887 research outputs found

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Green-Aware Virtual Machine Migration Strategy in Sustainable Cloud Computing Environments

    Get PDF
    As cloud computing develops rapidly, the energy consumption of large-scale datacenters becomes unneglectable, and thus renewable energy is considered as the extra supply for building sustainable cloud infrastructures. In this chapter, we present a green-aware virtual machine (VM) migration strategy in such datacenters powered by sustainable energy sources, considering the power consumption of both IT functional devices and cooling devices. We define an overall optimization problem from an energy-aware point of view and try to solve it using statistical searching approaches. The purpose is to utilize green energy sufficiently while guaranteeing the performance of applications hosted by the datacenter. Evaluation experiments are conducted under realistic workload traces and solar energy generation data in order to validate the feasibility. Results show that the green energy utilization increases remarkably, and more overall revenues could be achieved

    Adapting Datacenter Capacity for Greener Datacenters and Grid

    Full text link
    Cloud providers are adapting datacenter (DC) capacity to reduce carbon emissions. With hyperscale datacenters exceeding 100 MW individually, and in some grids exceeding 15% of power load, DC adaptation is large enough to harm power grid dynamics, increasing carbon emissions, power prices, or reduce grid reliability. To avoid harm, we explore coordination of DC capacity change varying scope in space and time. In space, coordination scope spans a single datacenter, a group of datacenters, and datacenters with the grid. In time, scope ranges from online to day-ahead. We also consider what DC and grid information is used (e.g. real-time and day-ahead average carbon, power price, and compute backlog). For example, in our proposed PlanShare scheme, each datacenter uses day-ahead information to create a capacity plan and shares it, allowing global grid optimization (over all loads, over entire day). We evaluate DC carbon emissions reduction. Results show that local coordination scope fails to reduce carbon emissions significantly (3.2%--5.4% reduction). Expanding coordination scope to a set of datacenters improves slightly (4.9%--7.3%). PlanShare, with grid-wide coordination and full-day capacity planning, performs the best. PlanShare reduces DC emissions by 11.6%--12.6%, 1.56x--1.26x better than the best local, online approach's results. PlanShare also achieves lower cost. We expect these advantages to increase as renewable generation in power grids increases. Further, a known full-day DC capacity plan provides a stable target for DC resource management.Comment: Published at e-Energy '23: Proceedings of the 14th ACM International Conference on Future Energy System

    Orchestrating datacenters and networks to facilitate the telecom cloud

    Get PDF
    In the Internet of services, information technology (IT) infrastructure providers play a critical role in making the services accessible to end-users. IT infrastructure providers host platforms and services in their datacenters (DCs). The cloud initiative has been accompanied by the introduction of new computing paradigms, such as Infrastructure as a Service (IaaS) and Software as a Service (SaaS), which have dramatically reduced the time and costs required to develop and deploy a service. However, transport networks become crucial to make services accessible to the user and to operate DCs. Transport networks are currently configured with big static fat pipes based on capacity over-provisioning aiming at guaranteeing traffic demand and other parameters committed in Service Level Agreement (SLA) contracts. Notwithstanding, such over-dimensioning adds high operational costs for DC operators and service providers. Therefore, new mechanisms to provide reconfiguration and adaptability of the transport network to reduce the amount of over-provisioned bandwidth are required. Although cloud-ready transport network architecture was introduced to handle the dynamic cloud and network interaction and Elastic Optical Networks (EONs) can facilitate elastic network operations, orchestration between the cloud and the interconnection network is eventually required to coordinate resources in both strata in a coherent manner. In addition, the explosion of Internet Protocol (IP)-based services requiring not only dynamic cloud and network interaction, but also additional service-specific SLA parameters and the expected benefits of Network Functions Virtualization (NFV), open the opportunity to telecom operators to exploit that cloud-ready transport network and their current infrastructure, to efficiently satisfy network requirements from the services. In the telecom cloud, a pay-per-use model can be offered to support services requiring resources from the transport network and its infrastructure. In this thesis, we study connectivity requirements from representative cloud-based services and explore connectivity models, architectures and orchestration schemes to satisfy them aiming at facilitating the telecom cloud. The main objective of this thesis is demonstrating, by means of analytical models and simulation, the viability of orchestrating DCs and networks to facilitate the telecom cloud. To achieve the main goal we first study the connectivity requirements for DC interconnection and services on a number of scenarios that require connectivity from the transport network. Specifically, we focus on studying DC federations, live-TV distribution, and 5G mobile networks. Next, we study different connectivity schemes, algorithms, and architectures aiming at satisfying those connectivity requirements. In particular, we study polling-based models for dynamic inter-DC connectivity and propose a novel notification-based connectivity scheme where inter-DC connectivity can be delegated to the network operator. Additionally, we explore virtual network topology provisioning models to support services that require service-specific SLA parameters on the telecom cloud. Finally, we focus on studying DC and network orchestration to fulfill simultaneously SLA contracts for a set of customers requiring connectivity from the transport network.En la Internet de los servicios, los proveedores de recursos relacionados con tecnologías de la información juegan un papel crítico haciéndolos accesibles a los usuarios como servicios. Dichos proveedores, hospedan plataformas y servicios en centros de datos. La oferta plataformas y servicios en la nube ha introducido nuevos paradigmas de computación tales como ofrecer la infraestructura como servicio, conocido como IaaS de sus siglas en inglés, y el software como servicio, SaaS. La disponibilidad de recursos en la nube, ha contribuido a la reducción de tiempos y costes para desarrollar y desplegar un servicio. Sin embargo, para permitir el acceso de los usuarios a los servicios así como para operar los centros de datos, las redes de transporte resultan imprescindibles. Actualmente, las redes de transporte están configuradas con conexiones estáticas y su capacidad sobredimensionada para garantizar la demanda de tráfico así como los distintos parámetros relacionados con el nivel de servicio acordado. No obstante, debido a que el exceso de capacidad en las conexiones se traduce en un elevado coste tanto para los operadores de los centros de datos como para los proveedores de servicios, son necesarios nuevos mecanismos que permitan adaptar y reconfigurar la red de forma eficiente de acuerdo a las nuevas necesidades de los servicios a los que dan soporte. A pesar de la introducción de arquitecturas que permiten la gestión de redes de transporte y su interacción con los servicios en la nube de forma dinámica, y de la irrupción de las redes ópticas elásticas, la orquestación entre la nube y la red es necesaria para coordinar de forma coherente los recursos en los distintos estratos. Además, la explosión de servicios basados el Protocolo de Internet, IP, que requieren tanto interacción dinámica con la red como parámetros particulares en los niveles de servicio además de los habituales, así como los beneficios que se esperan de la virtualización de funciones de red, representan una oportunidad para los operadores de red para explotar sus recursos y su infraestructura. La nube de operador permite ofrecer recursos del operador de red a los servicios, de forma similar a un sistema basado en pago por uso. En esta Tesis, se estudian requisitos de conectividad de servicios basados en la nube y se exploran modelos de conectividad, arquitecturas y modelos de orquestación que contribuyan a la realización de la nube de operador. El objetivo principal de esta Tesis es demostrar la viabilidad de la orquestación de centros de datos y redes para facilitar la nube de operador, mediante modelos analíticos y simulaciones. Con el fin de cumplir dicho objetivo, primero estudiamos los requisitos de conectividad para la interconexión de centros de datos y servicios en distintos escenarios que requieren conectividad en la red de transporte. En particular, nos centramos en el estudio de escenarios basados en federaciones de centros de datos, distribución de televisión en directo y la evolución de las redes móviles hacia 5G. A continuación, estudiamos distintos modelos de conectividad, algoritmos y arquitecturas para satisfacer los requisitos de conectividad. Estudiamos modelos de conectividad basados en sondeos para la interconexión de centros de datos y proponemos un modelo basado en notificaciones donde la gestión de la conectividad entre centros de datos se delega al operador de red. Estudiamos la provisión de redes virtuales para soportar en la nube de operador servicios que requieren parámetros específicos en los acuerdos de nivel de servicio además de los habituales. Finalmente, nos centramos en el estudio de la orquestación de centros de datos y redes con el objetivo de satisfacer de forma simultánea requisitos para distintos servicios.Postprint (published version

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial
    corecore