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ABSTRACT 

This paper aims to describe the main outcomes of the 

ADMS4LV project – Advanced Distribution Management 

System for Active Management of LV Grids. ADMS4LV is 

a R&D project that targets the development and 

demonstration of a system with adequate tools to optimise 

the management and operation of Low Voltage (LV) 

networks towards the effective implementation of Smart 

Grids. This work details the main functionalities of 

ADMS4LV and discusses their implementation. Results 

obtained from the demonstration, namely regarding the 

algorithms which using advanced data analytics, 

accomplish to operate LV networks with low 

observability (i.e., with few real-time measurements) and 

without having full knowledge of the networks’ technical 

characteristics, such as the consumers’ phase connection. 

The assessment of the results shows the adequacy of the 

ADMS4LV solutions for deployment in distribution 

networks with current infrastructures deferring 

unnecessary investments in sensory devices. 

INTRODUCTION 

Distribution Networks (DN) have been in the centre of 

interest of smart grids deployment, allowing the large-

scale integration of Distributed Energy Resources (DER), 

such as Microgeneration (μG) units, Electric Vehicles 

(EVs), and the deployment of demand-side integration 

schemes [1]. The deployment of the smart grid concept 

has commenced not only through the ubiquitous 

deployment of advanced automation and metering 

apparatus along the Low Voltage (LV) grid, but also with 

the adoption of extensive monitoring and control 

functionalities, embedded in Advanced - Distribution 

Management System (A-DMS). 

 

Despite the current rollout of Smart Meters (SMs) at 

consumers’ premises and Intelligent Electronic Devices 

(IEDs) such as sensing devices along the network, which 

can provide important data to the operator, in most cases 

the grid characteristics are not fully known (e.g. 

branches’ physical characteristics, phase connection of 

the loads). In addition, the communication infrastructures 

for transmitting network data typically present augmented 

latency and thus, real-time data for the majority of 

network points are not available and/or synchronised. 

 

Recent studies have addressed the possibility of 

considering controllable DERs beyond DSO assets for 

the optimisation of the LV grid’s operation, such as 

distributed Battery Storage System (BSS), controllable 

loads under demand response schemes and μG units [2-

8]. Most of the research works in the literature do not 

consider the limited observability of LV networks for the 

optimisation of their operation. Therefore, advanced 

monitoring algorithms capable of estimating the 

operational state of the LV grid are needed to overcome 

the lack of measurements. Furthermore, such algorithms 

should also be capable of determining the unknown 

connection phases of end-consumers in order to make the 

possible control actions more effective. 

 

This paper presents the conceptual architecture of the 

solutions developed under the scope of the project 

ADMS4LV [7] – Advanced Distribution Management 

System for Active Management of LV Grids. The 

ADMS4LV’s main focus is to develop and demonstrate 

advanced monitoring and control tools for the operation 

of future LV networks. Some of its key functionalities, 

which are presented and discussed in this work, take 

advantage of historical smart metering data for improving 

the characterisation of LV networks (e.g., connection 

phase identification) as well as their real-time 

observability with reduced real-time monitoring 

requirements.  The increased observability is crucial to 

enhance the operation of these networks, therefore 

contributing to the overall optimisation of the electrical 

power systems. 

SYSTEM OVERVIEW AND DESCRIPTION 

The ADMS4LV architecture is depicted in Figure 1. 

Through the management of high quantities of data (Big 

Data) using processing techniques (Aggregation and 

Correlation) to extract relevant features that, combined 
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with the known characteristics of the network (Data 

Model) and the relations between the electric variables 

(Data Knowledge), it is possible to infer about the real 

operation conditions of the network and to provide 

automatic controls to maintain its safety and efficient 

operation. The main features of ADMS4LV project is to 

take advantage of historical smart metering data for 

improving the characterisation of LV networks (e.g. 

phase identification) and its observability in real-time 

with reduced real-time monitoring requirements. 

Distinctive functionalities integrate this system, namely: 

• Data management and processing module is 

responsible for verifying the consistency of the 

collected data and reconstruct historical missing 

data. In case of systematic failures or errors, 

alarms can be triggered for an efficient 

identification of possible equipment’s 

communication failure. The data can then be 

used in other network applications (e.g., voltage 

control) as well as by the other modules since 

their efficiency is dependent on the consistency 

and integrity of the information provided. 

• State Estimation and IED selector: since one 

of the goals of ADMS4LV is to increase the 

DSO’s awareness about the network operation 

conditions, this tool will be responsible for 

providing a reliable operational state of the 

network. It is based on Artificial Intelligence 

(AI) techniques that are able to estimate the 

operational state of the network with limited 

knowledge of their topology and characteristics, 

and a reduced number of real-time 

measurements [9, 10]. The group of IEDs and 

SMs communicating in real-time will 

dynamically change according to their location, 

the network’s topology and location of flexible 

DER, in order to maximise the network’s 

observability, while minimising the number of 

measurements required. This module is able to 

estimate both voltage magnitudes on nodes and 

power consumptions, but in the present work 

only voltage magnitudes results are shown. 

• Phase identification module of the ADMS4LV 

is able to map the phase connection of LV 

consumers (with installed SMs) through the 

treatment of the time series measurements 

provided by the AMI deployed in LV networks. 

 

 
Figure 1 – ADMS4LV overall architecture. 
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This information is crucial for other network 

applications, such as active control tools for the 

LV networks and other power flow-based 

applications. The main advantage of this module 

is that it allows network mapping without the 

need of extensive field work, taking into account 

the voltage profiles provided by the SMs. 

CASE STUDY 

The ADMS4LV solution is being validated in laboratory 

environment before the deployment in a large-scale real-

field demonstrator to ensure the effectiveness of all tools. 

For this purpose, a case study of a typical Portuguese LV 

network – adapted from the test case IEEE European LV 

Test Feeder was used [11]. The LV network used as test 

case is a 4-wire multi-grounded network (three-phase 

plus neutral) with load unbalancing along the network. In 

Figure 2 the single line diagram of the network used as 

case study is shown. 

 
Figure 3 – Network used as test case. 

A total of 55 consumers are present in the network. Their 

contracted powers vary in a range between 3.45 kVA and 

10.35 kVA (single and three-phase loads) and each one 

following different load profiles in order to represent 

different end-customers. The power factor of end-

consumers has been assumed to vary randomly between 

0.8 and 1. In order to simulate different consumers’ 

behaviours scenarios, a Gaussian Distribution with mean 

equal to the base diagram (one per consumer) and a 

standard deviation of σ=10% was considered. A power 

flow algorithm was then used to generate one year of 

data, emulating real metering data. This approach enables 

a proper assessment of  ADMS4LValgorithms by 

considering a realistic behaviour  of a  LV network.  

RESULTS 

In the sub-sections below the main results obtained for 

both state estimation and phase identification modules are 

described. 

State Estimation 

Table 1 summarises the scenarios used to test the state 

estimation module. Each defined scenario differs from 

the others in the number of SMs or IEDs that were used 

to compute the operational state of the network, i.e., those 

which will provide real-time measurements during the 

tool’s real-time operation. The selection of the IEDs to be 

used for each scenario is given by the IED selector 

algorithm, which defines a list of priority devices and 

their correspondent alternatives (if the priority ones are 

not available – e.g., offline) that can be used by the State 

Estimator in real-time. Such IEDs’ list is determined 

from a sensitivity and correlation analysis of the 

historical SMs’ records. It should be referred that the IED 

installed at the LV side of the secondary substation (DTC 

in Figure 1) is always considered (when available) and it 

is not taken into account in the number of SMs of Table 

1. 

 
Table 1 – State estimation test scenarios. 

Scenario 

No. 
No. of SMs Used % of SMs Used 

1 6 11% 

2 21 38% 

3 39 71% 

 

It is important to state that the one year of generated data 

was used to train the state estimation tool [9, 10] and that 

the presented results were computed based on only one 

state estimation running, i.e., the state estimation tool was 

only assessed for one time instant. 

In Figure 3, the chart with the distribution of all the 

absolute deviations between the real and the estimated 

node voltage magnitudes (in percentage of the real 

values) is depicted for the three considered scenarios. As 

it can be seen, scenario 1 presents the higher percentage 

of deviation since the total number of real-time 

measurements used for computing the grid operational 

state is about 11%. However, the percentage deviation is 

decreased when a higher number of SMs is considered, as 

it can be noticed in scenarios 2 (only 38% of SMs was 

used) and 3 (71% of SMs were used), which attests the 

adequacy of this algorithm to avoid gathering all the real 

measurement data from the field. In fact, the mean 

deviation for scenario 2 is around 2.0% whereas for 

scenario 3 it is around 0.44%. 

Looking at Table 2, where the quartile analysis for 

voltage magnitudes deviations is presented, it can be seen 

that the uncertainty in estimating the network state 

vectors (i.e., in this case voltage magnitudes) decreases 

with the increase of the number of real-time 
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measurements used to perform the state estimation. 

 

 
Figure 4 – Quartile chart for the absolute deviations between 

real and estimated voltage magnitudes in percentage of the real 

values.  

Table 2 – Quartile analysis: absolute deviations of the voltage 

magnitudes. 

Deviation (V) Scenario 1 Scenario 2 Scenario 3 

Minimum Value 0.85 0.11 0.02 

1st Quartile 2.93 1.37 0.36 

2nd Quartile 4.27 2.85 0.92 

3rd Quartile 7.99 6.29 1.61 

Maximum value 33.47 22.21 2.80 

 

To sum up, the results show that with only 11% of real-

time measurement data from the field (scenario 1), a good 

trade-off between the quality of the estimations and the 

amount of data required to be used can be achieved. 

Thus, the observability of existing networks can be 

improved and achieved without the need of deploying 

sensing and other IEDs in the entire network, which 

reduces the investment needs. 

Phase Identification 

For testing the phase identification algorithm, six 

different scenarios were considered that are shown in 

Table 2. The main variable in this case is the number of 

SMs for which the phase connection to the grid is known.  

 
Table 3 – Phase identification test scenarios. 

Scenario 

No. 

No. of Unknown 

Meters 

% of Unknown 

Meters 

1 5 9% 

2 10 18% 

3 20 36% 

4 35 64% 

5 45 82% 

6 50 91% 

  

In Figure 6 the results of the phase identification are 

illustrated for each of the scenarios above identified. It 

can be observed that the phase identification module is 

able to correctly identify the SMs’ phase connection even 

when a high percentage of SMs with unknown phase 

connection exists. In fact, only for scenario 6, where most 

of the SMs’ phase connection is unknown (91%), the 

accuracy is lower than 100% (about 70%), i.e., the phase 

identification module did not correctly identify the phase 

connection of all SMs. In this case, the phase connection 

of these SMs can be tackled by performing on-site 

inspections. Although such field work can be time 

consuming and costly for the grid operator, the 

employment of the phase identification module 

contributes to minimise these issues since only a small 

percentage of SMs would need to be intervened (less than 

15% of the total SMs in the performed tests, i.e., only 8 

out of the 55 SMs). 

 
Figure 5 – Accuracy of phase identification for each scenario. 

CONCLUSIONS 

The main aspect of ADMS4LV project’s solutions refer 

to its capability of managing the LV network in 

coordination with the upstream MV network, even when 

most of the network’s characteristics are not known. 

Additionally, by solely using the most relevant 

measurements, it guarantees the observability of the 

network and reduces the amount of data required. 

Moreover, it is adaptive to the system’s dynamic 

behaviour introduced by changes in the characteristics of 

the networks’ nodes (e.g., installed DER). 

 

The results show a high accuracy of the algorithms 

employed for carrying out the network’s monitoring, 

attesting the adequacy of this solution. The state 

estimation algorithm presents adequate results even when 

only a few real-time measurements are gathered from the 

field. The group of IEDs and SMs communicating in real-

time is determined by the IED selector algorithm, which 

contributes to reduce the necessary data to perform state 

estimation. The phase identification functionality shows 

high accuracy even when above of 85% of the 

consumers’ phase connection is not known. This 

highlights the advantage of this module to increase the 

LV networks’ characterisation. 
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