118 research outputs found

    Delay-Intolerant Covert Communications with Either Fixed or Random Transmit Power

    Get PDF
    In this paper, we study delay-intolerant covert communications in additive white Gaussian noise (AWGN) channels with a finite block length, i.e., a finite number of channel uses. Considering the maximum allowable number of channel uses to be N, it is not immediately clear whether the actual number of channel uses, denoted by n, should be as large as N or smaller for covert communications. This is because a smaller n reduces a warden’s chance to detect the communications due to fewer observations, but also reduces the chance to transmit information. We show that n=N is indeed optimal to maximize the amount of information bits that can be transmitted, subject to any covert communication constraint in terms of the warden’s detection error probability. To better make use of the warden’s uncertainty due to the finite block length, we also propose to use uniformly distributed random transmit power to enhance covert communications. Our examination shows that the amount of information that can be covertly transmitted logarithmically increases with the number of random power levels, which indicates that most of the benefit of using random transmit power is achieved with just a few different power levels.This work was supported by the Australian Research Council’s Discovery Projects under Grant DP180104062

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements

    Data acquisition for Germanium-detector arrays

    Get PDF
    Die Wandlung von analogen zu digitalen Signalen und die anschließende online/offline Verarbeitung ist die technologische Voraussetzung zahlreicher Experimente. Für diese Aufgaben werden häufig sogenannte Analog-Digital-Wandler (ADC) und FPGAs („field-programmable gate array“) eingesetzt. Die vorliegende Arbeit beschreibt die Evaluierung der FPGA und ADC Komponenten für die geplante FlashCAM 2.0 DAQ (FC2.0 DAQ). Die Entwicklung der ersten FlashCAM (1.0) DAQ (FC1.0 DAQ) wurde unter Federführung des Max-Planck-Instituts für Kernphysik im Jahre 2012 begonnen und war ursprünglich eine exklusive Entwicklung für das Cherenkov Telescope Array (CTA) Experiment. In der Zwischenzeit wird FlashCAM in zahlreichen Experimenten (HESS, HAWK, LEGEND-200, etc.) eingesetzt, die sowohl Photomultiplier (PMTs) als auch High Purity Germanium (HPGe) Detektoren umfassen. Beide Detektorentypen unterscheiden sich massiv in ihren Anforderungen und können auch von der neuen DAQ abgedeckt werden. Das Themengebiert der Arbeit umfasst den gesamten funktionellen Umfang einer modernen DAQ. Moderne DAQ Systeme benötigen eine möglichst hohe Read Out Performance zwischen dem DAQ Board und dem es kontrollierenden Server. Die Umsetzung eines leistungsfähigen Firmware Designs und das Design einer hierauf angepassten Hardware/Softwareschnittstelle wird am Beispiel der Zynq Familie vorgestellt. Die Zynq-Familie von Xilinx ist von besonderem Interesse, da der Hardwarehersteller Trenz Elektronik ein flexibles, einfach aufsteckbares Modulkonzept mit verschiedenen SoCs der Zynq-Serie anbietet. Neben der Read Out Performance einer DAQ ist ihre Auflösungsgrenze von entscheidender Bedeutung für das Gelingen des finalen Experiments. Die verwendete FADC Karte muss sich daher durch exzellente SNR und Linearitätseigenschaften auszeichnen. Die Evaluierung solcher FADC Karten setzt ein Testsetup voraus, dass in Signalreinheit und Stabilität die hohen Anforderungen der devices under test übertreffen muss. Praktisch sind diese Bedingungen nur unter hohem (Kosten) Aufwand erreichbar. Im Rahmen der Arbeit wurden daher auch alternative Testkonzepte entwickelt, die mit akzeptablen Abstrichen in der Genauigkeit eine Messung im experimentellen Umfeld ermöglichen können. Da sich die Themengebiete in ihrem Inhalt deutlich unterscheiden, wurde die vorliegende Arbeit in zwei Themenkomplexe aufgeteilt. Der erste Teil der Arbeit beschäftigt sich mit dem Einsatz der Zynq Familie in der geplanten „FlashCAM“ Nachfolger DAQ. Der zweite Teil widmet sich der ADC Nichtlinearitätsbestimmung. Die wichtigsten Ergebnisse der Arbeit lassen sich folgt zusammenfassen: ▪ Die „High Performance“ (HP) Schnittstellen der Zynq-UltraScale+ haben eine aussetzerfreie Bandbreite von 2.4 GB/s in den externen Arbeitsspeicher der Trenz Module. Wird noch zusätzlich die standardmäßig vorhandene 1 Gb PS-Ethernet Verbindung betrieben, verbleibt der CPU noch eine Bandbreite von mindestens 0.5 GB/s in den Arbeitsspeicher. Im Fall der Zynq-7000 Serie ist eine effiziente Implementierung der HP Schnittstellen schwierig, da die CPU nur vergleichsweise niedrige Arbeitsspeicherzugriffsraten erreicht. Die HP Schnittstellen sind eine wichtige Designalternative da ein durchgehender Datentransfer in den externen Arbeitsspeicher ein Design ermöglichen würde dass weniger stark durch den verfügbaren FPGA internen Speicher begrenzt ist. Dies wäre besonders für Anwendungen in der HPGe-Spektroskopie wünschenswert, da der praktische Nutzen des verwendeten Designs stark von der zur Verfügung stehende Puffergröße abhängt. ▪ Die “Accelerator Coherency” Schnittstelle (ACP) ermöglicht ein direkter Datentransfer aus der FPGA in den Cache der Zynq-CPU. Die entworfene ACP-CMA hat eine Bandweite von bis zu 2.4 GB/s und bietet für Cache-CPU Zugriffe noch ausreichend Reserve. Dass die Zynq-CPU die Cachedaten ohne ein Abwürgen der ACP-CMA verarbeiten kann, ist entscheidend. Wäre dies nicht der Fall könnte die CPU im Parallelbetrieb von Ethernet und ACP-CMA nicht die notwendigen Vorarbeiten zur Ethernet-Übertragung („Event Building“) bewältigen. In der Evaluierung wurde eine maximale Event Building Bandbreite von 0.7 GB/s festgestellt. Wahrscheinlich ist die reale maximale Bandbreite deutlich höher anzusiedeln. Einschränkend muss betont werden, dass in praktischen Applikationen zusätzliche Einschränkungen in Kraft treten, die de-facto einen kontinuierlichen Betrieb der ACP-CMA unmöglich machen. Diese Einschränkungen – die nicht prinzipieller Natur sind - wurden in der durchgeführten Ermittlung nicht berücksichtigt. Da weiterhin alle Zynq-FPGAs über einen Cache verfügen, ist die ACP-CMA eine Designlösung, die auf allen verfügbaren Zynq-FPGAs sinnvoll implementiert werden kann. Dies unterscheidet sie von der entwickelten HP-DMA, die häufig nur für Implementierungen in einer Zynq-UltraScale FPGA interessant ist. ▪ Der neuentwickelte FC2.0 Prototype wurde bereits in experimentellen Setups eingesetzt. Als Anwendungsbeispiel dient die Messung und Analyse eines γ-ray Spektrums eines HPGe-Detektors. ▪ Der Erfolg einer ADC Nichtlinearitätsbestimmungen ist stark von der Signalreinheit des verwendeten Eingangssignal abhängig. In Simulationen konnte gezeigt werden, dass die neu entwickelten Verfahren nur relativ schwach durch Pulsernichtlinearitäten verfälscht werden. Einen praktischen Vergleich zwischen den neuen und einer klassischen Methode konnte keinen signifikanten Unterschied feststellen. Die untersuchten Methoden können daher für eine zukünftige Implementation in FC2.0 empfohlen werden

    Data Acquistion for Germanium-Detector Arrays

    Get PDF

    Scalable System Design for Covert MIMO Communications

    Get PDF
    In modern communication systems, bandwidth is a limited commodity. Bandwidth efficient systems are needed to meet the demands of the ever-increasing amount of data that users share. Of particular interest is the U.S. Military, where high-resolution pictures and video are used and shared. In these environments, covert communications are necessary while still providing high data rates. The promise of multi-antenna systems providing higher data rates has been shown on a small scale, but limitations in hardware prevent large systems from being implemented

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    Federated Learning in Intelligent Transportation Systems: Recent Applications and Open Problems

    Full text link
    Intelligent transportation systems (ITSs) have been fueled by the rapid development of communication technologies, sensor technologies, and the Internet of Things (IoT). Nonetheless, due to the dynamic characteristics of the vehicle networks, it is rather challenging to make timely and accurate decisions of vehicle behaviors. Moreover, in the presence of mobile wireless communications, the privacy and security of vehicle information are at constant risk. In this context, a new paradigm is urgently needed for various applications in dynamic vehicle environments. As a distributed machine learning technology, federated learning (FL) has received extensive attention due to its outstanding privacy protection properties and easy scalability. We conduct a comprehensive survey of the latest developments in FL for ITS. Specifically, we initially research the prevalent challenges in ITS and elucidate the motivations for applying FL from various perspectives. Subsequently, we review existing deployments of FL in ITS across various scenarios, and discuss specific potential issues in object recognition, traffic management, and service providing scenarios. Furthermore, we conduct a further analysis of the new challenges introduced by FL deployment and the inherent limitations that FL alone cannot fully address, including uneven data distribution, limited storage and computing power, and potential privacy and security concerns. We then examine the existing collaborative technologies that can help mitigate these challenges. Lastly, we discuss the open challenges that remain to be addressed in applying FL in ITS and propose several future research directions

    Comparison of direct and heterodyne detection optical intersatellite communication links

    Get PDF
    The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity
    • …
    corecore