106 research outputs found

    Definition and specification of connectivity and QoE/QoS management mechanisms – final report

    Get PDF
    This document summarizes the WP5 work throughout the project, describing its functional architecture and the solutions that implement the WP5 concepts on network control and orchestration. For this purpose, we defined 3 innovative controllers that embody the network slicing and multi tenancy: SDM-C, SDM-X and SDM-O. The functionalities of each block are detailed with the interfaces connecting them and validated through exemplary network processes, highlighting thus 5G NORMA innovations. All the proposed modules are designed to implement the functionality needed to provide the challenging KPIs required by future 5G networks while keeping the largest possible compatibility with the state of the art

    New concepts for traffic, resource and mobility management in software-defined mobile networks

    Get PDF
    The evolution of mobile telecommunication networks is accompanied by new demands for the performance, portability, elasticity, and energy efficiency of network functions. Network Function Virtualization (NFV), Software Defined Networking (SDN), and cloud service technologies are claimed to be able to provide most of the capabilities. However, great leap forward will only be achieved if resource, traffic, and mobility management methods of mobile network services can efficiently utilize these technologies. This paper conceptualizes the future requirements of mobile networks and proposes new concepts and solutions in the form of Software-Defined Mobile Networks (SDMN) leveraging SDN, NFV and cloud technologies. We evaluate the proposed solutions through testbed implementations and simulations. The results reveal that our proposed SDMN enhancements supports heterogeneity in wireless networks with performance improvements through programmable interfaces and centralized control

    A Survey of Deep Learning for Data Caching in Edge Network

    Full text link
    The concept of edge caching provision in emerging 5G and beyond mobile networks is a promising method to deal both with the traffic congestion problem in the core network as well as reducing latency to access popular content. In that respect end user demand for popular content can be satisfied by proactively caching it at the network edge, i.e, at close proximity to the users. In addition to model based caching schemes learning-based edge caching optimizations has recently attracted significant attention and the aim hereafter is to capture these recent advances for both model based and data driven techniques in the area of proactive caching. This paper summarizes the utilization of deep learning for data caching in edge network. We first outline the typical research topics in content caching and formulate a taxonomy based on network hierarchical structure. Then, a number of key types of deep learning algorithms are presented, ranging from supervised learning to unsupervised learning as well as reinforcement learning. Furthermore, a comparison of state-of-the-art literature is provided from the aspects of caching topics and deep learning methods. Finally, we discuss research challenges and future directions of applying deep learning for cachin

    Towards NFV-based multimedia delivery

    Get PDF
    The popularity of multimedia services offered over the Internet have increased tremendously during the last decade. The technologies that are used to deliver these services are evolving at a rapidly increasing pace. However, new technologies often demand updating the dedicated hardware (e.g., transcoders) that is required to deliver the services. Currently, these updates require installing the physical building blocks at different locations across the network. These manual interventions are time-consuming and extend the Time to Market of new and improved services, reducing their monetary benefits. To alleviate the aforementioned issues, Network Function Virtualization (NFV) was introduced by decoupling the network functions from the physical hardware and by leveraging IT virtualization technology to allow running Virtual Network Functions (VNFs) on commodity hardware at datacenters across the network. In this paper, we investigate how existing service chains can be mapped onto NFV-based Service Function Chains (SFCs). Furthermore, the different alternative SFCs are explored and their impact on network and datacenter resources (e.g., bandwidth, storage) are quantified. We propose to use these findings to cost-optimally distribute datacenters across an Internet Service Provider (ISP) network

    Allocation des ressources dans les environnements informatiques en périphérie des réseaux mobiles

    Get PDF
    Abstract: The evolution of information technology is increasing the diversity of connected devices and leading to the expansion of new application areas. These applications require ultra-low latency, which cannot be achieved by legacy cloud infrastructures given their distance from users. By placing resources closer to users, the recently developed edge computing paradigm aims to meet the needs of these applications. Edge computing is inspired by cloud computing and extends it to the edge of the network, in proximity to where the data is generated. This paradigm leverages the proximity between the processing infrastructure and the users to ensure ultra-low latency and high data throughput. The aim of this thesis is to improve resource allocation at the network edge to provide an improved quality of service and experience for low-latency applications. For better resource allocation, it is necessary to have reliable knowledge about the resources available at any moment. The first contribution of this thesis is to propose a resource representation to allow the supervisory xentity to acquire information about the resources available to each device. This information is then used by the resource allocation scheme to allocate resources appropriately for the different services. The resource allocation scheme is based on Lyapunov optimization, and it is executed only when resource allocation is required, which reduces the latency and resource consumption on each edge device. The second contribution of this thesis focuses on resource allocation for edge services. The services are created by chaining a set of virtual network functions. Resource allocation for services consists of finding an adequate placement for, routing, and scheduling these virtual network functions. We propose a solution based on game theory and machine learning to find a suitable location and routing for as well as an appropriate scheduling of these functions at the network edge. Finding the location and routing of network functions is formulated as a mean field game solved by iterative Ishikawa-Mann learning. In addition, the scheduling of the network functions on the different edge nodes is formulated as a matching set, which is solved using an improved version of the deferred acceleration algorithm we propose. The third contribution of this thesis is the resource allocation for vehicular services at the edge of the network. In this contribution, the services are migrated and moved to the different infrastructures at the edge to ensure service continuity. Vehicular services are particularly delay sensitive and related mainly to road safety and security. Therefore, the migration of vehicular services is a complex operation. We propose an approach based on deep reinforcement learning to proactively migrate the different services while ensuring their continuity under high mobility constraints.L'évolution des technologies de l'information entraîne la prolifération des dispositifs connectés qui mène à l'exploration de nouveaux champs d'application. Ces applications demandent une latence ultra-faible, qui ne peut être atteinte par les infrastructures en nuage traditionnelles étant donné la distance qui les sépare des utilisateurs. En rapprochant les ressources aux utilisateurs, le paradigme de l'informatique en périphérie, récemment apparu, vise à répondre aux besoins de ces applications. L’informatique en périphérie s'inspire de l’informatique en nuage, en l'étendant à la périphérie du réseau, à proximité de l'endroit où les données sont générées. Ce paradigme tire parti de la proximité entre l'infrastructure de traitement et les utilisateurs pour garantir une latence ultra-faible et un débit élevé des données. L'objectif de cette thèse est l'amélioration de l'allocation des ressources à la périphérie du réseau pour offrir une meilleure qualité de service et expérience pour les applications à faible latence. Pour une meilleure allocation des ressources, il est nécessaire d'avoir une bonne connaissance sur les ressources disponibles à tout moment. La première contribution de cette thèse consiste en la proposition d'une représentation des ressources pour permettre à l'entité de supervision d'acquérir des informations sur les ressources disponibles à chaque dispositif. Ces informations sont ensuite exploitées par le schéma d'allocation des ressources afin d'allouer les ressources de manière appropriée pour les différents services. Le schéma d'allocation des ressources est basé sur l'optimisation de Lyapunov, et il n'est exécuté que lorsque l'allocation des ressources est requise, ce qui réduit la latence et la consommation en ressources sur chaque équipement de périphérie. La deuxième contribution de cette thèse porte sur l'allocation des ressources pour les services en périphérie. Les services sont composés par le chaînage d'un ensemble de fonctions réseau virtuelles. L'allocation des ressources pour les services consiste en la recherche d'un placement, d'un routage et d'un ordonnancement adéquat de ces fonctions réseau virtuelles. Nous proposons une solution basée sur la théorie des jeux et sur l'apprentissage automatique pour trouver un emplacement et routage convenable ainsi qu'un ordonnancement approprié de ces fonctions en périphérie du réseau. La troisième contribution de cette thèse consiste en l'allocation des ressources pour les services véhiculaires en périphérie du réseau. Dans cette contribution, les services sont migrés et déplacés sur les différentes infrastructures en périphérie pour assurer la continuité des services. Les services véhiculaires sont en particulier sensibles à la latence et liés principalement à la sûreté et à la sécurité routière. En conséquence, la migration des services véhiculaires constitue une opération complexe. Nous proposons une approche basée sur l'apprentissage par renforcement profond pour migrer de manière proactive les différents services tout en assurant leur continuité sous les contraintes de mobilité élevée

    Towards the Softwarization of Content Delivery Networks for Component and Service Provisioning

    Get PDF
    Content Delivery Networks (CDNs) are common systems nowadays to deliver content (e.g. Web pages, videos) to geographically distributed end-users over the Internet. Leveraging geographically distributed replica servers, CDNs can easily help to meet the required Quality of Service (QoS) in terms of content quality and delivery time. Recently, the dominating surge in demand for rich and premium content has encouraged CDN providers to provision value-added services (VAS) in addition to the basic services. While video streaming is an example of basic CDN services, VASs cover more advanced services such as media management. Network softwarization relies on programmability properties to facilitate the deployment and management of network functionalities. It brings about several benefits such as scalability, adaptability, and flexibility in the provisioning of network components and services. Technologies, such as Network Functions Virtualization (NFV) and Software Defined Networking (SDN) are its key enablers. There are several challenges related to the component and service provisioning in CDNs. On the architectural front, a first challenge is the extension of the CDN coverage by on-the-fly deployment of components in new locations and another challenge is the upgrade of CDN components in a timely manner, because traditionally, they are deployed statically as physical building blocks. Yet, another architectural challenge is the dynamic composition of required middle-boxes for CDN VAS provisioning, because existing SDN frameworks lack features to support the dynamic chaining of the application-level middle-boxes that are essential building blocks of CDN VASs. On the algorithmic front, a challenge is the optimal placement of CDN VAS middle-boxes in a dynamic manner as CDN VASs have an unknown end-point prior to placement. This thesis relies on network softwarization to address key architectural and algorithmic challenges related to component and service provisioning in CDNs. To tackle the first challenge, we propose an architecture based on NFV and microservices for an on-the-fly CDN component provisioning including deployment and upgrading. In order to address the second challenge, we propose an architecture for on-the-fly provisioning of VASs in CDNs using NFV and SDN technologies. The proposed architecture reduces the content delivery time by introducing features for in-network caching. For the algorithmic challenge, we study and model the problem of dynamic placement and chaining of middle-boxes (implemented as Virtual Network Function (VNF)) for CDN VASs as an Integer Linear Programming (ILP) problem with the objective of minimizing the cost while respecting the QoS. To increase the problem tractability, we propose and validate some heuristics
    • …
    corecore