771 research outputs found

    Optimization in Telecommunication Networks

    Get PDF
    Network design and network synthesis have been the classical optimization problems intelecommunication for a long time. In the recent past, there have been many technologicaldevelopments such as digitization of information, optical networks, internet, and wirelessnetworks. These developments have led to a series of new optimization problems. Thismanuscript gives an overview of the developments in solving both classical and moderntelecom optimization problems.We start with a short historical overview of the technological developments. Then,the classical (still actual) network design and synthesis problems are described with anemphasis on the latest developments on modelling and solving them. Classical results suchas Mengerā€™s disjoint paths theorem, and Ford-Fulkersonā€™s max-flow-min-cut theorem, butalso Gomory-Hu trees and the Okamura-Seymour cut-condition, will be related to themodels described. Finally, we describe recent optimization problems such as routing andwavelength assignment, and grooming in optical networks.operations research and management science;

    Optical control plane: theory and algorithms

    Get PDF
    In this thesis we propose a novel way to achieve global network information dissemination in which some wavelengths are reserved exclusively for global control information exchange. We study the routing and wavelength assignment problem for the special communication pattern of non-blocking all-to-all broadcast in WDM optical networks. We provide efficient solutions to reduce the number of wavelengths needed for non-blocking all-to-all broadcast, in the absence of wavelength converters, for network information dissemination. We adopt an approach in which we consider all nodes to be tap-and-continue capable thus studying lighttrees rather than lightpaths. To the best of our knowledge, this thesis is the first to consider ā€œtap-and-continueā€ capable nodes in the context of conflict-free all-to-all broadcast. The problem of all to-all broadcast using individual lightpaths has been proven to be an NP-complete problem [6]. We provide optimal RWA solutions for conflict-free all-to-all broadcast for some particular cases of regular topologies, namely the ring, the torus and the hypercube. We make an important contribution on hypercube decomposition into edge-disjoint structures. We also present near-optimal polynomial-time solutions for the general case of arbitrary topologies. Furthermore, we apply for the first time the ā€œcactusā€ representation of all minimum edge-cuts of graphs with arbitrary topologies to the problem of all-to-all broadcast in optical networks. Using this representation recursively we obtain near-optimal results for the number of wavelengths needed by the non-blocking all-to-all broadcast. The second part of this thesis focuses on the more practical case of multi-hop RWA for non- blocking all-to-all broadcast in the presence of Optical-Electrical-Optical conversion. We propose two simple but efficient multi-hop RWA models. In addition to reducing the number of wavelengths we also concentrate on reducing the number of optical receivers, another important optical resource. We analyze these models on the ring and the hypercube, as special cases of regular topologies. Lastly, we develop a good upper-bound on the number of wavelengths in the case of non-blocking multi-hop all-to-all broadcast on networks with arbitrary topologies and offer a heuristic algorithm to achieve it. We propose a novel network partitioning method based on ā€œvirtual perfect matchingā€ for use in the RWA heuristic algorithm

    All optical multicasting in wavelength routing mesh networks with power considerations: design and operation

    Get PDF
    Wavelength routing Wavelength Division Multiplexing (WDM) are optical networks that support all-optical services. They have become the most appealing candidate for wide area backbone networks. Their huge available bandwidth provides the solution for the exponential growth in trayc demands that is due to the increase in the number of users and the surge of more bandwidth intensive network applications and services. A sizable fraction of these applications and services are of multi-point nature. Therefore, supporting multicast service in this network environment is very critical and unique. The all-optical support of various services has advantages, which includes achieving the signal transparency to its content. Nevertheless, the all-optical operational support comes with an associated cost and new issues that make this problem very challenging. In this thesis, we investigate the power-related issues for supporting multicast service in the optical domain, referred to as All-Optical Multicasting (AOM). Our study treats these issues from two networking contexts, namely, Network Provisioning and Connection Provisioning. We propose a number of optimal and heuristic solutions with a unique objective function for each context. In this regard, the objective function for the network provisioning problem is to reduce the network cost, while the solutions for the connection provisioning problem aim to reduce the connection blocking ratio. The optimal formulations are inherently non-linear. However, we introduce novel methods for linearizing them and formulate the problems as Mixed Integer Linear Programs. Also, the design of the heuristic solutions takes into account various optimization factors which results in efficient heuristics that can produce fast solutions that are relatively close to their optimal counterparts, as shown in the numerical results we present

    Protection and restoration algorithms for WDM optical networks

    Get PDF
    Currently, Wavelength Division Multiplexing (WDM) optical networks play a major role in supporting the outbreak in demand for high bandwidth networks driven by the Internet. It can be a catastrophe to millions of users if a single optical fiber is somehow cut off from the network, and there is no protection in the design of the logical topology for a restorative mechanism. Many protection and restoration algorithms are needed to prevent, reroute, and/or reconfigure the network from damages in such a situation. In the past few years, many works dealing with these issues have been reported. Those algorithms can be implemented in many ways with several different objective functions such as a minimization of protection path lengths, a minimization of restoration times, a maximization of restored bandwidths, etc. This thesis investigates, analyzes and compares the algorithms that are mainly aimed to guarantee or maximize the amount of remaining bandwidth still working over a damaged network. The parameters considered in this thesis are the routing computation and implementation mechanism, routing characteristics, recovering computation timing, network capacity assignment, and implementing layer. Performance analysis in terms of the restoration efficiency, the hop length, the percentage of bandwidth guaranteed, the network capacity utilization, and the blocking probability is conducted and evaluated

    Wavelength Conversion in All-Optical Networks with Shortest-Path Routing

    Get PDF
    We consider all-optical networks with shortest-path routing that use wavelength-division multiplexing and employ wavelength conversion at specific nodes in order to maximize their capacity usage. We present efficient algorithms for deciding whether a placement of wavelength converters allows the network to run at maximum capacity, and for finding an optimal wavelength assignment when such a placement of converters is known. Our algorithms apply to both undirected and directed networks. Furthermore, we show that the problem of designing such networks, i.e., finding an optimal placement of converters, is MAX SNP-hard in both the undirected and the directed case. Finally, we give a linear-time algorithm for finding an optimal placement of converters in undirected triangle-free networks, and show that the problem remains NP-hard in bidirected triangle-free planar network

    Design of power efficient multicast algorithms for sparse split WDM networks

    Get PDF
    Recent years witnessed tremendous increase in data traffic as new Internet applications were launched. Optical networks employing recent technologies such as DWDM and EDFA`s emerged as the most prominent and most promising solutions in terms of their ability to keep with the demand on bandwidth. However for a class of applications bandwidth is not the only important requirement, These applications require efficient multicast operations. They include data bases, audio/video conferencing, distributed computing etc. Multicasting in the optical domain however has its own unique set of problems. First, an optical signal can be split among the outputs of a node but the power due to splitting can be significantly reduced. Second, the hardware for split nodes is relatively expensive and therefore we cannot afford to employ it at every node. Third, there are other sources of losses such as attenuation losses and multiplexing /de-multiplexing losses. This thesis deals with the important issue of Power Efficient multicast in WDM optical networks. We report three new algorithms for constructing power efficient multicast trees and forests. Our algorithms are the first to take into account all possible sources of power losses while constructing the trees. We utilize the techniques of backtracking and tree pruning judiciously to achieve very power efficient multicast trees. The first two algorithms use modified versions of the shortest path heuristic to build the tree. The third algorithm however, uses a novel concept and considers power at every tree building step. In this algorithm, the order of inclusion of destination nodes into the tree is based on the power distribution in the tree and not distance. All three algorithms prune the trees if the power levels at the destinations are not acceptable. The performance of these three algorithms under several constraints is studied on several irregular topologies. All three algorithms reported in this work produce significant improvements in signal strength at the set of destinations over the existing multicast algorithms. Numerical results show that our third algorithm outperforms the first two algorithms as well as the existing multicasting algorithms

    TSCP: A tabu search algorithm for wavelength converting node placement in WDM optical networks

    Get PDF
    Sparse wavelength conversion can increase the performance of all-optical wavelength division multiplexing (WDM) networks signi cantly by relaxing the wavelength continuity constraint. In this paper, we study the wavelength converter placement problem in multi- ber networks with static traf c demands. We present a tabu search based heuristic algorithm. The objective of the algorithm is to satisfy all the traf c demands with the minimum total cost of bers achieved in the full conversion case, by placing minimum number of wavelength converting nodes. We also implement a greedy algorithm and compare the performances of these converter placement algorithms with the optimum solutions on a sample network. The Tabu search based algorithm achieves the optimum solution in 72% of the test cases and it increases the average number of wavelength converting nodes by less than 10% with respect to the optimum solution. The effect of the utilized routing scheme on the generated solutions and the correlation between the converter node locations and the amount of traf c passing through the nodes are also investigated. Ā© 2005 IEEE
    • ā€¦
    corecore