188 research outputs found

    Trainable COSFIRE filters for vessel delineation with application to retinal images

    Get PDF
    Retinal imaging provides a non-invasive opportunity for the diagnosis of several medical pathologies. The automatic segmentation of the vessel tree is an important pre-processing step which facilitates subsequent automatic processes that contribute to such diagnosis. We introduce a novel method for the automatic segmentation of vessel trees in retinal fundus images. We propose a filter that selectively responds to vessels and that we call B-COSFIRE with B standing for bar which is an abstraction for a vessel. It is based on the existing COSFIRE (Combination Of Shifted Filter Responses) approach. A B-COSFIRE filter achieves orientation selectivity by computing the weighted geometric mean of the output of a pool of Difference-of-Gaussians filters, whose supports are aligned in a collinear manner. It achieves rotation invariance efficiently by simple shifting operations. The proposed filter is versatile as its selectivity is determined from any given vessel-like prototype pattern in an automatic configuration process. We configure two B-COSFIRE filters, namely symmetric and asymmetric, that are selective for bars and bar-endings, respectively. We achieve vessel segmentation by summing up the responses of the two rotation-invariant B-COSFIRE filters followed by thresholding. The results that we achieve on three publicly available data sets (DRIVE: Se = 0.7655, Sp = 0.9704; STARE: Se = 0.7716, Sp = 0.9701; CHASE_DB1: Se = 0.7585, Sp = 0.9587) are higher than many of the state-of-the-art methods. The proposed segmentation approach is also very efficient with a time complexity that is significantly lower than existing methods.peer-reviewe

    Color Fundus Image Registration Using a Learning-Based Domain-Specific Landmark Detection Methodology

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] Medical imaging, and particularly retinal imaging, allows to accurately diagnose many eye pathologies as well as some systemic diseases such as hypertension or diabetes. Registering these images is crucial to correctly compare key structures, not only within patients, but also to contrast data with a model or among a population. Currently, this field is dominated by complex classical methods because the novel deep learning methods cannot compete yet in terms of results and commonly used methods are difficult to adapt to the retinal domain. In this work, we propose a novel method to register color fundus images based on previous works which employed classical approaches to detect domain-specific landmarks. Instead, we propose to use deep learning methods for the detection of these highly-specific domain-related landmarks. Our method uses a neural network to detect the bifurcations and crossovers of the retinal blood vessels, whose arrangement and location are unique to each eye and person. This proposal is the first deep learning feature-based registration method in fundus imaging. These keypoints are matched using a method based on RANSAC (Random Sample Consensus) without the requirement to calculate complex descriptors. Our method was tested using the public FIRE dataset, although the landmark detection network was trained using the DRIVE dataset. Our method provides accurate results, a registration score of 0.657 for the whole FIRE dataset (0.908 for category S, 0.293 for category P and 0.660 for category A). Therefore, our proposal can compete with complex classical methods and beat the deep learning methods in the state of the art.This research was funded by Instituto de Salud Carlos III, Government of Spain, DTS18/00 136 research project; Ministerio de Ciencia e Innovación y Universidades, Government of Spain, RTI2018-095 894-B-I00 research project; Consellería de Cultura, Educación e Universidade, Xunta de Galicia through the predoctoral grant contract ref. ED481A 2021/147 and Grupos de Referencia Competitiva, grant ref. ED431C 2020/24; CITIC, Centro de Investigación de Galicia ref. ED431G 2019/01, receives financial support from Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia, through the ERDF (80%) and Secretaría Xeral de Universidades (20%). The funding institutions had no involvement in the study design, in the collection, analysis and interpretation of data; in the writing of the manuscript; or in the decision to submit the manuscript for publication. Funding for open access charge: Universidade da Coruña/CISUGXunta de Galicia; ED481A 2021/147Xunta de Galicia; ED431C 2020/24Xunta de Galicia; ED431G 2019/0

    Detection of retinal vascular bifurcations by rotation-, scale- and reflection-invariant COSFIRE filters

    Get PDF
    We propose trainable filters, which we call COSFIRE (Combination Of Shifted FIlter REsponses), and use to de- tect vascular bifurcations in retinal images. We configure a COSFIRE filter to be selective for a bifurcation that is speci- fied by a user in a single-step training phase. The automatic configuration comprises the selection of channels of a bank of Gabor filters and the determination of certain blur and shift parameters. A COSFIRE filter response is computed as the geometric mean of the blurred and shifted responses of the selected Gabor filters. The proposed filters share sim- ilar properties with some shape-selective neurons in visual cortex. With only five filters we achieve a recall of 98.57% at a precision of 95.37% on the 40 binary retinal images (from DRIVE), containing more than 5000 bifurcations.peer-reviewe

    Tracking and diameter estimation of retinal vessels using Gaussian process and Radon transform

    Get PDF
    Extraction of blood vessels in retinal images is an important step for computer-aided diagnosis of ophthalmic pathologies. We propose an approach for blood vessel tracking and diameter estimation. We hypothesize that the curvature and the diameter of blood vessels are Gaussian processes (GPs). Local Radon transform, which is robust against noise, is subsequently used to compute the features and train the GPs. By learning the kernelized covariance matrix from training data, vessel direction and its diameter are estimated. In order to detect bifurcations, multiple GPs are used and the difference between their corresponding predicted directions is quantified. The combination of Radon features and GP results in a good performance in the presence of noise. The proposed method successfully deals with typically difficult cases such as bifurcations and central arterial reflex, and also tracks thin vessels with high accuracy. Experiments are conducted on the publicly available DRIVE, STARE, CHASEDB1, and high-resolution fundus databases evaluating sensitivity, specificity, and Matthew’s correlation coefficient (MCC). Experimental results on these datasets show that the proposed method reaches an average sensitivity of 75.67%, specificity of 97.46%, and MCC of 72.18% which is comparable to the state-of-the-art
    corecore