1,055 research outputs found

    BER of MRC for M-QAM with imperfect channel estimation over correlated Nakagami-m fading

    Get PDF
    In this contribution, we provide an exact BER analysis for M-QAM transmission over arbitrarily correlated Nakagami-m fading channels with maximal-ratio combining (MRC) and imperfect channel estimation at the receiver. Assuming an arbitrary joint fading distribution and a generic pilot-based channel estimation method, we derive an exact BER expression that involves an expectation over (at most) 4 variables, irrespective of the number of receive antennas. The resulting BER expression includes well-known PDFs and the PDF of only the norm of the channel vector. In order to obtain the latter PDF for arbitrarily correlated Nakagami-m fading, several approaches from the literature are discussed. For identically distributed and arbitrarily correlated Nakagami-m channels with integer m, we present several BER performance results, which are obtained from numerical evaluation and confirmed by straightforward computer simulations. The numerical evaluation of the exact BER expression turns out to be much less time-consuming than the computer simulations

    On Optimal Turbo Decoding of Wideband MIMO-OFDM Systems Under Imperfect Channel State Information

    Full text link
    We consider the decoding of bit interleaved coded modulation (BICM) applied to both multiband and MIMO OFDM systems for typical scenarios where only a noisy (possibly very bad) estimate of the channel is provided by sending a limited number of pilot symbols. First, by using a Bayesian framework involving the channel a posteriori density, we adopt a practical decoding metric that is robust to the presence of channel estimation errors. Then this metric is used in the demapping part of BICM multiband and MIMO OFDM receivers. We also compare our results with the performance of a mismatched decoder that replaces the channel by its estimate in the decoding metric. Numerical results over both realistic UWB and theoretical Rayleigh fading channels show that the proposed method provides significant gain in terms of bit error rate compared to the classical mismatched detector, without introducing any additional complexity

    SVM-Based Channel Estimation and Data Detection for One-Bit Massive MIMO systems

    Get PDF
    The use of low-resolution Analog-to-Digital Converters (ADCs) is a practical solution for reducing cost and power consumption for massive Multiple-Input-Multiple-Output (MIMO) systems. However, the severe nonlinearity of low-resolution ADCs causes significant distortions in the received signals and makes the channel estimation and data detection tasks much more challenging. In this paper, we show how Support Vector Machine (SVM), a well-known supervised-learning technique in machine learning, can be exploited to provide efficient and robust channel estimation and data detection in massive MIMO systems with one-bit ADCs. First, the problem of channel estimation for uncorrelated channels is formulated as a conventional SVM problem. The objective function of this SVM problem is then modified for estimating spatially correlated channels. Next, a two-stage detection algorithm is proposed where SVM is further exploited in the first stage. The performance of the proposed data detection method is very close to that of Maximum-Likelihood (ML) data detection when the channel is perfectly known. We also propose an SVM-based joint Channel Estimation and Data Detection (CE-DD) method, which makes use of both the to-be-decoded data vectors and the pilot data vectors to improve the estimation and detection performance. Finally, an extension of the proposed methods to OFDM systems with frequency-selective fading channels is presented. Simulation results show that the proposed methods are efficient and robust, and also outperform existing ones

    Bit error rate evaluation for orthogonal space-time block codes in the presence of channel estimation errors

    Get PDF
    corecore