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Abstract

We propose trainable filters, which we call COSFIRE

(Combination Of Shifted FIlter REsponses), and use to de-

tect vascular bifurcations in retinal images. We configure a

COSFIRE filter to be selective for a bifurcation that is speci-

fied by a user in a single-step training phase. The automatic

configuration comprises the selection of channels of a bank

of Gabor filters and the determination of certain blur and

shift parameters. A COSFIRE filter response is computed

as the geometric mean of the blurred and shifted responses

of the selected Gabor filters. The proposed filters share sim-

ilar properties with some shape-selective neurons in visual

cortex. With only five filters we achieve a recall of 98.57%

at a precision of 95.37% on the 40 binary retinal images

(from DRIVE), containing more than 5000 bifurcations.

1 Introduction

Retinal fundus images provide a unique possibility to

analyse the state of the vascular system of a person in a

non-invasive way. The analysis of the geometrical structure

of the vessel tree is important as deviations from the optimal

principles [10] may indicate risks for some cardiovascular

diseases, such as hypertension [15] and atherosclerosis [5].

The identification of vascular bifurcations is a crucial step

in this analysis, which is typically performed by a tedious

manual process [5].

The existing attempts to automate the detection of vas-

cular bifurcations can be categorized into two classes:

geometrical-feature based and model based approaches.

The former involves extensive preprocessing, such as seg-

mentation and skeletonization, followed by local pixel pro-

cessing. These techniques are robust to the localization of

bifurcations [3, 4, 6, 9]. Model based approaches are usu-

ally more adaptive and have lower computational complex-

ity [1, 14]. However, these approaches are known to suffer

from insufficient generalization ability and consequently,

they may fail to detect some relevant features.

We propose COSFIRE (Combination Of Shifted FIlter

REsponses) filters for the detection of vascular bifurcations

in retinal images. A COSFIRE filter is trainable as it is con-

figured to be selective for a given prototype bifurcation. We

demonstrate that a COSFIRE filter can achieve invariance

to some geometrical transformations and is able to detect

features that are similar to the prototype bifurcation.

The rest of the paper is organized as follows: in Section 2

we present the COSFIRE filter and in Section 3 we evaluate

the proposed approach by applying COSFIRE filters on the

DRIVE data set [13], which is a popular data set in the field

of retinal image analysis. Finally, we provide a discussion

and draw conclusions in Section 4.

2 Proposed method

Fig. 1a illustrates a typical bifurcation encircled in a bi-

narized retinal image1. We use this feature, which is shown

enlarged in Fig.1b, to automatically configure a COSFIRE

filter that will respond to the same and similar bifurcations.

The three ellipses shown in Fig.1b illustrate the domi-

nant orientations in the surroundings of the point of inter-

est. We use 2D Gabor filters to detect these orientations.

The central circle represents the overlapping supports of a

group of such Gabor filters. The response of a COSFIRE

filter is computed by combining the responses of the con-

cerned Gabor filters by geometric mean.

We use an automatic configuration process to determine

the preferred wavelengths and orientations of these Gabor

filters and the locations at which we take their responses.

Taking the Gabor responses at different locations around

a point can be implemented by shifting the responses of

these Gabor filters appropriately before evaluating them by

a pixel-wise function that gives the COSFIRE filter output.

1The image is named 21 manual1.gif in the DRIVE data set [13].
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Figure 1. (a) The circle indicates a vascular bifurcation that is selected by a user. (b) The ellipses

represent the dominant orientations around the specified point of interest, which is indicated by the

‘+’ marker. (c) Superposition of the responses of a bank of Gabor filters. (d) Values of the Gabor

responses along the bright circle of a given radius ρ (here ρ = 10) shown in (c). The labeled black

dots in (c) mark the positions (relative to the center of the filter) of three local maxima points.

2.1 Gabor filters: detecting orientations

We denote by |gλ,θ(x, y)|t1 the half-wave rectified re-

sponse of a symmetric Gabor filter of preferred wavelength

λ and orientation θ to a given input image. Such a filter has

other parameters, which we set as proposed in [12].

We apply a bank of Gabor filters with five wavelengths

(λ ∈ {4(2
i
2 ) | i = 0 . . . 4}) and eight orientations (θ ∈

{πi8 | i = 0 . . . 7}) to retinal images of size 565×584 pixels,

the blood vessels of which have a width that vary between 1

and 7 pixels. We threshold the Gabor responses at a fraction

t1 = 0.2 of the maximum response. Fig. 1c illustrates the

superimposed thresholded responses of the bank of Gabor

filters obtained for the bifurcation image shown in Fig. 1b.

2.2 Configuration of a COSFIRE filter

We consider the responses of the bank of Gabor filters

along a circle2 of a given radius ρ around the point of inter-

est, Fig.1(c-d). In each position along that circle, we take

the maximum of all responses across the possible values of

(λ, θ). The positions that have values greater than the corre-

sponding values of the neighbouring positions along an arc

of angle π/8 are selected as the points that characterize the

dominant orientations. We determine the polar coordinates

(ρ, φ) for each such a point with respect to the center of the

filter. For such a location (ρ, φ) we then consider all com-

binations of (λ, θ) for which the corresponding responses

gλ,θ(x, y) are greater than a fraction t2 =0.75 of the maxi-

mum response. For each value θ that satisfies this condition,

we consider a single value of λ, the one for which gλ,θ(x, y)
is the maximum of all responses across all values of λ. For

each distinct pair of (λ, θ) and for location (ρ, φ) we obtain

a tuple (λ, θ, ρ, φ).

We denote by Sf = {(λi, θi, ρi, φi) | i = 1 . . . nf} the

set of parameter value combinations, which fulfill the above

2For ρ=0 we only consider the point of interest.

conditions. The subscript f stands for the vascular bifurca-

tion around the selected point of interest. Every tuple in the

set Sf specifies the parameters of some contour part in f .

For the point of interest shown in Fig.1c and two values

of the parameter ρ ({0, 10}), the automatic configuration

process results in four contour parts with parameter values

specified by the tuples in the following set: Sf = {(λ1 =
4, θ1 = 3π

8 , ρ1 = 0, φ1 = 0), (λ2 = 4, θ2 = 3π
8 , ρ2 = 10, φ2 =

2.72), (λ3 = 4, θ3 = 5π
8 , ρ3 = 10, φ3 = 3.86), (λ4 = 4, θ4 =

3π
8 , ρ4 =10, φ4 =5.93).

2.3 Blurring and shifting Gabor responses

We use the Gabor responses, the channels and relative

locations of which are determined in the set Sf , to compute

the output of the COSFIRE filter. We shift these responses

appropriately so that they meet at the filter center before

evaluating them by a pixel-wise multivariate function that

gives the COSFIRE filter output.

Before these shift operations, we blur the Gabor re-

sponses to allow for some tolerance in the position of the

respective contour parts. We define the blurring operation

as the computation of maximum value of the weighted Ga-

bor responses. For weighting we use a Gaussian function

Gσ(x, y) with a standard deviation σ defined as: σ =
0.67 + 0.1ρ. In practice, we implement this computa-

tion as maxx′,y′{gλ,θ(x − x′, y − y′)Gσ(x
′, y′)} where

−3σ ≤ x′, y′ ≤ 3σ.

Next, we shift the blurred responses of each selected Ga-

bor filter (λi, θi) by a vector (ρi, φi + π). We denote by

sλi,θi,ρi,φi(x, y) the blurred and shifted response of the Ga-

bor filter that is specified by the i-th tuple in the set Sf .

In practice, the computation of one blurred and shifted re-

sponse (for the same values of λ, θ and ρ), for instance with

sλ,θ,ρ,φ=0(x, y), is sufficient: the result of sλ,θ,ρ,φ(x, y) for

any value of φ can be obtained from the result of the output

of sλ,θ,ρ,φ=0(x, y) by appropriate shifting.



(a) TP = 2 (b) TP = 21 (c) TP = 37 (d) TP = 63

Figure 2. Applying filter Sf1
in different modes: (a) non-invariant, (b) rotation-invariant, (c) rotation-

and scale-invariant, and (d) rotation-, scale- and reflection-invariant. The number of detected true

positive (TP) features increases as the filter achieves invariance to such geometric transformations.

2.4 COSFIRE filter output

We denote by rSf (x, y) the response of a COSFIRE filter

that we compute as the geometric mean of all the blurred

and shifted Gabor responses sλi,θi,ρi,φi(x, y) for the set Sf .

rSf (x, y) =

∣∣∣∣∣∣∣

( |Sf |∏

i=1

sλi,θi,ρi,φi(x, y)

) 1

|Sf |
∣∣∣∣∣∣∣
t3

(1)

where |.|t3 stands for thresholding the response at a fraction

t3 of its maximum.

Rotation and scale invariance are achieved as follows.

Using the set Sf , we first form a new set ℜψ,υ(Sf ) =
{υλi, θi+ψ, υρi, φi+ψ | ∀ i∈1 . . . |Sf |}, and then we define

the rotation- and scale-invariant response as r̂Sf (x, y) =
maxψ,υ(rℜψ,υ(Sf )(x, y)). We achieve reflection invariance

by forming another set: S
′

f = {λi, π−θi, ρi, π−φi) | ∀ i∈

1 . . . |Sf |}. The new filter S
′

f is selective for a mirrored

reflection, about the y−axis, of the prototype pattern f .

Finally, we define the rotation-, scale- and reflection-

invariant response of a COSFIRE filter Sf as the maximum

value of r̂ℜψ,υ(Sf )(x, y) and r̂ℜψ,υ(S
′

f
)(x, y).

3 Experimental results

We use the prototype bifurcation in Fig.1 to configure a

filter denoted by Sf1 with three values of ρ (ρ ∈ {0, 4, 10}).
Fig.2 shows the results that are obtained by the application

of filter Sf1 in different modes. For this filter we use a

threshold t3 = 0.37 as it produces the largest number of

correctly detected bifurcations and no falsely detected fea-

tures. The encircled regions are centered on the local max-

ima of the filter response and if two such regions overlap by

75%, only the one with the stronger response is shown.

When no invariance is used (Fig. 2a), the filter Sf1 de-

tects two vascular bifurcations one of which is the proto-

Sf1
Sf2

Sf3
Sf4

Sf5

Figure 3. (Top row) Selected vascular bifurca-
tions and (bottom row) the structures of the
corresponding COSFIRE filters.

type pattern that was used to configure Sf1 . If the filter is

applied in a rotation-invariant mode (ψ∈{πi8 | i=0 . . . 7})
it detects 21 features. With the addition of scale-invariance

(υ∈{2−
1

2 , 1, 2
1

2 }) the filter detects 37 features, and finally

with the inclusion of reflection-invariance, it detects 63 bi-

furcations. This example illustrates the strong generaliza-

tion ability of this approach because 58.88% (63 out of 107)

of interest are detected by a single filter.

As to the remaining features that are not detected by this

filter, we proceed as follows: we use one of these features

that we denote by f2 to train a second COSFIRE filter Sf2 ,

Fig. 3. With the new filter we detect 40 features of inter-

est of which 22 coincide with features detected by filter Sf1
and 18 are newly detected features (t3(Sf2)=0.44). Merg-

ing the responses of both filters results in the detection of

81 features. By configuring another three COSFIRE fil-

ters, Sf3 , Sf4 and Sf5 (Fig. 3), and use them (t3(Sf3) =
0.14, t3(Sf4) = 0.27, t3(Sf5) = 0.37) together with the

other two filters we achieve 100% recall and 100% preci-

sion3 for the concerned image.

We use a threshold value t3(Sfi) for each COSFIRE fil-

ter Sfi by automatically setting it to the smallest fraction for

which the precision is still 100% for the training image.

3Recall is the percentage of true features that are successfully detected.

Precision is the percentage of correct features from all detected patterns.



We apply these five COSFIRE filters on all the 40 binary

retinal images4 of the DRIVE data set and evaluate the ob-

tained results with the publicly available ground truth data5.

We achieve a total recall of 99.04% and a total precision of

91.63%. We then evaluate the filters by repeatingly chang-

ing their corresponding learned thresholds t3(Sfi) with a

given offset value. The maximum of the harmonic mean6 is

reached for a recall of 98.57% and a precision of 95.37%.

4 Discussion and conclusion

With only five COSFIRE filters we achieve 98.57% re-

call and 95.37% precision on the DRIVE data set of 40 bi-

nary retinal images, which contains more than 5000 bifur-

cations. These results outperform the ones reported in [2]

that were achieved with 25 trainable filters (98.52% recall

and 95.19% precision), the responses of which were thresh-

olded at the same value. In [3] a recall of 95.82% is reported

on a small data set of five retinal images.

The proposed COSFIRE filters are trainable, in that the

structure of such a filter is automatically determined by a

prototype pattern that is specified by a user. We use sym-

metric Gabor filters for detecting blood vessels. Gabor fil-

ters are, however, not intrinsic to the proposed method, and

other orientation-selective filters can also be used.

A COSFIRE filter share similar properties with some

neurons in area V4 of visual cortex which exhibit selectiv-

ity for parts of (curved) contours [11]. We compute the filter

response by the geometric mean which is inspired by psy-

chophysical evidence that human visual processing of shape

is likely performed by multiplication [7].

A COSFIRE filter produces a response only when all

constituent parts of a pattern of interest are present. This

is in contrast to other feature detection approaches, such

as SIFT [8], in which two patterns are considered similar

if the Euclidean distance between their respective local de-

scriptors satisfies certain criteria. Euclidean-distance based

approaches, however, suffer from insufficient selectivity re-

garding the shape properties of features.

The implementation of a COSFIRE filter is simple: the

filter output is computed as the geometric mean of blurred

and shifted Gabor responses. COSFIRE filters are versatile

as they can be configured with any local contour patterns.

In principle, all vascular bifurcations can be detected if

a sufficient number of filters are configured and used. The

performance that we obtain is sufficient to the needs of the

medical application at hand. We conclude that the proposed

rotation-, scale- and reflection-invariant COSFIRE filters

are an effective means to automatically detect vascular bi-

furcations in retinal fundus images.

4Named in DRIVE 01 manual1.gif, . . . , 40 manual1.gif.
5Ground truth data: www.cs.rug.nl/∼imaging/databases/retina database
6Harmonic mean of precision P and recall R is defined as: 2PR

P+R
.
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