expression

J(u) = lim
t→∞

e(t)TΓe(t) (24)

The optimal solution u∗ can be obtained with the same
procedure as for the standard Euclidean squared norm. The
solution u∗ is

u∗ =
1

φ(θ)

wTΓr

wTΓw
. (25)

and it can be viewed as a convex combination of the different
ui given by (20), with coefficients

λi =
w2
i γi

wTΓw
(26)

C. Geometric Interpretation
For a Steady Stable LPV system with C(θ) = C, a useful

geometric interpretation of the solution can be achieved.
In this case, the reachable steady states can be written as

x∞ = αk. As consequence, the reachable steady outputs are

y∞ = αCk = αw (27)

which is a line in Rp (see Fig. 1).
Moreover, in the case of squared euclidean distance norm

(17), the optimal input (18) leads to the optimal output

y∗∞ =
wT r

wTw
w (28)

that is the projection of the reference vector r on the line
y∞ = αw, as shown in Fig. 1.

A similar interpretation can be given in the case of
weighted euclidean distance (24).

(r1, r2)

(ȳ1, ȳ2)

y = αw

y1

y2

Fig. 1. A geometric representation of the solution for p = 2

V. NEUTRAL REFERENCE SPACES

The geometric interpretation of the solution y∗∞ suggest
the existence of sets of reference vectors characterized by
the same optimum output. Indeed, we can expect that all
the reference vectors with the same projection on the line
y = αw share the same optimal input.

More rigorously, let Σ(θ) = (A(θ), b(θ), C) be a Steady
Stable LPV system and J(u) as in (4) a given cost function.
Let us denote with SJ : Rp → Ũ the mapping that associate
to a given reference vector the corresponding optimal input
for the cost function J(ũ, r). In the case of squared euclidean
distance and weighted euclidean distance, SJ(r) is given by
(18) and (25), respectively. Let us define the neutral space
of a given r̄ as

NJ(r̄) = {r ∈ Rp : SJ(r) = SJ(r̄)} (29)

In the case of weighted euclidean norm function, a char-
acterization of NJ(r̄) can be given as follows.

Proposition 2: When the functional J(u) is given by (24),
the structure of the neutral space is independent of the chosen
r. Moreover, it is a p − 1 dimensional linear subspace,
coinciding with a translation of the left null space of the
matrix Γw:

NJ(r) = r +NJ(0) = r + ker(wTΓ).

Proof: Fix r ∈ Rp, choose arbitrarily $ ∈ ker(WTΓ)
and set ρ = r + $. Then, using the expression (25), it is
straightforward to verify that

SJ(r) =
1

φ(θ)

wTΓr

wTΓw
=

1

φ(θ)

wTΓ(r +$)

wTΓw
= SJ(ρ).

VI. DESIGN OF THE ERROR-FEEDBACK CONTROLLER

As explained in the previous sections, given ũ ∈ Ũ that
provides a well-defined value of J(ũ, r), it is possible to add
any element of u′ ∈ U0 and still obtain the same value J(ũ+
u′, r) = J(ũ, r). This fact can be exploited for designing
an error-feedback controller, which will allow guaranteeing
some transient specifications, e.g. convergence of the state



trajectory to the steady state with a desired decay ratio. More
specifically, let us consider the input u(t) as follows

u =
α

φ(θ)
+K(θ)(x− αk) (30)

Then, the dynamics of ex(t) = x(t)− αk will obey

ėx(t) = A(θ)x+ b(θ)
α

φ(θ)
+ b(θ)K(θ)ex (31)

which, by considering the Lyapunov function (12), leads to

Ψ̇(x, θ) = eTx

(
A(θ)TP (x, θ) + P (x, θ)A(θ) + Ṗ (x, θ) + . . .

. . . K(θ)T b(θ)TP (x, θ) + P (x, θ)b(θ)K(θ)
)
ex

(32)

In order to guarantee a decay ratio α, the following must
be ensured Ψ̇(x, θ) < αΨ(x, θ) which, taking into account
(32), means

A(θ)TP (x, θ) + P (x, θ)A(θ) + Ṗ (x, θ)− αP (x, θ)

+K(θ)T b(θ)TP (x, θ) + P (x, θ)b(θ)K(θ) < 0 (33)

If both P (x, θ) and K(θ) are unknown, the condition (33)
represents an infinite number of bilinear matrix inequalities
(BMIs). In order to convert (33) into a more easily tractable
linear matrix inequality (LMI) form, let us consider the dual
form obtained by pre- and post-multiplying it by Q(x, θ) =
P (x, θ)−1 [14] and, for the sake of simplicity, let us consider
P (x, θ) = P , i.e. Q(x, θ) = Q [2], thus obtaining

QA(θ)T +A(θ)Q− αQ+QK(θ)T b(θ)T + b(θ)K(θ)Q < 0
(34)

which, using the auxiliary variable Γ(θ) = K(θ)Q converts
into

QA(θ)T +A(θ)Q− αQ+ ΓK(θ)T b(θ)T + b(θ)Γ(θ) < 0
(35)

Then, (35) can be brought to an equivalent finite set
of LMIs either by considering a gridding approach or a
polytopic representation for A(θ) [16], in which case b(θ)
needs to be a constant vector. Once the solution has been
found, the controller gain can be easily recovered as K(θ) =
Γ(θ)Q−1.

VII. NUMERICAL SIMULATIONS

Let us consider the plant Σ(θ) = (A(θ), b(θ), C) with

A(θ) = −
[
3θ 2θ2

θ θ2

]
, b(θ) =

[
3 + 14θ
1 + 7θ

]
,

C = I2×2, Θ =
[
1
2 ,

7
2

]
It can be proved that the positive definite matrix

P =

[
3.750 −6.250
−6.250 17.500

]
fulfills the Lyapunov equation

A(θ)TP + PA(θ) < 0 ∀θ ∈ Θ,

this guaranteeing quadratic stability of the system. Moreover
the identity

− [A(θ)]
−1
b(θ) =

[
1
θ
7
θ

]
=

[
1
7

]
1

θ

in in force, so that (10) holds with k = [1 7]T , φ(θ) = θ−1.
As the system is Steady Stable, and C(θ) is a constant matrix,
the optimal input for the functional (4) can be found using
the results of section IV.

Consider the constant reference vector r = [4 5]T . According
to (18), the solution for (17) is given by

u∗(t) = θ(t)
1

50

[
1 7

] [4
5

]
=

39

50
θ(t) =

=
39

50

(
2 +

1

2
sin t

)
= α∗

1

φ(θ)

(36)

with α∗ = 39/50.

In the simulations, the scheduling parameter has been as-
sumed to obey the evolution law θ(t) = 2 + 1

2 sin t. We
point out that the knowledge of such law is not used in
the controller design. As a comparison, the superposition
u∗f (t) of the optimized feedforward input u∗(t) with an
error feedback stabilizing controller K(θ)(x − α∗k) is also
considered.

In Fig. 2 the behavior of the optimal input u∗(t) is shown
together with the one of u∗f (t) and in Fig. 3 it is depicted the
output of the system driven, respectively, by u∗ and by u∗f .
As expected for a Steady Stable plant, one has y(t)→ y∞.

In Fig. 4 optimal output trajectories y(t) and yf (t), corre-
sponding to the inputs u∗ and u∗f respectively, are plotted in
the output space Rp together with the reference vector r and
the line of reachable steady output y∞ = αk. It is clearly
visible that the limit point of the path coincides with the
projection of the reference r onto the αk line.
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Fig. 2. Optimal inputs u∗ (pure feedforward) and u∗f (feedback and
feedforward) for the numerical simulation with squared euclidean distance
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simulation with squared euclidean distance

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

 

 

r

y
*
(t)

y
f

*
(t)

α w

Fig. 4. Optimal output trajectories y∗(t) and y∗f (t) in the output space,
with the achievable steady output line αk and the reference vector r
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[30] J. Tjønnås and T. A. Johansen. Optimizing adaptive control allocation
with actuator dynamics. In IEEE Conf. on Decision and Control, pages
3780–3785, 2007.

[31] L. Zaccarian. Dynamic allocation for input-redundant control systems.
Automatica, 45:1431–1438, 2009.

[32] J. Zhou, M. Canova, and A. Serrani. Predictive inverse model
allocation for constrained over-actuated linear systems. Automatica,
67:267–276, 2016.


