10 research outputs found

    Linear/Quadratic Programming-Based Optimal Power Flow using Linear Power Flow and Absolute Loss Approximations

    Full text link
    This paper presents novel methods to approximate the nonlinear AC optimal power flow (OPF) into tractable linear/quadratic programming (LP/QP) based OPF problems that can be used for power system planning and operation. We derive a linear power flow approximation and consider a convex reformulation of the power losses in the form of absolute value functions. We show four ways how to incorporate this approximation into LP/QP based OPF problems. In a comprehensive case study the usefulness of our OPF methods is analyzed and compared with an existing OPF relaxation and approximation method. As a result, the errors on voltage magnitudes and angles are reasonable, while obtaining near-optimal results for typical scenarios. We find that our methods reduce significantly the computational complexity compared to the nonlinear AC-OPF making them a good choice for planning purposes

    Leaky Bucket-Inspired Power Output Smoothing with Load-Adaptive Algorithm

    Get PDF
    The renewables will constitute an important part of the future smart grid. As a result, the growing portion of renewable generation in the power grid will bring challenges to the operations of the power grid because of the fluctuation and intermittency properties of renewables. In order to make the operations of power grid stable and reliable, the power outputs from renewable energy sources must be smoothed. In this paper, we propose a scheme inspired from the idea of the leaky bucket mechanism for smoothing the power output from a renewable energy system. In our proposed method, the settings of energy storage size and power output level have significant effects on the system performance and thus needs to be determined. An optimization framework is thus proposed for storage and power output planning of the renewable energy system. To operate our proposed scheme practically, a load-adaptive power smoothing algorithm is devised aiming to match the power output level with the actual load in the grid. Our simulation studies show that the proposed algorithm can reduce the operation cost comparing to other algorithms and maintain high renewable energy utilization.postprin

    BATTPOWER Toolbox: Memory-Efficient and High-Performance Multi-Period AC Optimal Power Flow Solver

    Full text link
    With the introduction of massive renewable energy sources and storage devices, the traditional process of grid operation must be improved in order to be safe, reliable, fast responsive and cost efficient, and in this regard power flow solvers are indispensable. In this paper, we introduce an Interior Point-based (IP) Multi-Period AC Optimal Power Flow (MPOPF) solver for the integration of Stationary Energy Storage Systems (SESS) and Electric Vehicles (EV). The primary methodology is based on: 1) analytic and exact calculation of partial differential equations of the Lagrangian sub-problem, and 2) exploiting the sparse structure and pattern of the coefficient matrix of Newton-Raphson approach in the IP algorithm. Extensive results of the application of proposed methods on several benchmark test systems are presented and elaborated, where the advantages and disadvantages of different existing algorithms for the solution of MPOPF, from the standpoint of computational efficiency, are brought forward. We compare the computational performance of the proposed Schur-Complement algorithm with a direct sparse LU solver. The comparison is performed for two different applicational purposes: SESS and EV. The results suggest the substantial computational performance of Schur-Complement algorithm in comparison with that of a direct LU solver when the number of storage devices and optimisation horizon increase for both cases of SESS and EV. Also, some situations where computational performance is inferior are discussed.Comment: 24 pages, 15 figures, Accepted for publication in IEEE Transactions on Power System

    Integration of Flywheel Energy Storage Systems in Low Voltage Distribution Grids

    Get PDF
    A Flywheel Energy Storage System (FESS) can rapidly inject or absorb high amounts of active power in order to support the grid, following abrupt changes in the generation or in the demand, with no concern over its lifetime. The work presented in this book studies the grid integration of a high-speed FESS in low voltage distribution grids from several perspectives, including optimal allocation, sizing, modeling, real-time simulation, and Power Hardware-in-the-Loop testing

    Integration of Flywheel Energy Storage Systems in Low Voltage Distribution Grids

    Get PDF
    Mit dem Ziel, den Stromsektor zu dekarbonisieren und dem Klimawandel zu begegnen, steigt der Anteil erneuerbarer Energieressourcen in den Energiesystemen rund um den Globus kontinuierlich an. Aufgrund des intermittierenden Charakters dieser Ressourcen kann die Aufrechterhaltung des momentanen Gleichgewichts zwischen Erzeugung und Verbrauch und damit der Netzfrequenz ohne angemessene Maßnahmen jedoch eine Herausforderung darstellen. Da erneuerbare Energiequellen mit Umrichterschnittstellen dem System selbst keine Trägheit verleihen, nimmt gleichzeitig die kumulative Systemträgheit ab, was zu schnelleren Änderungen der Netzfrequenz und Bedenken hinsichtlich der Netzstabilität führt. Ein Schwungrad-Energiespeichersystem (Flywheel Energy Storage System, FESS) kann schnell große Leistungsmengen einspeisen oder aufnehmen, um das Netz nach einer abrupten Änderung der Erzeugung oder des Verbrauchs zu unterstützen. Neben der schnellen Reaktionszeit hat ein FESS den Vorteil einer hohen Leistungsdichte und einer großen Anzahl von Lade- und Entladezyklen ohne Kapazitätsverlust während seiner gesamten Lebensdauer. Diese Eigenschaften machen das FESS zu einem gut geeigneten Kandidaten für die Frequenzstabilisierung des Netzes oder die Glättung kurzfristiger Leistungsschwankungen auf lokaler Ebene. In dieser Dissertation wird die Netzintegration eines Hochgeschwindigkeits-FESS auf der Niederspannungsebene aus mehreren Perspektiven untersucht. Zunächst wird das Problem der Platzierung und Dimensionierung eines FESS in Niederspannungsverteilnetzen für Leistungsglättungsanwendungen behandelt. Um den am besten geeigneten Standort für ein FESS zu finden, wird eine datengetriebene Methode zur Abschätzung der relativen Spannungsempfindlichkeit vorgestellt, die auf dem Konzept der Transinformation basiert. Der Hauptvorteil der vorgeschlagenen Methode besteht darin, dass sie kein Netzmodell erfordert und nur Messwerte an den interessierenden Punkten verwendet. Messergebnisse aus einem realen Netz in Süddeutschland zeigen, dass mit dem vorgeschlagenen Ansatz die Netzanschlusspunkte mit einer höheren Spannungsempfindlichkeit gegenüber Wirkleistungsänderungen, welche am meisten von einem durch FESS ermöglichten, glatteren Leistungsprofil profitieren können, erfolgreich zugeordnet werden können. Darüber hinaus wird eine neue Methode zur Dimensionierung von Energiespeichersystemen unter Verwendung von Messdaten eingeführt. Der vorgeschlagene Ansatz erkennt wiederkehrende Verbrauchsmuster in aufgezeichneten Leistungsprofilen mit Hilfe des "Motif Discovery"-Algorithmus, die dann zur Dimensionierung verschiedener Speichertechnologien, einschließlich eines FESS, verwendet werden. Anhand von gesammelten Messdaten aus mehreren Niederspannungsnetzen in Deutschland wird gezeigt, dass die Speichersysteme mit den aus den detektierten Mustern abgeleiteten Charakteristika während der gesamten Messperiode effektiv für ihre Anwendungen genutzt werden können. Als nächstes wurde ein dynamisches Modell eines Hochgeschwindigkeits-FESS entwickelt und mit experimentellen Ergebnissen in mehreren Szenarien, unter Berücksichtigung der Verluste und des Hilfsenergiebedarfs des Systems, validiert. In den untersuchten Szenarien wurde eine maximale Differenz von nur 0,8 % zwischen dem Ladezustand des Modells und dem realen FESS beobachtet, was die Genauigkeit des entwickelten Modells beschreibt. Nach Festlegung des erforderlichen Aufbaus wurde die Leistungsfähigkeit eines 60 kW Hochgeschwindigkeits-FESS während mehrerer Frequenzabweichungsszenarien mit Hilfe von Power Hardware-in-the-Loop-Tests beurteilt. Die Ergebnisse der PHIL-Tests zeigen, dass das Hochgeschwindigkeits-FESS sehr schnell nach einer plötzlichen Frequenzabweichung reagiert und in knapp 60 ms die erforderliche Leistung erreicht, wobei die neuesten Anforderungen der Anwendungsregeln für die Frequenzunterstützung auf der Niederspannungsebene erfüllt werden. Um schließlich die Vorteile des schnellen Verhaltens des FESS für Energiesysteme mit geringer Trägheit zu demonstrieren, wurde ein neuartiger adaptiver Trägheits-Emulationsregler für das Hochgeschwindigkeits-FESS eingeführt und seine Leistung in einem Microgrid mit geringer Trägheit durch Simulationen und Experimente validiert. Die Simulationsergebnisse zeigen, dass die Verwendung des FESS mit dem vorgeschlagenen Trägheits-Emulationsregler die maximale Änderungsrate der Frequenz um 28 % und die maximale Frequenzabweichung um 44 % während der Inselbildung des untersuchten Microgrid reduzieren kann und mehrere zuvor vorgestellte adaptive Regelungskonzepte übertrifft. Der vorgeschlagene Regler wurde auch auf einem realen 60 kW FESS mit dem Konzept des Rapid Control Prototyping implementiert, und die Leistungsfähigkeit des FESS mit dem neuen Regelungsentwurf wurde mit Hilfe von PHIL-Tests des FESS validiert. Die PHIL-Ergebnisse, die die allererste experimentelle Validierung der Trägheitsemulation mit einem FESS darstellen, bestätigen die Simulationsergebnisse und zeigen die Vorteile des vorgeschlagenen Reglers

    Integration of Flywheel Energy Storage Systems in Low Voltage Distribution Grids

    Get PDF
    A Flywheel Energy Storage System (FESS) can rapidly inject or absorb high amounts of active power in order to support the grid, following abrupt changes in the generation or in the demand, with no concern over its lifetime. The work presented in this book studies the grid integration of a high-speed FESS in low voltage distribution grids from several perspectives, including optimal allocation, sizing, modeling, real-time simulation, and Power Hardware-in-the-Loop testing

    Battery Energy Storage Systems for Low Voltage Network Management

    Get PDF
    With increasing concern for the security and environmental sustainability of the UK energy supply, the penetration of low carbon technologies on the grid has increased significantly. As the installed capacity of residential rooftop PV systems increases in the UK, the likelihood that LV networks will experience unacceptably high voltages and line utilizations increases also. Furthermore, an increased penetration of ASHP systems increases the likelihood of unacceptably low voltages and ampacity violations during winter periods. Such network stresses are typically managed via reconductoring or redesign, but effective control of behind-the-meter BESSs may allow distribution network operator DNOs to delay traditional reinforcement. However, there is little consideration for the technical and economic barriers to BESS based violation management in current literature. In this thesis, a series of mixed-integer quadratically constrained programming (MIQCP) formulations that determine optimal customer BESS takeover for violation control at various PV & ASHP penetrations are designed, a multi-period mixed integer linear programming (MILP) BESS placement and sizing model that optimally locates 3rd party owned BESSs systems is formulated, and a real time dispatch algorithm based on a 2-stage convex linear programming (LP) heuristic is developed. These algorithms are applied to 6 networks located in the northwest of England to examine the technical feasibility of BESS control under varying PV penetrations, and BESS based control of ASHP demand on urban and suburban feeders is examined. The feasibility of BESS control for violation management in both the customer owned and DNO owned case are considered. It is found that the costs associated with deploying behind-the-meter BESSs for the purpose of violation control greatly exceed those of reconductoring In the DNO-owned BESS case, and that significant technical barriers to the use of BESSs for violation control exist in the customer owned BESS case when violations are controlled using BESSs alone
    corecore