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Abstract

As cloud computing develops rapidly, the energy consumption of large-scale datacenters 
becomes unneglectable, and thus renewable energy is considered as the extra supply 
for building sustainable cloud infrastructures. In this chapter, we present a green-aware 
virtual machine (VM) migration strategy in such datacenters powered by sustainable 
energy sources, considering the power consumption of both IT functional devices and 
cooling devices. We define an overall optimization problem from an energy-aware point 
of view and try to solve it using statistical searching approaches. The purpose is to utilize 
green energy sufficiently while guaranteeing the performance of applications hosted by 
the datacenter. Evaluation experiments are conducted under realistic workload traces 
and solar energy generation data in order to validate the feasibility. Results show that 
the green energy utilization increases remarkably, and more overall revenues could be 
achieved.

Keywords: virtual machine migration, resource management, power management, 
renewable energy aware

1. Introduction

Large-scale datacenters, as the key infrastructure of cloud environments, usually own mas-

sive computing and storage resources in order to provide online services for thousands of 

millions of customers simultaneously. This leads to significant energy consumption, and thus 
high carbon footprint will be produced. Recent reports estimate that the emissions brought 

by information and computing technologies grow from 2% in 2010 [1] to 8% in 2016 and will 

grow to 13% by 2027 [2]. Hence, considering the heavy emissions and increasing impact on 
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climate change, governments, organizations, and also IT enterprises are trying to find cleaner 
ways to manage the datacenters, for example, exploiting renewable energy such as wind, 

solar, and tidal.

However, the intermittency and the instability of the renewable energy sources make it difficult 
to efficiently utilize them. Fortunately, we know that the datacenter workloads are usually vari-
able, which give us opportunities to find ways to manage the resources and power together 
inside the datacenters to utilize renewable energy sources more efficiently. On the other hand, to 
provide guaranteed services for third-party applications, the datacenter is responsible of keeping 

the quality of service (QoS) at a certain level, subject to the service level agreements (SLAs) [3].

In modern datacenters, applications are often deployed in virtual machines (VMs). By vir-

tualization mechanisms, VMs are flexible and easy to migrate across different servers in the 
datacenter. In this chapter, we attempt to conduct research on energy-aware virtual machine 
migration methods for power and resource management in hybrid energy-powered data-

centers. Especially, we also employ thermal-aware ideas when designing VM migration 

approaches. The holistic framework is described, then the model is established, and heuristic 

and stochastic strategies are presented in detail. Experimental results show the effectivity and 
feasibility of the proposed strategies. We hope that this chapter would be helpful for research-

ers to study the features of VM workloads in the datacenter and find ways to utilize more 
green energy than traditional brown energy.

The remainder of this chapter is organized as follows. Section 2 introduces some relevant 
prior work in the field of energy-aware and thermal-aware resource and power manage-

ment. Section 3 presents the entire system architecture we discuss in this chapter. Section 4 

formulates the optimization problem corresponding to the issue we need to address. 
Section 5 describes the methods and strategies we designed to solve the problem. Section 6 

illustrates the experimental results by comparing three different strategies, and finally con-

clusion is given out in Section 7, in which we also discuss about some of the possible future 

work.

2. Literature review

This section reviews the literature in the area of energy-aware resource management, ther-

mal-aware power management, and green energy utilization in datacenters.

In the recent decade, many researchers started to focus on power-aware management methods 

to manage workload fluctuation and search trade-off between performance and power con-

sumption. Sharma et al. [4] have developed adaptive algorithms using a feedback loop that reg-

ulates CPU frequency and voltage levels in order to minimize the power consumption. Tanelli 
et al. [5] controlled CPUs by dynamic voltage scaling techniques in Web servers, aiming at 

decreasing their power consumption. Berl et al. [6] reviewed the current best practice and prog-

ress of the energy efficient technology and summarized the remaining key challenges in the 
future. Urgaonkar et al. [7] employed queuing theory to make decision aiming at optimizing 
the application throughput and minimizing the overall energy costs. The above work attempts 
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to reduce the power consumption while guaranteeing the system performance. On the basis of 
such ideas, we incorporate the usage of renewable energy into the optimization model, which 
might support performance improvement when the green energy is sufficient enough.

Besides, thermal-aware resource management approaches also attracted some interest of 
researchers recently. For example, Mukherjee et al. [8] developed two kinds of temperature-

aware algorithms to minimize the maximum temperature in order to avoid hot spots. Tang 
et al. [9] proposed XInt which can schedule tasks to minimize the inlet temperatures and 
also to reduce the cooling energy costs. Pakbaznia et al. [10] combined chassis consolidation 

and efficient cooling together to save the power consumption while keeping the maximum 
temperature under a controlled level. Wang et al. [11] designed two kinds of thermal-aware 

algorithms aiming at lowering the temperatures and minimizing the cooling system power 
consumption. Islam et al. [12] proposed DREAM which can manage the resources to control 

allocate capacity to servers and distribute load considering temperature situations. Similarly, 

we consider the impact of temperature on two kinds of cooling devices in this chapter, which 

directly decide the cooling power consumption.

As renewable energy becomes more widely used in datacenters, corresponding research starts 

to put insights into green energy–oriented approaches for managing the resources and power. 

Deng et al. [13] treated carbon-heavy energy as a primary cost and designed some mecha-

nisms to allocate resources on demand. Goiri et al. designed GreenSlot [14] aiming at schedul-

ing batch workloads and GreenHadoop [15] which could deal with MapReduce-based tasks. 

Both of them tried to efficiently utilize green energy to improve the application performance. 
Li et al. [16] proposed iSwitch, which can switch the power supply between wind power and 

utility grid according to the renewable power variation. Arlitt et al. [17] defined the “Net-Zero 
energy” datacenter, which needs on-site renewable generators to offset the usage of power 
coming from the electricity grid. Deng et al. also conducted research on Datacenter Power 

Supply System (DPSS) and proposed an efficient, online control algorithm SmartDPSS [18] 

helping to make online decisions in order to fully leverage the available renewable energy and 

varying electricity prices from the grid markets, for minimum operational cost. Zhenhua et al. 
[19] presented a holistic approach that integrates renewable energy supply, dynamic pricing, 

cooling supply, and workload planning to improve the overall attainability of the datacenter.

Upon the basic concepts of these work, we exploit the possibility and of efficient VM migra-

tion management toward sufficiently utilizing renewable energy supply, incorporating the 
flexibility of transactional workloads, cooling power consumption, and the amount of avail-
able green energy.

3. Datacenter architecture

This section describes the datacenter architecture, including the hybrid power supply and 

virtualization infrastructure.

Figure 1 shows the system architecture of the sustainable datacenter powered by both renew-

able energy and traditional energy supplies. The grid utility and renewable energy are  
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combined together by the automatic transfer switch (ATS) in order to provide power supply 

for the datacenter. Both functional devices and cooling devices have to consume power, as 

shown in the bottom part of the figure.

Figure 2 illustrates the infrastructure of virtualized cloud datacenter. As shown, the underly-

ing infrastructure of the datacenter is comprised of many physical machines (PMs), which are 

placed onto groups of racks. The utility grid bus and the renewable energy bus are connected 

together to supply power for the datacenter devices. Renewable sources will be used first, and 
the grid power will be leveraged as the supplementary energy supply.

As mentioned before, virtual machines (VMs) are running on the underlying infrastructure as 

used to host multiple applications, as shown in the virtualization layer in Figure 2. Different 
VMs on the same PM might serve for different applications. In this chapter, we mainly discuss 
about transactional applications which needs CPU resources mostly, other than other types 

of resources.

Figure 1. Architecture of the sustainable datacenter powered by both green energy and brown energy.
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4. Problem definition

This section defines necessary variables and also the problem we need to solve throughout 
this chapter.

4.1. Model of computing and service units

In the target problem, there are N heterogeneous physical machines in the virtualized cloud 
environment, and the available CPU resource capacity of PM i is denoted as Ф

i
. The entire 

environment is hosting M kinds of different applications, deployed on M different VMs. 
Denote the jth VM as VM

j
. Then, denote x

j
 as the index of the PM which is hosting VM

j
. Denote 

φ
i
 as the allocated CPU capacity to VM

j
 and d

i
 as the demanded CPU capacity of application 

j at the current time slot.

4.2. Power consumption model

According to the mechanisms of dynamic voltage and frequency scaling (DVFS) techniques, 
here we use a simple power model which assumes that the power consumption of other com-

ponents in the PM correlate well with CPU [20]. Denote p
i
 as the power consumption of PM 

i in each time slot and p
i
MAX as the maximum power consumption of PM i (100% occupied by 

workloads). Then, the following equation can be used to compute the PM power consumption:

   p  
i
   =  p  

i
  MAX  ∙  (c +  (1 ‒ c)  ∙  θ  

i
  )   (1)

Figure 2. Virtualized datacenter.

Green-Aware Virtual Machine Migration Strategy in Sustainable Cloud Computing Environments
http://dx.doi.org/10.5772/67350

57



where c is a constant number representing the ratio of the idle-state power consumption of 

a PM compared to the full-utilized-state power consumption [21] and θ
i
 is the current CPU 

utilization of PM i.

Besides, we also consider the power cost spent on cooling devices when establishing the 

power model, which is usually much related to temperature. The cooling system we discuss 

here consists of both the traditional computer room air conditioning (CRAC) unit and the air 

economizer. According to relevant studies [10], the coefficient of performance (CoP) is often 
used to indicate the efficiency of a cooling system, which can be computed by

  CoP =  {  
 1 /  k ( T  

sup
  ‒ T  

out
  ) , when  T  

out
   ≤  T  

sup
   
     

0.0068  T  
sup

  2   + 0.0008  T  
sup

   + 0.458, otherwise
    (2)

where k is a factor reflecting the difference between outside air and target temperature, T
sup

 

is the target supply temperature, and T
out

 is the outside temperature. As it can be observed, 

Eq. (2) contains two parts, corresponding to the situation whether the CRAC or the air econo-

mizer will be used for cooling, respectively.

Hence, the total power consumed by both functional devices and cooling devices can be  

calculated by

   p  
DC

   =  (1 +   1 ____ 
CoP

  )  ∙  ∑ 
i=1

  N     p  
i
    (3)

Furthermore, considering the impact of environmental temperature inside the datacenter, we 
also tried to exploit thermal-aware VM migration strategies. The power consumption of the 

servers will make the surrounding environmental temperature increase, due to the dissipated 

heat. Prior studies [11] provided ways to model the vector of inlet temperatures T
in

 as

   T  
in

   =  T  
s
   + D • p  (4)

where D is the heat transferring matrix, p is the power consumption vector, and T
s
 is the sup-

plied air temperature vector.

The thermal-aware strategy tries to reduce the cooling power by balancing the temperature 

over the servers. Accordingly, the workload on different PMs should also be maintained bal-
anced. Denote T

safe
 as the safe outlet temperature and T

server
 as the outlet temperature of the hot-

test server. In order to lower the server temperature to the safe level, the output temperature 

of cooling devices should be adjusted by T
adj

 = T
safe

 − T
server

. Then, the output temperature after 

adjusted will be T
new

 = T
sup

 + T
adj

. Hereafter, the CoP value can be determined by T
new

 and T
out

 [22].

4.3. Modeling overhead and delay

To reduce the power consumption of the PM, it can be switched to sleeping state which can 

help save energy as much as possible. In addition, the operational costs also include the VM 

migration costs, since migrating VMs dynamically will definitely lead to some overhead. 
Denote a

i
 as the flag recording whether PM i is active or sleeping. Denote cA as the cost for 

activating a PM from sleeping state and cMIG as the cost for migrating a VM from one PM to 

another. Besides, the time delay is also considered and integrated into the experiments in 

Section 6 for waking up a PM and migrating a VM.
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4.4. Optimization problem formulation

From the resource providers’ point of view, the objective should be maximizing the total rev-

enues by meeting the requirements of the hosted applications while minimizing the consumed 
power and other costs. Usually, the revenues from hosting the applications are related to service 

quality and the predefined level in the SLA. Assume here that the service quality is reflected by 
the CPU capacity scheduled to the target application. Denote d

j
 as the demanded CPU capac-

ity of APP j and φ
j
 as the CPU capacity amount scheduled to APP j. Denote Ωj(•) as the profit 

model for APP j, which gives the actual revenue by serving APP j at a certain quality level.

Since the dynamic action decisions are made during constant time periods, denote τ as the 

length of one time slot. Denote t as the current time slot, and then in time slot t+1, the goal is 

to maximize the net revenue subject to various constraints. Denote x
j
 as the index of PM cur-

rently hosting VM j, and then the VM placement vector X can be denoted as

  X =  ( x  
1
  ,  x  

2
  , ...,  x  

j
  , … ,  x  

M
  )   (5)

Hence, the optimizing objective of the defined problem can be expressed as

  max   

 ∑ 
j=1

  M     Ω   j  ( d  
j
  ,  ϕ  

j
  ) −  c   P  ∙  p  

DC
  

    ‒ c   A  ∙  ∑ 
i=1

  N    max  (0,  a  
i
   (t + 1)  −  a  

i
   (t) )     

‒ c   MIG  ∙  ∑ 
j=1

  M     ( x  
j
   (t + 1)  –  x  

j
   (t) ) 

    (6)

where the first term is the total revenue summarized over all of the hosted applications, the 
second term represents the power consumption costs of the entire datacenter, the third term 

is the PM wake-up cost, and the last term represents the VM migration cost.

With respect to the objective defined above, the constraints could be expressed as

   ∑ 
 x  

j
  =i
      ϕ  

j
   ≤  Ф  

i
   ∙  a  

i
    (7)

  0 ≤  ϕ  
j
   ≤  d  

j
  , j = 1, 2, … , M  (8)

   a  
i
   ∈  {0, 1} ,  x  

j
   ∈  [1, N]   (9)

where Eq. (7) means that the allocated capacity cannot exceed the PM CPU capacity, Eq. (8) 

means that the CPU scheduled to a VM should be less than its demanded value, and Eq. (9) 

gives the validated ranges of the defined variables.

5. Methods and strategies

In this section, we design some heuristic methods and also the joint hybrid strategy, and 

describe the ideas in detail.

5.1. Dynamic load balancing (DLB)

The idea of the DLB strategy is to make the workload on different PMs balanced by dynami-
cally placing VMs. To achieve the balancing effect, if one PM is detected to be more utilized 
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than the specified upper threshold, some VMs on this PM will be chosen to migrate other-

where. As a result, the PM utilization ratio will be controlled in a certain range, and there will 
be as few overloaded PMs as possible.

5.2. Dynamic VM consolidation (DVMC)

According to the features of virtualization techniques, VMs could be consolidated together 
onto a few PMs to make other PMs zero loaded. Hence, the main idea of the DVMC strategy 

is to consolidate VMs as much as possible aiming at saving more power. Both the upper 

threshold and the lower threshold of the PM utilization level are defined. If one PM is light 
loaded enough that its utilization is less than the lower threshold, the VM consolidation 
process will be triggered. After this process, VMs upon underutilized PM will be migrated 
onto other PMs. Finally, zero-loaded PMs could be turned into inactivate state in order to 
save more power.

5.3. Joint optimal planning (JOP)

The JOP strategy aims to optimize the VM placement scheme with the objective of sufficiently 
utilizing the renewable energy and reducing the total costs.

5.3.1. Renewable energy forecasting

Since renewable energy is used as one source of power supply, we have to forecast the input 

power value in the next time slot. Here the k-nearest neighbor (k-NN) algorithm is adopted. 
A distance weight function is designed to calculate the distance each solar radiation values, 

as follows:

    w  
i
   =  (1 /    d   i )  /   (1 /    d   1  + 1 /    d   2  + … +1 /    d   k )    (10)

where di is the distance between the ith neighbor and the current point.

Figure 3 shows the forecasting effect on one day in October 2013. The data were measured 
and collected in Qinghai University, Xining, Qinghai Province of China. By analyzing the data 
points, the allowed absolute percentage errors (AAPE) of 97.01% data are less than 30%. The 

accuracy of the prediction method depends on the similar weather conditions in the recent 

past and may be affected by weather forecast data.

5.3.2. Stochastic search

In order to look for the best scheme of VM placement, we use stochastic search to do the 

optimization. Specifically, the genetic algorithm (GA) is modified and employed as follows:

For a typical genetic algorithm, there are two basic items as follows:

1. A genetic representation of solution space

Here, for this problem, the decision variable is the vector of VM placement, which can be 

denoted as X = (x
1
, x

2
 …, x

M
).
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2. A fitness function to compute the value of each solution

As described, the objective function defined by Eq. (6) could be used as the fitness function. 
It is functional in measuring the quality of a certain solution. Hereafter, the fitness function 
will be denoted as F(X).

The procedure of genetic algorithm can be divided into following steps:

i. Initialization

First, we add the current configuration vector in the last time epoch into the initial generation. 
Besides, a fixed number (denoted as n

g
) of individual solutions will be randomly generated. 

Specifically, a part of the elements of each solution will be generated randomly, in the range 
of 0~N−1.

ii. Selection

After initialization, the generations will be produced successively. For each generation, n
b
 

best-ranking individuals from the current and past population will be selected to breed a 

new generation. Then, in order to keep the population constant, the remained individuals 

will either be removed or replicated based on its quality level. The selection procedure is 

conducted based on fitness, which means that solutions with higher fitness values are more 
prone to be selected.

Figure 3. An example of renewable energy forecasting effect.
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According to such concepts, the probability to select an individual X
i
 can be calculated as

  P ( X  
i
  )  =   

F ( X  
i
  ) 
 _________ 

 ∑ 
k=1

   n  
g
      F ( X  

i
  ) 
    (11)

In this way, less fit solutions will be less likely to be selected, and this helps to keep the diver-

sity of the population and to keep away from premature convergences on poor solutions.

1. Reproduction

After selection, a second generation of population should be generated from those selected 

solutions through two kinds of genetic operators: crossover and mutation.

The crossover operator first selects two different individuals, denoted as   X   1  =  ( x  1  
1 ,  x  

2
  1 , … ,  x  

M
  1  )   and   

X   2  =  ( x  1  
2 ,  x  

2
  2 , … ,  x  

M
  2  )  . Then, a cutoff point k is set from the range 1~M. Both X1 and X2 are divided 

into two halves, and the second half of them will be swapped and then   X   1‘  =  ( x  1  
1 ,  x  

2
  1 , …  x  

k
  1 ,  x  

k+1
  2  , … ,  x  

M
  2  )   

and   X   2’  =  ( x  1  
2 ,  x  

2
  2 , … ,  x  

k
  2 ,  x  

k+1
  1  , … ,  x  

M
  1  )  . As a result, two new individuals will come out, which is perhaps 

already in the current population or not.

After crossover, the mutation operator will mutate each individual with a certain probability. 

The mutation process starts by randomly choosing an element in the vector and then chang-

ing its value, and then converts an individual into another.

2. Termination

This production process will repeat again and again until the number of generations reaches 

to a predefined level.

6. Evaluation results

This section shows our experiments comparing different strategies, and then the results and 
some details will be discussed.

6.1. Parameter settings

For the following experiments, we used C#.NET to develop the simulation environment and 
set up the prototype test bed. Specifically, a virtualized datacenter is established, comprised 
of 40 PMs with CPU capacity of 1500 MIPS each. For the power model,   p  

i
  MAX   is set to 259W 

according to Ref. [23] and, c is set to 66% according to Ref. [21]. Then, 100 VMs hosting dif-

ferent applications were simulated and put on the PMs. The workload on each VM fluctuates 
with time, with the value randomly generated under the uniform distribution.

Table 1 shows all of the parameter settings in detail, and Figure 4 shows variation of the total 

CPU demand summarized over all of the workloads, from which it can be seen that there are 
two peaks in the 24-h period.

We defined a nonlinear revenue function for each application, as mentioned in Section 4. 
Figure 5 shows some three typical examples. It can be seen that the revenue of every  

application changes elastically in a certain range.
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APP 1 APP 2 APP 3

Lower bound 50 40 30

Upper bound 90 60 70

U
j
max 100 60 80

Table 1. Parameter settings for example applications.

Figure 4. The workload variation.

Figure 5. The revenue functions of three example applications.
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The control interval for reconfiguration actions in the experiment is set to 60 minutes. 
According to Refs. [24–26], we set cP to $0.08, set cA to $0.00024, and set cMIG to $0.00012. The 

VM migration delay is set to 5s, and the PM wakeup delay is set to 15s. The total experiment 

time is set to 1440 minutes. The temperature data used in the experiments come from the 

realistic data measured on 4 October 2013, recorded in the campus of the Qinghai University, 
Xining, Qinghai Province, China, as shown in Figure 6.

6.2. Results

In order to investigate the effectiveness of the proposed strategy, we will compare the perfor-

mance among three different strategies – DLB, DVMC, and JOP, as stated in Section 5.

6.2.1. Revenues

As described in Section 4, the net revenue is a main optimizing objective in our problem. 
Figure 7 shows the total accumulated net revenues throughout the 1440-min experiment time. 

It can be observed that the JOP strategy can keep the net revenue relatively higher than other 

ones. Moreover, the DVMC approach behaves relatively better than DLB since it can save 

more power by VM consolidation. By examining the detailed data, we found that JOP could 

make the gains 38.2 and 24.2% higher than DLB and DVMC, respectively, with respect to the 

accumulated revenue.

Figure 6. Variation of the outside temperature in 1440 min.
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6.2.2. Power consumption

Now we intend to investigate the power consumption in detail when using JOP, as Figure 8 

illustrates. It can be observed from the figure that JOP is able to follow the solar energy varia-

tion quite well. When the solar power drops to insufficient level, JOP is prone to degrade 

the application performance to save more power. On the contrary, when the solar power 
arises, JOP allows both functional and cooling devices to consume more power, under the 

constraints of the input power. Interestingly, we can see that the temperature varies more or 

less in coincidence with solar energy generation, which implies that thermal-aware cosched-

uling of energy supply and consumption might be promising, since the temperature also 

affects energy consumption to some extent.

6.2.3. PM Management

Figure 9 shows the number of active servers when using the three different strategies. We can 
see that JOP can increase or decrease the number of active servers according to the variation 

of the solar power generation amount. Under the DLB strategy, all PMs are kept active so 

that the system-wide workload could be balanced. Comparatively, DVMC uses much fewer 

active PMs than DLB due to VM consolidation. However, it still uses more PMs at night time 

because it cannot effectively deal with the relationship of revenues and costs. Overall, JOP 

tries to manage PMs dynamically toward the optimization objective and thus can keep the 
number of active PMs as needed.

6.2.4. Energy for cooling

The cooling energy consumption is also investigated when using the three different strategies, 
as shown in Figure 10. As illustrated, JOP allows cooling devices to consume more power 

Figure 7. Accumulated net revenue variation.
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until after 18:00, showing its capability of catching the solar energy variation. By forecasting 

the solar power generation amount, JOP is able to make better decisions for migrating VMs 
according to the optimized scheme.

Figure 8. Power consumption details under JOP strategy.

Figure 9. Variation of the number of activated PMs.
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7. Conclusion and future work

As the energy consumption of large-scale datacenters becomes significant and attracts more atten-

tions, renewable energy is being exploited by more enterprises and cloud providers to be used 

as a supplement of traditional brown energy. In this chapter, we introduced the target system 

environment using hybrid energy supply mixed with both grid energy and renewables. From 
the datacenter’s own point of view, the optimization problem was defined aiming at maximizing 
net revenues. Accordingly, three different strategies were designed to migrate VMs across dif-
ferent PMs dynamically, among which the JOP strategy could leverage stochastic search to help 

the optimization process. Results illustrate the feasibility and effectiveness of the proposed strat-
egy and further investigation about the accumulated revenues, PM states, and cooling power 

consumption helps us to see more details of the working mechanisms of the proposed strategy.

As datacenters become larger and larger and thus enormous amount of energy is still needed 

to power these datacenters, it can be expected that green sources of energy will attract more 
insights to provide power supplies instead of traditional brown energy. Our work tries to 
explore some strategies to migrate VMs inside a datacenter in a green-aware way. Nevertheless, 
there are still a lot of challenges in the field of leveraging sustainable energy to power the data-

centers. On one hand, more kinds of clean energy sources besides wind and solar could be 
exploited, such as hydrogen and fuel cell, and their features should be studied and developed. 

On the other hand, how to synthetically utilize the battery, utility grid, and datacenter loads 
to solve the intermittency and fluctuation problems of the energy sources remains a difficult 
problem for system designers. In addition, it is also necessary and interesting to conduct some 

research on the air flow characteristics among racks and server nodes inside the datacenter 
room and develop some thermal-aware scheduling approaches correspondingly.

Figure 10. Cooling energy consumption under three different strategies.
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