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Abstract

Network design and network synthesis have been the classical optimization problems in
telecommunication for a long time. In the recent past, there have been many technological
developments such as digitization of information, optical networks, internet, and wireless
networks. These developments have led to a series of new optimization problems. This
manuscript gives an overview of the developments in solving both classical and modern
telecom optimization problems.

We start with a short historical overview of the technological developments. Then,
the classical (still actual) network design and synthesis problems are described with an
emphasis on the latest developments on modelling and solving them. Classical results such
as Menger’s disjoint paths theorem, and Ford-Fulkerson’s max-flow-min-cut theorem, but
also Gomory-Hu trees and the Okamura-Seymour cut-condition, will be related to the
models described. Finally, we describe recent optimization problems such as routing and
wavelength assignment, and grooming in optical networks.

1 A short history on technological developments

This section presents an overview of the technological breakthroughs that resulted in the
current level of telecommunication. We start with the fundamental developments that led
to the basic usage of telephone (wired and wireless), the classical history. Next, we discuss
recent developments such as digitization, optical technology and wireless networks.

1.1 Classical history

Fast communication over large distances already appealed the ancient Greeks. Without much
technical knowledge of electricity and light they had to resort to human labor. It is not until
the end of the 18th century before we see real telecommunication: instant communication over
large distances, with little human effort. Claude Chappe (in France, in 1793) and Abraham
Edelcrantz (in Sweden, one year later) invented the optical telegraph. This device could send
light signals over large distances by use of a series of instruments based on mirrors. Besides
the technical details both inventors also developed a protocol for transmitting, which decided
when, how and where information was sent. It took only a few years before a nation-wide
network of telegraphs was implemented in both countries. This, in spite of strong opposition
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against the telegraph. Edelcrantz, in his ”Treatise on Telegraphs” (1796), dealt with the
criticism as follows.

”It often happens, with regard to new inventions, that one part of the general public finds
them useless and another part considers them to be impossible. When it becomes clear that
the possibility and the usefulness can no longer be denied, most agree that the whole thing was
fairly easy to discover and that they knew was significant”.

From that moment a regular stream of innovations, each with its own practical advantages and
mathematical problems, emerged. In 1831 Samuel Morse invented the electrical telegraph,
which had a major advantage over the optical telegraph in the sense that no human effort
was necessary for operating the intermediate mirrors. Moreover, Morse drastically improved
the transmission protocol by introducing an efficient and simple encoding of the alphabet.
The next innovation was logical but took another 45 years. In 1876, Alexander Graham Bell
invented the telephone. This device replaced the binary encoding of telegraphs with human
voice, by translating voice into electrical signals and back. Bell himself, in all modesty,
described the value of his invention like this:

”This invention’s greatest advantage over every other form of electrical apparatus is the fact
that it could be used by anyone, as all other telegraphic machines produce signals which require
to be translated by experts, and such instruments are therefore extremely limited in their
application”.

Pretty soon telephone networks appeared in several cities in the United States, starting in
New Haven in 1879. Bell and the first telephone companies had an interesting controversy,
related to the structure of these networks. Bell wanted every customer to be connected with
all other customers by a dedicated circuit, whereas the companies opted for a centralized
model, where a centrally placed switch was connected with the customers, see Figure 1. The
advantages of the second method are clear: the number of connections grows linearly instead
of quadratically with the number of customers. The disadvantage is that the number of calls
that can be handled simultaneously by the switch is limited (to one in the very beginning).
Thus, there is no guaranteed connection when a customer requires one.

After the city networks were established, these networks were interconnected with one another,
introducing multiple levels in the network structure. A circuit connecting customers may be
built up of several links. Thus, the distance between customers, measured in number of links
to be passed by a circuit, is therefore also an important measure. Moreover, when more
and more customers start using the network, failures become increasingly more problematic.
Thus, protection and restoration methods for circuits must be developed. Connectivity plays
an important role here. Complete connectivity (full mesh) is hardly realizable nor a necessity,
on any level of a network. On lower levels single connectivity generally suffices. Thus, such
networks are generally built from units like stars. On higher levels, double or even higher
connectivity is required. Nowadays, such networks use the ring as the basic building block,
see Figure 1. The technology and accompanying problems led to a series of problems, called
network design and synthesis which are still of very high importance when developing a
telecommunications network.

The last fundamental technological invention of importance was done by Marconi, who de-
veloped wireless telegraphy by use of electromagnetic waves in 1897. This idea’s main virtue
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Figure 1: Full mesh, star, ring.

is that for this kind of communication, physical networks are not necessary. This makes it
applicable for specific applications, such as ships at sea, planes and military operations. The
logical step to speech over wireless connections was made in 1906, when the first radio band
wave communication of human speech was accomplished by Reginald Fessenden.

1.2 Modern developments

There have been three major technological developments in the past 50 years that greatly
influenced the status of current telecommunication. In the 1960s experiments started with
digital signal transmission started instead of analog transmission. This technology made it
practical to transmit not only voice but any kind of digitized information, and thus paved the
way for the start of Internet. In the 1980s wireless telephony became practical for consumers,
due to miniaturization of mobile telephone components and new compression techniques for
digital speech. Finally, the development in the 1990s of optical transmission components to
replace electrical equipment allowed for a huge increase in availability of cheap bandwidth.
These three developments will be discussed shortly, below.

1.2.1 From analog to digital networks

Digitization of speech is done by sampling. An analog signal generated by human voice is
monitored 8000 times per second. Each of the samples is translated into an 8-bit word of
information. Thus, for a single call, a circuit with a bandwidth of 64kbps is required.

Beginning in the 1960s, telephone systems gradually began converting their connections to
a digital switching system. The first network protocol for digital information transmission
was ISDN (Integrated Services Digital Network), which was standardized in 1984 by the
International Telephone and Telegraph Consultative Committee (CCITT), now known as
the International Telecommunications Union (ITU). For obvious reasons, ISDN uses a basic
signal with a bandwidth of 64kbps. Though developed for speech transmission, the protocol
also provides data channels of the same and smaller bandwidth. The Broadband version
B-ISDN combines, by multiplexing, thirty 64kbps channels (and some signaling channels) to
a bandwidth of 2Mbps. In the 1980s digital electrical networks provided higher and higher
bandwidth, so that many signals could be multiplexed to a single signal. This technique is
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called time division multiplexing (TDM) (or Time Division Multiple Access, TDMA). The
principle is to divide time in frames, each of which is assigned to a lower bandwidth channel.
In the synchronous version of TDM the channels are ordered and each channel gets fixed time
slots. In figure 2 synchronous multiplexing is depicted: three OC1 are first multiplexed to one
OC3 and then later demultiplexed to three OC1 again. The time frames are reduced with a
factor 3 in this process, and empty frames are left empty.

a1c4 b3 b1c2a4 a3 a2

c1

a1a4 a3 a2 a1a4 a3 a2

c4 c2

b3 b1b3 b1b3 b1b1b3 b1b3 b1b3 b1b1

c1c4 c2

OC1

OC1
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Figure 2: Synchronous Time Division Multiple Access

Digital networks opened the opportunity for mass transportation of data with high relia-
bility. Data are generally not time critical, nor symmetric (data are sent from one source
to a destination and generally not back). So, there is no need to claim a complete circuit.
Packet switching (as opposed to circuit switching) was developed to make efficient use of this
asymmetry. In packet switching data are partitioned into multiple packets each with a header
containing information such as the size of the packet and the destination, where the packets
are reassembled. In 1969 the development of packet switching technology started with the
ARPANET (Advanced Research Projects Agency NETwork), a digital network connecting
several American institutions. The protocol for ARPANET is the forerunner of TCP/IP the
protocol for Internet. TCP/IP uses variable length packets (maximum size 64kbps, average
size 1 kb) with destination address information. Each node in the network contains a router
which decides on the basis of the receiver address and the shortest path to this address which
link, incident to the router node, is selected. The shortest path is determined with routing
protocols such as OSPF (Open Shortest Path First). In OSPF the network operator defines
lengths on links to influence shortest paths between node pairs. This way, traffic can be
regulated to avoid congested areas. The determination of optimal lengths is an interesting,
but hard optimization problem. TCP/IP has no guaranteed quality of service. It assigns
available bandwidth to a connection dynamically, based on packet-loss information. Thus, IP
is unsuitable for time-critical transmission such as voice and video. This drawback has led to
the development of ATM (Asynchronous Transmission Mode). ATM uses short fixed-length
packets (48+5=53 bytes) which are sent over dedicated virtual paths. A virtual path (VP)
is a direct logical connection between a pair of vertices in the network of a certain capacity.
The vertices need not be connected by a physical link in the network. VPs reduce the need
for reading the packets in intermediate nodes (hubs). Nowadays virtual paths can be created
dynamically based on demand, which ensures efficient, reliable usage of available bandwidth.
ATM also allows statistical multiplexing by use of asynchronous TDM: packets from different
data streams are combined over the same (virtual) connection. The price to pay is that the
headers of the packets must be read at the endpoints of a link.
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Optical networks

IP and ATM are data transmission protocols with which a logical overlay network is created on
top of a physical network. Physical networks have worked solely with electrical transmission
over copper cables, until the end of the 1980s. Then transmission with light (through glass
fiber) became available. With optical transmission higher speeds can be reached compared to
electrical transmission. In the beginning 155Mbps (STM1) was the standard speed, currently
2.5Gbps (STM16) is implemented. Add-Drop Multiplexers (ADMs) combine and separate
signals from STM1 to STM16 and back. These devices are responsible for the electrical-
optical conversion. Speed increases are not the only means for capacity increase in optical
systems. A fiber can also carry multiple wavelengths simultaneously (currently more than
100). Optical ADMs (OADM) combine and separate wavelengths. This is called (D)WDM,
(Dense) Wavelength Division Multiplexing. This type of multiplexing adds a second dimension
to multiplexing: Electromagnetic spectrum besides time. Another advantage of light over
electricity is that it needs far fewer repeaters (amplifiers), and thus it is more reliable and
cheaper to construct long-distance networks.

Figure 3: Optical switch equipment

A standard protocol for optical transmission is SDH/SONET (SDH = Synchronous Digital
Hierarchy in Europe, SONET in the U.S.). With the SDH/SONET protocol the network
developers started using rings as the basic network topology. These rings have a lot of ad-
vantages. They are simple in structure, and easy to set up with OADMs. Furthermore,
protection and restoration of signals is easily implemented by using double fibers. There are
two types of rings depending on the type of switching and the protection/restoration mecha-
nism, both called self-healing because of the automatic and thus fast restoration capabilities:
unidirectional path-switched rings (UPSR), and bidirectional line-switched rings (BLSR). In
a UPSR, traffic is sent in one direction over one fiber, say clockwise, and a back-up signal is
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sent on another fiber counter-clockwise. The back-up signal is automatically picked-up when
the original signal is blocked. In a BLSR, a pair of fibers is used differently. Again traffic is
sent in one direction over one fiber, say clockwise. However, the second fiber, the back-up
fiber, is used as follows. If a link (or node) fails, all traffic that is blocked is redirected au-
tomatically over the back-up fiber. Currently, BLSRs are implemented with a double set of
fiber pairs (four fibers in total), where one pair is used for clockwise routing and another pair
for counter-clockwise routing. The four-fiber BLSR is more economical with capacity usage
than the two-fiber BLSR or the UPSR, since (back-up) routes are on average shorter.

A B A B

Figure 4: UPSR and BLSR

1.2.2 Wireless telecommunication

The idea of cell-based mobile radio systems as we know them by now, was developed at Bell
Laboratories (in USA) in the early 1970s. An area, such as a city is divided in small hexagonal
cells. In the center of each cell a base station is situated which communicates with mobile
phones present in the cell, through a number of antennas. Each cell may contain multiple
antennas for communication, depending on the demand. The base stations are connected
through a fixed network. Cellular systems were first implemented in the USA with the re-
lease of AMPS (Advanced Mobile Phone Service) in 1983, an analog transmission system.
The success of mobile telephony came in the early 1990s when digital communication was
introduced. The US introduced the ADC system (American Digital Cellular), and Europe
developed GSM (Global System for Mobile Communication). Though both systems are sim-
ilar in structure and technology there are small differences. Both use compression techniques
to reduce bandwidth for speech to about 10 kbps. GSM uses TDMA in combination FDMA.
FDMA (open air) is similar to DWDM (in fibers), namely a division of the electromagnetic
spectrum into small frequency bands. A consequence of open air communication is that the
frequency bands should be selected carefully for antennas with a small geographical distance
(in the same or neighboring cells), since interference of signals may cause unacceptable loss
of quality. This problem makes frequency planning an important subject for GSM.

Wireless data transmission is a recent development. GPRS and its successor UMTS are
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packet-switching protocols, which allow for high-bandwidth data transmission. UMTS uses
channels with a fixed bandwidth of 5Mbps which is transmitted from a base station to all
mobile stations. Each station transmits its information using Code Division Multiple Access
(CDMA), i.e., a mobile phone selects only the data with the right code. Thus, the available
bandwidth can be divided over the users according to their needs.

2 Classical network planning problems

Quality of Service (QoS) has always been the major issue for telecom providers: A customer
is mainly interested in getting a good quality connection whenever he requests one. It is the
telecom company’s problem to have one ready. Clearly, it is too costly for the company to
have a 100% guaranteed availability for all customers at any time. This is also not necessary
since demand for calls or bandwidth capacity is varying over time: nobody always calls, nor
do different calls always occur at the same time. So, the installed capacity is to have a
guaranteed availability probability, the Quality of Service. Generally, the companies strive
for a 99% connection guarantee at the busiest time of the day. In the early circuit-oriented
telephone networks routes of calls were completely determined. The theory for determining
the amount of capacity needed on a link in such networks, was developed in 1917 by Erlang
(see [18]) and [19]). Erlang used queueing theory (Poisson processes) to determine the blocking
probability of a link with a given capacity.

P (ρ, C) =
ρC

C!
∑C

i=0
ρi

i!

Here, ρ is the average number of simultaneous calls, C is the number of available lines, and P

is the blocking probability: the proportion of callers whose calls are blocked. The availability
requirements (P (ρ, C) < 0.01) of the links of a network determine a minimum amount of
capacity C on each of the links.

Nowadays, with digital transmission and packet-switching there are two problems: the routing
of traffic between a given pair of nodes may vary, like in IP-networks, and data traffic is
asymmetric and bursty. So the traffic demand on a link is much more unpredictable. Many
studies have, however, revealed that the traffic has a stochastic behavior which is essentially
independent of the volume of the traffic: self-similarity (see Crovella and Bestavros [15] and
Leland et al. [54].

The in-depth treatment of the stochastic processes modelling the determination of capacity
demand is beyond the scope of this manuscript. We consider the operational processes in-
volved in the efficient set-up and usage of a network. The three main components of these
processes are:

1. Design: which links or edges to develop. Often to meet certain connectivity requirements
for protection.

2. Synthesis: how much capacity to put on all links to serve all traffic demands.
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3. Routing: which paths to use for the various traffic streams to meet demand without
violating capacity restriction on links.

In this section we describe the standard models for design, synthesis and routing. We discuss
their complexity and solution methods, and related fundamental mathematical results. The
models are all strongly related to the multi-commodity flow problem. Routing is most closely
related to the multi-commodity flow problem, and therefore treated first. Then Network
Design and Synthesis are discussed.

2.1 Routing: multi-commodity flow models

Let G = (V, E) be an undirected network. Consider a set of commodities K, where each
commodity k ∈ K is determined by a source-terminal pair (sk, tk) of vertices, and a demand
dk, which is to be routed over the network from sk to tk. Let uij represent an upper bound
on the capacity of edge {i, j}. The problem is to decide how much demand is routed over
each edge, without violating capacity constraints. The (linear) costs cij are determined by
the actual capacity usage, and should be minimized. (For models allowing for nonlinear costs
as well, we refer to Minoux [61]). The integer program of the problem uses the variables fk

ij ,
indicating how much demand of commodity k ∈ K is routed from i to j over edge {i, j}. The
complete formulation reads:

min
∑

{i,j}∈E

∑

k∈K

cij(f
k
ij + fk

ji) (1)

s.t.
∑

j:{i,j}∈E

fk
ij −

∑

j:{i,j}∈E

fk
ji =







dk if i = sk

-dk if i = tk
0 otherwise

∀k ∈ K, ∀i ∈ V (2)

∑

k∈K

(fk
ij + fk

ji) ≤ uij ∀{i, j} ∈ E (3)

fk
ij , f

k
ji ≥ 0 ∀k ∈ K, ∀{i, j} ∈ E (4)

The constraints 2 are standard flow conservation constraints for each of the commodities.
The capacity on an edge is undirected because installed capacity can be set-up for usage by
traffic in both directions. Thus, the sum of forward and backward flow on an edge should not
exceed its capacity. This is reflected by the constraints 3. The objective 1 may be used to
set preference on shortest paths (in length or number of connections) although this is fairly
artificial: feasibility is the important issue, and capacity availability rather than capacity
usage determines the operational costs. Note that the multi-commodity flow problem is stated
as a linear program here and, therefore, is polynomially solvable. In general the flows are
restricted to be integral, as capacities come in standard units (such as STM16). The integer
multi-commodity flow problem is NP-hard, already for instances with only two commodities
(Even, Itai, Shamir [23] and Karp [44]). In telephone networks and ATM networks, the traffic
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Figure 5: Transformation to directed multi-commodity flow

demand of a commodity can not be divided over multiple paths, but exactly one should be
selected: non-bifurcated routing. The integer multi-commodity flow model can be adapted
to this situation fairly easily: the variables fk

ij are replaced by dky
k
ij , where the yk

ij are binary
variables.

A fundamental issue is the feasibility of the multi-commodity flow problem, both for the
integer and linear version. An obviously necessary condition is the cut condition:

∑

{i,j}∈E:|{i,j}∩S|=1

uij −
∑

k∈K:|{sk,tk}∩S|=1

dk ≥ 0 ∀S ⊂ V (5)

In the single commodity case, Ford and Fulkerson [26] showed that the cut condition is
sufficient for feasibility: the MAXFLOW-MINCUT theorem. Though Ford en Fulkerson
proved their result in directed networks it also applies to undirected networks, since these
can be transformed to directed networks without additional commodities: Replace each
edge e = {i, j} with the following construct. Two new nodes e1 and e2 are introduced.
The arcs are (i, e1), (j, e2) with (cost,capacity)=(cij , uij) and (e1, e2), (e2, i), (e2, j) with
(cost,capacity)=(0,∞).

Hu [41] proves that the cut-condition is also sufficient for feasibility in case of two commodities,
though the integral multi-commodity flow problem is NP-hard. Perhaps surprisingly, the cut
condition is not sufficient for feasibility in case of more commodities, as the example in figure
6 shows.

�
��
1,2

�
��
1,3

�
��
4 �

��
4�

��
2,3

Figure 6: Counterexample for the sufficiency of the cut condition.
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In this example there are four commodities, each with unit demand. The endvertices of the
four commodities are given by the numbers in the nodes. The edges all have unit capacities.
Each of the commodities 1, 2, 3 must use at least two units of capacity in the network, since
the length of any path connecting the source and sink of a commodity is at least two. Since
there are only six units available there is not enough for four commodities.

On the positive side the cut-condition is sufficient for specific networks and commodity struc-
tures. Okamura and Seymour [62] showed that, in planar networks, in case the endpoints of
the commodities all lie on one face of the graph, the cut condition is indeed sufficient. For
integral capacities and demands they showed that there is a half-integral flow under the given
conditions. In fact, they prove a slightly stronger result: the integer version of the sufficient
conditions requires that the left-hand side of 5 is even. Generalizations of the above condi-
tions mainly relax the requirements for the commodities to lie on one face. See Frank [31] for
an overview. Kramer and Van Leeuwen [50] showed that the integer multi-commodity flow
problem remains NP-complete, even if the underlying graph is a grid, and if the capacities and
demands are all unit. Thus, the position of the endvertices of the commodities is essential.

Though, the (fractional) multi-commodity flow problem is polynomially solvable with linear
programming techniques, this is not a very practical method. A series of papers using combi-
natorial ideas has been published recently. These combinatorial ideas are applied on the dual
of the LP in 1 4. They have led to fast and simple FPTAS (see Fleischer [25] and Leighton et
al. [53]) and slightly more complicated exact methods such as described in Garg and Kone-
mann [34]. The solution methods for integer multi-commodity flow problems use standard
techniques like Lagrangean relaxation (on the capacities) and Benders decomposition. An
overview of these techniques is given in Assad [3].

Path formulation

Instead of using flow variables on individual edges to model routing restrictions, one can also
use flow variables associated with paths. Let zk

p be the flow on a path p ∈ Pk (where P k is

the set of all simple paths connecting the endvertices of commodity k). Let P k
ij ⊆ P k denote

the set of paths for commodity k that contain the edge {i, j}. The path model reads

min
∑

k∈K

∑

p∈P k

cpz
k
p (6)

s.t.
∑

p∈P k

zk
p = dk ∀k ∈ K (7)

∑

k∈K

∑

p∈P k
ij

zk
p ≤ uij ∀{i, j} ∈ E (8)

zk
p ≥ 0 ∀k ∈ K, ∀p ∈ P k, ∀{i, j} ∈ E (9)

The path model can be adapted to non-bifurcated routing in the same way as the flow
model. In fact, this model is especially useful for non-bifurcated routing, in case restrictions
specific for paths, such as a maximum length (hop restrictions), are to be incorporated. Such
restrictions can not be handled in the flow model. The drawback of the path formulation
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is the possibly huge amount of variables. Solving the integer multi-commodity flow problem
with this formulation is therefore done using column generation techniques. See Ozdaglar
and Bertsekas [63].

Cut formulation

A truly undirected formulation can be obtained by converting the flow into a circulation.
Here, we add for each commodity k the edge {sk, tk}, with capacity dk. The flow fk

{sk,tk}
on

{sk, tk} is set to the capacity dk, so that no other commodities can make use of this edge.
The flow variables fij now denote ”undirected” flow on edge {i, j}.

min
∑

{i,j}∈E

∑

k∈K

cijf
k
ij (10)

s.t.
∑

e∈δ(S)/{ē}

fk
e ≥ fk

ē ∀k ∈ K, ∀S ⊂ V, ∀ē ∈ δ(S) (11)

∑

k∈K

fk
ij ≤ uij ∀{i, j} ∈ E (12)

fk
{sk,tk}

= dk ∀k ∈ K (13)

fk
ij ≥ 0 ∀k ∈ K, ∀{i, j} ∈ E (14)

Here, δ(S) is the set of edges with exactly one vertex in S. Constraints 11 express the
condition that in any cut there is no edge containing more flow than all other cut-edges
together. Seymour [65] has shown that the cut-constraints are necessary and sufficient to
define a circulation. Bauer [8] extended this formulation to the integer case, where besides
additional integrality constraints on the flow variables, an even-ness condition on the total
flow on edges incident to any node v is added:

∑

e∈δ(i)

fk
e = 0 (mod 2) ∀i ∈ V, ∀k ∈ K (15)

Note, that the constraints 15 are not linear. Recently, a cutting plane algorithm using the
cut formulation has been described by Brunetta et al. [11]. They present valid inequalities
based on the comb and clique-tree inequalities for the travelling salesman problem.

2.2 Network design: survivability with connectivity restrictions

The design of a network is steered by survivability requirements. Survivability is the network’s
ability to remain connected when network element failures occur. Generally, the survivability
is measured in connectivity restrictions of pairs of vertices. That is, each pair of vertices
sk and tk (k ∈ K) requires a minimum number dk of edge (or node) disjoint paths in the
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network. Often, being able to recover from one failure suffices, since repair times are generally
so small that the probability for a second failure to happen simultaneously, is negligible. Thus,
dk ∈ {0, 1, 2}. Often, connectivity requirements are expressed in node requirements ri (i ∈ V ),
and the connectivity requirement of a pair (sk, tk) is then the minimum of their individual
requirements: dk = min{rsk

, rtk}. Special cases are the minimum spanning tree problem:
1-connectivity for all nodes (pairs), and the Steiner tree problem: 1-connectivity for a subset
of the nodes. Note that the problem is NP-hard, since the Steiner tree problem is a special
case.

The flow formulation of the network design problem is closely related to the formulation of
the multi-commodity flow problem. The major difference is the replacement of the capacity
restrictions by the restrictions 18 that enforce an edge to be installed once it contains flow.
Note that the objective 16 only contains the installation costs bij for the edges, and no costs
for the flow.

min
∑

{i,j}∈E

bijxij (16)

s.t.
∑

j

fk
ij −

∑

j

fk
ji =







dk if i = sk

-dk if i = tk
0 otherwise

∀k ∈ K, ∀i ∈ V (17)

max{fk
ij , fk

ji} ≤ xij ∀k ∈ K, ∀{i, j} ∈ E (18)

fk
ij , f

k
ji ∈ {0, 1}, xij ∈ {0, 1} ∀k ∈ K, ∀{i, j} ∈ E (19)

The following model is obtained by projection of the flow formulation 16-19 onto the space of
the design variables (xij). The correctness of this formulation follows from Menger’s theorem
[60]: The number of edge-disjoint paths between two vertices s and t is the minimum number
of edges in a cut separating s and t.

min
∑

{i,j}∈E

bijxij (20)

s.t.
∑

{i,j}∈δ(S)

xij ≥ con(S) ∀S ⊂ V, S 6= ∅, V (21)

xij ∈ Z+
0 ∀k ∈ K, ∀{i, j} ∈ E (22)

Here con(S) is the maximum connectivity requirement over the pairs of vertices (sk, tk) sep-
arated by S, i.e., having exactly one of the two vertices in S.

The LP-relaxation of both formulations is quite weak. Various types of partition inequal-
ities have been developed to strengthen the LP-relaxation. See Grötschel et al. [38] and
Mahjoub [59]. However, the use of them in Branch-and-Cut algorithms has had limited suc-
cess. Magnanti and Raghavan [58] introduce a stronger directed network version based on
a result of Nash-Williams: The edges of a graph can be directed such that for each pair of
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vertices s and t the maximum number of edge-disjoint paths can be split into two halves:
one half of the paths (rounded down) moves from s to t and the other half from t to s. This
result admits a strengthened version of the cut inequalities. In Gabow et al. [33] a 2k − 1
approximation algorithm is given for the problem to design a minimum cost k-connected
network.

2.3 Simultaneous network synthesis: loading capacity

The Network Synthesis problem, differs in only one way from the multi-commodity flow
problem. Capacity on each of the edges is not available, but should be installed at a certain
(unit) cost. Thus, like in the design problem, we have besides the flow variables fk

ij a set

of extra variables, the design variables xij ∈ Z+
0 denoting the capacity installed on edge

{i, j}. Let bij ({i, j} ∈ E) represent the unit installation costs of capacity. The objective
is to minimize the total installation costs. Flow costs are generally not taken into account.
The capacity constraints in the multi-commodity flow model are replaced by the following
constraints.

∑

k∈K

(fk
ij + fk

ji) ≤ xij ∀k ∈ K, ∀{i, j} ∈ E (23)

The capacities generally come in units, so the design variables are forced to be integral. If the
capacities were not restricted to be integral the problem would be a linear program. Johnson,
Lenstra, and Rinnooy Kan [43] formulate the problem with a budget on capacity installation
costs, and show that this problem is NP-hard. In fact, it could be separated into |K| shortest
path problems, one for each commodity. Solution techniques for the problem have mainly used
the polyhedral approach. In Magnanti et al. [56] and [57] several classes of valid inequalities
are used in a Branch-and-Cut approach. A large class of inequalities are the cut-inequalities,
which are derived from the cut-condition 5 by replacing the capacity parameters uij by the
capacity variables xij . Many other inequalities are based on the substructure of a single edge.
This particular subproblem has been studied by Atamtürk [5] and van Hoesel et al. [40]. A
more general version of the capacity constraints occurs when the capacity is available in two
(or more) sizes, say 1 and C (Currently, STM1 and STM16 are popular sizes). Then the RHS
of 23 is replaced by xij + Cyij , where xij measures the number of units of size 1, and yij

measures the number of units of size C. Note that the cost of installing a unit of capacity C

should be less than Cbij , for otherwise it will be cheaper to install C separate units. Magnanti
et al. [57] derive cut-set inequalities for this problem, which have been the subject of many
later studies such as Bienstock and Günlük [9] and Atamtürk [4].

An old special case occurs in complete graphs, if the flow costs are zero, and capacity in-
stallation costs are equal on all links. Gomory and Hu [37] developed a polynomial-time
two-phase procedure that determines the minimum total load: First, a maximum capacity
tree is determined using the demands as edge-weights; second, the tree is divided in a set of
maximal subtrees with uniformly distributed capacities and each of these subtrees is replaced

13



by a cycle through all nodes of the tree, with cycle-capacity being half of the subtree capacity.
See Minoux [61] for a detailed description.

2.4 Non-simultaneous network synthesis: Back-up capacity

Back-up networks have spare capacity that can be used if demand exceeds available capacity
in the main network. Generally, demand excess will occur for few commodities simultaneously
at any point in time. In case we wish to protect a network against demand excess for single
commodities we get non-simultaneous network synthesis problem. Here, for a given set of
excess demands capacity is to be placed such that each of the demands can be routed individ-
ually, not simultaneously. A formulation of this problem is obtained from the network design
problem by replacing the binary restrictions on the design variable by integrality restrictions

A notable special case occurs in complete graphs, if capacity installation costs are equal for
all links, and where the edges to be selected are restricted to form a tree. The Gomory-Hu
tree [36], determines the optimal loads as follows. The tree is computed by taking sequentially
a series of minimum cuts between pairs of vertices. These pairs are selected such that they
are not separated by previously found cuts. Gomory and Hu show in [36] that these cuts are
non-crossing, i.e., for two pairs of cuts defined by the subsets S ⊂ V and T ⊂ V either S or
its complement S̄ is contained in T or T̄ . This property ensures that after |V | − 1 iterations
each pair of vertices is separated by at least one cut. The next step is to connect the vertices
that are separated by exactly one cut. The connecting edge gets the weight of this cut (the
minimum cut). The thus formed graph is a tree with the following property: the minimum
capacity cut between any pair of vertices v and w has a value equal to the minimum weight
over the edges on the path connecting v and w. For each edge {v, w} we denote by its capacity
the capacity demand of the commodity with endvertices v and w. Now, installing capacities
on the edges of the Gomory-Hu tree equal to the corresponding cut capacities is optimal in
the sense that we use a minimum amount of capacity to satisfy the non-simultaneous demand.
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Figure 7: Example Gomory Hu tree.

The Gomory-Hu tree can also be used to determine the minimum cut between any pair of
vertices: Take the path between the vertices in the tree and select the edge with the smallest
weight.

Most studies restrict the set of edges on which capacity can be installed to form a tree. Then
the problem is the so-called communication spanning tree problem. Hu [42] gave a weak
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condition under which the optimal tree is a star. Wu et al. [72] use the star as the basic
ingredient to develop an O(log n log log n) approximation algorithm. Fischetti et al. [24]
develop a Branch-and-Bound algorithm. In case all demands are unit, the problem is known
as the minimum routing cost tree problem. Wu et al. [72] developed a FPTAS by using the
condition of Hu [42]. Wu et al. create the tree with stars to limit the depth of the tree.
Earlier, with other techniques, Wong [71] derived a 2-approximation. This special case is
already NP-hard, see Johnson et al. [43].

2.5 Protection and restoration

Connectivity of a network is generally not enough to protect against failure of network ele-
ments. If a defective edge is detected, then the paths that use this edge should be restored
by rerouting as quickly as possible. Various schemes are deployed to realize this.

The 1+1 protection mechanism dedicates two paths for each commodity: The working path
that operates under normal conditions, and a reserve path with the same capacity that is
edge disjoint with the working path. Clearly, 1+1 protection is capacity intensive. To mini-
mize bandwidth installation costs, the problem is to find a cycle through source and sink of
the commodity with minimum length. The high bandwidth demand of 1+1 protection has
made network planners look for other protection mechanisms in which protection paths share
capacity, the 1:N protection mechanism, where reserve capacity on each edge can be used
by multiple protection paths. Optimization models to minimize spare or both working and
spare capacity are quite complicated. It involves, for each commodity k, the determination
of a working path Pk and a protection path Qk which are edge disjoint. The determination
of the necessary spare capacity on each edge e is the complicating factor:

max
f∈E−e

∑

k:e∈Qk,f∈Pk

dk

ILP models for the minimization of shared capacity can be found in Van de Leensel [52].

A way of shared path protection is link protection, where a dedicated path connecting the
vertices of an edge is determined for rerouting all paths using the edge in case of failure. The
advantage of this method is that it is fairly easy to implement in the network, though capacity
consumption is fairly high. Link protection can be modelled as a non-simultaneous demand
problem. Diversification can be used in case of bifurcated routing. Here, multiple edge disjoint
paths are used in the original network each with capacity installed which is a fraction of the
actual demand. If an edge fails at most one of the paths becomes unusable. So, installing
a little extra capacity on all paths ensures the communication needs of the commodities.
Besides limited extra capacity, diversification copes with the problem of signalling in a trivial
way: There is no need for provisioning signalling, since the capacity is available on paths that
are already operating. This idea is used in Koster et al. [49] to determine optimal capacity
usage for diverse routing.
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3 New network planning problems: virtual topologies

Virtual topologies and Wavelength Division Multiplexing (WDM) have introduced new prob-
lems in all three traditional areas of telecom network planning: routing, design and synthesis.
These problems are the topic of this section. Virtual paths have been introduced in ATM
networks for reliability reasons. The development of Add-Drop Multiplexers (ADMs) has
enabled the construction of virtual paths in optical networks as well. An ADM is placed in
a node of the network where it connects two fibers: One inbound and one outbound. Let us
consider an STM16 signal over the fiber. The ADM can select any subset of the 16 incoming
STM1 channels and convert them into electrical signals. Moreover, the freed channels can be
replaced by other channels. In WDM the first step is to separate and/or combine wavelengths
with Optical ADMs which operate in a manner similar to standard ADMs.

In the sequel we concentrate on virtual paths in WDM technology: lightpaths. Consider a
physical network G = (V, E) and a set of point-to-point demands. The construction of virtual
paths in the network follows three stages:

1. Virtual Topology Selection. Determine the edges of the virtual network, i.e., the
lightpaths in terms of their source and destination, not the physical paths connecting
the source and destination.

2. Routing and Wavelength Assignment (RWA). Determine the physical paths in
the network of the lightpaths, and assign a wavelength to them. Paths that use the same
fiber (on the same link) in the physical network must be assigned different wavelengths.
Moreover, there is a limit on the number of wavelengths that can be used on fibers. The
current maximum is about 100, but the actual number depends on the equipment.

3. Traffic Routing or Grooming. The actual traffic demands must be assigned a path in
the virtual network. Grooming is the process of merging low bandwidth traffic streams
over lightpaths, using (Optical) ADMs.

We discuss these stages on different physical/logical topologies, such as trees, rings, and
general networks. The (self-healing) ring is a very popular structure in optical networks.
Therefore we devote two special sections to it, one for the ring loading problem and one for
the ring design problem.

3.1 Routing and wavelength assignment

Consider a network G = (V, E) in which a set of vertex-pairs is given. Each pair is to be
assigned a (light)path. Different lightpaths using the same fiber, must be assigned different
wavelengths (colors). Thus, there are two things to be determined: the path of a node-pair and
its color. The first version of the problem we consider, is where the paths are predetermined,
i.e., they are part of the input. Thus, in G a set of (di)paths P = P1, . . . , PK is given, for
instance the shortest paths between the vertices of each pair. The problem is to assign colors
(wavelengths) to these paths such that paths sharing an edge (in the same direction) use
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Figure 8: Construction of the conflict graph.

different colors. The objective is to minimize the number of colors used. This is the path-
coloring problem. The problem is symmetric if the paths are undirected, and asymmetric if
the paths are directed. The combined routing and coloring problem, is discussed after the
coloring problem.

The path-coloring problem has a very natural transformation to vertex coloring: create a
graph H = (W, F ), where the node set W consists of the (di)paths, and the edges are created
by comparing paths: if two paths have an edge in common in G, then their corresponding
nodes in H are connected. H is called the conflict graph. Note that for directed paths the
direction on the edge should also be the same.

Consider the graph G on the left in figure 8, and the four paths P1 = {1, 2, 3}, P2 = {1, 2, 4, 3},
P3 = {2, 3, 4}, P4 = {2, 4, 5} in G. The conflict graph of these paths is the graph on the right.

In Erlebach and Jansen [20] the complexity question of path-coloring is discussed. Both the
symmetric and asymmetric problems are easy on chain graphs (graphs consisting of a single
path). For the symmetric problem the conflict graph is an interval graph. The asymmetric
problem is twice a symmetric problem, one for each direction on the chain. Erlebach and
Jansen [20] also show that the asymmetric coloring problem on binary trees is NP-hard. The
symmetric problem is equivalent to the arc-coloring problem, and therefore NP-hard on trees,
but polynomially solvable on trees with bounded degrees of the vertices, which includes the
binary tree case. Finally, both problems are NP-hard on rings.

On trees a 5
3 -approximation algorithm is known, and there is no approximation algorithm

with ratio better than 4
3 , for both the symmetric and asymmetric problem. On rings there is

a trivial 2-approximation: split the ring at an arbitrary vertex v and a chain coloring problem
remains. The conflicting colorings of the paths passing v can be resolved by using at most the
same amount of colors. In general graphs, no approximation algorithm with a ratio better
than 2 exists. See Erlebach and Jansen [20].

The combined routing-and-coloring problem on trees reduces to the coloring problem on trees.
On general graphs an ILP formulation based on the multi-commodity flow problem is known:
we introduce additional parameters for the wavelengths available. In fact, we make a copy of
the network for each wavelength. The following formulation, from Zang et al. [73] minimizes
the maximum load in the network.

min fmax (24)
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s.t.
∑

j

fkw
ij −

∑

j

fkw
ji =







dkw if i = sk

-dkw if i = tk

0 otherwise
∀k ∈ K, ∀i ∈ V (25)

∑

k∈K

∑

w∈W

fkw
ij ≤ fmax ∀{i, j} ∈ E (26)

∑

w∈W

dkw = dk ∀k ∈ K (27)

∑

k∈K

fkw
ij ≤ 1 ∀{i, j} ∈ E (28)

fkw
ij ∈ {0, 1} ∀k ∈ K, w ∈ W (29)

Heuristics have been described by Zang et al. [73] and Kennington et al. [45] among others.
An overview and some more results can be found in Auletta et al. [6] and in Caragiannis et
al. [12]. Hassin and Levin [39] treat the version where the number of colors available on an
edge is fixed to C, minimizing the number of edges: the synthesis version of the problem.
They prove that this problem is NP-hard (for C ≥ 2), and they give a 21

2 approximation
algorithm.

Wavelength Converters (WCs) have the capability to change the wavelength of an incoming
lightpath at a node to a different wavelength of the leaving path. Thus, a path is split into two
separately colorable paths. Thus, converters can be used to decrease the number of necessary
wavelengths on links, by placing them on suitable nodes in a network. Wavelength converters
are a dominant cost factor. So, the interesting optimization question is how to position them
so as to minimize their use, and simultaneously reduce the need for different wavelengths.
We first consider converters that can change many wavelengths simultaneously in a network
node.

Consider a graph G = (V, E) and a set of paths P = P1, . . . , Pk. The load of an edge is defined
as the number of paths that use the edge. The maximum load over all edges is a lower bound
on the necessary number of wavelengths, and therefore an important measure for wavelength
usage. Since paths need not be fixed forever in a network and demand can vary as well over
time, Wilfong and Winkler [70] consider all possible sets of paths in G and ask themselves
the question how to position converters on a subset S of the nodes, such that for any set of
paths P the number of necessary wavelengths is equal to the maximum load defined by P.
Such a set is called a em sufficient set. The Minimum Sufficient Set problem (MSS) is to find
the smallest sufficient set S. Again we have the symmetric and the asymmetric version of the
problem. The asymmetric version has been shown to be NP-hard already for planar networks
by Wilfong and Winkler [70]. Kleinberg and Kumar [47] give a 2-approximation algorithm
on general graphs. They also provide a polynomial approximation scheme for planar graphs.
This result has been extended to general graphs by Erlebach and Stefanakos [22] who also
give a linear algorithm if the underlying network has bounded tree-width. A spider is a tree
that consists of a central node and paths emerging from it. Wilfong and Winkler [70] have
identified spiders as the only graph class that has an MSS of size 0, i.e., a spider does not
need any wavelength converters. (Rings have an MSS of 1.) The placement of a WC has the
effect of separating all edges incident to a node v by replacing v with a new node for each
edge. Now, a sufficient set has the property that this copying operation converts the graph
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into a set of spiders.

The symmetric problem is easy. This follows directly from the characterization of graphs
with MSS of size 0: paths. Thus, WCs must be placed on all nodes with degree ≥ 3. The
only exception are rings, where an arbitrary node of degree 2 must be selected. Erlebach
and Stefanakos [21] restrict themselves to sets of paths P which contain shortest paths only,
bearing in mind that these paths are the ones generally used in network routings. They
characterize graphs with MSS of size 0. A somewhat surprising result can be found in Koster
and Zymolka [48]. They consider WCs that can handle one wavelength change only. For
a given set of paths (part of the input), they show that the placement of WCs is NP-hard
already in star networks. They also provide heuristics for their version of the problem.

3.2 Grooming

The grooming problem is a multi-commodity flow problem once the virtual topology is de-
termined. Therefore, the grooming problem is generally combined with the Virtual Topology
Selection problem, such that the wavelength assigned is ignored. The ratio behind this is
that wavelengths are sufficiently available (or will be in the future), and the costs of building
a virtual network are determined by the ADMs. As each lightpath needs an ADM at its
endvertices the minimization of lightpaths is closely related to the minimization of ADMs.

The problem of minimizing the number of ADMs is NP-hard, even for networks restricted to
paths and stars. See Dutta et al. [17]. Some approximation results have been achieved by
Calinescu and Wan [32]. They show that the minimum number of ADMs on a ring can be
approximated within a ratio of 3

2 .

Good grooming solutions may not only minimize the number of ADMs used, but may simul-
taneously use a small number of wavelengths. The following example from Chow and Lin [13]
shows, however, that both objectives can not always be optimized simultaneously. Consider
a bidirectional ring of nine vertices (numbered 1..9) with unit symmetric demand between
the vertices 1,2,3 and 4,5,6 and 7,8,9. Each wavelength has unit capacity in both directions.
Then a wavelength minimizing solution uses two wavelengths, one with demands 12, 23, 45,
56, 78, 89 and one with demands 13, 46, and 79 for a total of 15 (9+6) ADMs. Another
solution uses three wavelengths, one with demands 12, 23, 13, one with demands 45, 56, 46,
and one with demands 78, 89, 79, using a total of 9 ADMs.

The following formulation solves the combined topology and grooming problem on UPSRs. In
Sutter et al. [67] this formulation is introduced, though SDH/SONET rings were used instead
of wavelengths. Note that from a mathematical point of view they are equal. The objective
is determined by the number of (O)ADMs, which is equivalent to the number of nodes on the
rings. The following model optimizes the number of used (O)ADMs. Flow variables f r

sk,tk
denote the traffic of commodity k assigned to ring r. The variables xr

i are set to one, if ring
r contains an ADM at node i.

min
∑

r∈R

∑

i∈V

xr
i (30)

19



1
2

3

6

5

49

8

7

Figure 9: Example grooming.

s.t.
∑

r∈R

f r
sk,tk

= dk ∀k ∈ K (31)

f r
sk,tk

≤ dk min(xr
sk

, xr
tk

) ∀r ∈ R, ∀k ∈ K (32)
∑

k∈K

f r
sk,tk

≤ C ∀r ∈ R (33)

f r
sk,tk

≥ 0 ∀k ∈ K, ∀r ∈ R (34)

xr
i ∈ {0, 1} ∀r ∈ R, ∀{i, j} ∈ E (35)

If the traffic is not allowed to be split (non-bifurcated) we can replace each flow variable
with the product of demand and a binary variable, see Sutter et al. [67]. In [67] the problem
is then reformulated as a column generation problem and solved. In Sherali et al. [66] the
problem allowing bifurcation is solved with a Branch-and-Cut procedure. Finally, the general
grooming problem, on a mesh (complete graph), is solved heuristically by Battiti and Brunato
in [7] and [10].

3.3 Ring loading: routing and grooming on 4 fiber BDSRs

In bidirectional self-healing rings the routing of the traffic demands can be done in two ways:
clockwise and counter-clockwise. The optimization problem is to route the traffic such that
the maximum capacity usage over all edges is as small as possible. This is reflected in the
following formulation.

min max
k∈{0,...,n−1}

Lk (36)

s.t. Lk =
∑

[i,j):k∈[i,j)

αi,jdi,j +
∑

[i,j):k 6∈[i,j)

(1 − αi,j)di,j ∀k ∈ {0, . . . , n − 1} (37)
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αi,j ∈ {0, 1} ∀{i, j} ∈ E (38)

Here, the vertices and edges of the ring are numbered from 0 to n-1. Edge k is given by the
vertices k and k +1, all modulo n. The interval [i, j) refers to the clockwise path from vertex
i to vertex j, i.e., the edges i, . . . , j − 1. The variables αi,j determine whether the clockwise
path αi,j = 1 or the counter-clockwise path αi,j = 0 is used. The constraints 37 determine
the load Lk on link k.

The problem originates from Cosares and Saniee [14], who proved that it is NP-complete,
and who gave a 2-approximation algorithm. To show NP-completeness, a straightforward
reduction from 2-PARTITION is given in Schrijver et al. [64]. If traffic can be bifurcated, i.e.
the variables are relaxed to the interval [0, 1], then the problem turns into a polynomial-size
linear program. Note that each commodity has only two paths available.

The cut-condition 5 of Okamura and Seymour [62] is applied in Schrijver et al. [64] as well as
in Dell’Amico et al. [16] for solving the LP-relaxation with a ”greedy” algorithm. Rounding
techniques led to an absolute error of 3

2dmax guarantee in Schrijver et al. [64], where dmax

is the largest demand. The latter then prove with their algorithm that integer bifurcated
routing can be done in polynomial time. Thus, the problem with unit demands can be solved
polynomially, as was proved first by Frank [30]. Dell’Amico et al. [16] use their algorithm in a
Branch-and-Bound scheme to solve the problem to optimality. Finally, Khanna [46] develops
a polynomial time approximation scheme using the greedy algorithm in Schrijver et al. [64].

3.4 Ring design

Many providers of optical networks use the ring structure as the basic element to create
networks. In practice there are two ways of designing these rings: dense and sparse. In dense
ring topologies any pair of nodes in a network is connected by at least one ring. The Dutch
network of KPN provides an example. In sparse networks rings are connected to one another
with an optical cross-connect (OXC). The OXCs are very expensive and therefore generally
only one or two nodes are shared by a pair of rings. An example of a sparse network is the
European backbone of many international operators.

For the ring design problem, we consider unidirectional rings. The demand routed over a
unidirectional ring is equal to the capacity needed. The objective is to select a set of rings
to satisfy demand, such that the number of (O)ADMs is minimized. Since each vertex of
a unidirectional ring has an (O)ADMs, this is equivalent to the minimizing the number of
nodes over all rings. The following model uses flow variables f r

sk,tk
which denote the traffic of

commodity k assigned to ring r. The variables xr
i are set to one, if ring r contains node i.

min
∑

r∈R

∑

i∈V

xr
i (39)

s.t.
∑

r∈R

f r
sk,tk

= dk ∀k ∈ K (40)
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f r
sk,tk

≤ dk min(xr
sk

, xr
tk

) ∀k ∈ K, ∀r ∈ R (41)
∑

k∈K

f r
sk,tk

≤ C ∀r ∈ R (42)

f r
sk,tk

≥ 0 ∀k ∈ K, ∀{i, j} ∈ E (43)

xr
i ∈ {0, 1} ∀k ∈ K, ∀{i, j} ∈ E (44)

The related model for non-bifurcated flow is found in Sutter et al. [67]. In [67] the problem
is reformulated as a column generation problem and solved this way. In Sherali et al. [66] the
(scaled) problem allowing bifurcation is solved with a Branch-and-Cut procedure.

Laguna [51] treats the sparse case. Laguna models the problem, and solves it heuristically
with tabu search. The paper of Goldschmidt et al. [35] treats a specific structure: a central
ring with other rings attached to it. It also describes an integer program and introduces
heuristics to solve the problem. Finally, the Fortz et al. [28] describe the ring design problem
with specific side-constraints such as a hop limit, and connectivity requirements of the rings:
such as dual homing.

4 Concluding remarks

The previous sections contain a historical overview and quite recent results in network plan-
ning problems for telecommunication. By no means this overview is complete. For instance
hop-constraints have not been treated. Moreover, broad classes of problems have not found
a place here. This involves routing in IP networks as treated in Fortz et al. [29] and [27].
Routing in pricing problems is treated in, among others, Bouhtou et al. [55] and [69], and an
interesting variant of the network design problem: the winner determination problem, where
many customers compete for capacity in a network. This subject is found in Abrache et al. [2]
and van Hoesel and Müller [68]. Finally, the extensive literature on frequency assignment in
wireless networks has not been treated. A recent and quite complete overview can be found
in Aardal et al. [1].
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