
UNIVERSITAT POLITÈCNICA DE CATALUNYA

Study, design and implementation of

robust entropy coders

by

Marcial Clotet Altarriba

in the

Escola Tècnica Superior d’Enginyeria de Telecomunicació de Barcelona

Departament de F́ısica Aplicada

Advisor: Enrique Garcia-Berro Montilla

Co-advisor: Alberto González Villafranca

July 2010

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons

https://core.ac.uk/display/301211314?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.upc.edu/
file:mclotet@gmail.com
http://www.etsetb.upc.edu/
http://fa.upc.edu/

Acknowledgements

En primer lloc, m’agradaria agräır al meu tutor Enrique Garcia-Berro l’ajuda durant la

realització d’aquest projecte. Igualment imprescindibles han estat els consells d’en Jordi

Portell i l’Alberto G. Villafranca. Puc dir sincerament que ha estat un plaer i un honor

poder treballar amb vosaltres durant aquest temps.

Gràcies als meus pares i al meu germà. Ells han estat sempre encoratjadors i a la vegada

comprensibles. Part del mèrit d’aquest projecte, que tanca un cicle, us correspon a

vosaltres. Sense el vostre suport, confiança i paciència mai hauria arribat fins aqúı.

Una menció especial es mereix la Nuria. Gràcies per estar sempre al meu costat, per la

teva paciència i pel teu ajut. Però sobretot per deixar-me compartir la vida amb tu i

fer-me cada dia més feliç. Gràcies amor.

Finalment, agräır als meus amics el seu suport. Als de la UPC, als d’Igualada, al Bernat

i la Cristina, al David i la Miriam, i tots els que sempre em feu costat. Vosaltres, tots,

heu donat sentit a aquesta carrera i m’heu ajudat a continuar. Gràcies.

i

Contents

List of Figures iv

List of Tables vi

Abbreviations vii

1 Introduction 1

2 Context 3

2.1 CCSDS 121.0 Lossless Data Compression Recommendation 3

2.1.1 CCSDS architecture . 3

2.1.2 Rice coder . 4

2.2 Other existing solutions . 6

3 Exponential Golomb coder 9

3.1 Interest in exponential coders . 9

3.2 Theoretical basis of exponential Golomb codes 10

3.3 Practical implementation . 13

3.4 Results with synthetic data . 15

3.5 Exponential Golomb decoder . 19

4 Subexponential coder 22

4.1 Theoretical basis of subexponential codes 22

4.2 Practical implementation of the subexponential coder 25

4.3 Results on synthetic data . 27

4.4 Subexponential decoder . 30

5 REGLIUS and HyPER Coder 33

5.1 Interest in hybrid PEC/Rice coding . 33

5.2 The REGLIUS codes . 34

5.3 Theoretical basis of the HyPER coder . 36

5.4 Practical implementation of the HyPER coder 37

5.5 Results on synthetic data . 38

5.6 HyPER decoder . 40

6 Results 43

6.1 Results on synthetic data . 43

6.2 Results on real data . 45

6.2.1 Corpus description . 46

ii

Contents iii

6.2.1.1 Images . 47

6.2.1.2 GIBIS . 49

6.2.1.3 GPS . 49

6.2.1.4 LISA . 49

6.2.1.5 Seismogram . 52

6.2.1.6 Spectra . 52

6.2.2 Corpus results . 54

7 Conclusions 56

7.1 Conclusions . 56

7.2 Future work . 57

A Coders Performance 59

Bibliography 61

List of Figures

2.1 CCSDS preprocessing structure. 4

2.2 Consultative Committee for Space Data Systems (CCSDS) adaptive stage. 5

2.3 The three Prediction Error Coder (PEC) coding strategies. 7

3.1 Exponential Golomb coding example. 11

3.2 Code length difference between Rice exponential-Golomb. 12

3.3 Exponential Golomb coder implementation. 14

3.4 Compression performance of our adaptive exponential-Golomb coder on
synthetic data, for 0.1% (top panels), 1% (middle panels) and 10% (bot-
tom panels) flat noise levels. 16

3.5 Relative usage of the compressor options of the exponential-Golomb coder
(left) and average compressed block length (right). 18

3.6 Exponential Golomb decoder implementation. 20

4.1 Subexponential coding example . 24

4.2 Code length differences between the Rice, exponential-Golomb and su-
bexponential coders, for small input values. 25

4.3 An optimized C/C++ implementation of the subexponential coder. 26

4.4 Compression performance of the adaptive subexponential coder on syn-
thetic data, for 0.1% (top), 1% (center) and 10% (bottom) flat noise levels. 28

4.5 Compression efficiency of the adaptive subexponential coder with kmin =
0 and kmin = 1, for 0.1% (left) and 10% (right) outliers. 29

4.6 Relative usage of the subexponential compressor options (left) and ave-
rage compressed block length (right). 30

4.7 Subexponential performance with 16 and 32 samples per block for 0.1%
(left) and 10% (right) of outliers. 31

4.8 Subexponential decoder implementation 32

5.1 REGLIUS coding example . 36

5.2 Implementation of the Hybrid PEC/REGLIUS (HyPER) coder with four
segments. 37

5.3 REGLIUS coder implementation in C. 38

5.4 Compression performance of the HyPER coder versus the CCSDS 121.0
recommendation for 0.1%,1% and 10% flat noise levels. 39

5.5 Rice-Exponential Golomb, LImited, with reUsed Stopbit (REGLIUS) de-
coding process. 41

6.1 Performance of the Rice, exponential-Golomb, subexponential coders and
of the HyPER coder for 0.1% (top), 1% (middle) and 10%(bottom) flat
noise levels. 44

iv

List of Figures v

A.1 Straightforward implementation of blog2 nc. 59

A.2 Optimized implementation of blog2 nc. 60

List of Tables

2.1 Rice-Golomb codes for values 0 to 16 and k = 0 to k = 5. 6

3.1 Some exponential Golomb codes. 12

4.1 Some subexponential codes. 23

5.1 Some REGLIUS codes, for k up to 5 and n up to 16. 35

6.1 Results obtained for image files, classified into three groups depending on
the data generator. 48

6.2 Results for GIBIS simulation data files, grouped by the observation ins-
trument. 50

6.3 GPS data compression results, including raw files obtained from the sa-
tellite constellation and a processed data set. 51

6.4 Results for LISA data files measuring temperature and position. 51

6.5 Seismic data files obtained from two different earthquakes. 52

6.6 Data compression results obtained from a variety of stellar spectra. 53

6.7 Relative gains in compression ratio versus the CCSDS 121.0 standard. . . 54

A.1 blog2 nc algorithm speeds. 60

A.2 Coder speeds . 60

vi

Abbreviations

AF Astrometric Field

BP Blue Photometers

CCSDS Consultative Committee for Space Data Systems

CLDCR CCSDS 121.0 Lossless Data Compression Recommendation

DS Doubled-Smoothed

FAPEC Fully Adaptative PEC

FELICS Fast, Efficient, Lossless Image Compression System

FITS Flexible Image Transport System

FOCAS Fiber-Optics Communications for Aerospace Systems

FS Fundamental Sequence

GIBIS Gaia Instrument and Basic Image Simulator

GPS Global Positioning System

HyPER Hybrid PEC/REGLIUS

ITU International Telecommunication Union

LC Large Coding

LE Low Entropy

LSB Least Significant Bits

MSB Most Significant Bits

vii

Abbreviations viii

REGLIUS Rice-Exponential Golomb, LImited, with reUsed Stopbit

PDF Probability Density Function

PEC Prediction Error Coder

PEM Prediction Error Mapper

PGM Portable Gray Map

RP Red Photometers

RVS Radial Velocity Spectrometer

SE Second Extension

SM Sky Mapper

SNR Signal to Noise Ratio

ZB Zero Block

Chapter 1

Introduction

Data compression systems for satellite payloads have several tight restrictions. First,

the data block size should be kept rather small in order to avoid losing large amounts

of data if transmission errors occur [1]. More precisely, data should be compressed in

small independent data blocks. This is at odds with the fact that most adaptive data

compression systems perform optimally only after a large amount of data is processed.

Secondly, the processing power for software implementations (or electrical power, in

hardware implementations) is limited in space. Therefore, the compression algorithm

should be as simple and quick as possible. Finally, the required compression ratios

are increasing as new missions which handle huge amounts of data are conceived and

launched. When all these restrictions are combined with the need of a lossless operation,

the design of such a data compression system becomes a true challenge.

The CCSDS issued its recommendation for lossless data compression [2] in 1993 with the

intention of offering a solution to data compression requirements in space missions. The

proposed solution is a very simple (thus quick) algorithm that operates in blocks of just

8 or 16 samples. This recommendation has been used in several missions [3] including

hardware implementations [4]. In fact the CCSDS 121.0 recommendation has been the

“de facto” standard in these scenarios. This is due to the reasonable compression ratios

achieved with low processing requirements.

Despite its powerful features, this standard compression system is not exempt of pro-

blems either. The critical problem arises at the coding stage, as the Rice algorithm is

not intended to compress noisy data. In fact, its efficiency abruptly decreases when noise

1

Chapter 1. Introduction 2

is introduced in the data. This is a major issue since most space-based measurements

are contaminated with noise and outliers. Therefore, the CCSDS 121.0 recommendation

is not an optimum solution in most of the cases.

In this work we explore the concept of outlier-resilient entropy coders, looking for a better

solution than that of the CCSDS 121.0 standard. The goal is to offer a data compression

solution suitable for space systems with the best possible compression results, even

in case of data contaminated with noise and outliers. First, a simple change in the

CCSDS 121.0 coding stage is proposed. More specifically, we study the substitution

of the Rice coder by an exponential or subexponential coder, keeping the rest of the

recommendation unchanged. However, the CCSDS standard adaptive framework has

other inherent limitations. Therefore, a completely different approach will be sought

as well. Inspired on by previous solutions such as the PEC coder, a segment coding

strategy will be used for the compressor while including a newly devised coding strategy

which incorporates desirable features of both Rice and exponential codes.

This report is organized as follows. In chapter 2 the limitations of the Rice coder and

its effects on CCSDS 121.0 standard are studied. Chapter 3 describes the exponential-

Golomb coder and its implementation within the CCSDS 121.0 framework, and it dis-

cusses the results obtained on synthetic data. Chapter 4 follows the same approach but

for the subexponential coder. A different and new approach to the data compression

problem is proposed in chapter 5 with the description of the HyPER coder based on

REGLIUS codes. The final comparison between all the implemented coders and the

current standard using both synthetic and real data is shown in chapter 6. Finally, in

chapter 7 we summarize our major findings, we draw our conclusions and we propose

several lines of future work.

Chapter 2

Context

2.1 CCSDS 121.0 Lossless Data Compression Recommen-

dation

This chapter presents the compressor structure defined in the CCSDS 121.0 Lossless

Data Compression Recommendation (CLDCR) standard. First, the general architecture

is described paying special attention to the pre-processing and the adaptive stage. In

second place the Rice coder is introduced in detail.

2.1.1 CCSDS architecture

The CCSDS standard recommends a two-stage architecture, namely, a pre-processing

stage followed by an entropy coder. This is an otherwise typical solution used in several

systems, as discussed in [5] or [1]. The recommendation does not strictly specify the pre-

processing stage, since it must be carefully tailored for each mission in order to achieve

the best ratios. Figure 2.1 shows the two functions contained in the pre-processor,

namely, prediction and mapping.

The pre-processor subtracts the predicted value from the current value. The resulting

prediction error is then mapped to a positive integer value. When a predictor is ade-

quately chosen, the prediction errors tend to be small and thus they can be coded with

fewer bits. Typically, the prediction errors follow a probability distribution approaching

a Laplacian. This is the optimal case as the recommendation is designed to work with

3

Chapter 2. Context 4

Input data block

Predicted Value

Mapper Preprocessed
Samples

Predictor

δi

x i
^

x i Prediction Error

Δ i

+

-

Figure 2.1: CCSDS preprocessing structure.

such distribution. The unit-delay predictor is the most basic approach for this stage,

although more complex solutions exist — or can be designed for each case if necessary.

The second stage is based on the Rice coder [6] with an adaptive layer that selects the

most suitable k parameter for each data block. For very low entropy levels, other co-

ding procedures such as the Zero Block (ZB), Second Extension (SE) or Fundamental

Sequence (FS) options [7] are selected automatically, boosting the compression level

beyond the capabilities of the Rice compressor. Figure 2.2 shows the adaptive entropy

coder structure with a pre-processor. The adaptive stage chooses the best among a set

of code options to represent an incoming block of pre-processed data samples. Specifi-

cally, it determines the total length of the coded block considering the available options

(including Rice coding with k = 1 to k = 13) and then it selects the option leading to

the shortest total length. A unique identifier for each option is added to every coded

sequence. This indicates to the decoder which decoding option must be used.

2.1.2 Rice coder

Rice codes are optimal for data following discrete Laplacian (or two-sided geometric)

distributions [8], which are expected to occur after the CCSDS 121.0 pre-processing stage

[2] — or, in general, after any adequate pre-processing stage. However, this assumes a

correct operation of the predictor, which cannot be taken for granted as noisy samples

and outliers can modify expected distribution.

It is known that Rice codes are a special case of more general Golomb codes where

the parameter m is a power of 2, m = 2k, with k ≥ 0. Rice codes have 2k codes of

length, starting with a minimum length of k + 1. A significant feature of Rice codes is

that it is a very simple coding algorithm. Once the parameter k has been defined, the

code is easily constructed by simply separating the k Least Significant Bits (LSB) of the

Chapter 2. Context 5

Option
ZB

Option
SE

Option
FS

Option
k=1

Option
k=2

Option
No Compression

Preprocessor

Code Option
Selection

...

Selected
Code

Option

 =δ ,δ , ...δ1 2 Jδ =x ,x , ...x1 2 Jx y

ID

Figure 2.2: CCSDS adaptive stage.

integer n which will become the LSB of the code. These will follow the j = b n
2k
c bits

in unary code. These codes are easily constructed with few operations which are not

computationally expensive. This is an important feature, as computing power is scarce

in space applications. Finally, under the CCSDS framework it is required to compute

the length of a given code constantly, thus a simple equation is desired. Suitably, the

length of a Rice code for an integer n coded using a parameter k can be easily computed

as 1 + k + b n
2k
c.

The k parameter of a Rice coder must be chosen carefully in order to obtain the expected

compression ratios for a given set of data. Table 2.1 illustrates some Rice codes for small

values and low k configurations. Note the rapid increase in code length for small values of

k — although such low k values provide the shortest codes for small values. If Rice codes

were used statically (that is, manually calibrating the k parameter using simulations), an

unacceptable risk would appear. It might occur that the expected data set only has low

values, and thus a low k is chosen, for instance k = 1. With this configuration, receiving

a single high value (or outlier) such as 20000 would lead to an output code of about ten

thousand bits. This flawed behavior is the reason why the CCSDS standard introduced

the adaptive layer to automatically select the best k for each data block. Note that

k = 0 is not considered in the recommendation, since it coincides with the FS option

already included in CCSDS 121.0. This automatic calibration significantly reduces the

effect of outliers present in the data gathered in space missions, leading to acceptable

Chapter 2. Context 6

n k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

0 0| 0|0 0|00 0|000 0|0000 0|00000
1 10| 0|1 0|01 0|001 0|0001 0|00001
2 110| 10|0 0|10 0|010 0|0010 0|00010
3 1110| 10|1 0|11 0|011 0|0011 0|00011
4 11110| 110|0 10|00 0|100 0|0100 0|00100
5 111110| 110|1 10|01 0|101 0|0101 0|00101
6 1111110| 1110|0 10|10 0|110 0|0110 0|00110
7 11111110| 1110|1 10|11 0|111 0|0111 0|00111
8 111111110| 11110|0 110|00 10|000 0|1000 0|01000
9 1111111110| 11110|1 110|01 10|001 0|1001 0|01001

10 11111111110| 111110|0 110|10 10|010 0|1010 0|01010
11 111111111110| 111110|1 110|11 10|011 0|1011 0|01011
12 1111111111110| 1111110|0 1110|00 10|100 0|1100 0|01100
13 11111111111110| 1111110|1 1110|01 10|101 0|1101 0|01101
14 111111111111110| 11111110|0 1110|10 10|110 0|1110 0|01110
15 1111111111111110| 11111110|1 1110|11 10|111 0|1111 0|01111
16 11111111111111110| 111111110|0 11110|00 110|000 10|0000 0|10000

Table 2.1: Rice-Golomb codes for values 0 to 16 and k = 0 to k = 5.

ratios even with rapidly changing statistics. Nevertheless, this is done by increasing the

value of the parameter when such outliers are found. For instance, in a data block where

all the values are small (or even zero), a single high value makes CCSDS 121.0 select a

high value of k, thus leading to a small compression ratio. The goal of this project is

to reduce the effect of such outliers even within a data block, making possible to select

smaller k values and, thus, increasing the compression ratios.

2.2 Other existing solutions

The Rice codes are adequate when the compressed data follows a geometric statistical

distribution, which often arises after an adequate pre-processing stage. However, any

deviation from this statistic can lead to a significant decrease of the final compression

ratio. The PEC solution was devised in previous studies [9]. It is focused on the

compression of signed prediction errors, and hence a pre-processing stage based on a data

predictor plus a differentiator (outputting signed values) is mandatory. Nevertheless,

other pre-processing stages outputting signed values close to zero may be used as well.

PEC is composed of three coding options, namely, Low Entropy (LE), Doubled-Smoothed

(DS) and Large Coding (LC). All these are segmented variable-length codes. Figure

Chapter 2. Context 7

Low Entropy Double-Smoothed Large Coding

± X[h]1st range:

- 0[h] ± (X-2h)[i]2nd range:

- 0[h] ± 1[i] 0 (X-2h-2i+1)[j]3rd range:

- 0[h] ± 1[i] 1 (X-2h-2i-2j+1)[k]4th range:

± X[h]

± 1[h] (X-2h+1)[i]

- 0[h] ± 0 (X-2h-2i+1)[j]

- 0[h] ± 1 (X-2h-2i-2j+1)[k]

X[h] ±
10 (X-2h)[i] ±
110 (X-2h-2i)[j] ±
111 (X-2h-2i-2j)[k] ±

(sign only if X≠0)0

Figure 2.3: The three PEC coding strategies.

2.3 offers a schematic view of the coding strategy used in PEC. The coding scheme is

completely different from the Rice coder. The three coding options share the same prin-

ciples: the range of the data to be coded is split into four smaller ranges (or segments).

The size of each segment determines its corresponding coding parameter (h, i, j or k),

which indicates the number of bits required to code the values of that segment. This set

of parameters is called coding table and they are independent each other.

For each coded value the appropriate segment is chosen and the adequate number of bits

is used. PEC assumes that values are close to zero. However, one of the main advan-

tages of this coding strategy is that it is flexible enough to adapt to data distributions

with probability peaks far from zero. With an adequate choice of parameters, good

compression ratios can still be reached with such distributions. PEC can be considered

a partially adaptive algorithm. That is, the adequate segment (and hence the code size)

is selected for each one of the values. This is obviously an advantage with respect to

the Rice coder, which uses a fixed parameter for all the values — at least within a gi-

ven coding block, in the case of the CCSDS recommendation. Another advantage with

respect to Rice is that PEC limits the maximum code length to twice the symbol size

in the worst case. Nevertheless, despite these features, PEC must be calibrated for each

case in order to get the best compression ratios.

An adaptive version of PEC which solves the previously commented weaknesses is also

available [10]. This is called Fully Adaptative PEC (FAPEC). It adds an adaptive

layer to PEC in order to configure its coding table and coding option according to

the statistics of each data block. Nearly optimal compression results can be achieved

without the need of any preliminary configuration and without previous knowledge of the

statistics of the data to be compressed. FAPEC was designed with the quickest possible

operation in mind, even at the expense of a slight decrease in the compression ratio.

The adaptive stage accumulates the values to be coded while building a histogram of

their modules. This is a logarithmic-like histogram, where higher values are grouped and

Chapter 2. Context 8

mapped to fewer bins. This procedure reduces the memory required for the histogram.

An algorithm analyzes the histogram and determines the best coding option and coding

table. Once the coding option and the corresponding parameters have been determined,

they are output as a small header followed by all the FAPEC codes for the values of that

block. By explicitly indicating the FAPEC configuration we make possible to change

the FAPEC decision algorithms without requiring any modification in the receiver.

The approach followed by PEC and FAPEC has proved to offer excellent results, adap-

ting very well to noise and outliers in the data — even with large fractions of these.

Therefore, an improved segmented coding strategy may be interesting to investigate.

This will be the purpose of chapter 5.

Chapter 3

Exponential Golomb coder

3.1 Interest in exponential coders

The CLDCR has some important limitations, namely, a decrease in its compression effi-

ciency when dealing with noisy data, non-Laplacian distributions, or data contaminated

with outliers, in general [10]. This is caused by the high sensitivity of Rice codes to

such outliers. On the other hand, there are other Golomb codes. The length of these

codes grows slowly in case of outliers. Exponential Golomb codes are an example [11].

For this reason, we find interesting to implement and test an exponential Golomb coder

within the CLDCR compressor structure in order to enhance its resiliency against noise

and outliers with minimal changes in the current architecture. Keeping such changes as

minimal as possible benefits the outcome, since the CLDCR compressor structure has

been reliably tested in multiple missions [3]. A totally different and new compressor

structure such as FAPEC [10] may require more time and resources for being tested and

assessed for space applications.

Rice codes are optimal for data with discrete Laplacian (or two-sided geometric) dis-

tributions [8], which are expected after the CLDCR pre-processing stage [2] — or, in

general, after any adequate pre-processing stage. However, this assumes a correct opera-

tion of the predictor which cannot be taken for granted as noisy samples and outliers can

modify the expected distribution. This is specially true for the space environment, where

prompt particle events (such as cosmic rays or solar protons) will affect the on-board

instrumentation. Any deviation from the expected statistic can lead to a significant

9

Chapter 3. Exponential Golomb coder 10

decrease in the resulting compression ratio. This is the case of the the data passed to

the compressor in the CCSDS 121.0 standard. Ideally, the values that reach the coder

are close to zero as the samples are pre-processed by a predictor before the coder. The

definition of the predictor is not part of the standard, and it must be tailored for each

mission as it depends on the nature of the data sources. If correctly defined, when the

predictor works properly the prediction error tends to be small and has a probability

distribution function that approaches a Laplace distribution [1, 2, 8]. However, if the

predictor does not work properly (due to, for instance, outliers resulting from cosmic

rays), the CCSDS compressor performance drops abruptly.

The main reason for the CCSDS performance to drop abruptly when noise is introduced

is that Rice codes are not intended to be used with noisy data. This limitation is due

to the fact that the length of Rice codes grows too fast for large values, specially when

low values are assigned to the k parameter. Appropriately, exponential Golomb codes

provide shorter lengths than Rice codes for large values. However, smooth code growth

for small data values provided by the Rice codes is lost. Whether the compression gain

in larger values is more relevant than the loss in lower values will determines whether

the exponential Golomb coder is suitable or not for this application.

3.2 Theoretical basis of exponential Golomb codes

The main feature of the exponential Golomb codes is that the number of codewords with

length L grows exponentially with L. This property allows these codes to perform well

for exponential probability distributions with larger dispersions.

As in the case of Rice codes, the exponential Golomb codes depend on a nonnegative

parameter m. In this case, m is determined as m = 2k. Therefore, only the parameter

k must be specified to obtain m. This parameter k will also indicate the length of the

suffix for the code. Exponential Golomb codes have three different parts which, once

concatenated, produce the code. Two intermediate values are used to build the code, f

and w, which are shown in Eqs. (3.1) and (3.2). The first part is the unary code of f .

After this, the f LSB of w coded in plain binary are concatenated. Finally, the k LSB

of the original value n are added. Detailed steps of how to implement the exponential

Golomb coder are provided in section 3.3.

Chapter 3. Exponential Golomb coder 11

{
k = 2d

n = 42d = 101010b
⇒

{
w = 1 +

⌊
n
2k

⌋
= 1 +

⌊
42
22

⌋
= 11d = 1011b

f(42d) =
⌊
log2(1 + n

2k
)
⌋

=
⌊
log2(1 + 42

2k
)
⌋

= 3d = 11b

Unary code of f(n)︸ ︷︷ ︸ + f(n) LSB of w︸ ︷︷ ︸ + k LSB of n︸ ︷︷ ︸
1110b 011b 10b︸ ︷︷ ︸

111001110b = 462d

Figure 3.1: Exponential Golomb coding example.

w(n) = 1 +
⌊ n

2k

⌋
(3.1)

f(n) =
⌊
log2(1 +

n

2k
)
⌋

(3.2)

In figure 3.1 a coding example for the exponential Golomb algorithm is shown. In this

example, the value n is 42 (101010 in binary), and k = 2. Unary coding is shown as n

ones followed by a zero stop-bit, although ones and zeroes are interchangeable without

loss of generality. The result has been coded with 9 bits, while if the Rice coder is

used instead it would have resulted in a 13-bits code. Assuming that the original value

was coded using 16 bits, a noticeable compression of the original data has thus been

successfully achieved. In table 3.1 some exponential Golomb codes are presented for n

up to 16 and k up to 5.

The difference between the length of a Rice code and an exponential Golomb code grows

with n. As an example, consider a large 16-bit value, n = 65535. Even using the highest

k parameter, k = 13, the Rice coder would produce a codeword with 21 bits while the

exponential Golomb code would lead to 20 bits. With lower k values, this difference

becomes much larger: with k = 10, Rice would output 67 bits in that case, while the

exponential Golomb coder would output just 21 bits. The length difference between

both coders for different values of k is shown in figure 3.2.

The CLDCR compressor structure has a no-compression option which is used in the

most extreme cases to avoid expanding data. By design, this no-compression strategy

is activated when the length of the coded block with any available strategy exceeds the

original block length when coded with standard binary. Thus, even with such a bad

Chapter 3. Exponential Golomb coder 12

n k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

0 0 00 000 0000 00000 000000
1 100 01 001 0001 00001 000001
2 101 1000 010 0010 00010 000010
3 11000 1001 011 0011 00011 000011
4 11001 1010 10000 0100 00100 000100
5 11010 1011 10001 0101 00101 000101
6 11011 110000 10010 0110 00110 000110
7 1110000 110001 10011 0111 00111 000111
8 1110001 110010 10100 100000 01000 001000
9 1110010 110011 10101 100001 01001 001001

10 1110011 110100 10110 100010 01010 001010
11 1110100 110101 10111 100011 01011 001011
12 1110101 110110 1100000 100100 01100 001100
13 1110110 110111 1100001 100101 01101 001101
14 1110111 11100000 1100010 100110 01110 001110
15 111100000 11100001 1100011 100111 01111 001111
16 111100001 11100010 1100100 101000 1000000 010000

Table 3.1: Some exponential Golomb codes.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 10000 20000 30000 40000 50000 60000

L
en

g
th

 R
ic

e
-

ex
p

o
n

en
ti

al
 G

o
lo

m
b

n

k=0
k=1
k=2
k=4
k=6

Figure 3.2: Code length difference between Rice exponential-Golomb.

Chapter 3. Exponential Golomb coder 13

performance of Rice codes on large values, the CLDCR will never expand the data — at

least not significantly. However, it is clear that even a single large value within a data

block will degrade the overall performance of the original coder.

Within the CLDCR compressor structure, it is required to compute the length of the

code for each given n and k. This information is used to adequately choose the best

coding strategy, or the best value of k, based on the length of the produced block length

[2]. For the exponential Golomb coder, the length of the code can be obtained using Eq.

(3.3). Since the logarithm is truncated, the code length increases by 2 bits each time

the logarithm increases by 1, so 1 + n
2k

is a power of 2.

l(n) = 1 + 2f(n) + k = 1 + 2blog2[1 +
n

2k
]c (3.3)

As a side note, it is worth mentioning that exponential Golomb codes can be gene-

ralized by replacing m = 2k by an arbitrary positive integer. These codes are called

generalist exponential Golomb codes. However, from an implementation perspective,

m = 2k is preferred as it has a lower computational cost. It also worth mentioning

that the exponential Golomb codes are equivalent to the triplet (1, s, ∞) of start-stop

codes [12]. Finally, it must be noted that bidirectional versions for both the Rice and

exponential Golomb codes exist [13]. These codes have the same length as the original,

one-directional codes with the additional property that they can be decoded in both

directions. These codes have been adopted by the International Telecommunication

Union (ITU) for use in the video coding parts of MPEG-4, specially in the H.263v2 and

H.264 standards [14].

3.3 Practical implementation

While multiple algorithms of exponential Golomb can be found, in this section an imple-

mentation of the coder as described in [12] is discussed. The steps to code a nonnegative

value n with the parameter k are the following:

1. Calculate w = 1 + b n
2k
c.

2. Compute f(n) = blog2[1 + n
2k

]c.

Chapter 3. Exponential Golomb coder 14

if(n==0){

exp =0;

len=k+1;

}else{

// Calculate ’f’ and ’w’

//w=(uintmax_t)(1+ floor(n/(1<<k)));

w=(uintmax_t)(1+(n>>k));

//f=floor(log2(w))

f=((8* sizeof(int))- __builtin_clz(w)-1);

// Calculate the unary code of ’f’

exp=(((1<<f)-1)<<1);

//Now follow with the ’f’ LSB in binary of w

unsigned int s2= w & ((1<<f)-1);

exp=(exp <<f)|s2;

//Now follow the ’k’ LSB of n

exp=(exp <<k | (n & ((1<<(k))-1)));

// Calculate the length

len =1+2*f+k;

}

Figure 3.3: Exponential Golomb coder implementation.

3. Construct the code as the unary representation of f followed by the f LSB of the

binary representation of w and followed by the k LSB of the binary representation

of n.

In the algorithm implementation, the coding of the zero value can be optimized by just

writing 0 with k + 1 bits. If the value is not zero, then we must continue with the

coding process. Also, Eq. (3.1), which yields the parameter w, can be implemented as

a rightward bit shift by k positions. This procedure allows to obtain the value of b n
2k
c.

We just have to add 1 to compute w.

The straightforward implementation of f would be using the log function over w. Ho-

wever, it must be taken into consideration that this operation has a very large compu-

tational cost. Therefore, the usage of this function has been replaced by an optimized

algorithm. It is important to understand that this parameter corresponds to the left-

most one in the binary representation of w. This helps to develop a computationally

efficient implementation of the coder. An extended discussion about how to implement

the blog2 nc operation is available in appendix A.

Once both w and f have been computed, the code can be built. The following operations

could be implemented into a single statement. However, in figure 3.3 they are presented

as separate instructions.

The unary code of f can be obtained by shifting a ‘1’ bit f positions to the left and

subtracting 1 to the result. A zero stop-bit can be added by shifting another position

Chapter 3. Exponential Golomb coder 15

to the left the resulting value. The next operation is to append the f LSB of w in

plain binary code. In order to do this, the meaningless bits of w must be discarded

by applying a mask that keeps the f LSB. Another left-shift by f bits, combined with

a bit-wise OR operation with the truncated w value, will produce the required output.

Finally, the last step is to combine the obtained value with the k LSB of x. This is

done using equivalent steps as when the LSB of f were added. Finally, the length of the

produced code must be computed in order to adequately write the coded value. This

can be easily obtained following Eq. 3.3 as f and w are already available.

In order to test the CLDCR with the exponential Golomb algorithm as the coder, we

have developed a complete implementation of the CCSDS compressor structure. All the

coding options, as well as the mapping method — Prediction Error Mapper (PEM) —

have been implemented. The CLDCR has been implemented in C++ as a modular struc-

ture with separate classes for the compressor and the coder. The compressor classes work

with blocks of data combined with the adaptive CLDCR stage. The coder class receives

the values to be coded plus the configuration parameters and outputs the corresponding

result. Additionally, the coder class can compute the length of a code and return this

information to the compressor class in order to decide the best coding strategy. This

implementation resembles the most typical on-board modular systems. Thus, it helps

in obtaining more reliable results. This structure also allows, using class inheritance, a

much more flexible compressor implementation. In this case, specific classes for both

the exponential Golomb coder and compressor were devised, with the corresponding

modifications in order to use exponential Golomb codes within the CLDCR.

3.4 Results with synthetic data

As explained in chapter 3.1, an adequate preprocessing stage leads to prediction errors

following a Laplacian distribution. Gaussian distributions are also possible in some cases,

although the fact is that the resulting distribution in realistic scenarios is sometimes

unknown. Despite of this, the results obtained testing entropy coders on data following

Laplacian distributions should be a good hint of the compression performance that we

can expect when applied to real data.

Chapter 3. Exponential Golomb coder 16

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

 0.1 1 10 100 1000

A
b

so
lu

te
 c

o
m

p
re

ss
io

n
 r

at
io

b

CCSDS
Exp-Gol

Shannon Limit

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100 1000
0.8

1.0

1.2

1.4

R
el

at
iv

e
co

m
p

re
ss

io
n

 v
s

S
h

an
n

o
n

 L
im

it

R
el

at
iv

e
C

o
m

p
re

ss
io

n
 v

s
C

C
S

D
S

-R
ic

e

b

CCSDS
Exp-Gol vs SL

Exp-Gol vs CCSDS

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

 0.1 1 10 100 1000

A
b

so
lu

te
 c

o
m

p
re

ss
io

n
 r

at
io

b

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100 1000
0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

R
el

at
iv

e
co

m
p

re
ss

io
n

 v
s

S
h

an
n

o
n

 L
im

it

R
el

at
iv

e
C

o
m

p
re

ss
io

n
 v

s
C

C
S

D
S

-R
ic

e

b

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 0.1 1 10 100 1000

A
b

so
lu

te
 c

o
m

p
re

ss
io

n
 r

at
io

b

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100 1000
0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

R
el

at
iv

e
C

o
m

p
re

ss
io

n
 v

s
S

h
an

n
o

n
 L

im
it

R
el

at
iv

e
C

o
m

p
re

ss
io

n
 v

s
C

C
S

D
S

-R
ic

e
b

Figure 3.4: Compression performance of our adaptive exponential-Golomb coder on
synthetic data, for 0.1% (top panels), 1% (middle panels) and 10% (bottom panels) flat

noise levels.

Figure 3.4 shows the results obtained when compressing some Laplacian distributions.

The panels of this figure cover the entire range of dispersions (or entropy levels) typically

found in real cases. The abscissae corresponds to the parameter of the statistic, that is, b

for the case of the Laplacian distribution. Small values of b indicate low data dispersion

(or, equivalently, low entropy), thus indicating a very good pre-processing stage — or

data with implicitly low entropy.

Real data is usually contaminated with noise and outliers. Therefore, to obtain meaning-

ful results the coders have been tested under these conditions. Figure 3.4 presents the

Chapter 3. Exponential Golomb coder 17

results obtained with different flat noise levels, namely 0.1%, 1% and 10%. These levels

represent three different scenarios. An almost ideal scenario where the predictor deli-

vers the expected data distribution corresponds to 0.1% noise level. The more realistic

scenario of 1% flat noise offers a view of how the coders perform when 1 of 100 samples

is an outlier. Finally, the 10% noise scenario shows the robustness of the compression

scheme under extreme situations, a crucial consideration in space applications.

The noise introduced in the samples follows a uniform (flat) distribution in the entire

data range. The probability density function for the Laplace distribution is that of Eq.

(3.4) where p represents the noise level.

f(x) = (1− p)
1

2b
exp

(
−|x|

b

)
+ p (3.4)

Flat noise generally represents the outliers often found in cases in which, for example,

CCD samples are contaminated by cosmic rays. It is important to keep in mind the

relevance of system stability and tolerance against varying statistics and noise levels.

Space instruments usually work in high radiation environments and the mission system

has to deal with unexpected behavior of subsystems.

Figure 3.4 shows the performance of the exponential Golomb coder compared to the

CLDCR (using Rice) and the Shannon limit. We remind that this is an adaptive coder,

owing to the CCSDS 121.0 framework kept in the implementation which selects the

best k parameter for each data block — as previously described. From top to bottom,

results for 0.1%, 1% and 10% noise levels are shown. The left panels show the absolute

compression ratios while the right panels show the relative compression ratios compared

to the Shannon limit (left scale) and also against the CCSDS 121.0 standard (right

scale).

As commented in section 3.2 the CLDCR compression framework allows the Rice co-

ding strategy to be much more robust in front of noise than what could be expected

from a plain (static) Rice implementation. However, when noise is introduced, even the

CLDCR decreases its performance rapidly. This behavior can easily be seen by compa-

ring the three sets of figures. Even with moderate noise levels, i.e. 1%, about 15% of the

compression ratio is lost in the most common range (from b = 1 to 10). Under less favo-

rable scenarios, which nevertheless are not unusual for space applications, the CLDCR

Chapter 3. Exponential Golomb coder 18

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

 0.1 1 10 100 1000
 0.5

 0.6

 0.7

 0.8

 0.9

 1

R
el

at
iv

e
o

p
ti

o
n

 u
sa

g
e

R
el

at
iv

e
co

m
p

re
ss

io
n

 v
s

S
L

b

ZB

SE

FS

K1

K2
K3 K4 K5 K6 K7 K8 K9

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

 0.1 1 10 100 1000
 0.5

 0.6

 0.7

 0.8

 0.9

 1

O
p

ti
o

n
s

av
er

ag
ed

 b
lo

ck
 l

en
g

th
 (

b
it

s)

R
el

at
iv

e
co

m
p

re
ss

io
n

 v
s

S
L

b

ZB

FS

SE

K1

K2

K3

Figure 3.5: Relative usage of the compressor options of the exponential-Golomb coder
(left) and average compressed block length (right).

is almost unable to provide acceptable compression ratios for any range of entropies.

More specifically, ratios of just 1.5 can be obtained in the best of the cases.

When comparing both coders (CCSDS with our Rice implementation and CCSDS with

our of the exponential Golomb coder) at low noise levels it can be seen how Rice slightly

outperforms the exponential Golomb coder. This is due that in this situation the pre-

dictor works properly, thus producing values close to zero. When coding low values with

few outliers, low values of k are expected. Rice codes are expected to deliver shorter

code lengths and therefore slightly better compression ratios. However, the difference in

terms of absolute compression ratios for both coders is almost irrelevant.

As expected, the exponential Golomb coder provides robustness to the compressor archi-

tecture when noise is present. However, a critical performance reduction can be observed

when b is about 3. A large drop in the compression performance can be observed for

both 0.1% and 1% noise levels. This reduction is also present but masked by the general

decrease in compression ratios with 10% noise level. To understand this problem, two

additional considerations must be taken into account. These are provided in figure 3.5.

The left panel of this figure shows the relative usage (or optimality) of each compression

option, while the right panel shows the average block length for each compressor option.

The left panel of this figure shows how the different options of the compressor are

combined to adapt to the data statistic. The zero block and the second extension options

are used with low data dispersions (small b), while the exponential Golomb coder is used

for higher values of b. That is an otherwise expected result. On the other hand, it is

specially relevant to mention how k = 1 and k = 2 have a smaller relative usage with

Chapter 3. Exponential Golomb coder 19

respect to other values of k. Not only that, actually the k = 0 option is not used at

all. This is due to the fact that they are unable to provide short enough codewords.

Therefore, the fundamental sequence coding is used beyond its intended range, and as

a result, it produces the severe performance drop seen around b ' 3. Larger values of

k have correct transitions between them, allowing good compression ratios. It is worth

mentioning that in this implementation the minimum k value allowed for the exponential

coder is 0. The CCSDS 121.0 standard limits the minimum value of k to 1. However, as

previously said, even with this parameter option available, the coder fails to deliver short

enough codewords, so the k = 0 coding option does not even appear in the option usage

plot of figure 3.5. The right panel of figure 3.5 displays the average block length and

provides another point of view of the same problem. As clearly seen in this figure, the

exponential Golomb lengths are larger than those provided by the fundamental sequence

where the efficiency drop is found. Fundamental sequence coding was not intended for

these data dispersions, hence the poor performance.

As a conclusion, the exponential coder is able to provide robustness to the CCSDS

compressor structure against noise and outliers but fails to implement a good transi-

tion between the fundamental sequence and the exponential coding. The slightly longer

codewords for small values of k have proved to be excessive for this compression archi-

tecture. A coder with smoother code length start but able to maintain the exponential

growth might better suited. This will be the subject of the next chapter of this report.

3.5 Exponential Golomb decoder

Extensive code revision and testing has been conducted to avoid possible implementation

errors. Additionally, a decoder has been implemented in order to guarantee the feasibility

of this data compression implementation, thus revealing any possible programming glitch

while providing an end-to-end testing (and operational) environment. The decoder has

been implemented in a separate executable and using a separate class structure. The

class distribution is similar to the one present in the coder and easily extensible to host

other decoding algorithms.

It should be noted that, in order to recover the original value, the parameter k used in

the coding process must be known. This is something already envisaged in the adaptive

Chapter 3. Exponential Golomb coder 20

if(membuff ->GetBit ()==0){

w=(uintmax_t)membuff ->Get(k);

}else{

f=1; //We have read already one 1 bit

//First read and decode the unary code of ’f’

while(membuff ->GetBit ()==1){

f++;

}

//Now read ’f’ bits to recover the ’f’ LSB of ’w’.

w=membuff ->Get(f);

//Put a ’1’ after the LSB of ’w’

w=((1<<f)|w);

// Substract ’1’ and multiply by 2^k to recover ’x’ without the ’k’ LSB.

w=(w-1)<<(int)k;

//Now read the ’k’ next bits , which are the ’k’ LSB of ’x’ and add them to the result

uintmax_t r=(uintmax_t)membuff ->Get(k);

w=w|r;

}

return w;

Figure 3.6: Exponential Golomb decoder implementation.

framework used (that is, the CCSDS 121.0 framework), which outputs the k used for

each compressed data block. Assuming that k is available, exponential Golomb codes

generated following the directives specified in section 3.3 can be decoded following these

steps:

1. Read the first bit of the coded stream. In case it is zero, read the following k bits

and this is the original value. Otherwise, read and decode the unary code of f .

2. Read f bits. These bits will contain the f least significant bits of w. In order

to understand the decoding procedure one must remember that, as explained in

section 3.3, these are the bits following the leftmost 1 bit in the representation of

w.

3. Insert a 1 bit to the left of the f read bits. The result will be the w value as

obtained in the coding stage.

4. Subtract one and shift left the result k positions to recover the value of n without

k LSB.

5. Finally, read k bits, which correspond to the LSB of n, and add them to the

previous value.

The implementation of this algorithm can be simplified by providing a routine to read

a specific number of bits from the compressed file.

Chapter 3. Exponential Golomb coder 21

It is worth mentioning that, in order to recover the unary code of f , ‘1’ bits must be

read one-by-one until the ‘0’ stop bit is found. Each ‘1’ value read must be counted,

obviously considering the first one already read in the first conditional statement. The

final value of this counter corresponds to f .

Figure 3.6 shows an implementation of the decoder algorithm. Using an implementation

of this algorithm with the corresponding decompressor routines, compressed files have

been restored without any binary difference between original and the restored result.

Chapter 4

Subexponential coder

4.1 Theoretical basis of subexponential codes

We have previously described the motivation of introducing exponential codes in the

CCSDS 121.0 compressor structure. As indicated there, when noise or outliers are

present in the data, the CLDCR compressor performance quickly degrades. On the

other hand, the exponential coder is not exempt of problems either. In this chapter

we intend to test another family of prefix codes, namely, the subexponential codes [5],

with the intention of obtaining the best possible results yet without changing the overall

CLDCR implementation. More specifically, we expect to obtain good compression ratios

in situations where samples are close to zero (or, in general, with low entropy levels),

and at the same time reduce the expansion when outliers or noise are present.

Subexponential codes are used in the Progressive Fast, Efficient, Lossless Image Com-

pression System (FELICS) [5, 15]. Similarly to the Golomb codes, the subexponential

coder depends on a configuration parameter k, with k ≥ 0. Actually, subexponential

codes are related to both Rice and exponential Golomb codes. The design of this coder

is supposed to provide a much smoother growth of the code lengths, as well as a smoo-

ther transition from the inherent CLDCR strategies (ZB, SE or FS) to the prefix coding

strategy. In particular, for small dispersions, moving from these strategies to subexpo-

nential coding does not imply a significant increase in the output code lengths and, thus,

we avoid the poor performance of the exponential Golomb coder in this region.

22

Chapter 4. Subexponential coder 23

n k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

0 0| 0|0 0|00 0|000 0|0000 0|00000
1 10| 0|1 0|01 0|001 0|0001 0|00001
2 110|0 10|0 0|10 0|010 0|0010 0|00010
3 110|1 10|1 0|11 0|011 0|0011 0|00011
4 1110|00 110|00 10|00 0|100 0|0100 0|00100
5 1110|01 110|01 10|01 0|101 0|0101 0|00101
6 1110|10 110|10 10|10 0|110 0|0110 0|00110
7 1110|11 110|11 10|11 0|111 0|0111 0|00111
8 11110|000 1110|000 110|000 10|000 0|1000 0|01000
9 11110|001 1110|001 110|001 10|001 0|1001 0|01001

10 11110|010 1110|010 110|010 10|010 0|1010 0|01010
11 11110|011 1110|011 110|011 10|011 0|1011 0|01011
12 11110|100 1110|100 110|100 10|100 0|1100 0|01100
13 11110|101 1110|101 110|101 10|101 0|1101 0|01101
14 11110|110 1110|110 110|110 10|110 0|1110 0|01110
15 11110|111 1110|111 110|111 10|111 0|1111 0|01111
16 111110|0000 11110|0000 1110|0000 110|0000 10|0000 0|10000

Table 4.1: Some subexponential codes.

Essentially, subexponential codes are a combination of Rice and exponential Golomb

codes. There are two coding strategies depending on the value being coded and the

value of k. When n < 2k+1, the length of the code increases linearly with n, while for

n ≥ 2k+1 the length increases logarithmically. This first linear part resembles a Rice

coding strategy and maintains a slow code growth for small values, while the second part

resembles the exponential Golomb code. Table 4.1 shows some subexponential codes for

several values of n and k.

These two different coding strategies provide an advantage in front of both Rice and

exponential Golomb codes. This definition allows the code to obtain similar code lengths

to Rice for small entry values. Additionally, in case of outliers or large values, the code

length is shorter than that of Rice due to the exponential steps in the second stage.

While this second exponential behavior is also present in the exponential Golomb coder,

the average code length is estimated to be shorter, since smaller values obviously will

have larger probabilities. Specially, in those scenarios where there are few or no outliers,

the coder is expected to deliver higher compression ratios than the exponential Golomb

coder while at the same time providing robustness against outliers.

Entering into implementation details, the subexponential algorithm needs two interme-

diate values which are used in the coding process, namely, b and u. These depend on

Chapter 4. Subexponential coder 24

the coded value n as can be seen in Eqs. (4.1) and (4.2).

b =

 k, if n < 2k,

blog2 nc, if n ≥ 2k.
(4.1)

u =

 0, if n < 2k,

b− k + 1, if n ≥ 2k.
(4.2)

Once these values are obtained, the code can be constructed by coding u in unary and

continuing with the b LSB of n. The length of the subexponential code can be extracted

from this method. This is done using Eq. 4.3, which is shown for both parts of the code.

It can be shown that, for a given n, the code lengths for consecutive k differ by at most

1 bit.

l(n) = (u + 1) + b =

 k + 1, if n < 2k,

2blog2 nc − k + 2, if n ≥ 2k
(4.3)

This coder implementation is detailed in section 4.2 below. Nevertheless, figure 4.1

shows an example of how to code a given value using the subexponential algorithm. In

this case, n = 11 (1011 in binary) and k = 2. The unary coding is shown as n “ones”

followed by a zero stop-bit, although ones and zeroes are interchangeable without loss

of generality.{
k = 2d

n = 11d = 1011b
⇒ as n > 2k ⇒

{
b = blog2 nc = blog2 11c = 3d

u = b− k + 1 = 2d

Unary code of u + stopbit︸ ︷︷ ︸ + b last bits of n︸ ︷︷ ︸
110b 011b︸ ︷︷ ︸

110011b = 51d

Figure 4.1: Subexponential coding example

Similarly, as in the case of exponential Golomb codes seen in section 3.2, some tests

have been conducted comparing code lengths obtained with compressors based on su-

bexponential and Rice codes. Figure 4.2 reveals the differences in code lengths between

Rice and subexponential (left panel), as well as the differences between Rice and the

Chapter 4. Subexponential coder 25

-2

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16 18 20

L
en

g
th

 R
ic

e
-

S
u

b
ex

p
o

n
en

ti
al

n

k=0
k=1
k=2
k=3

-2

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16 18 20

L
en

g
th

 R
ic

e
-

ex
p

o
n

en
ti

al
 G

o
lo

m
b

n

k=0
k=1
k=2
k=3

Figure 4.2: Code length differences between the Rice, exponential-Golomb and su-
bexponential coders, for small input values.

exponential Golomb coder described in the previous chapter (right panel), which is just

a zoom on figure 3.2. We remind that large values in these figures mean better perfor-

mance than Rice, and vice verse. Both panels are similar, meaning that both coders

actually behave similarly for small values. However, if paying attention to both panels

we can see what makes the subexponential better than exponential Golomb. Both co-

ders generate codes 1 bit larger than Rice for some values, due to the increase in the b

length. Nevertheless, for each given k, subexponential is able to offer the same length as

Rice for more values (up to n < 2k+1), while the exponential Golomb coder increases its

length earlier (at n < 2k). If the predictor works adequately, values close to zero are far

more probable than large values, so this advantage of the subexponential coder should

lead to better results than those obtained using the exponential Golomb coder. On the

other hand, for large values (the most relevant ones in figure 3.2), the results obtained

using the subexponential coder are essentially the same obtained using the exponential

Golomb coder, so we keep the resiliency in front of outliers. The subexponential coder

uses to generate codes 1 bit longer than the exponential Golomb coder for large values

of n, but in those regimes the total code length is already large and, hence, the relative

effect is much smaller than for small input values.

4.2 Practical implementation of the subexponential coder

One of the requirements for data compression in space is a simple and efficient coding

process. The subexponential code of a nonnegative integer n can be computed in three

steps, namely:

Chapter 4. Subexponential coder 26

// Calculate ’b’ and ’u’

if(n<(1<<k)){

//If n<2^k

b=k;

u=0;

}else{

//b=floor(log2(n)) u=b-k+1

b=((8* sizeof(int))- __builtin_clz(n)-1);

u=b-k+1;

}

subexp =(((((1 < <(u))-1)<< 1)<<(b)) | (n & ((1<<(b)) -1)));

Figure 4.3: An optimized C/C++ implementation of the subexponential coder.

1. Compute b and u, as shown in Eqs. (4.1) and (4.2).

2. Code in unary the value of u, here shown as u bits set to ‘1’ and followed by a zero

stop bit.

3. Finally, append the b LSB of n to produce the subexponential code of n.

The detailed procedure is as follow. First, we build the unary code of u, which can be

obtained by shifting a 1 bit u positions to the left and subtracting 1 to the result. A

zero stop-bit can be added by shifting another position to the left the resulting value.

The next operation is to append to this value the b LSB of n expressed in plain binary

code. In order to do this the non-significant bits of n must be discarded — that is, the

all-zero Most Significant Bits (MSB) — by applying a mask that keeps the b LSB. A

bit-wise OR operation with the truncated value of n will produce the required output.

Once b and u are available, the subexponential code can be actually computed. Finally,

the length of the produced code must be computed in order to properly transfer the

coded value to the next stage. This can be easily obtained following Eq. (4.3) as b and

u are already available.

The code definition using b and u requires that the algorithm behaves differently for

n < 2k+1 than for n ≥ 2k+1. This is due to the two different coding strategies mentioned

before. The implementation of the first strategy is straightforward, as only assignments

are required. On the other hand, when n ≥ 2k+1, the straightforward implementation of

b would be using the log function over w. However, it must be taken into consideration

that this is probably the most computationally expensive operation. Therefore, the usage

of this function has been replaced by an optimized algorithm. An extended discussion

about how to implement the blog2 nc operation is available in appendix A.

Chapter 4. Subexponential coder 27

Tests using the subexponential coder within the CLDCR framework have been conduc-

ted, the results of which are shown in the next section. For this, we have reused the

complete implementation of the CCSDS 121.0 compressor structure indicated in the pre-

vious chapter. All the coding options are thus available, including the prediction error

mapping method (PEM). We remind that separate classes are used for the compressor

and the coder. The compressor classes work with blocks of data samples combined with

the adaptive CLDCR stage. The coder class receives values and parameters to code the

values and outputs the corresponding result. Additionally, it can compute the length of

a code and return this information to the compressor class in order to decide the best

coding strategy.

4.3 Results on synthetic data

Here we discuss the results of the synthetic data tests using the subexponential coder

within the CLDCR adaptive framework. Figure 4.4 shows the results obtained from the

same tests described in chapter 3.4. That is, random data with a Probability Density

Function (PDF) resembling discrete Laplacian (or double-sided geometric) distributions,

covering the most typical dispersion ranges and including different levels of flat noise.

Figure 4.4 shows the compression performance of the adaptive subexponential coder,

both in terms of absolute ratios (left panels) and also ratios relative to those of the

original CLDCR (using Rice) and the Shannon limit (right panels). From top to bottom,

0.1%, 1% and 10% noise levels are displayed.

The first remarkable result that can be seen in figure 4.4 is that the subexponential

coder roughly matches or even slightly exceeds the CCSDS performance when very few

outliers are present in the data — that is, for the case in which only 0.1% flat noise

is added (top panels). Particularly relevant is that for small values of b, which can

be rather common in several cases, the subexponential algorithm performs better than

the current standard, providing compression ratios which are about 2% larger. In the

case of medium to high entropy levels, we are slightly below the CLDCR performance.

Fortunately, in this region (where low compression ratios are obtained anyway), the

difference is actually negligible.

Chapter 4. Subexponential coder 28

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

 0.1 1 10 100 1000

A
b

so
lu

te
 c

o
m

p
re

ss
io

n
 r

at
io

b

CCSDS
Subexp

Shannon Limit

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100 1000
0.8

1.0

1.2

1.4

R
el

at
iv

e
co

m
p

re
ss

io
n

 v
s

S
h

an
n

o
n

 L
im

it

R
el

at
iv

e
C

o
m

p
re

ss
io

n
 v

s
C

C
S

D
S

-R
ic

e

b

CCSDS
Subexp vs SL

Subexp vs CCSDS

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

 0.1 1 10 100 1000

A
b

so
lu

te
 c

o
m

p
re

ss
io

n
 r

at
io

b

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100 1000
0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

R
el

at
iv

e
co

m
p

re
ss

io
n

 v
s

S
h

an
n

o
n

 L
im

it

R
el

at
iv

e
C

o
m

p
re

ss
io

n
 v

s
C

C
S

D
S

-R
ic

e

b

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 0.1 1 10 100 1000

A
b

so
lu

te
 c

o
m

p
re

ss
io

n
 r

at
io

b

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100 1000
0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

R
el

at
iv

e
co

m
p

re
ss

io
n

 v
s

S
h

an
n

o
n

 L
im

it

R
el

at
iv

e
C

o
m

p
re

ss
io

n
 v

s
C

C
S

D
S

-R
ic

e
b

Figure 4.4: Compression performance of the adaptive subexponential coder on syn-
thetic data, for 0.1% (top), 1% (center) and 10% (bottom) flat noise levels.

When otherwise realistic noise levels are applied — namely, 1% flat noise — the subex-

ponential coder keeps its compression efficiency mostly unchanged with respect to the

0.1% case, while the CCSDS standard is strongly affected. For the most typical disper-

sions (say, b ' 1 to b ' 100) the efficiency of the current CCSDS standard with respect

to the Shannon limit is typically below 90%, and it drops up to just 65%. On the other

hand, our adaptive subexponential coder always offers efficiencies above 85% — except

for the lowest entropy levels, for which it largely outperforms CLDCR anyway.

Finally, in scenarios where the noise or outliers level is rather high (that is, 10%), the

current standard is almost unable to actually compress the data. As already seen in

Chapter 4. Subexponential coder 29

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100 1000

R
el

at
iv

e
co

m
p

re
ss

io
n

 v
s

S
h

an
n

o
n

 L
im

it

b

Subexp kmin=0
Subexp kmin=1

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100 1000

R
el

at
iv

e
co

m
p

re
ss

io
n

 v
s

S
h

an
n

o
n

 L
im

it

b

Subexp kmin=0
Subexp kmin=1

Figure 4.5: Compression efficiency of the adaptive subexponential coder with kmin =
0 and kmin = 1, for 0.1% (left) and 10% (right) outliers.

the previous chapter, the current CCSDS standard can just reach ratios as low as 1.5

in the best of the cases. That is a compression efficiency well below 50% for medium to

low entropies, and typically below 80% even for high entropies. On the other hand, our

proposed subexponential algorithm, adequately combined with the CLDCR adaptive

framework, obtains compression ratios above 50% for almost any case — even for low

entropy levels, while the efficiency is typically above 70%. Ratios up to 3.5 can be

reached in this way, which is an excellent result considering the large amount of noise

in the data. When compared to the CCSDS standard, our coder can even double the

compression ratio under such conditions, while the relative improvement is typically

above 1.4.

As we could otherwise expect, the large performance drop observed around b ' 3 in

the case of the exponential Golomb coder has disappeared. Figure 4.5 provides some

insight about how this has been achieved. The CLDCR allows the value of k to vary

from 1 to 13. In our implementation, it has been modified in order to allow k = 0. The

largest value of k has been rejected as it was not necessary with the new coder. The

behavior of the exponential and subexponential codes rendered irrelevant the k = 13

option. In the case of the subexponential coder, its design combined with the use of the

k = 0 option allows this solution to match and even exceed the CCSDS performance,

as we have just seen. Moreover, this modification allows larger compression ratios for

low dispersions when the coder is fed with data containing samples with 10% flat noise.

Figure 4.5 demonstrates the advantages of allowing the k = 0 coding option, while figure

4.6 (specially the right panel) confirms the usefulness of this option in the subexponential

Chapter 4. Subexponential coder 30

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

 0.1 1 10 100 1000
 0.5

 0.6

 0.7

 0.8

 0.9

 1

R
el

at
iv

e
o

p
ti

o
n

 u
sa

g
e

R
el

at
iv

e
co

m
p

re
ss

io
n

 v
s

S
L

b

ZB

SE
FS

K0

K1

K2 K3 K4 K5 K6 K7
K8

K9

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

 0.1 1 10 100 1000
 0.5

 0.6

 0.7

 0.8

 0.9

 1

O
p

ti
o

n
s

av
er

ag
ed

 b
lo

ck
 l

en
g

th
 (

b
it

s)

R
el

at
iv

e
co

m
p

re
ss

io
n

 v
s

S
L

b

ZB SE

FS

K0

K1

K2

K3

Figure 4.6: Relative usage of the subexponential compressor options (left) and average
compressed block length (right).

coder. At the same time, it demonstrates that the problem seen with the exponential

Golomb coder is due to the uselessness of such k = 0 option with that coder.

Now that we are confident on the excellence of this entropy coding solution, we conducted

some tests with different sizes of the data compressor blocks in order to check if we can

boost further the compression ratios. By default, blocks of 16 samples have been used

in our tests. The CLDCR standard allows blocks of either 8 or 16 samples. We suppose

that such small sizes were chosen by the CCSDS owing to the high sensitivity of the

Rice coder to outliers. Small block sizes probably reduce the effect of such outliers in

the original CLDCR. In our case, considering the resiliency of the subexponential coder

to outliers, we can safely explore larger block lengths. Using larger data blocks reduces

the impact of the block header on the final ratio. Figure 4.7 displays the compression

gain when working with 32 samples instead of 16. Particularly, for low entropy levels

and in low-noise scenarios, an improvement of up to 5% is achieved. Using data blocks

of 32 samples is still safe for space environments [10, 16, 17].

4.4 Subexponential decoder

As it has already been commented in section 3.5, an extensive code revision and testing

has been conducted on the coder implementation to avoid possible mistakes. However,

the implementation of a decoder was considered mandatory in order to fully guarantee

the reliability of our adaptive subexponential coder. The decoder has been implemented

in a separate executable, using a separate class structure. The result is an executable

Chapter 4. Subexponential coder 31

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100 1000

R
el

at
iv

e
co

m
p

re
ss

io
n

 v
s

S
h

an
n

o
n

 L
im

it

b

Subexp 16
Subexp 32

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100 1000

R
el

at
iv

e
co

m
p

re
ss

io
n

 v
s

S
h

an
n

o
n

 L
im

it

b

Subexp 16
Subexp 32

Figure 4.7: Subexponential performance with 16 and 32 samples per block for 0.1%
(left) and 10% (right) of outliers.

where we can choose either the original CCSDS compressor, the exponential Golomb

compressor or the subexponential compressor. In order to decode the values obtained

in the coding stage as shown in section 4.1 the parameter k employed must be known.

As in both the CLDCR and the exponential Golomb compressors, the subexponential

coder also outputs as a small header the k used for each data block. Assuming that the

the value of k is known, subexponential codes created following the directives specified

in section 4.2 can be decoded following these steps:

1. Read the first bit from the code.

2. If the first bit is 0, the following k bits are the decoded value. Otherwise, the

unary code of u must be read.

3. Next, the b LSB have to be read, where b = u + k − 1.

4. The last step is to restore the original code by adding to 2b the b LSBs.

Figure 4.8 shows the implementation of these steps. Simplicity has been a premise but

it might be worth mentioning that in order to recover the unary code of u the number

of ‘1’ bits until the stop bit ‘0’ must be counted one by one. It must be taken into

consideration that the first 1 has already been read. The resulting count will correspond

to the parameter u.

After implementing this algorithm within the adequate decompressor routines, compres-

sed files have been successfully restored. By comparing them with the original files we

Chapter 4. Subexponential coder 32

uintmax_t result =0;

// Subexponential has two different cases

if((membuff ->GetBit ())==0){

//Case n<(2^k)

return (int) membuff ->Get(k);

}else{

//Case n>(2^k)

int b,u;

uintmax_t base;

//Count the number of 1’s until the stop bit.

u=1; //We already have read the first 1

while(membuff ->GetBit ()){

u++;

}

//Now the least b significant bits have to be read.

b=u+k-1;

base=1<<b;

result = (base | membuff ->Get(b));

return (int)result;

}

Figure 4.8: Subexponential decoder implementation

have assessed that they are identical up to the last bit, so we have confirmed that the

adaptive subexponential compressor is indeed lossless.

Chapter 5

REGLIUS and HyPER Coder

5.1 Interest in hybrid PEC/Rice coding

In the search for an efficient and resilient entropy coder, in chapters 3 and 4 we have

discussed two modifications to the CCSDS 121.0 standard. In both cases, our intention

was to obtain the best possible results with the minimum modifications to a well-known

and reliable compression system. Nevertheless, other compression strategies should also

be investigated, even if implying radical changes in the design.

The PEC and FAPEC coders described in chapter 2 are good examples of excellent

entropy coders requiring a completely different strategy than that of Rice or the CCSDS

121.0 recommendation. Several tests on these systems, which can be found in [10],

demonstrate that they outperform the CCSDS 121.0 standard in most of the realistic

scenarios. The segmentation strategy designed in PEC delivers outstanding results when

noise or outliers are present. On the other hand, the tests presented in chapter 4 reveal

that the adaptive subexponential coder, making use of the CCSDS 121.0 framework,

also has an excellent behavior under noisy scenarios, while the penalty for low entropies

and clean data is often smaller than in PEC or FAPEC. Thus, on one hand there

is the PEC-based segmentation strategy which appears to be excellent for very noisy

environments. On the other hand, the Rice-based coding offers a smoother increase in

the code lengths that benefits clean environments and small entropies. Thus, it is rather

obvious that a combined strategy should deliver excellent results.

33

Chapter 5. REGLIUS and HyPER Coder 34

In this chapter we explore the idea of combining these two strategies into a single entropy

coder, that is, a hybrid between Golomb codes and PEC-based coding. First of all, we

define here a new code which will be used as the base of a segmented coding strategy

similar to that of PEC. The idea is to use this code instead of the plain binary coding

used in each of the PEC segments, looking for a smoother increase of the code length.

We have called it REGLIUS, and resembles the subexponential coding in the sense that

it combines the Rice-based coding for the smallest values with the exponential Golomb

b increases for larger values. Nevertheless, it has a limited coding range as it will be seen

below. This limitation is introduced in order to ease the implementation and calibration

of the segmented coder, also discussed later. The segmented coding strategy has been

called HyPER coding, since it combines the PEC-based segmentation with the REGLIUS

codes in each segment. The HyPER coding strategy is expected to be robust against

noise and outliers while yielding excellent results for clean data and small entropies, thus

outperforming the current standards. Let us describe REGLIUS and the HyPER coder

in the following sections.

5.2 The REGLIUS codes

One of the main properties of REGLIUS codes is their limited coding range. In this

sense, the strategy of REGLIUS resembles that of a plain binary coding using a given

number of bits, rather than a Golomb coding — for which the coding range is infinity.

This limitation has been imposed, on one hand, to simplify the implementation and

calibration of a segmented coding strategy similar to PEC or FAPEC. On the other

hand, it allows to make use of all of the bits available in the Rice-Golomb definition for

actual value coding, including the stop bit.

Another feature of the REGLIUS codes is that they depend on a k ≥ 0 parameter, in

a similar manner as Golomb codes do. We have designed the code in such a way that

the maximum value that can be coded with a given configuration is easily computable.

More specifically, a REGLIUS code with a given k configuration is able to code from

zero up to 2k+3 − 1. Thus, it is equivalent to a plain binary code of k + 3 bits. The

difference is that the size of this code spans from 2k+1 bits up to 2k+6 bits.

Chapter 5. REGLIUS and HyPER Coder 35

n k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

0 0| 0|0 0|00 0|000 0|0000 0|00000
1 10| 0|1 0|01 0|001 0|0001 0|00001
2 110| 10|0 0|10 0|010 0|0010 0|00010
3 1110|0 10|1 0|11 0|011 0|0011 0|00011
4 1110|1 110|0 10|00 0|100 0|0100 0|00100
5 1111|0 110|1 10|01 0|101 0|0101 0|00101
6 1111|10 1110|00 10|10 0|110 0|0110 0|00110
7 1111|11 1110|01 10|11 0|111 0|0111 0|00111
8 N/A 1110|10 110|00 10|000 0|1000 0|01000
9 N/A 1110|11 110|01 10|001 0|1001 0|01001

10 N/A 1111|00 110|10 10|010 0|1010 0|01010
11 N/A 1111|01 110|11 10|011 0|1011 0|01011
12 N/A 1111|100 1110|000 10|100 0|1100 0|01100
13 N/A 1111|101 1110|001 10|101 0|1101 0|01101
14 N/A 1111|110 1110|010 10|110 0|1110 0|01110
15 N/A 1111|111 1110|011 10|111 0|1111 0|01111
16 N/A N/A 1110|100 110|000 10|0000 0|10000

Table 5.1: Some REGLIUS codes, for k up to 5 and n up to 16.

REGLIUS codes have four different coding stages. First, they have been defined with

a slow growth in their length for small data values — related to low entropy samples.

This is achieved with a Rice coding for the smallest values. With this, we should be

able to take full advantage of an adequate pre-processing stage. Two Rice jumps are

allowed, that is, adding up to two bits in the fundamental sequence. When the input

value becomes larger, the code closely resembles to an exponential Golomb on — similar

to what happens in the case of subexponential codes. One extension of the b bits is

allowed — that is, allowing to increase the useful coding range just once. When the

coding range is exhausted, the stop bit is switched and the remaining bits except one

are used. Finally, for the largest possible values of a given code range, we add a final

extension of 1 bit to accommodate more values up to 2k+3−1. Table 5.1 illustrates some

REGLIUS codes for k = 0 to k = 5 for the 17 first n values. From the coding process

shown in this table we can infer the code length, which depends on both k and n (as we

could expect) following Eq. (5.1). Figure 5.1 shows an example of the coding process

using as an example the value n = 21 and k = 2.

length =

k + 1 + b n

2k
c, if n < 3 · 2k,

k + 5, if 3 ∗ 2k ≤ n < 3 · 2k+1,

k + 6, if 3 ∗ 2k+1 ≤ n < 2k+3.

(5.1)

Chapter 5. REGLIUS and HyPER Coder 36

We can thus compare REGLIUS codes against their equivalent binary coding (that is,

using k + 3 bits), which is used in the PEC segments. REGLIUS codes are up to 2 bits

shorter than standard binary for the first 2k+1 values. The next 2k values require exactly

the same length than in standard binary coding. And finally, the remaining values are

coded with up to 3 bits more. That is obviously the penalty for obtaining shorter codes

for smaller values. It remains to demonstrate whether this penalty is compensated by

the improvement achieved for small values, which should be the case considering the

Laplacian probability distributions typically obtained after an adequate pre-processing

stage.

{
k = 2d

n = 21d = 10101b
⇒

1st range: n ≤ 11

2nd range: 11 < n ≤ 19

3rd range: 19 < n ≤ 23

4th range: 23 < n ≤ 31

Range prefix︸ ︷︷ ︸ + n− 5 · 22 in k bits︸ ︷︷ ︸
11110b 01b︸ ︷︷ ︸

1111001b = 121d

Figure 5.1: REGLIUS coding example

5.3 Theoretical basis of the HyPER coder

REGLIUS codes are used in a segmented coding strategy, which is the HyPER coder.

As previously noted, this coding strategy has proved to deliver excellent results in both

PEC and FAPEC. We will continue using four ranges as in those coders, and we will

also continue using signed values — so that no PEM stage is necessary. Each of the

four segments uses a different k parameter for its REGLIUS code, which we will name

k1, k2, k3 and k4. Similarly as in the LE strategy of PEC, the second, third and fourth

segment are signaled with the reserved −0 value coded in the first segment. As it can

be imagined, REGLIUS will deliver a shorter code for −0 than standard binary, which

should lead to an improvement in the compression ratio. The HyPER coder shall also be

calibrated using four parameters, as in the case of PEC. In the current implementation,

these are static values determined by means of a trial-and-error process, although an

adaptive stage might be added in future developments. Figure 5.2 shows the definition

Chapter 5. REGLIUS and HyPER Coder 37

REGLIUS (k1, n)

REGLIUS (k1, 0)

REGLIUS (k1, 0)

REGLIUS (k1, 0)

REGLIUS (k2, n-2)

REGLIUS (k3, n-2 -2)

REGLIUS (k4, n-2 -2 -2)

0

0

1

1

1

1st

2nd

3rd

4th

±

±

±

±

k1+3

k1+3 k2+3

k1+3 k2+3 k3+3

Figure 5.2: Implementation of the HyPER coder with four segments.

of this hybrid coding strategy using four segments, where REGLIUS(k1, n) indicates the

REGLIUS code of value n using k = k1.

5.4 Practical implementation of the HyPER coder

This section describes the practical implementation of both the REGLIUS coding me-

thod and of the HyPER coder. As the four segment strategy present in the HyPER

coder is build upon REGLIUS codes, these will be explained first.

In REGLIUS coding, the first two coding steps follow a typical Rice coding scheme, and

therefore any n ≤ (3 · 2k − 1) will be coded using a standard Rice algorithm. In section

2.1.2 Rice coding is detailed. The next range will add one more useful bit after the Rice

code of 3 · 2k, leading to k + 1 useful bits, and consequently being able to code 2k+1

values. This leads to a maximum value of n ≤ (6 ·2k−1) for this range. For larger input

values, the k + 1 bits after the fundamental sequence are exhausted. Now the stop bit

is going to be reused, allowing 2k more values to be coded. This leads to a maximum

coding value of n ≤ (7 · 2k − 1). The final stage adds yet another useful bit, allowing an

additional coding range of n ≤ (2k+3 − 1).

As previously discussed, REGLIUS has been designed in order to simplify and opti-

mize the coder implementation. Therefore, codes that fall in the second range will be

constructed as the fundamental sequence of 3 followed by n − 3 · 2k coded using k + 1

bits in plain binary. The fundamental sequence of 3 is 1110b, as seen in table 5.1. Once

the second range is exhausted, the third range will generate the fundamental sequence

of 4 (11110) followed by n − 5 · 2k coded in k bits, again in plain binary code. Finally,

the last range of codes will always be built as 11111b followed by n − 3 · 2k+1 in k + 1

plain bits. These are useful properties to optimize the implementation of the REGLIUS

Chapter 5. REGLIUS and HyPER Coder 38

//First stage: x <(3*2^k)

if(x<(3*(1<<k))){

//Rice coding

z=(x>>k); //z=x/(2^k)

size =1+k+z;

if (z!=0){

code=(((1<<z)-1) << k+1)|(x & ((1<<k)-1));

}else{

code=(x & ((1<<k)-1));

}

}else if (x<(5*(1<<k))){

// Second stage: x <(5*2^k)

size =5+k;

//1110b=14d is always the prefix.

code=((14<<(k+1)) | (x-3*(1<<(k))));

}else if (x<(3*(1< <(k+1)))){

//Third stage: x <(3*2^(k+1))

size =5+k;

//11110b=30d is always the prefix

code=((30<<k) | (x-5*(1<<k)));

}else{

// Fourth stage: x<(2^(k+3))

size =6+k;

//11111b=31d is always the prefix

code=((31<<(k+1)) | (x-3*(1<<(k+1))));

}

return code;

Figure 5.3: REGLIUS coder implementation in C.

coder, reducing the coding process to the concatenation of a binary value with a constant

prefix. Figure 5.3 presents an implementation of the REGLIUS coder.

The HyPER coder structure has four different segments, as shown in figure 5.2. Again,

the compression routine has been designed with simplicity in mind. The first segment

will be coded with a REGLIUS coding with the k1 parameter plus the sign bit preceding

the code. The following segments will be preceded by the REGLIUS code of the leap

value −0 coded with k1. The sign bit and a prefix to identify the segment follow. More

specifically, 0 for the second segment, for 10 the third and 11 for the fourth. After this,

each segment appends a REGLIUS code using the corresponding k parameter. It must

be noted that for the second, third, and fourth segments this last part will code the

difference of n with respect to the maximum value that can be coded with the previous

segment.

5.5 Results on synthetic data

In this section we show the results of the synthetic data tests conducted using the Hy-

PER coder. The panels of figure 5.4 show the results obtained on the same test bench

Chapter 5. REGLIUS and HyPER Coder 39

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

 0.1 1 10 100 1000

A
b

so
lu

te
 c

o
m

p
re

ss
io

n
 r

at
io

b

CCSDS
Hypercoder

Shannon Limit

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100 1000

0.8

1.0

1.2

R
el

at
iv

e
co

m
p

re
ss

io
n

 v
s

S
h

an
n

o
n

 L
im

it

R
el

at
iv

e
co

m
p

re
ss

io
n

 v
s

C
C

S
D

S
-R

ic
e

b

CCSDS
Hypercoder vs SL

Hypercoder vs CCSDS

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

 0.1 1 10 100 1000

A
b

so
lu

te
 c

o
m

p
re

ss
io

n
 r

at
io

b

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100 1000
0.8

1.0

1.2

1.4

R
el

at
iv

e
co

m
p

re
ss

io
n

 v
s

S
h

an
n

o
n

 L
im

it

R
el

at
iv

e
co

m
p

re
ss

io
n

 v
s

C
C

S
D

S
-R

ic
e

b

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 0.1 1 10 100 1000

A
b

so
lu

te
 c

o
m

p
re

ss
io

n
 r

at
io

b

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100 1000

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

R
el

at
iv

e
co

m
p

re
ss

io
n

 v
s

S
h

an
n

o
n

 L
im

it

R
el

at
iv

e
C

o
m

p
re

ss
io

n
 v

s
C

C
S

D
S

-R
ic

e
b

Figure 5.4: Compression performance of the HyPER coder versus the CCSDS 121.0
recommendation for 0.1%,1% and 10% flat noise levels.

described in section 3.4. That is, random data with a PDF resembling a discrete La-

placian (or double-sided geometric) distribution, covering the most typical dispersion

ranges and including different flat noise levels. The figure shows the compression per-

formance of the HyPER coder, both in terms of absolute ratios (left panels) and also

ratios relative to those of the original CLDCR (using Rice) and the Shannon limit (right

panels). From top to bottom, 0.1%, 1% and 10% noise levels are applied.

The first remarkable result that can be seen in figure 5.4 is that the performance of

the HyPER coder is comparable to that of the current CCSDS standard in low-noise

scenarios — namely 0.1% noise (top panels). The HyPER coder developed in this project

Chapter 5. REGLIUS and HyPER Coder 40

slightly outperforms the current standard for typical dispersions (b = 3 to b = 1000).

However, for low dispersions (b < 3) the performance decreases when compared to that

of the CLDCR. This effect is most probably caused by the separate coding of the sign

bit in the current HyPER implementation, which limits the maximum achievable ratio

to 8 (in this 16-bit implementation). Additionally, the non-adaptive operation of this

HyPER implementation probably affects the final result as well. Finally, an adequate

strategy for coding very low entropy levels is not available yet, while the CCSDS 121.0

standard (and also FAPEC) features that. Future developments of this coder should

address this issue and add a different coding strategy for this region.

As previously seen in sections 3.4 and 4.3, when otherwise realistic noise levels are

applied, the performance of the CCSDS standard abruptly drops. However, the HyPER

coder maintains its efficiency levels — and even the absolute ratios. As figures 5.4

illustrate, b ≈ 0.7 presents a maximum improvement with respect to the CLDCR. For

very low data entropies, the HyPER coder offers a slightly worse performance than the

standard, while for higher entropies it slowly converges with the standard.

Finally, it is worth highlighting how the designed coder tolerates high noise levels without

problems. Even at 10% noise levels, the coder efficiency for relevant dispersion levels

(b = 1 to b = 100) remains at about 90%, clearly outperforming the current standard.

Only at very high entropies the CLDCR offers performances similar to those of the

HyPER coder, although in this region the compression ratios are anyway too small.

5.6 HyPER decoder

In this section the REGLIUS and HyPER coder decoders implementation done in this

work will be discussed. As seen in section 5.3, REGLIUS codes depend on a parameter

k ≥ 0. The parameter used in the coding stage must be known in order to recover the

value correctly. In the current design of the HyPER coder the four k parameters have

to be calibrated previously. Therefore, in the following process it is assumed that the k

value is known.

The REGLIUS decoding process is shown in figure 5.5. The basic idea behind the

decoder is to fit the current code in the corresponding range in order to process it

accordingly. This is done by reading a single bit in each step until the correct range

Chapter 5. REGLIUS and HyPER Coder 41

ReadBit()?

Yes

ReadBit()?

ReadBit()?

ReadBit()?

ReadBit()?

Read k LSB

Read k LSB

Read k LSB

Read k+1 LSB

Read k LSB

k=0?

No

Read k+1 LSB

1

1

1

1

1

0

0

0

0

0

Result = 0

Result = k LSB

Result = 2 + k LSB

Result = 2 + k LSB

Result = 3·2 + (k+1) LSB

Result = 5·2 + k LSB

Result = 3·2 + (k+1) LSB

k

k+1

k

k

k+1

Figure 5.5: REGLIUS decoding process.

is found. Once the range is known, the corresponding LSB are read and the result is

computed.

This decoding structure is, by design, slower than those corresponding to Rice, expo-

nential Golomb or subexponential codes. However, the decoder is not under the same

constraints as the coder as it is expected that it will run on ground. Therefore, this

algorithm design does not have such strict power and processing limitations as those on

board a satellite.

The implementation of the HyPER coder decoder is straightforward once a routine to

decode the REGLIUS codes is available. This section assumes the decoder algorithm

previously explained has it implemented. The algorithm to decode a value coded with

HyPER must follow these steps:

Chapter 5. REGLIUS and HyPER Coder 42

1. First read the sign bit, which will always be the first one in any of the four segments.

2. Once the first bit is read, a REGLIUS coded value with the parameter k1 can be

read. This is assumed to be decoded using the routines previously explained.

3. With the sign and the decoded value for the first segment it can be determined

whether this code belongs to the first segment. This is done by comparing the

value with the leap value −0. If the value found is not the leap value, the read

value is the result and the decoding stage is over for this code.

4. If the decoded value was −0, the actual sign of the value must be recovered by

reading a single bit.

5. Next, the segment identifier must be read. This is done by reading a single bit. If

zero, the value was coded using the second segment. Otherwise another bit must

be read to distinguish whether it corresponds to the third or the fourth segment.

6. Once the segment is known, the REGLIUS decoding routine can be called again

using the corresponding k value.

7. Finally, the maximum value of the previous segment must be added to the decoded

value.

The HyPER decoder has been successfully implemented and tested, assessing that this

is, indeed, a lossless compression strategy.

Chapter 6

Results

6.1 Results on synthetic data

In this chapter global results for the coders developed in this project and presented in

chapters 3, 4 and 5 are compared to the current CCSDS standard and the result of

this comparison is discussed. This first section covers a comparison using synthetic data

following the same approach described in previous chapters.

Figure 6.1 shows the performance of these coders compared to the CLDCR (using Rice)

and the Shannon limit. It should be noted that the CLDCR, the exponential Golomb

and the subexponential coders have adaptive stages. This adaptive stage selects the

best k parameter for each data block. However, the current implementation of HyPER

coder lacks this adaptive stage. Thus, for a meaningful comparison this coder has been

calibrated for each data point. From top to bottom, results for 0.1%, 1% and 10% noise

levels are shown. The left panels show the absolute compression ratios while the right

ones show the relative compression ratios with respect to the Shannon limit.

The first important result that figure 6.1 demonstrates is that for low-noise scenarios the

performance of the exponential Golomb coder drops abruptly for b ∼ 3, as previously

discussed. A detailed analysis of this performance drop has been offered in section 3.4.

Basically, the exponential Golomb coder is unable to deliver short enough codewords for

small values. Other compression strategies present in the CCSDS such as fundamental

sequence are not designed to work well in these ranges thus delivering poor results. On

the other hand, as discussed in section 4.3, the subexponential coder does not show

43

Chapter 6. Results 44

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

 0.1 1 10 100 1000

A
b

so
lu

te
 c

o
m

p
re

ss
io

n
 r

at
io

b

CCSDS
Exp-Gol
Subexp

Hypercoder
Shannon Limit

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100 1000

R
el

at
iv

e
C

o
m

p
re

ss
io

n
 v

s
S

h
an

n
o

n
 L

im
it

b

CCSDS
Exp-Gol
Subexp

Hypercoder

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

 0.1 1 10 100 1000

A
b

so
lu

te
 c

o
m

p
re

ss
io

n
 r

at
io

b

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100 1000

R
el

at
iv

e
C

o
m

p
re

ss
io

n
 v

s
S

h
an

n
o

n
 L

im
it

b

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 0.1 1 10 100 1000

A
b

so
lu

te
 c

o
m

p
re

ss
io

n
 r

at
io

b

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100 1000

R
el

at
iv

e
C

o
m

p
re

ss
io

n
 v

s
S

h
an

n
o

n
 L

im
it

b

Figure 6.1: Performance of the Rice, exponential-Golomb, subexponential coders and
of the HyPER coder for 0.1% (top), 1% (middle) and 10%(bottom) flat noise levels.

this large performance drop. This coder has been chosen to provide a smoother code

start in terms of code length. This allows the codes for low values to be shorter while

maintaining the exponential growth for large values. Both exponential Golomb and

subexponential coders outperform CCSDS using Rice when b is between ' 0.2 and ' 1.

However, for larger entropies the current standard has marginally better results. It must

be emphasized as well that the HyPER coder provides the best compression ratio for

high entropy levels. This fact demonstrates the robustness of the proposed segment

coding approach. However, when b < 1 its performance decreases delivering 10% to

15% worse results than the current standard. All the other compression solutions have

Chapter 6. Results 45

different strategies to deal with these low entropies. It was out of the scope of this project

to implement such option but next versions of this coder should definitely address this

issue.

When considering realistic noise levels, namely 1% noise, the HyPER coder has the best

response, yielding the highest compression ratio except for low entropies. Compression

gains in the most relevant zone, b from 1 to 100, range from about 15% to 5% compared

with the CCSDS strategy using the Rice coder. The developed subexponential coder,

even using the same compressor architecture as the CCSDS 121.0 standard, offers gains

in the same zone that range from about 15% to 2%. The proposed subexponential coder

brings remarkable robustness with minimal changes in the current CCSDS compressor

structure.

Finally, the results obtained when considering high noise levels highlight the advantages

of the devised segment coding strategy in front of the current CLDCR architecture. The

panels in which 10% noise level has been considered clearly show that the current CCSDS

standard using Rice is completely unsuitable for noisy environments. Both the expo-

nential Golomb and subexponential coders increase the architecture resilience against

noise. Compression levels are increased by more than 20% in both cases. However, when

comparing these results with those of the HyPER coder it is clear that this last coder

improves further the compression ratio for the region of interest.

6.2 Results on real data

In chapters 3 to 5, the results of the theoretical analysis performed in this work were

shown. Each coder was tested under realistic conditions using synthetic data and a

comparison between all coders has been presented in section 6.1. However, the final

assessment can only be achieved by testing the systems with real data. A compression

corpus with real data sources has been used to perform a complete analysis and to offer

even more representative evaluations of the performances of the coders. This corpus is

a set of data files covering the most typical scenarios which the compression algorithms

might face.

All the compression ratios have been computed considering only the information proces-

sed and compressed by the coder. In the case of an ASCII input, the binary equivalent

Chapter 6. Results 46

has been used to calculate the initial size. Moreover, for files containing headers, these

have been withdrawn, allowing a reliable performance evaluation. More specifically, for

all practical purposes headers are not considered by the coders. Finally, it is worth

mentioning that additional procedures, such as different pre-processing stages or inter-

leaving, are usually included in the most typical on-board compressor structures. In

particular, on-board implementations of the compressors are tailored to the needs of the

different missions, and more complex pre-processing stages than the ones used in these

tests are also considered as well. Thus, the ratios shown in the following subsections can

be considered a worst-case scenario.

As seen in chapter 5 the current HyPER coder implementation only supports 16 bit

words. Therefore, it should be noted that HyPER coder ratios are only shown for files

where coding with 16 bits codewords makes sense, that is 8, 16, 32 or 64 bits. Fur-

thermore, the HyPER coder was calibrated for each file with the best set of parameters

before the compression. Therefore, the HyPER coder compression ratios must be consi-

dered as the best result obtained with the coder calibrated specifically for each file. All

the other compressors share the adaptive stage present in the CLDCR. An adaptive

stage for HyPER similar to the one present in the CCSDS architecture would be un-

reasonable in a space environment considering the processing limitations. In order to

maintain coding speed and limit processing requirements such an implementation should

be avoided. A different approach for an adaptive stage which maintains coding speed

is present in FAPEC, but might lead to a slight reduction of the compression ratios

presented here.

6.2.1 Corpus description

A detailed description of the files used to evaluate the different coders is presented in

the following subsections. Data files are grouped according to the type of information

and features. Additionally, tables comparing the compression ratios obtained by each

algorithm are included. Furthermore, the Shannon limit and the word length for each

file are appended in these tables. The best compression ratio achieved is highlighted in

blue and it must be noted that results have been rounded to two decimal places. In the

following tables some compression values are higher than the corresponding Shannon

limit. This is due to the fact that the ZB option present in the CLDCR framework

Chapter 6. Results 47

codes blocks of zeros as simple codewords while the Shannon limit assumes independent

events.

6.2.1.1 Images

When considering data compression in space applications, imaging data is probably the

most relevant case. Most space missions include cameras, although not necessarily ope-

rating in the visual range of the spectrum. Therefore, a variety of space-related images

stored in Flexible Image Transport System (FITS) format have been evaluated with the

proposed compressors. FITS file format is widely spread since it is specifically devised

for the scientific applications. In these files, information is stored as raw (uncompressed)

binary data, allowing the data to be easily accessed and visualized. Table 6.1 presents

the compression results for the image data set.

Data from the Fiber-Optics Communications for Aerospace Systems (FOCAS) is a stan-

dardised data set of astronomical data. This data set is usually used to test calibration

methods which should deal with very different astronomical images [18]. Files gal0003,

gal0004, sgp0001 and sgp0002 contain 32-bit samples, therefore the sample splitting

process has been used.

Gaia Instrument and Basic Image Simulator (GIBIS) images are a subset from the GIBIS

group of files described in subsection 6.2.1.2. These files were generated using the GIBIS

simulator [19] with highly realistic simulations. These include cosmic rays effects, noise,

pixel saturation, and can be considered an excellent approximation to real captured

images in space missions.

The miscellaneous group includes a series of astronomical images related to extended

sources, such as galaxies, stellar fields, or nebulae. This group differs from the pre-

vious two groups in a significant way. Most data in both FOCAS and GIBIS images is

background and noise with just some point-like sources corresponding to stars. Howe-

ver in these files astronomical sources cover large areas while few data corresponds to

background noise.

Files ground 1.pgm and ground 2.pgm are stored in Portable Gray Map (PGM) format.

These two files contain micro-photographs of ground samples. Hence, they represent

images that might be taken by a robotic mission.

Chapter 6. Results 48

File
Size Compression Ratio

SL
WL

(bytes) Rice Gol-Exp Subexp HC (bits)

FOCAS

tuc0003 210240 2.89 2.66 2.86 2.84 3.06 16
tuc0004 210240 3.04 2.72 3.01 3.00 3.22 16
com0001 504000 1.98 1.91 1.95 2.01 2.07 16
ngc0001 331200 1.76 1.84 1.84 1.75 1.92 16
ngc0002 331200 2.50 2.51 2.60 2.60 2.75 16
for0001 316800 3.05 2.84 2.99 2.06 3.22 16
for0002 308160 3.98 3.53 3.89 3.88 4.28 16
gal0001 325440 2.59 2.47 2.53 2.63 2.77 16
gal0002 230400 2.17 2.10 2.14 2.19 2.30 16
gal0003 4003200 3.58 3.66 3.74 4.08 4.98 32
gal0004 4003200 3.53 3.66 3.68 4.03 4.95 32
sgp0001 417600 3.34 3.57 3.54 3.80 4.77 32
sgp0002 417600 4.04 3.71 4.27 4.42 5.45 32

GIBIS

simu7135 SM1 6 3006721 3.45 3.06 3.39 3.48 3.78 16
simu5291 SM1 4 10008001 3.54 3.09 3.46 3.55 3.88 16
simu7135 AF1 6 24007681 1.05 1.06 1.07 1.40 1.49 32
simu5291 AF1 5 80015041 2.12 2.27 2.22 2.55 2.84 32
simu7135 RP1 6 24007681 1.02 1.03 1.04 1.42 1.52 32
simu5291 RP1 2 80015041 2.29 2.42 2.37 2.66 3.05 32
simu7135 RVS1 6 24007681 1.11 1.14 1.14 1.54 1.65 32
simu5291 RVS1 5 80015041 1.94 2.09 2.02 2.38 2.70 32

Miscellaneous

stellar field little 734400 1.10 2.22 2.14 2.72 5.15 64
accretion disk 63360 0.81 0.81 0.82 0.63 1.30 32
noisy source 4219200 1.01 1.00 1.03 1.05 1.19 32
galaxy 734400 1.14 2.23 2.17 2.82 4.85 64
m35 stellar field 11327040 1.57 1.57 1.54 1.55 3.34 16
nebula stellar 731520 1.00 1.19 1.19 1.67 3.78 64
ground 1 11039273 1.38 1.27 1.35 1.13 1.44 8
ground 2 26214456 1.92 1.75 1.86 1.22 1.81 8

Table 6.1: Results obtained for image files, classified into three groups depending on
the data generator.

Chapter 6. Results 49

6.2.1.2 GIBIS

GIBIS files correspond to highly realistic simulations of Gaia [19]. These files follow the

same data format that will be used in the on-board subsystems of the Gaia mission.

Compression results for these files are shown in table 6.2. Data in Sky Mapper (SM)

files corresponds to single-star images with relatively low resolution, while Astrometric

Field (AF) data files have better resolution. Data from the Blue Photometers (BP), Red

Photometers (RP) and from the Radial Velocity Spectrometer (RVS) resemble dispersed

images with medium and high resolutions. Finally, XP data files contain the data of the

BP and RP concatenated.

6.2.1.3 GPS

Global Positioning System (GPS) data has been included in these tests as the signal

model is adequate for the proposed compression approach. The files contain raw data

from a glacier GPS observation station in Greenland. The resulting data has extremely

slow variations. There are three observables in these files [20]:

• C1, the pseudo-range using C/A-Code on L1.

• L1, the phase measurement on L1.

• S1, the raw signal strength or Signal to Noise Ratio (SNR) value as given by the

receiver.

These observables are split into three different files, namely global S1, global L1 and

global C1. A normalisation was necessary in L1 and C1 files in order to adapt the data

to 24 bits. These files contain latitude, longitude and altitude with a sampling rate of

1 sample every 15 seconds. Data in is07 * corresponds to the glacier position while

nun2 * consists of position coordinates from a nearby mountain. A more sophisticated

data compression system for GPS data can be found in references [21] and [22].

6.2.1.4 LISA

The LISA PathFinder space mission is a technology demonstrator specifically designed

to test and assess key technologies that will be used in the LISA mission. Several files

Chapter 6. Results 50

File
Size Compression Ratio

SL
WL

(bytes) Rice Gol-Exp Subexp HC (bits)

SM L1b1t3 269000 2.38 2.46 2.49 2.53 2.62 16
SM L150b0t5 1384865 1.65 1.97 1.96 2.01 2.14 16
SM L90b40t5 378939 2.21 2.37 2.39 2.42 2.54 16
SM L10b70t4 1248957 2.25 2.40 2.42 2.46 2.55 16
SM L170b60t10 831149 2.25 2.40 2.43 2.46 2.57 16

AF L1b1t3 34313 1.78 1.78 1.78 1.66 1.88 16
AF L150b0t5 192171 1.32 1.37 1.36 1.21 1.46 16
AF L90b40t5 56643 1.53 1.56 1.55 1.40 1.67 16
AF L10b70t4 165424 1.68 1.69 1.69 1.56 1.74 16
AF L170b60t10 118000 1.58 1.62 1.61 1.48 1.70 16

BP L1b1t3 54830 2.95 2.73 2.96 2.85 3.00 16
BP L150b0t5 663687 2.05 2.25 2.35 2.40 2.52 16
BP L90b40t5 328485 3.78 3.11 3.73 3.78 4.00 16
BP L10b70t4 520178 3.19 2.86 3.18 3.13 3.23 16
BP L170b60t10 699466 3.56 3.02 3.52 3.54 3.68 16

RP L1b1t3 55133 2.71 2.56 2.68 2.16 2.66 16
RP L150b0t5 661445 2.09 2.28 2.40 2.47 2.59 16
RP L90b40t5 329106 3.77 3.10 3.72 3.76 3.96 16
RP L10b70t4 522874 3.29 2.89 3.24 3.19 3.33 16
RP L170b60t10 696686 3.64 3.04 3.59 3.62 3.78 16

XP L1b1t3 109963 2.82 2.64 2.82 2.69 2.78 16
XP L150b0t5 1325132 2.07 2.27 2.37 2.44 2.54 16
XP L90b40t5 657591 3.77 3.11 3.72 3.77 3.97 16
XP L10b70t4 1043052 3.24 2.88 3.21 3.16 3.26 16
XP L170b60t10 1396152 3.60 3.03 3.56 3.58 3.73 16

RVS L1b1t3 15388 2.15 2.15 2.19 2.28 2.36 16
RVS L150b0t5 165568 1.28 1.54 1.54 1.56 1.88 16
RVS L90b40t5 190766 2.36 2.30 2.35 2.36 2.42 16
RVS L10b70t4 118874 2.31 2.30 2.35 2.42 2.51 16
RVS L170b60t10 281136 2.45 2.39 2.44 2.55 2.64 16

Table 6.2: Results for GIBIS simulation data files, grouped by the observation ins-
trument.

containing all the information coming from the mission instruments are included in this

corpus.

The data presented in table 6.4 are mostly related to temperature measurements. More

specifically:

• Files kp30 row5 and kp30 row7 contain the voltage applied to the temperature

control system. This control is used for the electronics tests of the mission.

• File kp30 row10 is the output of a feed-forward filter for the temperature control

of an aluminium block.

Chapter 6. Results 51

File
Size Compression Ratio

SL
WL

(bytes) Rice Gol-Exp Subexp HC (bits)

Raw GPS data

global S1 1716184 2.30 2.20 2.25 2.32 2.36 16
global L1 3413516 1.57 1.62 1.64 N/A 1.77 24
global C1 3418852 1.74 1.80 1.82 N/A 1.94 24

Treated data

is07 height 28805 3.07 2.91 2.99 3.14 3.32 16
is07 lat 40149 3.60 3.00 3.56 3.58 4.41 16
is07 lon 40327 3.01 2.91 3.00 3.15 3.36 16
nun2 height 23014 2.99 2.86 2.92 3.05 3.22 16
nun2 lat 40306 3.53 3.04 3.50 3.57 4.18 16
nun2 lon 40306 4.45 4.30 4.45 N/A 4.93 24

Table 6.3: GPS data compression results, including raw files obtained from the satel-
lite constellation and a processed data set.

File
Size Compression Ratio

SL
WL

(bytes) Rice Gol-Exp Subexp HC (bits)

kp30 row2 1154478 3.86 3.75 3.85 N/A 4.13 24
kp30 row3 1488555 3.90 3.85 3.96 N/A 4.37 24
kp30 row4 1038896 3.44 3.33 3.40 N/A 3.69 24
kp30 row5 1308335 1.76 1.73 1.74 N/A 1.81 24
kp30 row6 1206642 1.27 1.25 1.26 N/A 2.01 24
kp30 row7 405892 16.70 16.53 16.68 N/A 14.90 24
kp30 row8 1110148 3.75 3.62 3.72 N/A 4.03 24
kp30 row10 1292772 12.83 15.34 15.34 N/A 20.35 24

acc intrf 8317621 1.02 1.00 1.00 N/A 1.22 24

Table 6.4: Results for LISA data files measuring temperature and position.

• Files kp30 row8 and kp30 row10 indicate the room temperature of the laboratory,

measured with the same system to be implemented on board. Room temperature

presents larger oscillations than those expected in the spacecraft.

• File kp30 row3 represents the temperature difference between two near points.

Since this difference is remarkably small, the data is essentially electronics noise.

• File kp30 row2 contains the absolute temperature measured from a stable source.

• File kp30 row4 refers to the absolute temperature of the measurement system.

This file presents fluctuations that are not present in previous files.

• File kp30 row6 contains the same measurements as kp30 row3. In this case the

units are ADC counts instead of their temperature equivalent. Counts and degrees

Chapter 6. Results 52

File
Size Compression Ratio

SL
WL

(bytes) Rice Gol-Exp Subexp HC (bits)

earth 1 1500 118186 2.83 2.78 2.83 N/A 3.03 24
earth 1 5000 112479 2.15 2.19 2.22 N/A 2.35 24
earth 1 8500 117027 2.09 2.06 2.08 N/A 2.20 24

small earthQuake 180570 1.86 1.80 1.83 1.86 1.90 16

Table 6.5: Seismic data files obtained from two different earthquakes.

are related exponentially, although for small variations can be considered almost

linear.

• Finally, file acc intrf file represents the simulation of the nominal acceleration

of a test mass relative to the spacecraft. A high noise level is present in this file

caused by the interferometer, which measures this acceleration.

6.2.1.5 Seismogram

Files related to seismic measurements are also present in this corpus. Table 6.5 shows

the results of this analysis. All three earth 1 * files represent measurements of the

8.0 magnitude earthquake in Sichuan, China, occurred the May the twelfth, 2008. The

three files represent the data gathered by different seismic stations. On the other hand,

small earthQk is a measurement of a smaller earthquake.

6.2.1.6 Spectra

The last group of data corresponds to spectroscopic measurements, which are probably

the most typical instrumental data in space after imaging.

Table 6.6 summarizes the results obtained for these files. Spectra are classified into two

subgroups. The first group includes large spectra with very high resolution and range

for different sources. The second group involves different spectra but extremely small

files, hence, low-resolution spectra. A detailed description of the files follows:

• Files observ irrad and pseudo res flux contain, respectively, the observed ir-

radiance and the pseudo-residual flux of the solar spectral atlas from 296 to 1300

nm, obtained with a Fourier Transform Spectrometer.

Chapter 6. Results 53

File
Size Compression Ratio

SL
WL

(bytes) Rice Gol-Exp Subexp HC (bits)

observ irrad 6492192 2.79 2.65 2.75 2.62 2.68 16
pseudo res flux 7400613 2.78 2.70 2.75 N/A 2.74 24
spec 4463684 1.21 1.20 1.20 N/A 1.31 24
er spec 3954024 1.62 1.60 1.61 N/A 1.63 24
all spectra stars 172353 2.78 2.76 2.80 N/A 2.81 24
all absolute stars 46096 2.04 1.97 2.01 2.00 2.08 16
all relative stars 35232 2.09 2.02 2.06 2.05 2.12 16
all spectra stars 16bits 170263 1.87 1.86 1.88 1.75 1.87 16

bkg-1o0235 freq lin 3645 1.30 1.30 1.31 N/A 2.64 24
bkg-1o0235 freq log 4585 1.08 1.06 1.07 N/A 2.63 24
ganimedes freq lin 6225 1.31 1.30 1.31 N/A 2.42 24
ganimedes freq log 8138 1.05 1.03 1.06 N/A 2.41 24
ngc1068 freq lin 16524 1.06 1.03 1.06 N/A 2.18 24
ngc1068 freq log 16440 1.12 1.11 1.12 N/A 2.18 24
prova freq lin 12453 1.05 1.03 1.04 N/A 2.26 24
prova freq log 13864 1.06 1.04 1.05 N/A 2.26 24

Table 6.6: Data compression results obtained from a variety of stellar spectra.

• Files spec and er spec are composed of spectra and spectral error of a stellar

library of 706 stars at the near-infrared spectral region (from 8348 Å to 9020 Å)

with a resolution of 1.5 Å.

• File all spectra stars is the spectral energy distribution photoelectrically mea-

sured from 320 to 860 nm with a resolution of 1 nm, in equidistant steps of 1

nm. It comprises 60 bright southern and equatorial stars of intermediate and late

spectral types and for all luminosity classes.

• Files all absolute stars and all relative stars represent the energy distri-

bution for 33 galactic supergiants, mostly situated in the southern Milky Way in

the range from 4800 to 7700 Å with an effective resolution of 10 Å. Specifically,

all absolute stars is composed of a list of absolute fluxes for each of the 18 stars

observed under good photometric conditions. The second file is a list of relative

fluxes for 15 stars observed in low-quality nights.

• The second group of files (bkg, ganimedes, ngc and prova) is composed of very

small low-resolution spectra in both linear and logarithmic flux scale.

Chapter 6. Results 54

Best Worst Average Std. Dev.

Exp-Gol vs CCSDS 22.47% −16.92% −1.57% 7.32%
Subexp vs CCSDS 21.24% −3.31% 1.59% 4.63%
HyPER vs CCSDS 34.64% −38.67% 1.90% 10.36%

Table 6.7: Relative gains in compression ratio versus the CCSDS 121.0 standard.

6.2.2 Corpus results

The first result that can be extracted from the tables presented in subsection 6.2.1 is

that in almost all cases the solutions developed in this project work better than the cur-

rent standard. Even in those cases where CCSDS standard delivers better compression

results, differences are small.

Table 6.7 presents a statistical analysis obtained from the corpus results. Compression

ratios for each coder have been normalized against the CLDCR results, thus obtaining

a relative compression ratio with respect to the current standard. Values presented in

this table are intended to provide a general view on each coder performance.

As seen in previous sections, both the exponential Golomb and the subexponential co-

ders have similar performance using real data. Although the exponential Golomb coder

provides robustness to the CCSDS compressor framework, it presents a performance

drop when the Laplacian dispersion (b) is around 3. The subexponential coder solves

this issue while slightly improving overall performance. This behavior is reflected in

table 6.7, as the worst case for the exponential Golomb coder is far worse than the su-

bexponential, namely −16.92% in front of −3.31%. Accordingly, these ratios correspond

to files where the CCSDS recommendation absolute compression ratio is around 3.8 —

which is the ratio obtained where the exponential Golomb coder presents a performance

drop. The worst case is obtained for file RP L90b40t5, where the CCSDS recommenda-

tion compression ratio is 3.77 while the exponential Golomb coder just delivers a ratio of

3.10. On the other hand, the subexponential coder delivers a ratio of 3.72, thus revealing

that it solves this weakness of the exponential Golomb coder.

In general, the behavior of the subexponential coder is better than the current standard

as in average it yields 1.59% better results. Additionally, the standard deviation is the

smallest one, indicating highly stable results. The exponential Golomb coder efficiency

is heavily penalized by the mentioned performance drop.

Chapter 6. Results 55

The HyPER coder results in table 6.7 show that the new compressor approach obtains

significant gains in terms of compression. The proposed architecture provides higher

average compression ratios, as well as the highest overall improvement — namely, an

impressive 34.67% with respect to CCSDS 121.0. However, as previously seen in section

6.2, there are still cases where the lack of a specific stage for low entropies degrades the

coder efficiency. Consequently, the standard deviation is larger than that of the previous

cases, and the worst result implies a too large decrease compared to the current standard.

For instance, HyPER coder delivers good ratios compared to the CCSDS 121.0 standard

in the images and GIBIS data sets. Nevertheless, in files such as for0001 and RP L1b1t3

it presents poor performances. In these files, the other coders use the ZB coding option

as can be inferred from the compression ratios higher than the Shannon limit or close

to it.

A qualitative analysis describes that the best results for the subexponential coder are

delivered suitably for the GIBIS images data set. It is worth noting that this set of images

is specially representative of imaging space missions. In general, the subexponential

coder delivers better results for longer word lengths, as well as the HyPER coder —

which presents even better results for the same data sets. The reason is that, when

applied to such large sample sizes, the compressors must split the samples into two or

even four parts. The most significant ones use to be mostly zero or tiny values, while

the least significant ones appear as outliers (mostly flat noise). Considering the excellent

behavior of our solutions in front of these cases, we can now better understand the large

improvements shown in the tables.

Chapter 7

Conclusions

7.1 Conclusions

In this work two improvements to the CCSDS 121.0 standard have been developed,

using exponential Golomb and subexponential coders. The aim has been to improve

its compression efficiency when dealing with large amounts of noise and outliers. Addi-

tionally, a totally different approach from the current standard has been designed and

implemented. This new coder is known as the HyPER coder.

As seen in chapters 3, 4 and 6 both exponential Golomb and subexponential coders

provide outstanding robustness to the CCSDS compressor architecture. It has been

proved that exponential coders deliver exceptional results when dealing with noisy data.

However, as seen in section 3.4 the exponential Golomb coder fails to deliver a smooth

start behavior in terms of code length. As a result, the low entropy options of the

CCSDS standard are used beyond its intended range. This produces a severe reduction

of the efficiency in this region. Therefore, the exponential Golomb is not recommended

to be used within the CLDCR framework.

Subexponential codes provide a softer code length growth for low values while still main-

taining short codewords for large values. This behavior solves the critical efficiency flaw,

as seen in chapter 6, integrating perfectly within the CCSDS architecture. Additionally,

the subexponential coder provides slightly better results than the exponential Golomb

coder.

56

Chapter 7. Conclusions 57

Tests conducted in this work with synthetic data reveal a general improvement when

dealing with realistic levels of noise and outliers in the data. The ratios obtained are very

similar on clean data, but the improvement is significant when large fractions of outliers

are present. Tests with real data confirm this affirmation. In general, the proposed

adaptive subexponential coder performs extremely similar to CCSDS standard, yet with

typical improvements up to 20% in the compression ratio, and decreases of just 3% in

the worst case.

The designed adaptive subexponential compressor offers a much more resilient operation

in front of outliers and unexpected data statistics. The solution proposed here represents

a very simple — yet extremely useful — improvement that can be implemented to

the current standard for lossless data compression in space, offering nearly optimal

compression ratios in almost any situation. It must be reminded that this coder is

almost as fast as the current Rice coder as exposed in appendix A. Therefore, this thesis

concludes that it is recommendable to substitute the Rice coder in CCSDS 121.0 by a

subexponential coder, keeping the rest of the recommendation unchanged.

Finally, regarding the alternative method proposed using REGLIUS codes within the

HyPER coder compressor structure has revealed to be promising. As seen in section 5.5,

the HyPER coder maintains up to 90% efficiency levels even in very noisy environments.

The segment coding strategy, similar to that of FAPEC, has proved extremely efficient

when dealing with outliers. Results obtained with real data files presented in chapter 6

confirm that this new coder delivers high compression ratios in the relevant scenarios.

7.2 Future work

During the execution of this work multiple interesting research lines have been uncovered.

Unfortunately, these have been out of the scope of the current work but are presented

here as they might be part of future essays.

The most direct one consists in several improvement to our most recent entropy coding

design. The HyPER coder is still in early development stages. Although it already yields

outstanding results, some improvements might be included. For instance, for very low

data entropies the HyPER coder offers a slightly worse performance than the CCSDS

architecture. This is due to the lack of a specific stage for low entropies. This should

Chapter 7. Conclusions 58

be addressed in future versions of this coder. Additionally, the current implementation

only supports 16-bits codeword. Thus, future versions should be able to use different

sizes — at least from 8 to 24 bits. A specific stage for low entropies is also necessary

in order to improve efficiency in this range. Finally, creating an adaptive stage for the

HyPER coder is necessary for this solution to be a real alternative for space missions —

or even other environments. This might be similar to some extent to the one present in

FAPEC. This thesis concludes encouraging additional research in this approach.

Further tests should be carried out on the performance of the coders. This is especially

true for the tests carried out using synthetic data. Although the designed noise analysis

can be considered a worst case scenario, tests with more realistic noise distributions

might be carried out. For instance, pink noise might represent a better approximation

to noise produced by some instruments.

Finally, developing a hardware implementation of the subexponential algorithm might

proof useful to evaluate real performance and feasibility to be included in space missions.

Appendix A

Coders Performance

Although obtaining the best coding speed was not the primary goal of this project it was

crucial to maintain an acceptable coding speed compared to the current standard. The

proposed coders speed had to be similar to the current standard in order to be a feasible

alternative. Therefore, in order to improve the speed of the coders the key operation for

both exponential Golomb and subexponential algorithms was identified. An exhaustive

profiling analysis determined that the critical operation is blog2 nc. This operation is also

used to compute the length of the code from which the CCSDS compressor structure

obtains the best k value. This fact increases the relevance of this operation as it is

computed constantly by the compressor in order to decide the best coding option.

The blog2 nc operation corresponds to the number of bits needed to code a given number

n. A basic algorithm approach, seen in figure A.1, might be to loop and count bits until

the required number of bits is found.

Although correct, this approach can be optimized. A more efficient approach is to use

the number of leading zeros and the number of bits of the variable — typically known at

compilation time, thus a constant in execution time [23]. Additionally, this method has

unsigned char rb = 1;

while (n>1) {

n>>=1;

++rb;

}

return(rb);

Figure A.1: Straightforward implementation of blog2 nc.

59

Appendix A. Coder’s performance 60

return (8* sizeof(n)-__builtin_clz(n)-1);

Figure A.2: Optimized implementation of blog2 nc.

Algorithm ns/call

Old algorithm 96.14
Using math.h 34.22
New algorithm 4.21

Table A.1: blog2 nc algorithm speeds.

Coder ns/call

Rice 16.61
Exponential-Golomb 34.13
Subexponential 22.50

Table A.2: Coder speeds

the advantage that most architectures have built-in assembler instructions to calculate

the number of leading zeros. In order to make the code architecture independent the

gcc function builtin clz() was used. This uses the processor assembler instruction

when available or an optimized algorithm otherwise. The new proposed algorithm would

be reduced to fewer operations as seen in figure A.1.

In order to evaluate the improvement obtained in this way, averaged processing times for

both approaches were computed, as well as those obtained using the standard math.h

library. The results are shown in table A.2. As expected, the new approach is extremely

faster than any of the alternatives.

Although excellent results combined with an increase in the compressor robustness might

be obtained with the proposed coders, maintaining coding speed within reasonable li-

mits is essential. Exhaustive benchmarking of the coding routines has been conducted

in this work to ensure that coders delivered the required performance. Table A.2 pre-

sents the average coding speeds for all the proposed coders. The exponential Golomb

algorithm does not deliver the expected coding speed. This might require a hardware

implementation to be in an on-board system. Otherwise, the results demonstrate that

the subexponential coder speed is slightly slower than that of Rice, but still adequate

and might easily fit into tight processing requirements of space-based systems.

Bibliography

[1] J. Portell, E. Garćıa–Berro, X. Luri, and A. G. Villafranca. Tailored data compres-

sion using stream partitioning and prediction: application to Gaia. Experimental

Astronomy, 21:125–149, 2006.

[2] Consultative Committee for Space Data Systems. Lossless Data Compression, Blue

Book. Technical Report CCSDS 121.0-B-1, CCSDS, 1993.

[3] P.S. Yeh. Implementation of CCSDS lossless data compression for space and data

archive applications. In Proc. Space Operations 2002 Conf., pages 60–69. Consul-

tative Committee for Space Data Systems, CCSDS, 2002.

[4] R. Vitulli. PRDC: an ASIC device for lossless data compression implementing the

Rice algorithm. In Proceedings of the Geoscience and Remote Sensing Symposium,

2004., volume 1, pages 317–320, 2004.

[5] D. Salomon. Data Compression. The complete reference. Springer-Verlag, 2004.

[6] R.F. Rice. Some practical universal noiseless coding techniques. Technical Report

JPL 79-22, Jet Propulsion Laboratory, Mar 1979.

[7] Consultative Committee for Space Data Systems. Lossless Data Compression, In-

formational Report. Technical Report CCSDS 120.0-G-2, CCSDS, 2006.

[8] P.S. Yeh, R. Rice, and W. Miller. On the optimality of code options for a universal

noiseless coder. Technical Report JPL 91-2, Jet Propulsion Laboratory, Feb 1991.

[9] J. Portell, A. G. Villafranca, and E. Garćıa–Berro. Designing optimum solutions for

lossless data compression in space. In Proceedings of the On-Board Payload Data

Compression Workshop 2008, pages 35–44. ESA, 2008.

61

Bibliography 62

[10] J. Portell, A.G. Villafranca, and E. Garćıa-Berro. A resilient and quick data com-

pression method of prediction errors for space missions. In Bormin Huang, Anto-

nio J. Plaza, and Raffaele Vitulli, editors, Proceedings of the Satellite Data Compres-

sion, Communication, and Processing V, volume 7455, page 745505. SPIE, 2009.

[11] J. Teuhola. A compression method for clustered bit-vectors. Inf. Process. Lett., 7:

308–311, 1978.

[12] D. Salomon. Variable-length codes for data compression. Springer, 2007.

[13] J. Wen and J.D. Villasenor. Reversible variable length codes for efficient and robust

image and video coding. In Proc. of the IEEE Data Compression Conference, pages

65–68. IEEE, 1998.

[14] G.J. Sullivan D. Marpe, T. Wiegand. The h.264/mpeg4 advanced video coding

standard and its application. IEEE Communications Magazine, 44:134–143, 2006.

[15] P. G. Howard and J. S. Vitter. Fast progressive lossless image compression. In

M. Rabbani & R. J. Safranek, editor, Society of Photo-Optical Instrumentation

Engineers (SPIE) Conference Series, volume 2186, pages 98–109, 1994.

[16] E.M. Geijo, J. Portell, E. Garćıa–Berro, X. Luri, and U. Lammers. Improved

channel coding for longer contact times with Gaia. Technical Report GAIA-BCN-

008, IEEC, 2004.

[17] O. Pace. Clarification on the probability of frame loss (PFL) in data transmission.

Technical Report SAG-OP-001, ESA, 1998.

[18] F. Murtagh and R. H. Warmels. Test image descriptions. In Proceedings of the

first ESO/ST-ECF Data Analysis Workshop, volume 17(6), pages 8–19. European

Southern Observatory, 1989.

[19] C. Babusiaux. The Gaia Instrument and Basic Image Simulator. In C. Turon,

K. S. O’Flaherty, & M. A. C. Perryman, editor, The Three-Dimensional Universe

with Gaia, volume SP-576, pages 417–420. ESA, 2005.

[20] Y. Hatanaka. Compact RINEX format and tools. In R. E. Neilan, P. Van Scoy, and

J. F. Zumberge, editor, Proceedings of the IGS 1996, pages 243–256. IGS, 1996.

Bibliography 63

[21] P. Ruiz. GPS data compression through an intensive study of data correlation.

Master’s thesis, Universitat Politècnica de Catalunya, Sep 2009.

[22] I. Mora. GPS data compression using lossless compression algorithms. Master’s

thesis, Universitat Politècnica de Catalunya, Sep 2009.

[23] H. S. Warren. Hacker’s delight. Addison-Wesley, 2002.

	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	2 Context
	2.1 CCSDS 121.0 Lossless Data Compression Recommendation
	2.1.1 CCSDS architecture
	2.1.2 Rice coder

	2.2 Other existing solutions

	3 Exponential Golomb coder
	3.1 Interest in exponential coders
	3.2 Theoretical basis of exponential Golomb codes
	3.3 Practical implementation
	3.4 Results with synthetic data
	3.5 Exponential Golomb decoder

	4 Subexponential coder
	4.1 Theoretical basis of subexponential codes
	4.2 Practical implementation of the subexponential coder
	4.3 Results on synthetic data
	4.4 Subexponential decoder

	5 REGLIUS and HyPER Coder
	5.1 Interest in hybrid PEC/Rice coding
	5.2 The REGLIUS codes
	5.3 Theoretical basis of the HyPER coder
	5.4 Practical implementation of the HyPER coder
	5.5 Results on synthetic data
	5.6 HyPER decoder

	6 Results
	6.1 Results on synthetic data
	6.2 Results on real data
	6.2.1 Corpus description
	6.2.1.1 Images
	6.2.1.2 GIBIS
	6.2.1.3 GPS
	6.2.1.4 LISA
	6.2.1.5 Seismogram
	6.2.1.6 Spectra

	6.2.2 Corpus results

	7 Conclusions
	7.1 Conclusions
	7.2 Future work

	A Coders Performance
	Bibliography

