820 research outputs found

    A high-speed distortionless predictive image-compression scheme

    Get PDF
    A high-speed distortionless predictive image-compression scheme that is based on differential pulse code modulation output modeling combined with efficient source-code design is introduced. Experimental results show that this scheme achieves compression that is very close to the difference entropy of the source

    Optimal prefix codes for pairs of geometrically-distributed random variables

    Full text link
    Optimal prefix codes are studied for pairs of independent, integer-valued symbols emitted by a source with a geometric probability distribution of parameter qq, 0<q<10{<}q{<}1. By encoding pairs of symbols, it is possible to reduce the redundancy penalty of symbol-by-symbol encoding, while preserving the simplicity of the encoding and decoding procedures typical of Golomb codes and their variants. It is shown that optimal codes for these so-called two-dimensional geometric distributions are \emph{singular}, in the sense that a prefix code that is optimal for one value of the parameter qq cannot be optimal for any other value of qq. This is in sharp contrast to the one-dimensional case, where codes are optimal for positive-length intervals of the parameter qq. Thus, in the two-dimensional case, it is infeasible to give a compact characterization of optimal codes for all values of the parameter qq, as was done in the one-dimensional case. Instead, optimal codes are characterized for a discrete sequence of values of qq that provide good coverage of the unit interval. Specifically, optimal prefix codes are described for q=21/kq=2^{-1/k} (k1k\ge 1), covering the range q1/2q\ge 1/2, and q=2kq=2^{-k} (k>1k>1), covering the range q<1/2q<1/2. The described codes produce the expected reduction in redundancy with respect to the one-dimensional case, while maintaining low complexity coding operations.Comment: To appear in IEEE Transactions on Information Theor

    Prefix Codes for Power Laws with Countable Support

    Full text link
    In prefix coding over an infinite alphabet, methods that consider specific distributions generally consider those that decline more quickly than a power law (e.g., Golomb coding). Particular power-law distributions, however, model many random variables encountered in practice. For such random variables, compression performance is judged via estimates of expected bits per input symbol. This correspondence introduces a family of prefix codes with an eye towards near-optimal coding of known distributions. Compression performance is precisely estimated for well-known probability distributions using these codes and using previously known prefix codes. One application of these near-optimal codes is an improved representation of rational numbers.Comment: 5 pages, 2 tables, submitted to Transactions on Information Theor

    Optimal Prefix Codes for Infinite Alphabets with Nonlinear Costs

    Full text link
    Let P={p(i)}P = \{p(i)\} be a measure of strictly positive probabilities on the set of nonnegative integers. Although the countable number of inputs prevents usage of the Huffman algorithm, there are nontrivial PP for which known methods find a source code that is optimal in the sense of minimizing expected codeword length. For some applications, however, a source code should instead minimize one of a family of nonlinear objective functions, β\beta-exponential means, those of the form logaip(i)an(i)\log_a \sum_i p(i) a^{n(i)}, where n(i)n(i) is the length of the iith codeword and aa is a positive constant. Applications of such minimizations include a novel problem of maximizing the chance of message receipt in single-shot communications (a<1a<1) and a previously known problem of minimizing the chance of buffer overflow in a queueing system (a>1a>1). This paper introduces methods for finding codes optimal for such exponential means. One method applies to geometric distributions, while another applies to distributions with lighter tails. The latter algorithm is applied to Poisson distributions and both are extended to alphabetic codes, as well as to minimizing maximum pointwise redundancy. The aforementioned application of minimizing the chance of buffer overflow is also considered.Comment: 14 pages, 6 figures, accepted to IEEE Trans. Inform. Theor

    Study, design and implementation of robust entropy coders

    Get PDF

    Mode-Dependent Loss and Gain: Statistics and Effect on Mode-Division Multiplexing

    Full text link
    In multimode fiber transmission systems, mode-dependent loss and gain (collectively referred to as MDL) pose fundamental performance limitations. In the regime of strong mode coupling, the statistics of MDL (expressed in decibels or log power gain units) can be described by the eigenvalue distribution of zero-trace Gaussian unitary ensemble in the small-MDL region that is expected to be of interest for practical long-haul transmission. Information-theoretic channel capacities of mode-division-multiplexed systems in the presence of MDL are studied, including average and outage capacities, with and without channel state information.Comment: 22 pages, 8 figure
    corecore