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ABSTRACT 

Towards the Softwarization of Content Delivery Networks for Component and Service 

Provisioning 

Narjes Tahghigh Jahromi, Ph.D. 

Concordia University, 2018 

 

Content Delivery Networks (CDNs) are common systems nowadays to deliver content (e.g. 

Web pages, videos) to geographically distributed end-users over the Internet. Leveraging 

geographically distributed replica servers, CDNs can easily help to meet the required Quality of 

Service (QoS) in terms of content quality and delivery time. Recently, the dominating surge in 

demand for rich and premium content has encouraged CDN providers to provision value-added 

services (VAS) in addition to the basic services. While video streaming is an example of basic 

CDN services, VASs cover more advanced services such as media management.  

Network softwarization relies on programmability properties to facilitate the deployment and 

management of network functionalities. It brings about several benefits such as scalability, 

adaptability, and flexibility in the provisioning of network components and services.  

Technologies, such as Network Functions Virtualization (NFV) and Software Defined Networking 

(SDN) are its key enablers.  

There are several challenges related to the component and service provisioning in CDNs.  

 On the architectural front, a first challenge is the extension of the CDN coverage by on-the-fly 

deployment of components in new locations and another challenge is the upgrade of CDN 

components in a timely manner, because traditionally, they are deployed statically as physical 

building blocks. Yet, another architectural challenge is the dynamic composition of required 

middle-boxes for CDN VAS provisioning, because existing SDN frameworks lack features to 

support the dynamic chaining of the application-level middle-boxes that are essential building 

blocks of CDN VASs. On the algorithmic front, a challenge is the optimal placement of CDN VAS 

middle-boxes in a dynamic manner as CDN VASs have an unknown end-point prior to placement. 
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This thesis relies on network softwarization to address key architectural and algorithmic 

challenges related to component and service provisioning in CDNs.  To tackle the first challenge, 

we propose an architecture based on NFV and microservices for an on-the-fly CDN component 

provisioning including deployment and upgrading. In order to address the second challenge, we 

propose an architecture for on-the-fly provisioning of VASs in CDNs using NFV and SDN 

technologies. The proposed architecture reduces the content delivery time by introducing features 

for in-network caching. For the algorithmic challenge, we study and model the problem of dynamic 

placement and chaining of middle-boxes (implemented as Virtual Network Function (VNF)) for 

CDN VASs as an Integer Linear Programming (ILP) problem with the objective of minimizing 

the cost while respecting the QoS. To increase the problem tractability, we propose and validate 

some heuristics.  
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Chapter 1 

 

1. Introduction 

 

In this chapter we first provide an overview of the thesis, then we review the 

challenges that exist toward softwarization of CDNs followed by the thesis 

contributions. Afterward, we present the background information related to the thesis. 

Finally, the thesis outline is given. 

1.1. Overview 

Content Delivery Networks (CDNs) have emerged to improve the network 

performance and content distribution by offering mechanisms and infrastructure to 

deliver the content to a large number of end-users. CDNs are defined as a collaborative 

collection of replica servers (a.k.a. surrogate or edge servers) and a CDN controller [1] 

[2][3]. The replica servers are located close to end-users and offload the content 
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providers’ origin servers by hosting the replicated content and perform a transparent and 

efficient delivery of content to end-users. The CDN controller manages the CDN and 

redirects the end-users’ requests to the appropriate replica server [1], according to their 

content availability, network condition, and end-user location. 

 According to a Cisco Virtual Networking Index forecast [4], [5], the video traffic 

will take up to 80% of Internet traffic by 2020 and around two-thirds of this traffic will 

be carried by CDNs. The significant importance of CDNs and also the end-users’ 

demand for rich and premium content has motivated CDN providers to provision Value-

Added Services (VASs), such as media management/video ad-insertion, in addition to 

their basic services. While CDN basic services include audio/video streaming and 

audio/video/software download, CDN VASs cover more advanced services. According 

to an article published in Streaming Media magazine (November 2012 issue) [6], VASs 

cover the CDN injected services such as “application acceleration, dynamic site 

acceleration, front-end optimization, mobile content acceleration, media management 

(transcoding, ad-insertion, content protection), and a host of other services for the 

purposes of security and commerce”. Considering the case of media management, an 

example is advertisement insertions (ad-insertion).  Another example of such a service 

is sign-language video insertion for hearing-impaired end-users.  

Network softwarization is a concept that has emerged in recent years and has the 

potential to significantly help to facilitate the provisioning of CDN components and 

services. Network softwarization relies on programmability properties of the network 

functionalities (i.e. middle-boxes) and network resources (e.g. routers and switches) to 

facilitate the deployment and management of network functionalities. It brings about 

scalability, elasticity, adaptability, and flexibility in introducing new services and 

provisioning components. Network Functions Virtualization (NFV) and Software-

Defined Networking (SDN) are two complementary technologies that can realize 
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network softwarization in CDNs. NFV and SDN can help re-architecting the traditional 

CDN components, with virtualization as their key feature. NFV is a novel way to 

virtualize network services and brings flexibility and efficiency by decoupling the 

network functions (NF), from the underlying hardware. It defines NFs as standalone 

pieces of software called Virtual Network Function (VNF).  As a complementary 

technology to NFV, SDN enables the dynamic programming of network resources by 

decoupling the network control from the data plane. This leads to the dynamic 

orchestration and chaining of the already-deployed VNFs. 

1.2. Challenges and Thesis Contributions 

Network softwarization in CDNs can help to tackle several challenges in 

provisioning components and services in CDNs. Examples of such challenges are given 

below. 

 Flash Crowds: In some events, some content attracts the attention of a large 

number of end-users and this might lead to flash crowds, which are the sudden 

and unpredicted surges in requests towards particular contents. Flash crowds 

eventually cause an outage in CDNs, e.g. a decrease in Quality of Service (QoS) 

and site slow-downs. Terrorist attacks of September 11, 2001 [7], is among 

examples that lead to flash crowds. In the case of flash crowds, traditional CDNs 

are challenged to promptly extend their coverages by provisioning additional 

CDN components in new locations. This is mainly because traditionally, they 

are provisioned statically on a proprietary hardware [8] and their deployment 

and management tasks require labor-intensive manual efforts. 

 Upgrading the CDN components: In the CDN context, with the growth of 

video traffic, the viewer requirements are also evolving. This forces the CDN 

providers to frequently adapt their systems to the market needs. Traditionally, 



 

4 
 

CDN components are designed as physical building blocks. Hardware-based 

deployments require lengthy upgrade intervals when new features are needed, 

due to the fact that this process is done manually. Although recently some CDN 

providers have been offering virtualized components, they are designed as 

monolithic software, which imposes unavoidable complexity for the upgrade 

process. In such cases, the upgrade process requires to take the whole component 

off service temporarily and recover it after the upgrade process is completed. In 

order to deal with the challenges of CDN component upgrades with minimum 

service downtime, the CDN architectures need to be rethought. 

 On-the-fly VAS provisioning: Another challenge is on-the-fly provisioning of 

VASs in CDNs, including the dynamic chaining of the required VAS middle-

boxes. Based on the Internet Engineering Task Force (IETF) categorization [9], 

the building blocks of VASs are application-level middle-boxes such as video 

transcoder, mixer, and compressor. Traditionally, these middle-boxes are 

provisioned statically [10], at fixed network locations, as most of the middle-

boxes nowadays. The reliance of network services to their underlying network 

topology brings some challenges in their deployment and chaining. Even though 

some technologies such as SDN can help to facilitate CDN VAS provisioning, 

it’s still challenging as the chaining of the application-level middle-boxes 

requires specific features that are overlooked in existing SDN frameworks.  

 The location of VAS middle-boxes: In order to realize a VAS, the required 

middle-boxes need to be deployed and chained. However, the location where 

middle-boxes are deployed has a great impact on CDN provider expenses and 

end-user perceived QoS. Moreover, CDN VASs have a particular feature that is 

the fact that a chain end-point is unknown prior to the placement. This end-point 

corresponds to the replica server that is selected to serve the content to the end-
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user. This makes the placement problem challenging as the assignment of a 

replica server to end-users impacts the optimal placement of middle-boxes in the 

chain.  

These challenges must be addressed before the agile and flexible provisioning of 

CDN components and VASs can advance to reality. This thesis aims at addressing the 

fundamental architectural and algorithmic challenges related to the network 

softwarization in CDNs. These problems along with potential solutions are summarized 

next. 

1.2.1. An Architecture for on-the-fly component provisioning in CDNs [11], 

[12]  

As mentioned earlier, CDN components are traditionally provisioned as physical 

building blocks on proprietary hardware. The fact that those functionalities are hardly 

coupled to the underlying hardware brings about some unique challenges in the 

provisioning of basic services in CDNs. In particular, when a specific content gains 

popularity, flash crowds might occur that might lead to site slowdowns or service 

unavailability. In such cases, CDNs are challenged to react fast in extending their 

coverage by provisioning new components in locations where there is a high demand 

for the content. Furthermore, CDN components require to be upgraded frequently as the 

ever-changing end-user needs call for frequent upgrades to support new content formats, 

protocols, and content protection requirements. Currently, CDN components are 

provisioned as monolithic functionalities that makes the upgrade process complex and 

time-consuming. In this context, automation remains essential, especially to cope with 

sudden changes in service usage pattern and CDN provider requirements. 

In this thesis, we propose an architecture to tackle the related challenges for on-the-

fly provisioning of new CDN components when needed. the architecture leverages the 
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microservice architectural style [13] and NFV technology [14] to enable the on-the-fly 

provisioning (including on-the-fly deployment and upgrading) of CDN components. 

The proposed modular design of CDN components using microservices architectural 

style facilitate the upgrade process with a minimum downtime. The ETSI MANO 

principles [15] brings automation in deployment and management procedure. In 

addition, a pre-deployment and a post-deployment procedure are considered to be 

covered by the architecture which are crucial procedures for automation of the whole 

process.  

1.2.2. An Architecture for on-the-fly Provisioning of VAS CDN Services [16], 

[17] 

The building blocks of CDN VASs are application-level middle-boxes such as 

mixer, transcoder, and compressor. To realize an end-to-end VAS, the above-mentioned 

middle-boxes need to be deployed and chained in the network. Traditionally, such 

middle-boxes are provisioned statically on proprietary hardware. Their substantial 

reliance on the underlying hardware and network topology makes VAS provisioning 

very challenging. In unpredicted events when many videos go viral, CDNs are 

challenged to react fast to provision VASs in various locations, in a timely manner, and 

with sufficient flexibility. SDN technology can facilitate service provisioning by on-

the-fly chaining of required middle-boxes. However, the existing SDN frameworks 

currently support chaining of IP-level middle-boxes such as NAT and firewall. They 

need to be redesigned to enable on-the-fly chaining of application-level middle-boxes 

such as video mixer and compressor that are essential in CDN context.  

In this thesis, an architecture is designed for on-the-fly provisioning of VASs for 

CDNs. The architecture relies on well-adopted technologies, such as NFV and SDN, to 

enable CDN VAS provisioning by dynamic chaining of application-level middle-boxes. 

The application-level middle-boxes, that are key components of CDN VASs, are 
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packaged in-line with NFV technology in form of VNFs. The architecture includes 

extensions to the existing SDN switches and controllers, to support the dynamic 

chaining of application-level VNFs for VASs. Besides, the architecture provides in-

network caching features to reduce the high latency overhead perceived by end-users 

when delivering content for VASs. It should be noted that also we have used our 

proposed method for chaining application-level VNFs in another domain i.e. Internet of 

Things (IoT) in [18]. 

1.2.3. An Algorithm for Dynamic Placement of VNFs for VAS [19], [20]  

As mentioned earlier, to realize a VAS, a set of middle-boxes should be deployed 

and chained in the network. However, the location where middle-boxes are placed 

significantly impacts the total cost of CDN providers and the perceived QoS by end-

users. Placement of middle-boxes for VASs is challenging as CDN VASs have an 

unknown chain endpoint prior to their placement. In NFV settings, such middle-boxes 

are defined and packages in form of VNFs that can be migrated over NFV Infrastructure 

(NFVI) from one server to another, as they are softwarized functionalities. Although 

VNF placement and chaining problems have received significant attention in the 

research community in recent years [21], to the best of our knowledge, very few research 

efforts (i.e. [22][23][24]) focus on the VNF-FGE for CDN VASs. Furthermore, they 

only focus on the static mode of placement in which VAS VNFs are placed and chained 

all together once. However, in real life, end-user requests for VAS vary in time and 

space and are rather difficult to forecast. Thus the necessity of dynamicity in the 

placement should be considered. 

In this thesis, we propose an approach for dynamic VNF placement for VASs in 

CDNs (DVPVC).  In the proposed approach, already deployed VNFs might be re-used 

when new VASs are introduced. Furthermore, the topology of the deployed VNFs is re-

configured whenever necessary. The problem is modeled as an Integer Linear 



 

8 
 

Programming (ILP) which minimizes the reconfiguration cost while meeting the 

required QoS. Reconfiguration cost is defined as an aggregation of VNF instantiation, 

migration, hosting and routing costs. To increase the problem tractability in large-scale 

scenarios, we propose a Tabu-search algorithm to find a suboptimal solution. We 

evaluate our proposed algorithm against the greedy first fit algorithm and the optimal 

solution.   The results show that the proposed algorithm reaches the optimality in several 

scenarios and significantly helps in reducing reconfiguration costs compared to the first 

fit algorithm. 

Next, we provide some background information related to the topics in this thesis. 

1.3. Background Information 

This subsection presents the background information that is relevant to our research 

domain.  The background information covers three topics: Content Delivery Networks, 

Network Function Virtualization, and Software Defined Networks. 

 

 

Figure 1.1. A high-level view of the CDN Architecture 
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1.3.1. Content Delivery Networks (CDN) 

A Content Delivery Network or Content Distribution Network (CDN) is a 

distributed network of collaborative content delivery elements which enable the 

efficient delivery of content services to a large number of geographically distributed 

end-users. Based on the several definitions provided by the relevant literature (e.g. 

[1][2][3]), and as shown in Fig. 1.1, CDNs can be described as an overlay network that 

consists of replica servers (a.k.a. surrogate or edge servers) and a controller. CDN 

replica servers are geographically distributed in strategic network locations, close to 

end-users. They hold a copy of the original content which is initially located on the 

origin servers, owned and managed by content providers. The CDN controller is a key 

entity in CDNs, responsible for redirecting the end-user requests to the appropriate 

replica server and managing the whole CDN network. The replica server selection is 

based on a set of predefined criteria, such as content availability, physical distance, 

network conditions, replica server overhead, and etc. Content providers rely on CDNs 

to easily improve their service performance and meet the required QoS in terms of 

content availability and delivery time. CDNs can also help to localize the traffic to 

reduce the overhead in the core network and eventually to decrease the overall network 

bandwidth usage.  

1.3.2. Network Function Virtualization (NFV) 

NFV is an emerging technology which offers a novel way to virtualize network 

services[14][25][26]. It aims at decoupling the network functions from the underlying 

hardware [27] by defining the network functions and middle-boxes as stand-alone 

pieces of software called Virtual Network Functions (VNF). This eventually enables the 

dynamic provisioning of network functions and middle-boxes (e.g. NAT, firewall) on 

top of any generic, Commercial Off-The-Shelf (COTS) hardware, anytime and 

anywhere in the network. This makes it easy for service providers and enterprises to 
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deploy new services faster while maximizing their investments in the existing platforms.  

The European Telecommunications Standards Institute (ETSI) has defined a reference 

architectural framework for NFV [15]. As Fig. 1.2 shows, the NFV framework includes 

three main components: VNFs, NFV Infrastructure (NFVI), and NFV Management and 

Orchestration (MANO). A VNF is the software implementation of a given middle-box 

(i.e. network function). NFVI provides the virtualized and physical resources as 

services. NFVI is managed by MANO, providing the required environments for VNFs 

to be deployed and executed. NFV MANO is also responsible for VNF and network 

service life cycle provisioning including deployment, execution, and management.  

One of the main NFV goals is to bring agility, dynamicity and cost reductions in 

network service deployments. In NFV context, in order to realize an end-to-end network 

service (NS), a set of VNFs should be composed, i.e. deployed in the network and 

chained. The chain, a.k.a. VNF Forwarding Graph (VNF-FG), is an ordered set of VNFs 

that the traffic steers among them. NFV exploits the virtualization technique to 

dynamically place the VNFs on the NFVI. Reference [28] defines three main stages for 

NFV Resource Allocation (NFV-RA): i) VNFs Chain Composition (VNFs-CC), i.e. 

 

Figure 1.2.  A high-level view of the NFV architecture. 
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Service Function Chaining (SFC), ii) VNF Forwarding Graph Embedding (VNF-FGE), 

and iii) VNFs Scheduling (VNFs-SCH). The VNFs-CC stage defines the way that VNFs 

should be composed in a VNF-FG (their order in the chain) such that the service 

provider requirements are met.  The VNF-FGE stage decides about the appropriate 

location to place the VNFs and chain them in a VNF-FG, in a way that resource costs 

are minimized and QoS is met. The VNFs-SCH focuses on the VNF scheduling on high-

volume servers in a way that the total execution time of the network service is 

minimized and an improved performance is obtained.  

1.3.3. Software Defined Networking (SDN) 

SDN is a networking technology which aims at splitting the control plane and the 

data plane of the network elements. The goal is to provide a robust management of the 

forwarding behavior of the network elements [29][30]. The control plane can easily 

program the forwarding elements of the network, according to the emerging application 

requirements and policies [31].  

 

Figure 1.3. A high-level view of the SDN architecture. 
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As illustrated in Fig. 1.3, the SDN architecture is composed of three main planes: (i) 

management plane, (ii) control plane and (iii) forwarding plane [32][33]. The 

management plane includes the SDN applications that define the application policies 

and inject them to the control plane via appropriate Application Programming Interfaces 

(APIs). The control plane includes SDN controllers that program the forwarding plane 

by populating the SDN switches with forwarding rules. The forwarding plane consists 

of SDN elements i.e. switches and routers and steers the traffic based on the forwarding 

rules that reflect the application policies. As a complementary technology to NFV, SDN 

enables the dynamic orchestration and chaining of VNFs [34]. 

1.4. Thesis Outline 

The rest of the thesis is organized as follows. Chapter 2 introduces the motivating 

scenario and requirements, followed by the critical review of the state-of-the-art. 

Chapter 3 presents an architecture for on-the-fly provisioning and upgrade of CDN 

components. Chapter 4 is devoted to the proposed architecture for provisioning of CDN 

VASs. Chapter 5 studies the VNF placement and chaining problem for CDN VASs and 

presents the proposed ILP model and heuristics for that. We conclude this manuscript 

in chapter 6 and provide future directions for this research work. 
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Chapter 2 

 

2. Related Work 

 

In this section, we first present some motivating scenarios from which we derive 

some architectural and algorithmic requirements. Next, we review the related work 

according to the derived requirements. 

2.1. Motivating Scenarios 

In this subsection, we provide a scenario that motivates the need for on-the-fly 

deployment of CDN components followed by a motivating scenario for their on-the-fly 

upgrade. Next, we present a motivating scenario for on-the-fly provisioning of CDN 

VASs and finally, we present motivations behind dynamic placement of VAS 

middleboxes in CDNs. 
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2.1.1. On-the-fly CDN component provisioning  

Let us assume a business model with a content provider, a CDN provider, and an 

Internet Service Provider (ISP). The content provider, e.g. Canadian Broadcast 

Corporation (CBC) news, provides contents to end-users. CDN provider operates and 

manages a CDN and provides content delivery services to content providers. ISP 

provides Internet connectivity services to end-users and additionally, we assume that it 

provides Points of Deployment (PoDs) to CDN providers. PoDs provide the 

infrastructure and resources needed for hosting the CDN replica servers.  

In a first scenario, let us assume that initially, the contents of the content provider are 

replicated on a replica server in Toronto and as shown in Fig. 2.1.a., all end users in 

Canada are redirected to this replica server. Let us now assume that an unpredictable 

event (e.g. British Columbia floods in 2017) happens and hence some contents gain 

popularity in a short period of time. The CDN provider might notice a surge in traffic 

from British Columbia, which might lead to a flash crowd as shown in Fig. 2.1.b.  

In this situation, the CDN provider might decide to deploy (in a fully automated 

manner) a new CDN component, e.g. a replica server, at ISP premises in British 

Columbia. As part of the pre-deployment phase, it will request the deployment at specific 

ISP premises and will retrieve from the ISP the information related to the specific PoD 

the server will be deployed on. The deployment per se will take place. During the post-

deployment phase, the CDN provider will fully integrate the newly deployed replica 

server in its content delivery network and will fill it with the popular contents. As 

illustrated in Fig. 2.1.c, the end-users in British Columbia will then be automatically 
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redirected to the new replica server. The CDN provider might decide to take the replica 

server off service (in a fully automated manner) when the number of requests decreases.  

Let us assume a second scenario in which, after a while, the content provider decides 

to stream the contents with a feature for adapting the content quality to end-users’ 

devices and network conditions in real time. Using this feature, the end-users with lower 

bandwidth situations and poor Internet connectivity smoothly receive a lower quality of 

the content stream. In order to satisfy these requirements, the CDN provider needs to 

upgrade their service, to support Adaptive Bit Rate (ABR) streaming. The CDN 

 

      
(a) (b) 

 
(c) 

Figure 2.1. An illustration of flash crowds use case 

a) Normal situation; end-users are redirected to replica server 1 in Toronto,  b) Flash crowds; a content 

gains sudden popularity,  c) Automatic provisioning of a new replica server 2 in Vancouver and the 

redirection of end-user requests. 
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provider should be able to upgrade their existing replica servers and equip them with 

the ABR streaming functionality on-the-fly.  

2.1.2. On-the-fly provisioning of CDN VASs 

Let us assume a content provider decides to provide value-added contents to end-

users in addition to their basic services. While CDN basic services include audio/video 

streaming and audio/video/software download, CDN VASs cover more advanced 

services such as media management and advertisement insertions (ad-insertions). For 

an ad-insertion VAS, the CDN provider might insert advertisements for guest log-ins 

and offer ad-free videos to the registered end-users. Moreover, some end-users may 

select higher quality streaming for a higher price while others may select lower quality 

streaming for a lower price. Also, the CDN provider might need to convert the video 

encoding to be playable by the end-user device based on its capabilities and/or 

configuration. As shown in Fig. 2.2, the application-level middle-boxes these VASs 

could rely on are: (i) a mixer for advertisement insertion, (ii) a compressor for 

decreasing the video size and/or quality, and (iii) a transcoder for video encoding 

 

Figure 2.2. Ad-insertion CDN VAS use case. 
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conversions [16]. As shown in Fig. 2.2, for a guest end-user A, who has requested a 

low-quality video in AVI encoding, a raw MP4-encoded video should then pass through 

three middle-boxes, i.e. a compressor, a transcoder, and a mixer before being delivered 

to the end-user. Such middle-boxes are the building blocks for CDN VASs and should 

be deployed in the network and chained in a specific order to realize the VAS. 

2.1.3. Dynamic VAS middle-box placement 

The location where the VAS middle-boxes are deployed brings unique challenges in 

service provisioning as it impacts the CDN provider expenses and the end-user 

perceived QoS [20].  

 In NFV settings, such middle-boxes are provisioned in form of VNFs. The VNF-FG 

for this VAS is formed such that the main video passes through the required VNFs 

before being delivered to end-users. In concrete CDN scenarios, multiple replica servers 

 

Figure 2.3. Triggers for VNF topology reconfiguration. 
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may be capable of serving the end-user requested content according to their geographic 

location and content availability. For example, in Fig.2.2 both replica servers X and Y 

can be assigned to end-user A. This leads to a particular feature for CDN VASs: one 

VNF-FG end-point is unknown prior to the placement [22]. This end-point corresponds 

to the replica server that serves the content to the end-user a.k.a. content server. The 

assignment of a replica server to the end-users is critical as it impacts the optimal 

placement of VNFs in the VNF-FG. 

After VNFs are placed and chained to realize a specific VAS, there could be a variety 

of motivations for modifying the deployment topology of the VNFs in the network. Fig. 

2.3 shows the triggers that indicate the need for VNF topology reconfiguration. 

A first motivation is the introduction of new VASs. In some cases, new VASs that 

might share a subset of VNFs with already-deployed VASs are introduced. For example, 

as shown in Fig. 2.2, let us assume a content adaptation VAS is already deployed in the 

network and used by end-users such as end-user B. A set of transcoder and compressor 

VNFs are deployed for content adaptation and chained to customize the content format 

and size in order to make the video playable by small devices. Next, we assume a new 

VAS is going to be introduced for ad-insertion. As mentioned earlier, the new ad-

insertion VAS requires a compressor to decrease the content size for end-users with 

poor Internet connectivity, a transcoder VNF for codec conversions, and a mixer VNF 

to insert an advertisement on top of the main video. In order to provision the new ad-

insertion VAS, some of the already-deployed VNFs of the content adaptation VAS, i.e. 

the compressor and transcoder VNFs, can be reused to reduce the costs. Thereafter, a 

new VNF type, i.e. a mixer VNF, must be deployed. However, the eventual multiple 

reuses of compressor and transcoder VNFs may require a reshuffle in their deployment 

topology so that the QoS of all of the VASs, both the existing and the new ones, are 

jointly satisfied. As depicted in Fig. 2.3, if any required VNFs of the ad-insertion VAS 
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are not already deployed, the CDN provider needs to optimally place all the required 

VNFs from scratch, while taking into account the required QoS of only the new VAS 

end-users.  

A second motivation is a change in the service usage pattern as discussed in [21]. For 

example, a group of end-users might subscribe to an existing VAS. As end-users could 

be located in various geographical locations, a VNF topology reconfiguration may be 

needed to jointly satisfy the QoS for existing and newly subscribed end-users.  

2.2. Requirements 

According to the above-mentioned motivating scenarios, the following requirements 

are derived. Some requirements are architectural and some of them are specific to 

algorithms. 

2.2.1. Architectural Requirements  

In this subsection, first, we define the general requirements on the architectures. 

Afterward, we define specific requirements for component provisioning and specific 

requirements for VAS provisioning in CDNs. We define an architecture here as a set of 

modules and interfaces that enable provisioning of CDN components and VASs. 

A) General architectural requirements 

Following requirements are defined as general architectural requirements. 

Automation: The architecture should guarantee that the whole service provisioning 

process will be fully automated to enable the dynamic incorporation of required 

changes. It is critical for the CDNs to be able to automatically provision services 

especially to cope with flash crowds where sudden changes happen in end-user usage 

pattern. In such cases, the traditional provisioning of basic services and VASs cannot 

be acceptable since it is performed manually.  
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Heterogeneity: The heterogeneity should be taken into account in terms of PoDs 

resources and infrastructures offered by providers. The architecture should support 

CDN replica servers and middle-box provisioning on heterogeneous resources. The 

main reason is that such components should be deployed on PoDs in different locations 

that might be covered by various providers such as ISPs and homogeneity cannot be 

expected across different providers.  

Using widely-deployed technologies: The architecture should be designed according to 

the well-adopted and widely-deployed technologies. This is necessary and helps to 

ensure the interoperability at the level of architectural modules, CDN components, and 

business entities.  

B) Requirements specific to on-the-fly provisioning of CDN components 

Several architectural requirements can be naturally derived from the first and second 

motivating scenarios which are identified as requirements specific to the on-the-fly 

provisioning of CDN components for basic CDN services. 

Supporting the whole provisioning process: The architecture should be able to cover the 

whole CDN component provisioning phase. This includes pre-deployment and post-

deployment procedures in addition to the actual deployment procedure. For example, as 

part of the pre-deployment procedure, the appropriate PoDs should be selected and as 

part of the post-deployment procedure, the newly deployed components should be 

integrated into existing CDNs and filled with content if needed. 

On-the-fly upgradability of CDN components: The architecture should support on-the-

fly upgradability of the already deployed CDN components with as little complexity as 

possible. This requirement is essential due to the ever-changing end-user requirements 

which encourage the CDN providers to adapt their systems to volatile market needs.  
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C) Requirements specific to on-the-fly provisioning of CDN VASs 

The following requirements are considered to be important for provisioning VASs in 

CDNs. 

Flexibility: The architecture should be flexible enough to support chaining of various 

type of middle-boxes required for provisioning a wide range of VASs. Some types of 

VASs require specific middle-boxes to be deployed and chained in the network. 

Application-level middle-boxes are among examples which are required to realize an 

end-to-end VAS in CDNs.  

Minimizing the content customization overhead: Application-level middle-boxes 

impose some overhead in terms of latency due to the fact that content customization is 

a time-consuming task per se. Therefore the architecture should introduce features that 

reduce the end-to-end content delivery latency as much as possible. 

2.2.2. Algorithmic Requirements 

The following requirements are defined according to the placement challenges in 

the motivating scenario. 

Dynamicity: The algorithm should adapt the system to the new changes to improve the 

placement performance. It should support the dynamic mode of placement in which the 

current VNF topology is efficiently reconfigured to accommodate the existing and 

newly arrived VNF-FG requests.   

Supporting a wide range of VNF-FGs: The algorithm should provide VNF placement 

solutions for wide range of VNF-FGs including the ones with an unknown VNF-FG 

end-point such as CDN VASs. 
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VNF chaining: The algorithm should offer features for optimal placement of multiple 

VNFs in a VNF-FG and chaining them in the specific required order, in addition to 

supporting the placement of individual VNFs. 

2.3. Related Work 

2.3.1. Architectures for on-the-fly CDN Component Provisioning 

 The component provisioning process (including on-the-fly deployment and 

upgrading) in CDNs remains essential manual nowadays (e.g. Netflix OpenConnect 

[35]) even if some CDN providers provide CDN component as software packages 

(Akamai Aura licensed CDN [36]).  In this context, the proposals so far rely on generic 

frameworks, such as ETSI MANO and active networks for on-the-fly functionality 

deployment. In this subsection, we first discuss approaches based on ETSI MANO, and 

then we review architectures built based on active networking. 

A) ETSI MANO-based approaches 

 A related work is the ETSI NFV use case architecture for CDNs [37]. It proposes 

the design and implementation of the CDN components in form of VNFs and motivates 

the need for dynamic deployment and management of them in a telecommunication 

network operator domain. Another approach is CDN as a service (CDNaaS) [38], which 

facilitates the deployment of telco-CDN replica servers. It proposes an architecture to 

allow content providers to automatically deploy the CDN replica servers in the ISP 

domain. The ISP receives the content provider requests for replica server deployment, 

orchestrates the resources, and deploys the replica server as a monolithic functionality. 

The case study on the replica servers designed as VNFs is another example [39]. Veitch 

et al. in [39]  focus on testing the CDN replica servers as VNFs before their deployment, 

to assess the effect of various factors (e.g. the use of analytics and the level of 

granularity) on the baseline performance. This work is based on well-adopted NFV 
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technology and tackles the VNF deployment issue from a testing perspective. Although 

references [37], [38], and [39] satisfy the general architectural requirements on 

automation, heterogeneity, and using widely-deployed technologies,  they do not 

provide any feature for upgrading CDN components in general. Moreover, they do not 

support the whole provisioning process. 

B) Active network-based approaches 

Active networking [40] is an approach that enables the deployment of network 

functions on network elements such as routers and switches. Examples of such functions 

include firewalls and video mixers. Srinivasan et al. in [41] propose an approach called 

ActiveCDN that is powered by the active network. It enables the dynamic extension of 

content delivery services by virtualizing the storage and computation resources of 

network elements. The ActiveCDN architecture uses NetServ [42] as a network 

virtualization framework that focuses on the automatic deployment of CDN replica 

servers. It overlooks the full provisioning phases. ActiveCDN follows active 

networking technology, which is not a widely-deployed technology and furthermore, it 

offers no mechanism for the on-the-fly upgrade of replica servers.  

2.3.2. Architectures based on NFV and SDN for VAS Provisioning 

Several works in the relevant literature investigate the on-the-fly VAS 

provisioning. Overall, they mainly focus on the dynamic orchestration of IP-level VNFs 

(e.g. NAT, Load Balancer and Firewall). In this section, we focus on the works done so 

far on on-the-fly VAS provisioning using NFV and SDN technologies. We first review 

related works in the CDN space. Then, we discuss the works with a focus on the use of 

NFV and SDN at large in other domains. 
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A) NFV and SDN in the CDN domain 

Most of the reviewed literature contributes to IP-level routing rather than the 

application-level chaining required for our approach. For example, Giotis et al. in [43] 

propose an architecture for CDN traffic management that provides a privileged service 

for premium applications by interacting with an SDN controller. This work is based on 

NFV and SDN technologies and satisfies automation and heterogeneity requirements 

by automatic deployment of VNFs on commercial-off-the-shelf (COTS) infrastructure 

and their dynamic composition. However, the architecture focuses on an IP-level NFV 

system using Traffic Monitoring VNFs. In what follows, the works on NFV for the CDN 

domain and those on SDN for the CDN domain are discussed. 

Liu et al. in [44] propose the use of programmable storage routers instead of replica 

servers. The programmable storage routers are controlled by an SDN controller 

augmented by functionalities, such as request re-routing and load balancing. Although 

this work satisfies the general architectural requirements, the focus is on the automatic 

deployment of basic services, and composition of the VNFs for CDN VASs are out of 

the scope of this research.  

To the best of our knowledge, research works on the use of SDN in the CDN space 

have not so far tackled basic video service provisioning. Neither have they discussed 

the VAS provisioning. As an example, reference [45] only proposes an architecture that 

enables the CDN providers and Internet Service Providers (ISP) to manage high volume 

flows.   

B) NFV and SDN in domains other than CDN 

Several studies investigate the use of NFV and SDN in domains other than CDN. 

However, their focus remains on the IP-level middle-boxes and network services. 
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Mouradian et al. in [46] propose an NFV-based architecture for provisioning 

gateways for Virtualized Wireless Sensor and Actuator Network (VWSAN). The VNFs 

implement protocol converters and information model processors between the VWSAN 

and end-user applications. This work satisfies our general requirements and also 

addresses flexibility since it focuses on the application-level VNF development, 

deployment, and migration. However, VNF chaining is done statically and the dynamic 

chaining of VNFs is not addressed. Callegati et al. in [47] focus on dynamic/automatic 

chaining, implementing two topology alternatives (Network and Data Link layer), using 

SDN controller to illustrate the feasibility of dynamic VNF chaining. Their VNFs 

include IP-level VNFs such as Deep Packet Inspection (DPI), NAT, and firewall. This 

architecture mainly focuses on a dynamic chaining of IP-level VNFs, therefore it is not 

flexible in supporting all type of middle-boxes. Ding et al. in [48] propose a solution 

called OpenSCaaS to enable the VNF dynamic chaining. It satisfies the heterogeneity 

requirement as it proposes an architecture of a flexible and adaptable VNF deployment 

and chaining and it packages VNFs into lightweight ClickOS VM images [49]. 

OpenSCaaS focuses on generic IP-level VNFs, such as NAT and Firewall. 

Several works have so far focused on SDN in domains other than CDN. In our 

literature study, we have focused on the relevant works to our contributions, i.e. those 

that concern the application layer context. Paul et al. in [50] propose OpenADN. 

OpenADN provides a platform for flow management based on the application-level 

context, such as end-user device type, link conditions, and mobility.  OpenADN is a 

technology-based work, however, it does not focus on dynamic chaining of application-

level middle-boxes. Another example is Tegueu et al. [51], that proposes an approach 

called ADN. This work offers SDN-based architecture and algorithms for optimal 

network resource allocation based on the application QoS requirements. In particular, 

ADN translates the application QoS needs (e.g. bandwidth and delay) into OpenFlow 
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rules and then employs the SDN controller to inject IP-level OpenFlow routing rules in 

the SDN switches. Dolberg et al. in [52] propose another example of an SDN-based 

framework for mapping application-level policies to IP-level flow rules, leading to a 

differentiated network service per application. Although the above-mentioned works 

employ well-adopted SDN technology for application-level context, they lack features 

for flexible support of all VNF-types including application-level ones.  

2.3.3. Algorithms proposed for VNF placement 

Here we review the relevant literature on VNF placement. The first subsection is 

focused on the works done to date on VNF-FG embedding for CDN VASs, and in the 

second subsection, we review the related work on VNF placement in CDNs at large. 

The third subsection reviews the dynamic VNF placement proposals in other domains. 

A) VNF-FG embedding for CDN VASs 

 Although VNF-FG embedding (VNF-FGE) has recently attracted the attention of 

researchers [53][54] [55], very few research efforts have focused on VNF placement for 

CDN VASs. One example is Ahvar et al. [23], which models the problem of VAS VNF 

placement as an ILP and proposes a static VNF-FGE algorithm for the placement of 

CDN VAS VNFs. Their solution focuses on minimizing cost while respecting the delay 

thresholds of VNF-FG requests. The solution has two main phases. In the first phase a 

minimum number of VNF instances are placed and chained in a network so that they 

cover all end-users; in the second phase, the placement is modified and improved to 

meet the constraints of server capacity, VNF processing capacity, and the end-user 

perceived QoS in terms of content delivery latency.  

Dieye et al. in [22] propose an ILP and an algorithm for VNF-FGE for CDN VASs. 

They considered the specific requirement of CDN VAS VNF-FGs that have an unknown 

end-point and accordingly modeled the problem as an ILP formulation. They propose a 
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static VNF placement algorithm based on the PageRank algorithm in which the replica 

servers that will host the VNFs are sorted according to their importance; i.e. their 

available hosting capacity and the quality of their links. They sort the VNF-FG requests 

according to their QoS requirements and try to accommodate the VNF-FG requests with 

strict requirements first while taking into account the VNF and server capacity and QoS 

constraints. Accordingly, they minimize the total cost by finding a trade-off between 

the optimal number of VNF instances and servers used and the QoS guarantee. Both 

[22] and [23]  propose static VNF placement solutions with cost objectives containing 

multiple components, including hosting, routing, and VNF instantiations costs.  

B) VNF-FG embedding for CDNs at large 

Herbaut et al. propose a solution for the placement of replica servers in CDNs [24]. 

They define CDN replica servers as VNFs and focus on placing them on NFVIs 

provided by ISPs. They model the collaboration between ISPs and CDNs as an ILP. To 

increase the problem’s tractability, they propose a heuristic for optimal VNF placement 

that is defined in three phases. In the first phase, the algorithm places CDN controllers 

and assigns them to client groups. In the second phase, a set of virtual CDNs, defined 

as VNFs, are placed and assigned to CDN controllers. In the third and last step, the 

network links are mapped to the service edges, taking into account the delay and 

bandwidth between nodes. This work proposes a solution that targets the minimization 

of the routing and VNF hosting costs and focuses on static VNF placement.  

Another example is Benkacem et al. [56] that proposes a solution for the deployment 

and management of virtual CDN slices over resources offered by cloud providers. Each 

slice contains a set of VNFs such as video caches, streamers, and transcoders. The 

optimal placement of VNFs improves the slice performance. Each slice defines the 

location of end-users, the minimum QoS that the end-users of that slice should 

experience, and the required VNFs for the slice. This work proposes three optimization 
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models. The first one aims at minimizing the cost of resources (e.g. vCPU and memory) 

for hosting VNFs, the second one targets QoS maximization in terms of the quality of 

content that end-user receives, and the third solution uses an approach based on game 

theory to offer a trade-off between the QoS and the cost.  

Another example is Ibn-Khedher et al. [57] that focuses on the optimal placement of 

CDN replica servers defined as VNFs. This work proposes an ILP for dynamic VNF 

placement and their optimal assignment to the end-users while considering the server 

and link capacity constraints. It targets minimizing the VNF migration cost in the ILP 

model; however, new VNF instantiation, hosting and routing costs are overlooked.  

C) Dynamic VNF placement in other domains 

Here we explore the dynamic solutions for VNF placement in domains other than 

CDNs. Some works focus on the placement of individual VNFs and others propose 

mechanisms for VNF placement and chaining. 

The studies in [58] [59] focus on the dynamic placement of individual VNFs.  Abu-

Lebdeh et al. in [58] define the VNF Managers (VNFMs) in the form of VNFs and 

model the problem of the dynamic placement of VNFMs on NFV Infrastructure (NFVI) 

and their optimal assignment to demands, i.e. VNFs. They consider the migration, 

routing, and hosting cost in this model and propose a Tabu-based heuristics to solve this 

problem. Ghaznavi et al. in [59] propose a solution for the dynamic placement of VNFs 

in data centers in response to changing workloads. They present an ILP formulation and 

heuristics and aim to jointly minimize the migration, hosting and routing costs. They 

propose heuristics for handling demand arrivals and departures while considering the 

reuse of existing VNFs, migrating them, or instantiating new VNF instances. The works 

in [58] [59] focus on the placement of individual VNFs and overlook features for the 

handling of VNF chains.  
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The studies in [60] and [61] target the dynamic placement of chains of VNFs. In 

[60], Xia et al. investigate the placement of VNF chains and address the problem of the 

migration of VNFs in data centers to meet computing and network resource constraints. 

Their objective is to minimize the VNF migration cost while satisfying the server 

capacity and delay constraints. They propose a three-step heuristic that in the first step 

finds the VNFs that need to be migrated due to resource deficiency, in the second step 

identifies the target nodes that can host those VNFs and finally migrates the VNFs in 

the third step. This work targets the optimal migration of the VNFs of chains in response 

to workload changes. Similarly, Eramo et al. in [61] consider the placement of multiple 

VNFs in VNF-FGs. They model the problem as an ILP and propose a heuristic to decide 

about when and where to migrate the VNFs, utilizing server consolidation to reduce 

energy consumption while minimizing the migration cost. The approaches proposed in 

Refs. [60] and [61] are not applicable to VAS chain placement since they do not consider 

endpoint unknowingness.   

2.4. Conclusion 

This chapter presented motivating scenarios for provisioning of CDN components 

and VASs. Accordingly, some requirements are derived followed by evaluation of the 

related work against the requirements.  As discussed, none of the research proposals 

done to date can satisfy all the defined requirements. Table 2.1 summarizes the related 

work evaluations with respect to the derived requirements.  
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Table 2.1. Related work evaluation 
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ETSI Use cases [37]  Yes Yes Yes No No - - - - - 

Frangoudis  et al. [38]  Yes Yes Yes No No - - - - - 

Veitch et al. [39]  Yes Yes Yes No No - - - - - 

Srinivasan et al. [41]  Yes No No No No - - - - - 

Giotis  et al. [43] Yes Yes Yes - - No No - - - 

Liu et al. [44] Yes Yes Yes - - No No - - - 

Mouradian et al. [46]  Yes Yes Yes - - No No - - - 

Callegati et al. [47] Yes No Yes - - No No - - - 

Ding et al. [48] Yes Yes Yes - - No No - - - 

Paul et al. [50] Yes No Yes - - No No - - - 

Tegueu  et al. [51] Yes No Yes - - No No - - - 

Dolberg et al. [52] Yes No Yes - - No No - - - 

Ahvar et al. [23] - - - - - - - No No Yes 

Dieye et al. [22] - - - - - - - No Yes Yes 

Herbaut et al. [24] - - - - - - - No No No 

Benkacem et al. [56] - - - - - - - No No Yes 

Ibn-Khedher et al. [57] - - - - - - - Yes No No 

Abu-Lebdeh et al. in [58] - - - - - - - Yes No No 

Ghaznavi et al. [59] - - - - - - - Yes No No 

Xia et al. [60] - - - - - - - Yes No Yes 

Eramo et al. [61] - - - - - - - Yes No Yes 
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Chapter 3 

 

3. An Architecture for on-the-fly 

Provisioning of CDN Components 

 

3.1. Introduction 

As mentioned earlier, during some events, specific contents might get a sudden and 

unpredicted popularity in a short period of time which might lead to flash crowds that 

eventually cause an outage in CDNs, i.e. site slowdowns, service unavailability, and a 

decrease in QoS. World Cup 1998 [62] or terrorist attacks of September 11, 2001 [7], 

are among flash crowds examples. In the case of flash crowds, traditional CDNs are 

challenged to extend their coverages by provisioning additional CDN components e.g. 

replica servers in new locations. Beyond flash crowds, CDN components need to be 

upgraded frequently, due to the fact that content delivery is a volatile market driven by 

new formats, protocols, content protection requirements. Introduction of new Adaptive 
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Bitrate (ABR) streaming approaches such as MPEG-DASH in 2012 [63] and HTTP 

Live Streaming (HLS)-v7, in 2017 [64], are among examples that require an upgrade in 

CDNs. In conventional CDNs, the process of replica server provisioning requires labor-

intensive manual efforts [65]. In this context, automation remains essential, especially 

to cope with sudden changes in service usage pattern and CDN provider requirements.  

This chapter proposes an architecture that uses microservices architectural style [13] 

and NFV technology [15] to enable the on-the-fly provisioning (including deployment 

and upgrading) of CDN components, e.g. replica servers. Microservices architectural 

style is a paradigm in which several small loosely-coupled modules, called 

microservices, are composed to realize the functionality of an application. The modular 

design of microservices brings flexibility, scalability and enables the reuse of modules 

by multiple applications. Moreover, the microservice design facilitates the replica server 

upgrades, as microservices can be deployed, upgraded, and disposed independently.  

 

Figure 3.1. High-level architecture for CDN component provisioning 
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NFV is an emerging technology that targets the decoupling network functions from 

their underlying hardware. NFV is used to eliminate the dependency between the 

network function software and their underlying hardware and implements the network 

function in form of stand-alone software functionalities called Virtualized Network 

Function (VNF) that are executable on any generic commercial hardware.  NFV enables 

on-the-fly deployment and upgrade of CDN components on any generic hardware, 

anytime and anywhere in the network. 

3.2. The Proposed Architecture 

 Fig. 3.1 shows a high-level view of our proposed architecture. To be specific, in this 

chapter we consider replica servers as main CDN components that need to be deployed 

or upgraded.  The reader should note that the business model in this chapter includes 

replica server provider as a new actor, in addition to traditional CDN business actors. 

The replica server provider provisions (including deployment and upgrade) replica 

servers to CDN providers. The replica server provider provides replica servers as a set 

of microservices packaged as VNFs and deploys them on the selected PoDs. The PoDs 

provide the infrastructure and resources needed for replica server hosting and might be 

possessed and managed by either CDN providers or ISPs. This chapter focuses on the 

second alternative.  

 The proposed architecture reuses ETSI MANO framework and consists of a control 

and a data plane. The control plane handles the flow of control messages between 

modules in the CDN provider, ISP, and the replica server provider domains to enable 

PoD selections and replica server provisioning. The data plane allows the flow of 

content between replica servers and end-users.  

In this section, we provide our core architectural principles, then we present the 

proposed microservice-based replica server, and afterward, the main modules of our 
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architecture, their functionalities, and interactions will be discussed. Then a sequence 

diagram is presented to illustrate the interactions between modules. 

3.2.1. Architectural Principles  

The following design principles are considered: 

- The first architectural principle is the design of replica server as a set of 

microservices.  As mentioned earlier the microservice architectural style can be used 

to define replica servers in form of small and loosely-coupled functionalities. This 

will facilitate the replica server upgrades, as microservices can be deployed, 

updated, and disposed independently.  

- The second architectural principle is the use of REpresentational State Transfer 

(REST) architectural style for designing the interactions between the microservices. 

REST is used because it is a lightweight, technology-neutral, and standards-based 

design style for data representation, allowing us to describe APIs in a generic and 

abstract way. 

- The third architectural principle is the use of NFV technology for automatic 

deployment of microservices that are packaged as VNFs. NFV makes functionalities 

deployable on any generic hardware and facilitate their deployment and 

management. 

3.2.2. Design of microservice-based replica server  

As noted in [66], a microservice architecture can be defined as “an approach to 

developing an application as a suite of small services, each running in its own process 

and communicating with lightweight mechanisms, often an HTTP resource API. These 

services are built around business capabilities and independently deployable by fully 

automated deployment machinery.” In the CDN context, a replica server can be the 

application mentioned in the definition.  
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 The microservices independency is an essential characteristic of microservice 

architecture. Accordingly, in order to design a microservice-based replica server, we 

divide the functionality of the replica server into logical independent microservices, 

such that each microservice focuses on completing an independent task. The division is 

done in a way that each microservice operates in a fully autonomous manner with 

process and data isolation.  

In this chapter, we propose a potential splitting of a generic replica server into the 

following three fundamental microservices: communication microservice, content 

delivery microservice, and content management microservice. It should be noted that 

upgrading the generic replica server may require the deployment of additional 

microservices. For instance, if this generic replica server were to be upgraded for the 

support of ABR streaming functionality, an additional microservice, the ABR video 

generator microservice, will be required. These three fundamental microservices are 

briefly discussed in the next paragraphs. 

The communication microservice is designed to allow the newly deployed replica 

server to communicate with external entities. It essentially encompasses the protocol 

stacks required to enable the replica server to communicate with the end-users and also 

with the other entities of the CDN network. For instance, in the case of upgrading from 

HTTP v1 to HTTP v2, it will be this very microservice which will be upgraded. If the 

 

Figure 3.2. The microservice design of a generic replica server. 
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other microservices which previously used HTTP v1 are going to use the new features 

brought by HTTP v2, they will also need to be upgraded accordingly.  

 The content management microservice manages the local content repository and 

makes the requested content available. It interacts with other replica servers to get the 

requested content in case this content is not available in the local repository. These 

interactions are done via the communication microservice. It should be noted that this 

microservice will need to be upgraded if the ABR functionality is introduced.  

 The content delivery microservice manages end-user profiles including tracking 

their behavior and usage patterns. It handles the actual delivery of the content made 

available by the content management microservice. This delivery is done using the 

communication microservice.  

 Fig. 3.2 illustrates the interactions between these three fundamental microservices. 

It should be noted that the proposed design considers the core functionalities of replica 

servers and can be further extended by considering additional microservices to perform 

functionalities such as authentication, billing, and etc. The reader should also note that 

the above-mentioned microservices could be further broken into smaller components, 

although not done in this chapter.  

3.2.3. High-Level Architecture 

 Some architectural modules are reused from ETSI MANO (as they stand) while 

some others are newly introduced. 

A) Modules for replica server and associated microservice lifecycle and resource 

management  

 We have reused the following ETSI MANO modules for management of replica 

servers and their associated microservices: NFVO, VNFM, and VIM. We separate the 

NFVO functionality into Network Service Orchestrator (NSO) and Resource 
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Orchestrator (RO) as proposed as an option in the ETSI specification on architectural 

options for MANO [67]. 

1. NFV Modules in replica server provider domain 

 The NSO and the VNFM are located in the replica server provider domain. The NSO 

is in charge of the replica server lifecycle management, including deployment, 

configuration, upgrade, and disposal of the replica servers. The VNFM handles the 

microservice VNF lifecycle management, including instantiation, upgrade, and 

termination of microservices. 

2. NFV Modules in ISP domain 

 The RO and the VIM are located in the ISP domain. The RO is in charge of ISP 

resource orchestrations and reservations. It receives the resource reservation requests 

from NSO and interacts with VIM for resource allocations and hardware configurations. 

The VIM is responsible for allocating resources to microservices to be deployed and 

executed, and also is in charge of releasing the virtualized resources when microservices 

are disposed.  

B) Modules for replica server provisioning  

 The Replica Server Deployment Manager is located in the replica server provider 

domain. It is responsible for receiving and analyzing the replica server provisioning 

requests, selecting the required microservices, and requesting the execution of required 

orchestration plans. After a successful provisioning process, it sends the information of 

the newly deployed replica server back to the CDN provider domain.  

 The CDN Deployment Manager and the Extended CDN Controller are located in 

the CDN provider domain. The CDN Deployment Manager handles control message 

exchanges with the ISP domain for the PoD assignment purpose. It also communicates 

with the replica server provider domain to request the provisioning (i.e. deployment, 
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upgrade, and disposal) of replica servers. An example of REST modeling related to this 

interaction is provided in Table 3.1. In addition, as part of the post-deployment 

procedure, it enables the integration of the newly deployed replica servers into the CDN 

by providing them the CDN controller access information.  

The Extended CDN Controller extends the functionality of the traditional CDN 

controller, i.e. redirecting the end-user requests. The extensions enable the automatic 

integration of the newly deployed replica server in the existing CDN, while in the 

traditional CDN, the integration is manual. This module is in charge of registering and 

integrating the newly deployed replica server into the existing CDN. It also has the 

responsibility of replicating the appropriate content in the newly deployed replica 

server. An example of REST modeling related to the interactions with the Extended 

CDN Controller is provided in Table 3.1. For example for interaction #7 in Fig. 3.2, the 

Table 3.1. Examples of REST modeling for CDN component provisioning 

Interaction Operation 

REST 

Resour

ce 

HTTP Action and 

Resource URI 

Request Body 

Parameters 

Most 

Important 

Info in the 

Response 

CDN Deployment 

Manager to 

Replica Server 

Deployment Manager 

{Interaction# 2 in Fig. 2} 

Deploy a 

replica server 

on a PoD 

Replica 

server 

POST:  

/ReplicaServers/{Replic

aServerTypeID} 

PoD access 

information 

New replica 

server IP 

Upgrade a 

replica server 

Replica 

server 

PUT:  

/ReplicaServer/{Replica

ServersID} 

New replica 

server type 

New replica 

server IP 

Dispose a 

replica server 

Replica 

server 

DELETE: 

/ReplicaServers/{Replic

aServersID} 

Replica server ID 
Success/ 

failure 

New Replica Server to  

Extended CDN Controller  

{Interaction# 7 in Fig. 2} 

Register 
Replica 

server 

POST: 

/ReplicaServers 

Replica server 

info, e.g. IP, 

location 

Success/ 

failure 

Extended CDN Controller 

to  

existing Replica servers  

{Interaction# 8 in Fig. 2} 

Replicate 

contents to a 

replica server 

Content  
POST: 

/Contents 

List of contents 

and access info of 

new replica server 

Success/ 

failure 
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replica server is defined as a REST resource and for this resource, the POST operation 

is defined to register the replica server in the Extended CDN Controller. 

3.2.4. Illustrative Sequence Diagrams 

 In this subsection, we illustrate some sequence diagrams. The diagrams focus on 

scenarios discussed in subsection 2.1.1. In the illustrated scenarios, a CDN provider 

notices a surge of traffic from a given area and decides to extend their coverage by 

provisioning a generic replica server in a new location. After some time, it decides to 

upgrade the generic replica server to support ABR streaming capabilities.  

A) CDN component pre-deployment and deployment processes 

The pre-deployment and deployment procedures are shown in Figure 3.3. During the 

pre-deployment procedure, CDN deployment manager sends requests to ISP to access 

their available PoDs in a specific location (Figure 3.3, action 1). The PoD access 

information is retrieved from the ISP domain (action 2). After that, the orchestration 

process, including the microservice deployment and configuration procedures takes 

place (actions 3-18). The orchestration starts with resource reservations in the specified 

PoD (actions 5-8).  After resources are reserved successfully, the deployment procedure 

is done in line with the ETSI NFV standard. We assume the required microservices for 

a generic replica server are a communication microservice, a content management 

microservice, and a content delivery microservice, according to the discussion in 

subsection 3.3.2. In line with ETSI NFV MANO, the VNFM deploys the microservices 

that are packaged in form of VNFs prior to the deployment. After deployment of 

microservices, some configurations in microservices are done (actions 14-16) by VNFM 

as well. The configuration is needed to enable microservices to interact with each other 

and hence operate as a full-fledged replica server.  
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B) Post-deployment and content delivery processes 

The detailed post-deployment and content delivery phases are shown in Figure 3.4. 

After the deployment, the newly-deployed replica server should be integrated into the 

existing CDN. Therefore, it gets registered into the CDN controller that is in charge of 

the management of the whole CDN (Fig. 3.4, actions 1-3). Afterward, the newly-

deployed replica server needs to be filled with popular content in that area. Therefore, 

during the post-deployment phase, some content placement algorithms might be re-

executed by the CDN domain (Figure 3.4, action 4). This helps to decide about the 

contents that should be placed on the newly-deployed replica server and might lead to 

the migration of some content from the existing replica servers to save storage. It should 

be noted that for this scenario, we assume the CDN controller uses a cooperative push-

based mechanism to proactively push the popular contents to the newly-deployed 

 

Figure 3.3. Sequence diagram of the on-the-fly CDN component provisioning. 
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replica server (actions 5, 6, and 7); however, other practices are also applicable. The 

communication microservice receives and passes the content to the content management 

microservice to save the content in the local content repository.  

The content delivery process is done similar to traditional CDNs as shown in Figure 

3.4, actions 9 to 14. The end-user triggers a request for a specific content (action 8). The 

CDN controller redirects the end-user request to the appropriate replica server according 

to the content availability of replica servers, network conditions, and the geographic 

location of the end-user (actions 9-11). At the newly-deployed replica server, the request 

is received by the communication microservice and is passed to the content delivery 

microservice (action 12). The content delivery microservice retrieves the requested 

content from the local content repository and sends it back to the end user (action 13).  

 

 

Figure 3.4. Sequence diagram of post-deployment and content delivery procedures. 
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C) CDN component upgrade process 

As discussed in the scenarios in subsection 2.1.1, we assume after a while, the 

content provider decides to stream the contents with a feature for adapting the content 

quality to end-users’ devices and network conditions in real time. The CDN provider 

needs to upgrade their replica servers to support ABR streaming features. The upgrade 

procedure of the CDN components is depicted in Figure 3.5.  

The CDN deployment manager triggers a request for the upgrade of an existing 

replica server (Fig. 3.5, action 1). Replica server deployment manager receives and 

analyzes the replica server upgrade request, selects the required microservices, and 

requests the execution of required orchestration plans (action 2). It sends the 

orchestration request to the NSO and the upgrade procedure takes place by executing 

the appropriate orchestration plan (actions 2-4). 

The upgrade procedure involves un-deploying some microservices if needed and 

choosing the new microservices (e.g. an ABR video generator microservice for ABR 

streaming) to be deployed and configured. 

 

Figure 3.5. Sequence diagram of CDN component upgrade procedure 
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3.3. Implementation and Validation 

In this Section, the design of the prototype architecture and settings are presented 

first. Second, the measurements performed on the prototype are presented followed by 

related discussions.  

The implementation covers the illustrative scenarios discussed in the previous 

subsection including the replica server provisioning (i.e. the pre-deployment, 

deployment, post-deployment, and upgrade process) and the content delivery process. 

We consider an implementation scenario in which a replica server in Toronto is in 

charge of delivering the contents of a content provider to end-users in Canada. Let us 

assume an unpredicted event occurs in British Columbia (e.g. British Columbia floods 

in 2017), and a specific content gains popularity in a short period of time. The CDN 

provider notices a surge in traffic from Vancouver. In order to prevent flash crowds, the 

CDN provider decides to extend their coverage by provisioning a new generic replica 

server close to the end-users in that area.  

The provisioning process is implemented from the time the CDN provider requests 

the deployment of new replica server to the time that the replica server is fully 

operational. An upgrade scenario is also implemented where after a while the CDN 

provider decides to upgrade the already deployed generic replica server in order to 

support the ABR streaming.  
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3.3.1. Prototype Architecture  

The prototype was implemented according to the architecture depicted in Fig. 3.6. 

All of the modules are deployed on Virtual Machines (VMs) provisioned by OpenStack 

IaaS Manager, provided by Smart Applications on Virtual Infrastructure (SAVI) testbed 

[68] that is a Canadian distributed platform for future Internet applications and has been 

used for the validation purpose.  

For the NSO, Alfresco Activiti [69] Business Process Management (BPM) solution 

is used. It exposes REST API for execution of the orchestration plans and workflows 

that are defined in Business Process Model Notation (BPMN). The PoDs are equipped 

with Ubuntu operating system and have Docker platform [70] installed. We have used 

a container-based microservice orchestration because containers are lightweight, 

modular, and fast in deployments. The RO is not implemented as we assume all domains 

share a common understanding of replica servers and their required resources. All other 

architecture modules and microservices are modeled as Docker containers and pushed 

 

Figure 3.6. The developed prototype architecture 
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to the DockerHub [71] repository. For evaluating the upgrade process, an ABR video 

generator microservice is implemented in accordance with the MPEG-DASH [63] 

standard. The X264 video codec and GPAC MP4Box tools are used to enable the ABR 

video generation.  To compare our microservice-based solution with those with a 

monolithic design, a monolithic replica server is also implemented and packaged in 

form of a VNF in a Docker container. The interaction between all modules and also 

microservices are enabled via the Wide Area Network (WAN) over the Internet. 

RESTful web services and developed using Java-based Restlet API. All microservices 

are packaged in form of VNFs.   

All of the architecture modules, including the CDN deployment manager, the 

extended CDN controller, the replica server deployment manager, the existing replica 

servers, and MANO components are deployed in the SAVI-Toronto site. The PoD and 

end-users are located in the SAVI-Vancouver site. For each architecture module, a 

medium OpenStack VM is used with two vCPUs, a 40GB disk and 4GB of memory for 

execution. 

3.3.2. Performance Evaluations 

1) Performance Metrics 

The performance metrics according to which we evaluate our system’s performance 

are: 

  Deployment time: The duration from when the CDN deployment manager 

requests the deployment of a new replica server and the moment that the newly-

deployed replica server becomes fully operational. This consists of the required time 

for deployment and post-deployment procedures, including the actual deployment, 

the integration of the newly deployed replica server into the existing CDN, and filling 

it with the popular content. 
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  Upgrade time: The duration from the time the CDN deployment manager 

requests the upgrade of an existing generic replica server to support ABR streaming 

to the time that the upgraded replica server becomes fully operational. It should be 

noted that in the upgrade time for the monolithic case, the required time for on-the-

fly disposal of the old replica server is also included.  

  Service downtime: The duration in which the replica server is off-service as a 

result of the upgrade process. During this period, the replica server cannot be 

responsive to the end-user requests.  

 Content delivery time: The duration between the time that an end-user in 

Vancouver sends a content request to a newly-deployed replica server in Vancouver 

site and the time he/she receives the requested content (a 1 MB video).  

2) Measurements and discussions 

 We implemented four scenarios for performance measurements. Two of these 

scenarios are for the upgrade of a generic replica server to support ABR streaming. The 

replica server is implemented as a monolithic function in one and as a microservice-

based function in the other. Another two scenarios are for the deployment of a generic 

replica server.  Again, the replica server is implemented as a monolithic function in one 

and as a microservice-based function in the other. All the experimentations including 

the deployment and upgrade of both monolithic and microservice-based replica servers 

are enabled in the same environment using our developed prototype. Note that the post-

deployment phase is also included in the deployment of the replica servers. In order to 

ensure an accurate comparison, all measurements are repeated 10 times and the average 

and standard deviation for each set of measurements are provided.  
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Fig. 3.7(a) and 3.7(b) depict the pinging results of upgrading a generic replica server 

to support ABR streaming. We started pinging the replica servers through ICMP before 

the upgrade process is requested by the CDN deployment manager, and it lasted until 

the upgrade process was completed. As shown in Fig. 3.8, it can be observed that the 

 

 

(a) 

 

(b) 

Figure 3.7. Pinging of replica server during upgrade. 

a) The monolithic replica server. b) The microservice-based replica server. 
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average service downtime for the monolithic case is around 5.206 seconds, while the 

microservice-based replica server notably provides nonstop service during the upgrade 

period. The main reason is that microservices can be upgraded or configured 

independently, without affecting or interrupting the functionality and performance of 

other existing microservices. For example, in our design, the communication 

microservice will accept all incoming requests in a nonstop manner and might delay 

some requests until the upgrade procedure is done successfully. This can considerably 

improve the end-users’ perceived Quality of Experience (QoE) compared to the 

monolithic case. Although there exist some methods that can decrease the service 

downtime in the monolithic case by temporarily redirecting end-user requests to another 

replica server until the upgrade process is done, they are subject to request routing costs 

and complexities [72].  

Fig. 3.9 shows the required time for upgrading a generic replica server to support the 

ABR streaming. As it can be observed in this figure, the microservice case outperforms 

the monolithic case with a notable difference. The average upgrade time for monolithic 

replica server is about 10.302 seconds, while in the microservice-based design, this 

number is reduced by 77% to 2.277 seconds, which highlights the significant gain of 

 

Figure 3.8. Service downtime during the upgrade of replica server. 
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using microservice-based designs. The main reason is that the upgrade process in the 

monolithic case involves disposing the existing generic replica server and deploying a 

new one with ABR streaming functionality, while in the upgrade process of 

microservice-based replica server, an ABR generator microservice is deployed and the 

interacting microservices are configured to enable the communications with the newly-

deployed ABR generator microservice. It should be noted that, as shown in Fig. 3.6, in 

our design of a replica server with ABR functionality, the content management 

microservice is the microservice that interacts with the ABR generator microservice to 

get the video and saves it in the local repository for subsequent requests.  

According to the above-mentioned measurements, it can be observed that 

microservices bring noteworthy benefits to CDNs in terms of shorter upgrading latency 

and service downtime. However, this comes with a penalty in terms of deployment and 

content delivery latency.  

Fig. 3.10 shows the latency for deployment of a generic replica server, including the 

deployment and post-deployment processes. As it can be observed in Fig. 3.10, the 

 

Figure 3.9. Replica server upgrade time. 
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average latency for deployment of a monolithic generic replica server is about 5.786 

seconds, while this latency is slightly increased to 7.758 seconds for deployment of a 

microservice-based replica server including three microservices. The deployment time 

in microservice-based designs is always higher than that of the monolithic case, due to 

the facts that multiple deployments are required. This, in fact, shows the overhead of 

using microservices. In order to conduct an accurate insight on how deployment latency 

behaves depending on the number of microservices, several cases are carried out. The 

case with three microservices implements the generic replica server is depicted in Fig. 

3.2. For other cases, we gradually increase the number of instances of each microservice 

in Fig. 3.2, while considering a load balancer microservice for each group of 

microservices of the same type to distribute the load among them. Therefore, the case 

with 9 microservices, for instance, includes 2 instances of each microservice (i.e. 

communication, content delivery, and content management microservices) and 3 load 

balancers. It can be observed in Fig. 3.10 that by increasing the number of 

microservices, the deployment latency behaves at a slight constant rate, linearly. When 

 

Figure 3.10. Replica server deployment time.  
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the number of microservices is increased, the deployment latency slightly increases as 

well, due to the additional microservice reconfigurations that are needed.  

Fig. 3.11 shows the content delivery latency when an end-user sends a request for a 

1 MB video to the newly deployed replica server. The average content delivery latency 

in the microservice case is about 1.421 seconds while this is slightly reduced to 1.081 

seconds in the monolithic case. This shows the overhead of microservice designs in 

content delivery, which is expected due to the inter-microservice communications that 

are excluded in the monolithic case.  

Note that some fluctuations can be observed between the samples in all 

measurements, which is mainly because the Internet is used for enabling the interactions 

between modules. 

 

 

Figure 3.11. Content delivery time. 
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3.4. Conclusion  

This chapter proposed an architecture for the on-the-fly provisioning of replica 

servers as CDN components using NFV and microservice architecture principles. The 

replica servers are designed as a set of microservices and they are implemented, 

packaged and deployed using NFV technology. Then, the required process is proposed 

to integrate them into the existing CDN and fill them with the popular contents. A 

prototype is implemented and measurements are taken to evaluate the effectiveness of 

the method. An observation is that the microservice-based design notably outperforms 

the monolithic case in the upgrade process. However, this comes with a penalty in terms 

of deployment and content delivery latencies. Another observation is that the 

deployment latency increases linearly as we increase the number of microservices that 

make the replica server. 
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Chapter 4 

 

4. An NFV and SDN-based 

Architecture for VAS Provisioning in 

CDNs  

 

4.1. Introduction 

As mentioned earlier, provisioning the VASs in an efficient manner requires a 

redesign of the traditional architecture of the CDNs. Based on the Internet Engineering 

Task Force (IETF) categorization [9], the building blocks of video VASs are 

application-level middle-boxes. Transcoder, mixer, and compressor are among the 

examples. Traditionally, these middle-boxes are provisioned as physical building blocks 

[10], at fixed network locations and on a proprietary/dedicated hardware, like most of 

the middle-boxes nowadays. The shortcomings of this traditional mode of middle-box 
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provisioning are widely known. It is subject to lack of dynamicity, automation, and 

flexibility when deploying and managing the services. This is because those tasks 

require complex and labor-intensive manual efforts [10][73][48]. Furthermore, the 

configuration, deployment, and orchestration of such middle-boxes are inflexible and 

time-consuming [10]. Unlike predicted events (e.g. sports events), in unpredicted events 

when many videos go viral (e.g. Terrorist attacks of September 11, 2001 [7]), CDNs are 

challenged to react fast to provision such VASs in various locations, in a timely manner, 

and with sufficient flexibility. 

In order to tackle those challenges when provisioning VASs, CDN providers recently 

leverage technologies such as NFV and SDN to re-architect the traditional CDN 

components and middle-boxes. However, the existing literature in this overall context, 

including CDNs (e.g. [48], [43], and [47]), mainly focuses on using NFV and SDN 

technologies for provisioning the services that use IP-level middle-boxes such as NAT, 

firewall, and load balancers. In fact, they overlook the required features to support the 

orchestration of application-level middle-boxes, which should be considered in the 

CDN context.  

This chapter aims at proposing and validating an architecture for enabling VAS 

provisioning in CDNs, using NFV and SDN technologies. The second objective is to 

reduce the significant overhead in the end-user's perceived latency while using 

application-level middle-boxes, as much as possible. The third objective is to show the 

feasibility of this method by prototyping the architecture and performing additional 

validation measurements. The experimental measurements lead to some practical 

insights concerning the overhead reduction and the significant impact of re-ordering 

VNFs in a chain (where applicable) on the end-user's perceived latency.   
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4.2. The proposed Architecture 

This section introduces the architectural principles that our work is based on. Then, 

it discusses the high-level architecture of the designed system, including its architectural 

planes, modules, and interfaces. Afterward, illustrative scenarios are provided. 

4.2.1. Architectural Principles 

The first architectural principle is the implementation of middle-box as VNFs and the 

use of SDN technology to dynamically provision the paths once VNFs are deployed. In 

this chapter, it is assumed that the middle-boxes are already implemented as VNFs and 

deployed in the network. The focus is therefore on how to dynamically provision the 

paths, i.e. to dynamically compose the VNFs.  

The second architectural principle is the establishment of a signaling path between 

the end-user and the replica server that holds the raw video. This path includes the VNFs 

that add more and more value to the video as it goes from the replica server to the end-

user.  

As the third principle, the videos are cached in the replica servers as they go through 

the VNFs. Here, each VNF is assumed to be co-located with a replica server. In this 

case, the video is cached in the replica server after being processed by the associated 

VNF. The fundamental reason behind this principle is performance. This means that 

when an end-user requests a value-added video that was already delivered for another 

requester, the end-user is directly served from a cache. The same raw video does not 

have to go through the same VNFs again. Even better, a video that needs to go through 

a set of VNFs never goes through a subset of VNFs it has already traversed.  

The fourth principle is that the REST architectural style is used for designing the 

interactions between the application-level SDN switches and the SDN controller [74].  
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The interactions with these entities are based on a standardized communication protocol 

(e.g. HTTP). REST is selected because it is standard-based, lightweight and flexible for 

data representation, allowing us to describe APIs in a generic and abstract way. 

Following this principle, the application-level SDN switches expose REST API to the 

SDN controller in order to install and/or modify the routing rules in the SDN switches.  

4.2.2. High-Level Architecture 

Fig. 4.1 shows a high-level view of the designed architecture. The proposed 

architecture is layered over a set of planes. These planes and the contained modules are 

discussed here. We also discuss the interfaces between the modules in this section.  

A) Architectural planes  

Similar to the traditional SDN-driven architectures [32][75][76], the proposed 

architecture consists of management, control, and forwarding planes. The management 

plane handles the value-added video delivery policies. These policies are embedded in 

 

Figure 4.1. The proposed high-level architecture  
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a set of value-added video delivery applications that specify how the middle-boxes, 

implemented as VNFs, are composed for specific value-added video services. The 

control plane enforces the policies of the management plane by programming the 

application-level SDN switches of the forwarding plane. The control plane includes an 

SDN controller that interacts with the architectural modules of the forwarding plane. 

The reader should note that our forwarding plane, unlike the traditional SDN forwarding 

planes, has a signaling sub-plane beside the regular data plane. This is due to our second 

architectural principle that ensures the establishment of a signaling path between the 

end-user and the replica server that holds the raw videos. The forwarding plane consists 

of the following architectural modules: CDN controller, application-level switches, 

replica server, and VNFs.  

B) Architectural modules 

In what follows, we focus on the modules of the forwarding plane, i.e. the innovative 

modules in this architecture. The main module is the application-level switch. Unlike 

the stateless traditional SDN switches, this switch is stateful. It has two modules: The 

signaling module, related to the signaling sub-plane, and the data module, related to the 

data sub-plane. The signaling module is programmable by the SDN controller. It 

establishes the path between VNFs, through which the raw video goes for a value-

adding purpose. The data module is responsible for redirecting the raw video through 

the appropriate VNFs to get the required value-added services. The data module is also 

responsible for caching the video in the associated replica server. Regarding the 

application-level switches, the first application-level switch in the flow is a particular 

one. It is the flow classifier. It extracts the end-user preferences (e.g. content quality, 

formats) and tags the request with a chain-ID. The chain-ID serves to identify the 

packets belonging to a given chain of VNFs. Like other application-level switches, the 

flow classifier might be connected to a replica server.   
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Other modules are the CDN controller, the replica server, and VNFs. Unlike regular 

CDN controllers that redirect the request directly to the optimal replica server, our CDN 

controller is designed to redirect the end-user requests to the flow classifier. This is due 

to our second architectural principle. The replica server here, similar to the traditional 

ones, is part of the CDN network and holds a copy of the raw content. However, the 

replica servers associated with application-level switches also cache a copy of the value-

added content to serve the next requests right away. In fact, any content is cached after 

being customized by each VNF. This brings the advantage that any content that traverses 

through VNFs is cached in each customization step rather than going through the VNFs 

it has already traversed. Each VNF is linked to an application-level switch, following a 

linear topology model as shown in Fig. 4.1. 

 

 

Table 4.1. Examples of the API operations exposed by the application-level switches. 

REST 

Resource 
Operation 

HTTP Action and 

Resource URI 

Request Body 

Parameters 

Most Important 

Info in the 

Response 

Routing 

Rule 

Add new Routing 

Rule 
POST: /RoutingRule 

Routing rule: match 

criteria, action 

ID and URI of the 

created routing rule 

Retrieve a specific 

Routing Rule 
GET:/RoutingRule/{ID} None 

Routing rule 

properties 

Retrieve all Routing 

Rules 
GET:/RoutingRule/all None 

List of all routing 

rules 

Remove a Routing 

Rule 

DELETE: 

/RoutingRules/{ID} 
None 

Success/failure 

code 

Update a Routing 

Rule 
PUT:/RoutingRules/{ID} 

Routing rule: match 

criteria, action 

Success or failure 

indication 
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C) Interfaces 

 In what follows, the main interfaces of the proposed architecture are described. Int. 

A is the northbound interface of the SDN controller. It is a high-level interface. Existing 

northbound APIs of SDN controllers could be reused to implement this interface. We 

extend Int. B, i.e. the southbound API that is a lower-level abstraction interface. It 

defines the communication protocol between the SDN controller and the SDN switches. 

It also defines the instruction set, used by the SDN switches. As stated earlier, our 

architecture proposes the use of application-level switches as the forwarding elements 

in the content delivery process, instead of conventional IP-level switches. Consequently, 

this requires some enhancements in the southbound API. These enhancements include 

adding application-level fields to the matching fields of the flow rules. The examples of 

the standard fields are application-level addresses and the examples of the extended 

fields are content quality information in HTTP. These extensions are indispensable for 

routing the messages between the application-level switches and for manipulating the 

application-level messages to add value to the videos.  

 Based on our fourth architectural principle, Int. B is REST-based. The SDN switches 

expose Restful APIs, enabling them to receive the application-level rules from the SDN 

Controller. For this API, the application-level rules are designed as a RESTful resource. 

Table 4.1 shows four API examples including resources, supported operations, required 

request parameters and the response content of each operation.  

Other interfaces in the architecture are designed using a request-response model in a 

client-server interaction fashion. Int. C is the interface between the CDN controller and 

the flow classifier. It redirects end-user requests to the flow classifier. Int. D is the 

signaling interface between the application-level switches. It passes the request for a 

fully/partially customized content. Int. E is the data interface and pushes the video to 

the application-level switches/replica servers. Int. F is the data interface between the 
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application-level switch and the replica server, to retrieve the video. Int. G is the data 

interface between VNF and the application-level switch. It can push or retrieve the raw 

and value-added video.  

4.2.3. Illustrative Sequence Diagram 

The envisioned scenario includes the ad-insertion VAS discussed in subsection 2.1.2. 

We assume that the content provider offers ad-free video clips to the registered end-

users who watch videos for monthly fees. Meanwhile, it inserts an advertisement on top 

of the raw videos for guest log-ins. End-users might select the lower quality video for a 

lower price or for less bandwidth usage. To that end, two VNFs are needed: (i) a mixer 

to insert an advertisement and (ii) a compressor to degrade the video quality. Therefore, 

three application-level switches and one flow classifier are needed.  

Table 4.2 shows four prospective chains that could be defined based on end-user 

preferences. Here, we consider the fourth case, where the ‘guest’ end-user logs in and 

requests the low-quality video. The raw video, initially stored in replica server 3, should 

then pass through the mixer and the compressor VNFs. To make this happen, a set of 

policies/chains is defined by the value-added video delivery applications. Afterward, a 

set of application-level flow rules is injected into the application-level switches by the 

Table 4.2. Prospective chains according to the end-user’s preferences. 

 
End-user preferences 

Final Video VNFs Chains 
Membership Quality 

1 Registered High Raw Video No VNF 

2 Registered Low Compressed Video  Compressor 

3 Guest High Mixed Video  Mixer 

4 Guest Low 
Mixed & Compressed 

Video  

Mixer, 

Compressor 
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SDN controller. An abstracted form of these rules is listed in Table 4.3 given that SW0 

is the flow classifier.  

Fig. 4.2 illustrates a sequence diagram of the interaction of the architectural 

components to enable this scenario. Firstly, a guest end-user sends a request for a low-

quality video (Fig. 4.2, action 1). The CDN controller redirects the received request to 

the flow classifier (action 2). The SM0 performs the flow classification. It receives the 

request packet and extracts application-level header values such as the end-user 

membership status (e.g. guest) and the required video quality (e.g. low). Then, it pushes 

the chain-ID on the request (action 3) based on a matching rule (Table 4.3, Rule 1) in 

its Routing Table (RT). The chain-ID indicates that the mixed and compressed video is 

being requested. Before sending a request to other application-level switches, SM0 

checks the availability of the fully customized requested video (i.e. mixed and 

compressed video) with its data module, DM0 (action 4). Similarly, DM0 asks the 

associated replica server, RS0, for the fully customized video availability (action 5). If 

available, RS0 sends the video to DM0 (action 6), to be delivered to the end-user (action 

7). If the video is not available in the replica server, a false message is sent back to DM0 

(action 8) and then from DM0 to SM0 (action 9). Once SM0 receives a false message, 

indicating that the fully customized video is not being cached in the associated replica 

server, it selects SW1 as the next hop (action 10), using the chain-ID (Table 4.3, Rule 

Table 4.3. Application-level flow rules. 

Rule 
App-Switch 

ID 

Application-level Flow Rule 

Matching field Action 

1 SW0  Membership=Guest  & 

Quality=Low 
Push tag Chain-ID:X 

2 SW0 Chain-ID=X Output to SW1 

3 SW1 Chain-ID=X Output to SW2 

4 SW2 Chain-ID=X Output to SW3 
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2). After that, it initiates a request for the fully customized video (action 11).  

Once SM1 receives the request, with chain-ID: X, it checks the availability of the 

requested video with DM1 (action 12). DM1 also asks the associated replica server, 

RS1, for video availability (action 13). Here, we assume the customized video is not 

available in the RS1 cache; so, a false message is sent back to DM1 (action 14) and then 

from DM1 to SM1 (action 15).  

 

Figure 4.2. Sequence diagram of value-added video delivery. 



 

63 
 

Upon receiving this message, SM1 selects the next hop (action 16), i.e. SW2 (Table 

4.3, Rule 3) and initiates a request to it (action 17). SM1 requests the partially 

customized video, i.e. mixed video. This is because it is connected to a compressor VNF, 

and upon receiving the partially customized video, it redirects it to the compressor VNF 

to produce the fully customized video. SM2 receives the request for the partially 

customized video (i.e. mixed video) with chain-ID: X. Similar to other signaling 

modules, SM2 asks the data module for video availability (action 18). Afterward, DM2 

verifies the availability of the mixed video in RS2 (action 19). Assuming that the 

partially customized video is not available in RS2, a false message is sent back to DM2 

(action 20) and accordingly to SM2 (action 21). SM2 finds SW3 (Table 4.3, Rule 4) as 

the next hop (action 22). It sends a request for the raw video to SW0 (action 23). This is 

because it has a mixer VNF associated to it and produces the requested mixed video 

upon receiving the raw video. SM3 receives this request for the raw video and delegates 

the video retrieval to DM3 (action 24). DM2 initiates a request for the raw video to RS3 

(action 25).  

Assuming that the raw video is available on replica server RS3, RS3 delivers it to DM3 

(action 26). Following the signaling path saved by the stateful signaling module, DM3 

pushes the mixed video to DM2 (action 27). Then, DM2 pushes it to the mixer for ad-

insertion and receives the mixed video back (actions 28, 29). It should be noted that the 

advertisement video is assumed to be co-located with the mixed VNF. DM2 pushes the 

mixed video to RS2 to be cached there as a partially customized video for subsequent 

similar requests (action 30). Likewise, it pushes the mixed video to DM1 (action 31), 

following the signaling path. DM1 pushes the mixed video to the compressor and 

receives the fully customized video (actions 32, 33). Similarly, DM1 sends the fully 

customized video to RS1 for caching (action 34) and to DM0 (action 35) to serve the 
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end-user with the requested mixed and compressed video (action 37) after being cached 

in RS0 (action 36).  

4.3. Implementation and Validation 

In this Section the developed prototype is discussed first that implements the proposed 

architecture. Second, the measurements performed on the prototype are presented 

followed by related discussions.  

The implementation covers the illustrative scenario discussed in the previous 

subsection. However, to increase the possibility of chains, we add a transcoder 

as the third VNF to the chain. Assuming the original video is saved in MP4 

format, the end-user might request the video in AVI format. Therefore, the third 

VNF (i.e. a transcoder) changes the video format from MP4 to AVI. 

4.3.1. Prototype Architecture   

The prototype is implemented based on the architecture in Fig. 4.3. All the developed 

modules are deployed on Virtual Machines (VMs) and those VMs are provisioned by 

OpenStack as VIM. The NFVI is provided by either the Smart Applications on Virtual 

Infrastructure (SAVI) testbed [68] or the Open Platform for NFV (OPNFV) [77] test lab 

since both are used for validation. SAVI is a Canadian distributed testbed for future 

Internet applications and OPNFV is a new open source project for accelerating the NFV 

technology evolution.  

We have used HTTP as the basis of our implementation since it is pervasive in content 

delivery settings. The application-level switches are extended HTTP proxies. 

Specifically, they are implemented as Java servlets and are packaged as Java Web 

ARchives (WAR). They also expose a REST API to the SDN controller for the 

application-level rule handling.  



 

65 
 

For the VNF implementation, the FFmpeg is used – an open source software [78] 

providing libraries and tools to handle multimedia operations. Upon installation, it is 

configured to provide mixing, transcoding and compressing features.   

The replica servers are implemented as Java servlets. They are co-located with 

application-level switches on the same hosting VMs. The replica servers cache the 

content on Linux file system directories. The CDN controller is also implemented as 

Java servlet. It should also be noted that the interfaces in the forwarding and data planes 

are implemented based on HTTP rendering – i.e. Int. C and Int. D as HTTP requests and 

Int. E as HTTP responses.  

4.3.2. Performance Evaluations 

This section analyzes the experiments done to get some insights about the 

application-level chaining. This research presents five sets of experiments to (i) prove 

the feasibility of our approach when NFV and SDN technologies are used for 

implementing the middle-boxes, and (ii) evaluate the gains when the caching features 

 

Figure 4.3. The developed prototype architecture 
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are integrated into the replica servers and consequently prove the reduction of the 

content customization overhead.   

The following environment has been set up for the experiments: A medium-size 

OpenStack flavor is allocated to each application-level switch, VNF, CDN controller 

and the replica server, with 4 GB of RAM, 2 vCPUs and 40 GB of Disk. For all 

scenarios, the application-level switches, CDN controller, replica servers and the end-

user are deployed on the Toronto site. The communication between all architecture 

modules is enabled via the Wide Area Network (WAN) – the Internet. In all scenarios, 

the measurements are taken for 10 times. The average and the standard deviation are 

also taken into account. The standard deviation is calculated by taking the square root 

of the variance while the variance is the average of squared differences from the mean 

(i.e. the average of measured values).  

The first set of experiments measures value-added video delivery when the 

customized video is not cached i.e. the raw video needs to pass through the mixer, 

 

Figure 4.4. Content delivery time for various file sizes 

when video is cached vs. when the video is not cached, for VNFs are located in Toronto.  
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transcoder and compressor VNFs to gain value, vis-à-vis when the value-

added/customized video is cached on the replica server and is delivered to the end-users 

directly. In the second case, the video does not need to traverse through VNFs. Fig. 4.4  

shows the value-added video delivery latency for a raw video with sizes of 1, 5 and 10 

MB in two cases. The first case is about passing the raw video through the required 

VNFs for getting customized. The second case is when the fully customized video is 

cached in the replica server to avoid going through VNFs. For example, for a 5-MB raw 

video file, the latency in the first case is 42.7198 seconds and is reduced to 0.0566 

seconds in the second case. This measurement shows that caching the fully customized 

video has a great impact on the content delivery time. 

The second set of experiments measures and compares the video delivery latency 

when the raw or partially customized video is cached in various locations in the network. 

Fig. 4.5 shows the video delivery time for four different cases. This set of experiments 

 
 

Case 1: Fully customized (mixed&compressed) video cached at replica server associated to flow classifier 

Case 2: Fully customized (mixed&compressed) video cached at replica server associated to the second application-

level switch 

Case 3: Partially customized (mixed) video cached at replica server associated to the third application-level switch 

Case 4: No customized video is cached at replica server and raw video passes through mixer and compressor 

Figure 4.5. Content delivery time with caching partially/fully customized video 
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evaluates the caching of the partially and fully customized video and studies its impact 

on video delivery delay. The delivery latency for a 10 MB video file is measured as such 

when VNFs are located in Vancouver. Case 1 is when the fully customized video (i.e. 

mixed and compressed video) is cached in the replica server associated with the first 

application-level switch (i.e. replica server 0 associated with the flow classifier, Fig. 

4.2). In this case, the signaling process stops at this replica server and the fully 

customized video is sent back to the end-user. Case 2 is when the fully customized video 

is cached in the replica server associated with the second application-level switch (i.e. 

replica server 1 associated with the application-level switch 1, Fig. 4.2). In this case, the 

signaling process stops at this replica server and the fully customized video is sent back 

to the end-user through the signaling path.  

In case 3, the fully customized video is not cached in the replica servers and only the 

partially customized video (i.e. mixed video) is cached in the second replica server (Fig. 

4.2). In this case, the signaling process stops in this replica server and the partially 

customized video should pass through the signaling path. It goes through the compressor 

VNF to change to the fully customized video. After being cached in the replica servers, 

the fully customized video is served to end-users. Case 4 shows the case when no fully 

or partially customized video is cached in the network. In this case, the raw video should 

pass through all VNFs; it is then saved in the replica servers and finally served to the 

end-user. As expected, the delivery time increases when we move from case 1 (75 

milliseconds) to case 4 (103.337 seconds) due to the transfer latency and the video 

transformation latency.  This, in fact, shows the importance of in-network caching the 

partially customized video in addition to the fully customized ones. Moreover, a 

comparison of case 3 (18.921 seconds) and case 4 (103.337 seconds) brings in an 

interesting observation, that is the high mixing latency compared to the compressing 

latency.  



 

69 
 

The third set of experiments shows the impact of reordering VNFs in the chain on the 

video delivery delay. Table 4.4 shows the video delivery latency measured for various 

orders of VNFs in a given chain.  This set of measurements is taken for a 10 MB file 

when VNFs are located in Toronto. To increase the possibility of chains, we add a 

transcoder as the third VNF to the chain. Assuming the original video is saved in MP4 

format, the end-user might request the video in AVI format. Therefore, the third VNF 

(i.e. a transcoder) changes the video format from MP4 to AVI. It should be noted that, 

in our video delivery case, any possible order of VNFs in the chain leads to relevant, 

subsequent results.  

As table 4.4 shows, with three VNFs, six different chains can be defined. The 

measurements show that, as we move the mixing VNF to the end of the chain, the video 

delivery latency is reduced. For example, for a 10-MB raw video file, the latency in the 

first chain is 91.491 seconds and is reduced to 24.858 seconds in the sixth case. This is 

because video compression and transcoding (from MP4 to AVI format) reduce the file 

size. The smaller the video file, the less time it takes it to be mixed with an 

advertisement. If the compressing is done as the first VNF in the chain, video latency is 

less compared to the case when transcoding is done at the beginning. This is because 

Table 4.4. Video delivery latency for various order of VNFs in VNF-FGs. 

 

Chains 

VNFs 
Latency 

(s) 

Standard 

Deviation 

(s) 
First Second Third 

1 Mixer Transcoder Compressor 91.4916 2.5787 

2 Mixer Compressor Transcoder 86.3219 2.1604 

3 Transcoder Mixer Compressor 36.5288 0.9512 

4 Compressor Mixer Transcoder 31.8374 0.4225 

5 Transcoder Compressor Mixer 30.4018 0.4224 

6 Compressor Transcoder Mixer 24.8588 0.9307 
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the file size reduction by compressing is larger, compared to that by transcoding. For 

example, in chain 5 where transcoding is done first, the video delivery latency is 

30.4018 seconds. This number is reduced to 24.8588 seconds for chain 6, where 

compressing is done before transcoding.  

The fourth set of experiments measures the signaling time for various chains, 

including the various number of VNFs. Table 4.5 details the signaling and video 

delivery latency measurements. Those values correspond to the chains including the 

various number of VNFs located in Toronto. The size of the considered raw video is 10 

MB. The video delivery latency is measured as the previous sets of measurements were. 

It includes the signaling, video transfer and customization times. The signaling latency 

is measured from the time the end-user initiates the request for a video to the time the 

request is received by the replica server holding the raw video. Network Time Protocol 

(NTP) is used for the time synchronization between the end-user machine and the 

replica server machine. As the results show, the signaling latency is negligible compared 

to the video delivery latency. This highlights the gain of application-level dynamic 

chaining. As expected, the signaling latency increases as the number of VNFs in the 

chain increases. For example, for a chain including a single mixer, the signaling latency 

is 0.177 seconds and it increases to 0.2259 when a compressor and a transcoder are 

Table 4.5. Signaling and content delivery latency. 

 

Chains 

VNFs Signaling Latency (S) Video Delivery Latency (S) 

First Second Third Average 
Standard 

Deviation 
Average 

Standard 

Deviation 

1 Mixer - - 0.1774 0.0132 58.0193 2.8050 

2 Mixer Compressor - 0.1922 0.0220 76.628 2.3135 

3 Mixer Compressor Transcoder 0.2259 0.0386 83.0235 2.6049 
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added to the chain. However, this increment is trivial, as in this prototype, all the 

application-level SDN switches are deployed on the same SAVI edge on the Toronto 

site.  

Finally, the fifth experiment consists of changing the locations of the VNFs between 

the two SAVI sites, one in Vancouver and the other in Toronto, and measuring the 

corresponding value-added video delivery delay, for an end-user located in Toronto. 

This measurement shows that the placement of VNFs has an impact on the delivery 

time. Fig. 4.6 shows the obtained video delivery latency values measured for a raw video 

with the sizes of 1, 5 and 10 MB. The measurements are made when the raw video goes 

through a mixer first, then a compressor and finally a transcoder VNF. For example, for 

the 5 MB raw video file, the latency is 58.2358 seconds when VNFs are located in 

Vancouver and it is reduced to 45.6654 seconds when they are located in Toronto. The 

results show the significant impact of the physical location of VNFs on the end-user's 

perceived latency. This indicates the need for algorithms to optimally place these VNFs 

based on a well-defined set of placement criteria, such as QoS and the network 

 

Figure 4.6. Video delivery delay for VNFs deployed in Toronto vs. Vancouver  

for end-users in Toronto 
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overhead. The placement of middle-boxes is a critical requirement in distributed 

environments such as CDNs, to satisfy the required QoS at a minimum cost. 

4.4. Conclusion  

This chapter proposes an NFV- and SDN- based approach that enables the 

provisioning of value-added services in CDNs. Those services dynamically generate 

and deliver individually tailored value-added contents to end-users. Our proposed 

architecture consists of extensions to the existing SDN switches and controllers to 

support the dynamic chaining of application-level middle-boxes. The application-level 

middle-boxes that provide value-added video services are provisioned as VNFs and are 

chained on the fly, using the application-level SDN controller and switches. SDN 

controller programs the SDN switches and the SDN switches steer the traffic through 

the ordered set of pre-deployed VNFs, for meeting the content providers’ enforced 

policies and the end-user requirements. Besides, this approach reduces the significant 

delay of using application-level middle-boxes, by providing additional features for 

caching partially and fully customized videos for value-added services. The 

measurements show the feasibility of the approach and highlight the fact that the 

caching features reduce the content delivery time significantly. Another observation is 

that the location of VNFs has a great impact on the content delivery time.  
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Chapter 5 

 

5. Dynamic VNF Placement for Value 

Added Services in CDNs 

 

5.1. Introduction  

In the NFV environment, the VNFs can be easily deployed in the network, however, 

the optimal number of VNFs and their locations impact the CDN provider expenses and 

end-users’ perceived QoS. Although VNF placement has attracted research interests 

recently, very few proposals focus on VNF placement and chaining for CDN VASs. 

CDN VASs have a specific characteristic which is the fact that they have an unknown 

endpoint prior to VNF placement. This end-point corresponds to the replica server that 

is selected to serve the content to the end-user.  

The approaches proposed to date to tackle this problem have focused on static 

placement. However, such mode of placement is not adequate for dynamic systems such 
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as CDNs, in which the end-user requests for VAS arrive at the CDN dynamically and 

are difficult to forecast, mainly because they may vary in time and space. In real life, 

there could be a variety of motivations for modifying the topology of the VNFs in the 

network. Examples of such motivations include the introduction of new VASs and 

changes in the end-user pattern. Such situations call for an efficient method that 

dynamically places VNFs for CDN VASs. 

In this chapter, we propose an approach called DVPVC for the dynamic placement 

and chaining of VNFs for CDN VASs. DVPVC considers an unknown end-point for 

VAS VNF-FGs and advocates a VNF topology reconfiguration approach to embed both 

existing and newly-arrived VNF-FG requests such that the total reconfiguration cost 

including VNF migration, instantiation, hosting, and routing costs are minimized. Our 

proposed method ensures that the QoS of all end-users is satisfied in terms of content 

delivery time. Moreover, unlike the existing dynamic VNF placement proposals, our 

method supports the traffic variations in VAS VNF-FGs that might occur as a result of 

video customization.  Our measurements show that DVPVC outperforms the greedy 

first fit approach and obtains solutions very close to the optimal solution in several 

cases. 

 

5.2. System Model 

In this section, we first give an overview of the problem and then explain our system 

model for VAS VNF placement and chaining. We assume that a number of ad-insertion 

VASs have been deployed in the network, i.e., the associated VNFs like mixer, 

transcoder, and compressor VNFs are already deployed and chained in the network. 

There are multiple VNF-FG requests for each VAS, each reflecting a flow of content 

from the content server through some ordered VNFs and finally to the end-user (see Fig. 
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2.2). In a dynamic manner, new end-users subscribe for new ad-insertion VASs. The 

problem is to find a placement for all the existing and newly-arrived requests with 

minimum reconfiguration cost while respecting network bandwidth and VNF 

processing constraints and meeting the end-users QoS in terms of delay. To address this 

aim, the placement strategy may reuse the already-deployed VNFs, migrate them or 

deploy new VNF instances.  The network, the VNFs and the VNF-FG requests are 

modeled as specified below. 

Network- We consider N as a set of network nodes, S as a set of replica servers, and 

U as a set of end-users, where  𝑁 = 𝑆 ∪ 𝑈 . Given a network with n nodes, we represent 

the network bandwidth with a matrix 𝐵𝑛×𝑛, where  𝑏𝑖,𝑗 determines the bandwidth of the 

link between nodes i and j. Similarly, matrices 𝐶𝑛×𝑛 and 𝐷𝑛×𝑛 are defined such that the 

entries 𝑐𝑖,𝑗 and 𝑑𝑖,𝑗 determine the transmission cost and delay of the links between the 

nodes 𝑖 and j, respectively, for the unit of traffic transmission.  

Replica Servers- for each replica server 𝑠 ∈ 𝑆, we represent the cost of resources 

per vCPU with 𝜌𝑠. The processing capacity of each replica server is delineated with 𝐺𝑠. 

VNFs- Let K denote the set of all VNF types defined in the system, such as mixer, 

transcoder, and compressor. Each VNF type 𝑘 ∈ 𝐾 has a predefined license cost 𝐿𝑘, 

processing capacity 𝑃𝑘, and hosting resource requirement 𝑅𝑘. The set of available 

instances for VNF type k is delineated as 𝐼𝑘. For each VNF type k, the CDN provider 

can deploy a maximum number of instances i.e. |𝐼𝑘| ≤ 𝑀𝑎𝑥𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠, however less VNF 

instantiation leads to lower deployment costs. The processing delay of VNF type k on a 

replica server s is delineated as 𝑀𝑘𝑠. 

VNF-FG requests- We represent the set of VNF-FG requests including the existing 

and the new ones with 𝐹. Each VNF-FG request is indicated as f and is modeled as a 
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VNF-FG. The maximum delay tolerated by a VNF-FG request f is denoted as 𝑋𝑓 . The 

node indicating the end-user of VNF-FG request  f, the set of required VNF types for 

VNF-FG request f, the required chain type for f, the first and last VNFs in VNF-FG are 

represented as 𝑢𝑓, 𝑉𝑓, 𝑐𝑓, 𝑓𝑠𝑡𝑓, and 𝑙𝑠𝑡𝑓, respectively.  

Let 𝑇𝑓 be the initial traffic of a VNF-FG request.  The VNF-FG request traffic load 

may vary as it traverses through the VNFs. For a VAS application, a video compressor 

VNF reduces the input video size. However, a video mixer might increase the video size 

on the output link, as it mixes the input video with another overlay video. Traffic 

variation as a result of other VNFs’ operations such as Firewall and Deep Packet 

Inspector (DPI) have also been reported [79][77][78]. To model such variation we 

define 𝑞𝑘 as the coefficient of traffic variation as the result of VNF of type 𝑘. When the 

coefficient is more than one the traffic is increased; values less than one indicate traffic 

shrinking; a coefficient of 1 means no changes on the traffic load.  Fig. 5.1 shows the 

associated coefficients of 0.5, 1.2, and 1 for a compressor, mixer and a transcoder, 

respectively. Table 5.1 summarizes the ILP parameters and variables. 

 

  

 

Figure 5.1. Traffic bitrate variation. 
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Table 5.1. Input parameters and variables. 

Input Parameters 

Network 

S Set of servers 

U Set of end-users 

N Set of network nodes,    𝑁 = 𝑆 ∪ 𝑈 𝐵𝑖,𝑗 The bandwidth between nodes i and j,    𝑖, 𝑗 ∈ 𝑁 𝐶𝑖,𝑗 The transmission cost between nodes i and j,     𝑖, 𝑗 ∈ 𝑁 𝐷𝑖,𝑗 The delay between nodes i and j,      𝑖, 𝑗 ∈ 𝑁 𝜇 Maximum node/link/VNF usage threshold 

Servers 𝜌𝑠 Replica server’s cost per unit,   𝑠 ∈ 𝑆 𝐺𝑠 Replica server’s capacity (in processing resource units),   𝑠 ∈ 𝑆   

VNFs 

K Set of VNF types 𝐿𝑘 License cost for VNF type k,     𝑘 ∈ 𝐾 𝑃𝑘 The processing capacity of VNF type k,(in traffic units),   𝑘 ∈ 𝐾 𝑅𝑘 The resource requirements of VNF type k, (in processing units),    𝑘 ∈ 𝐾 𝐼𝑘 Set of VNF instances associated to VNF type k,   𝑘 ∈ 𝐾 𝜑𝑘𝑠,𝑡 Cost of migrating VNF type k from server s to server t,𝑘 ∈ 𝐾, 𝑠, 𝑡 ∈ 𝑆 𝑀𝑘𝑠 The processing delay of VNF type k on server s,    𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 

VNF-FG requests 

F Set of VNF-FG requests 𝑢𝑡𝑓 1, if node t is the end-user of VNF-FG request f,   𝑓 ∈ 𝐹 𝑢𝑓 The node indicating the end-user of VNF-FG request f,  𝑢𝑓 ∈ 𝑈, 𝑓 ∈ 𝐹 𝑉𝑓 Set of required VNF types for VNF-FG request f,  𝑉𝑓 ⊂ 𝐾 𝐶𝑓 The required chain type for VNF-FG request f 𝑓𝑠𝑡𝑓 The first VNF in VNF-FG request f ,  𝑓𝑠𝑡𝑓 ∈ 𝑉𝑓 𝑙𝑠𝑡𝑓 The last VNF in service chain of VNF-FG request f ,  𝑙𝑠𝑡𝑓 ∈ 𝑉𝑓 𝑇𝑓 Traffic units of VNF-FG request f ,    𝑓 ∈ 𝐹 𝑋𝑓  Maximum delay tolerated by VNF-FG request f as per SLAs. 𝑐𝑠𝑓 1, if replica server s can be content server for VNF-FG request f.  𝑤𝑘,𝑙𝑓 The bitrate change coefficient for traffic of VNF-FG request  f between VNFs k and l  k, l ∈ 𝑉𝑓 

Decision Variables 𝛾𝑠𝑓 Binary variable, indicating if server s is selected to serve content for VNF-FG request f 𝜏𝑘,𝑖𝑠  Binary variable, indicating if instance i of VNF type k is instantiated on server s λ𝑠,𝑘,𝑖𝑓 Binary variable, indicating if instance i of VNF type k, instantiated on server s, is assigned to VNF-FG 
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5.2.1. Optimization Formulation  

We formulate the problem of VAS placement in CDNs as an optimization problem 

in this section. The optimization variables are given below: 

 𝛾𝑠𝑓 ∈ {0,1}: specifies content server assignment; if 𝛾𝑠𝑓is 1, the replica server s is 

selected to serve the content for VNF-FG request f. 

 𝜏𝑘,𝑖𝑠 ∈ {0,1}: specifies VNF deployment; if 𝜏𝑘,𝑖𝑠  is 1, the VNF instance i of VNF 

type k is deployed on replica server s. 

 λ𝑠,𝑘,𝑖𝑓 ∈ {0,1}: specifies VNF assignments to the requests; if λ𝑠,𝑘,𝑖𝑓
 is 1, the instance 

i of VNF type k instantiated on replica server s is assigned to VNF-FG request f. 

Our model operates over two network snapshots: the current snapshot and the next 

one. The network configuration for already-deployed services is considered in the 

current snapshot; while new reconfiguration will be managed for the next snapshot when 

new requests arrive at the CDN provider. Accordingly, we define the variables 

belonging to the current snapshot with a   ̃ accent. In the rest of this section, we first 

discuss the objective function and then explain the constraints.  The objective is to 

minimize the total costs, as shown in Eq. (1). 

𝑀𝑖𝑛 (∆𝐶ℎ𝑠𝑡 + 𝐶𝑚𝑖𝑔 + 𝐶𝑖𝑛𝑠𝑡 + ∆𝐶𝑟)       (1) 

The hosting cost,  ∆Chst in Eq. (1), is the differential cost of resources between the 

current and the next snapshots. Eq. (2) shows the calculation. Note that some 

resources may be released during reconfigurations, an action which could contribute to 

cost reduction. 

∆𝐶ℎ𝑠𝑡 = ∑ ∑ ∑ 𝑅𝑘. 𝜌𝑠 . (𝜏𝑘,𝑖𝑠 − �̃�𝑘,𝑖𝑠 ) 𝑖∈𝐼𝑘𝑘∈𝐾𝑠∈𝑆  (2) 
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The migration cost,  𝐶𝑚𝑖𝑔 in Eq. (1), is calculated by Eq. (3). This is the total cost 

for migrating the already-deployed VNFs from one replica server to another.  

𝐶𝑚𝑖𝑔 = ∑ ∑ ∑ 𝜑𝑘𝑠,𝑡. �̃�𝑘,𝑖𝑠 . 𝜏𝑘,𝑖𝑡𝑖∈𝐼𝑘𝑘∈𝐾𝑠,𝑡∈𝑆  (3) 

The VNF instantiation cost,  𝐶𝑖𝑛𝑠𝑡 in Eq. (1), is the total software license costs for 

new VNF instantiations. Eq. (4) shows the calculation.  

𝐶𝑖𝑛𝑠𝑡 = ∑ ∑ ∑ 𝐿𝑘. (𝜏𝑘,𝑖𝑠 − �̃�𝑘,𝑖𝑠 )𝑖∈𝐼𝑘𝑘∈𝐾𝑠∈𝑆  (4) 

The routing cost, ∆𝐶𝑟 in Eq. (1), is calculated by Eq. (5). The routing cost is the 

differential cost of the assigned links between next and current snapshots. The first term 

is the routing cost between the content server and the first VNF of a VNF-FG request. 

The second term is the routing between the VNFs of the VNF-FG request. The third 

term indicates the routing cost between the last VNF and the end-user of a VNF-FG 

request. Note that the rerouting of already-existing VNF-FG requests in currthe ent 

snapshot that could happen as a result of reconfigurations has been included in Eq. (5). 

∆𝐶𝑟 = ∑ ∑ ∑ ∑ ( 𝛾𝑠𝑓. 𝜆𝑡,𝑓𝑠𝑡𝑓,𝑖𝑓 − �̃�𝑠𝑓 . �̃�𝑡,𝑓𝑠𝑡𝑓,𝑖𝑓 ) . 𝐶𝑠,𝑡. 𝑇𝑓𝑖∈𝐼𝑘  𝑘∈𝐾𝑠,𝑡∈𝑆∀𝑓∈𝐹  

+ ∑ ∑ ∑ ∑ ( 𝜆𝑠,𝑘,𝑖𝑓 . 𝜆𝑡,𝑙,𝑗𝑓 − �̃�𝑠,𝑘,𝑖𝑓 . �̃�𝑡,𝑙,𝑗𝑓  ). 𝐶𝑠,𝑡𝑖,𝑗∈𝐼𝑘,𝑙  . 𝑇𝑓 . 𝑤𝑘,𝑙𝐶𝑓  𝑘,𝑙∈𝐾𝑠,𝑡∈𝑆∀𝑓∈𝐹  

+ ∑ ∑ ∑ ∑( 𝜆𝑠,𝑙𝑠𝑡𝑓,𝑖𝑓 − �̃�𝑠,𝑙𝑠𝑡𝑓,𝑖𝑓  ). 𝐶𝑠,𝑡. 𝑢𝑡𝑓 . 𝑇𝑓𝑖∈𝐼𝑘 . 𝑤𝑙𝑠𝑡𝑓,𝑢𝑓𝐶𝑓𝑙𝑠𝑡𝑓∈𝐾𝑠,𝑡∈𝑁  ∀𝑓∈𝐹  

(5) 

The parameter 𝑤𝑘,𝑙𝑓
 in Eq. (5) is the coefficient of traffic variation relative to the 

initial traffic of VNF-FG request 𝑓. This coefficient is calculated by the multiplication 
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of the traffic variation coefficient of VNF 𝑘 and its predecessor VNFs, i.e. 𝑝𝑟𝑒𝑑(𝑘) in 

the chain of  𝑓, or  𝐶𝑓 , as shown in (6). Eqs. (7)-(15) are the constraints. 

𝑤𝑘𝐶𝑓 = ∏ 𝑞𝑖𝑖∈𝑝𝑟𝑒𝑑(𝑘) 𝑖𝑛 𝐶𝑓∪{𝑘}  (6) 

∑   𝛾𝑠𝑓 = 1         ∀𝑓 ∈ 𝐹∀𝑠∈𝑆                            (7) 

𝛾𝑠𝑓 ≤ 𝑐𝑠𝑓         ∀𝑠 ∈ 𝑆  , ∀𝑓 ∈ 𝐹            (8) 

∑ ∑ 𝜆𝑠,𝑘,𝑖𝑓 = 1       ∀𝑘 ∈ 𝑉𝑓 , ∀𝑓 ∈ 𝐹   ∀𝑖∈𝐼𝑘∀𝑠∈𝑆  (9) 

𝜆𝑠,𝑘,𝑖𝑓 ≤ 𝜏𝑘,𝑖𝑠         ∀𝑠 ∈ 𝑆, ∀𝑖 ∈ 𝐼𝑘, ∀𝑘 ∈ 𝑉𝑓 , ∀𝑓 ∈ 𝐹  (10) 

∑  𝜏𝑘,𝑖𝑠 ≤ 1                        ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼𝑘  ∀𝑠∈𝑆  (11) 

 

∑ ∑ 𝑅𝑘. 𝜏𝑘,𝑖𝑠 ≤ 𝜇. 𝐺𝑠          ∀𝑠 ∈ 𝑆𝑖∈𝐼𝑘𝑘∈𝐾  (12) 

 

∑ 𝑇𝑓 . 𝑤𝑘𝐶𝑓 . 𝜆𝑠,𝑘,𝑖𝑓 ≤ 𝜇. 𝑃𝑘     ∀𝑘 ∈ 𝑉𝑓 , ∀𝑖 ∈ 𝐼𝑘, ∀𝑠 ∈ 𝑆𝑓∈𝐹  (13) 

∑ 𝛾𝑠𝑓 . 𝜆𝑡,𝑓𝑠𝑡𝑓,𝑖𝑓𝑓∈𝐹 . 𝑇𝑓  + ∑  𝜆𝑠,𝑘,𝑖𝑓 . 𝜆𝑡,𝑙,𝑗𝑓 . 𝑇𝑓 . 𝑤𝑙𝐶𝑓𝑓∈𝐹+ ∑  𝜆𝑠,𝑙𝑠𝑡𝑓,𝑖𝑓𝑓∈𝐹 . 𝑢𝑡𝑓 . 𝑇𝑓 . 𝑤𝑙𝑠𝑡𝑓𝐶𝑓 ≤ 𝜇. 𝐵𝑠,𝑡        ∀𝑠, 𝑡 ∈ 𝑁 

(14) 
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𝐶𝑜𝑚𝑚_𝑑𝑒𝑙𝑎𝑦𝑓= ∑ ∑ (𝐷𝑠,𝑡 + 𝑇𝑓/𝐵𝑠,𝑡 ) . 𝛾𝑠𝑓 . 𝜆𝑡,𝑓𝑠𝑡𝑓,𝑖𝑓  ∀𝑠,𝑡∈𝑆𝑖∈𝐼𝑓𝑠𝑡𝑓+ ∑ ∑ ∑ (𝐷𝑠,𝑡 + 𝑇𝑓 . 𝑤𝑙𝑓/𝐵𝑠,𝑡 )  . 𝜆𝑠,𝑘,𝑖𝑓 . 𝜆𝑡,𝑙,𝑗𝑓  ∀𝑠,𝑡∈𝑆𝑖∈𝐼𝑘𝑗∈𝐼𝑙𝑘,𝑙∈𝑉𝑓
+ ∑ ∑ (𝐷𝑠,𝑡 + 𝑇𝑓 . 𝑤𝑙𝑠𝑡𝑓𝐶𝑓 /𝐵𝑠,𝑡) . 𝜆𝑠,𝑙𝑠𝑡𝑓,𝑖𝑓 . 𝑢𝑡𝑓   ∀𝑠,𝑡∈𝑁𝑖∈𝐼𝑙𝑠𝑡𝑓

 

(15) 

𝑃𝑟𝑜𝑐_𝑑𝑒𝑙𝑎𝑦𝑓 = ∑ ∑ ∑ 𝑇𝑓 . 𝑤𝑘𝐶𝑓 . 𝑀𝑘𝑠 .∀𝑖∈𝐼𝑘 𝜆𝑠,𝑘,𝑖𝑓∀𝑠∈𝑆∀𝑘−1,𝑘∈𝑉𝑓  ∀𝑓 ∈ 𝐹 (16) 

𝐶𝑜𝑚𝑚_𝑑𝑒𝑙𝑎𝑦𝑓 + 𝑃𝑟𝑜𝑐_𝑑𝑒𝑙𝑎𝑦𝑓 ≤ 𝑋𝑓    ∀𝑓 ∈ 𝐹 (17) 

 

Eq. (7) ensures that only one content server is selected to serve the VNF-FG request 

f, while Eq. (8) ensures that the content server is selected among the capable replica 

servers. Eq. (9) ensures that only one instance of each required VNF type is assigned to 

VNF-FG request f and  Eq. (10) ensures that the assigned VNF instances are already 

deployed in the network. Eq. (11) ensures that each VNF instance is deployed not more 

than once in the network.  

Eq. (12) ensures that the replica servers hosting the VNFs are not overloaded. Eqs. 

(13) and (14) ensure that the VNFs and the communication links, respectively, are not 

overloaded. Eqs. (15)-(17) ensure that the required QoS (in terms of service delay) for 

each VNF-FG request is satisfied. The delay is calculated as the sum of the 

communication delay and the video processing delay.  
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Equations (5), (14), and (15) are non-linear. However, they can be linearized by 

replacing them with linear equations. For example, the first term of Eq. (5) can be 

linearized by introducing an auxiliary variable 𝑋𝑠,𝑡,𝑓𝑠𝑡𝑓,𝑖𝑓
, where: 

𝑋𝑠,𝑡,𝑓𝑠𝑡𝑓,𝑖𝑓 = 𝛾𝑠𝑓 . 𝜆𝑡,𝑓𝑠𝑡𝑓,𝑖𝑓
 (18) 

𝑋𝑠,𝑡,𝑓𝑠𝑡𝑓,𝑖𝑓 ≤ 𝛾𝑠𝑓            ∀𝑠, 𝑡 ∈ 𝑆 , ∀𝑓 ∈ 𝐹,   ∀𝑖 ∈ 𝐼𝑓𝑠𝑡𝑓 (19) 

𝑋𝑠,𝑡,𝑓𝑠𝑡𝑓,𝑖𝑓 ≤ 𝜆𝑡,𝑓𝑠𝑡𝑓,𝑖𝑓     ∀𝑠, 𝑡 ∈ 𝑆 , ∀𝑓 ∈ 𝐹,  ∀𝑖 ∈ 𝐼𝑓𝑠𝑡𝑓   (20) 

𝑋𝑠,𝑡,𝑓𝑠𝑡𝑓,𝑖𝑓 ≥ 𝜆𝑡,𝑓𝑠𝑡𝑓,𝑖𝑓 + 𝛾𝑠𝑓 − 1      ∀𝑠, 𝑡 ∈ 𝑆, ∀𝑓 ∈ 𝐹, ∀𝑖 ∈ 𝐼𝑓𝑠𝑡𝑓 (21) 

In this regard, the problem becomes an ILP in which the search space size is 

exponential, with the parameters including the number of VNF types and instances, 

number of VNF-FG requests, and the number of replica servers. As will be discussed in 

next subsections, finding the optimal solution in a practical length of time is not feasible 

for real medium/large scale scenarios. Therefore heuristics must be employed to solve 

the optimization problem in a reasonable time. 

 

5.3. The Proposed Heuristics 

In this section, we present a Tabu-based algorithm for the problem of VNF placement 

for VASs. Tabu, a meta-heuristic search approach based on a local search method, has 

been found to be promising in VNF placement problems [58][82]. It starts from a given 

initial solution, performs moves to generate new neighbor solutions and investigates 

their fitness. It moves toward the best neighbor, and the process continues for several 

iterations. In order to avoid visiting a solution repeatedly, the moves of the visited 
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solutions are placed in the Tabu list. However, some aspiration criteria are defined to 

remove a certain move from the Tabu list if that move has a sufficiently attractive 

performance in terms of reconfiguration cost. The Tabu algorithm is outlined in 

Algorithm 1. We present the various aspects of our proposed method in the following 

subsections. 
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Algorithm 1: Tabu Search Algorithm 1 𝑆0 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 2 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑆0 3 𝑆𝑏𝑒𝑠𝑡 ← 𝑆0 4 𝑝 ← 0 5 𝐑𝐞𝐩𝐞𝐚𝐭: 6  𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡) 7  𝐟𝐨𝐫 𝑒𝑎𝑐ℎ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 8   𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 9  𝐞𝐧𝐝 10  𝑏𝑒𝑠𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 ← argmin𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑐𝑜𝑠𝑡(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟)//Eq. 1 11  𝑏𝑒𝑠𝑡_𝑚𝑜𝑣𝑒 ← 𝑡ℎ𝑒 𝑚𝑜𝑣𝑒 𝑡ℎ𝑎𝑡 𝑙𝑒𝑎𝑑𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 12  𝑝 ← 𝑝 + 1 13  𝐢𝐟(𝑏𝑒𝑠𝑡_𝑚𝑜𝑣𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑇𝑎𝑏𝑢_𝑙𝑖𝑠𝑡)   //update Tabu list 14   𝑇𝑎𝑏𝑢_𝑙𝑖𝑠𝑡 ← 𝑏𝑒𝑠𝑡_𝑚𝑜𝑣𝑒  𝑓𝑜𝑟 𝑖𝑡𝑎𝑏𝑢 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 15  𝐞𝐥𝐬𝐞 𝐢𝐟(𝑐𝑜𝑠𝑡(𝑏𝑒𝑠𝑡𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) < 𝑐𝑜𝑠𝑡(𝑆𝑏𝑒𝑠𝑡))//asp. criteria 16  𝑇𝑎𝑏𝑢_𝑙𝑖𝑠𝑡 ←  𝑇𝑎𝑏𝑢_𝑙𝑖𝑠𝑡 ∖ 𝑏𝑒𝑠𝑡_𝑚𝑜𝑣𝑒 17  𝐞𝐧𝐝 18  𝑆𝑐𝑢𝑟𝑡𝑒𝑛𝑡 ← 𝑏𝑒𝑠𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 19  𝐢𝐟(𝑐𝑜𝑠𝑡(𝑆𝑐𝑢𝑟𝑡𝑒𝑛𝑡 ) < 𝑐𝑜𝑠𝑡(𝑆𝑏𝑒𝑠𝑡)) 20      𝑆𝑏𝑒𝑠𝑡 ← 𝑆𝑐𝑢𝑟𝑡𝑒𝑛𝑡 21   𝑝 ← 0 22  𝐞𝐧𝐝 23 𝑢𝑛𝑡𝑖𝑙 𝑝 < 𝑖𝑠𝑡𝑜𝑝 
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5.3.1. Initial Solution 

Although the Tabu search can start its exploration with any initial solution 

(placement), feeding it with a more qualified initial solution can lead to placements with 

lower reconfiguration cost, which is our defined objective function.  Algorithm 2 is the 

pseudo-code of our proposed algorithm for initial solution generation. The algorithm 

establishes the new placement around the existing one to reduce the reconfiguration 

cost. It consists of two main phases. In the first phase (lines 1-5), the algorithm 

implements the decisions that were made in the current snapshot for the new snapshot 

as well. Hence, for the already-existing requests in the system, it assigns the replica 

servers, VNFs instances, and the content servers in the same way they were assigned in 

the current snapshot.  

In the second phase, the algorithm aims at assigning VNFs and content servers to the 

newly-arrived VNF-FG requests. For VNF assignment, this begins with finding a low-

cost VNF among the already-deployed VNFs (Alg.2 lines 8-10). A VNF that has the 

capacity for serving the VNF-FG request combined with the lowest replica server 

hosting and communication costs to the previous and the next hops (i.e. content server, 

VNFs in the VNF-FG, and end-user) is assigned to the request.   

If the deployed VNF instances do not have enough capacity for the new VNF-FG 

request or if the required VNF type is not deployed in the network, the algorithm finds 

a low-cost replica server to host a VNF of the required type (Alg.2 lines 11-14).  The 

replica server is selected such that it has the capacity for hosting a VNF of the required 

type and the lowest hosting and communication costs to the previous and the next hops 

(i.e. content server, VNFs in the VNF-FG, and end-user). Next, the algorithm deploys a 

VNF with the required type on the selected replica server (Alg.2, line 13) and assigns 

the VNF to the VNF-FG request (Alg.2, line 15).  
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Finally, the algorithm finds a content server among the capable ones for the newly-

arrived VNF-FG request such that it has the lowest communication cost to the first VNF 

of the VNF-FG (Alg. 2, lines 17, 18). 

 

 

Algorithm 2: Initial Greedy Algorithm 1 𝐟𝐨𝐫 𝑒𝑎𝑐ℎ 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑓 ∈ 𝐹, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝑉𝑓 , 𝑖 ∈ 𝐼𝑘 2  𝐴𝑠𝑠𝑖𝑔𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑠𝑒𝑟𝑣𝑒𝑟 𝑡𝑜 𝑓: 𝛾𝑠𝑓 = �̃�𝑠𝑓 3  𝐴𝑠𝑠𝑖𝑔𝑛 𝑉𝑁𝐹𝑠 𝑡𝑜 𝑓:  λ𝑠,𝑘,𝑖𝑓
=λ̃𝑠,𝑘,𝑖𝑓

  4  𝐴𝑠𝑠𝑖𝑔𝑛 𝑟𝑒𝑝𝑙𝑖𝑐𝑎 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 𝑡𝑜 𝑉𝑁𝐹𝑠: 𝜏𝑘,𝑖𝑠 = �̃�𝑘,𝑖𝑠  5 end 6 𝐟𝐨𝐫 𝑒𝑎𝑐ℎ 𝑛𝑒𝑤 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑓 ∈ 𝐹 7  𝐟𝐨𝐫 𝑒𝑎𝑐ℎ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑉𝑁𝐹 𝑡𝑦𝑝𝑒: 𝑘 ∈ 𝑉𝑓 8   𝐈𝐟 𝑎𝑛𝑦 𝑉𝑁𝐹 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑘 𝑖𝑠 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑 𝑎𝑛𝑑 ℎ𝑎𝑠 𝑒𝑛𝑜𝑢𝑔ℎ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 9    𝑣 ← 𝑓𝑖𝑛𝑑 𝑎 𝑙𝑜𝑤 − 𝑐𝑜𝑠𝑡  𝑉𝑁𝐹 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 10   end 11   𝐞𝐥𝐬𝐞 12    𝑠 ← 𝑓𝑖𝑛𝑑 𝑎 𝑙𝑜𝑤 − 𝑐𝑜𝑠𝑡 𝑟𝑒𝑝𝑙𝑖𝑐𝑎 𝑠𝑒𝑟𝑣𝑒𝑟 13    𝑣 ← 𝑑𝑒𝑝𝑙𝑜𝑦 𝑎 𝑉𝑁𝐹 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑘 𝑜𝑛 𝑠𝑒𝑟𝑣𝑒𝑟 𝑠 14   end 15   𝐴𝑠𝑠𝑖𝑔𝑛 𝑉𝑁𝐹 𝑣 𝑡𝑜 𝑓𝑙𝑜𝑤 𝑓 16  𝐞𝐧𝐝 17  𝐶𝑆 ← 𝐹𝑖𝑛𝑑 𝑎 𝑙𝑜𝑤 − 𝑐𝑜𝑠𝑡 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑠𝑒𝑟𝑣𝑒𝑟 18  𝐴𝑠𝑠𝑖𝑔𝑛 𝐶𝑆 𝑡𝑜 𝑓 19 𝐞𝐧𝐝 
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5.3.2. Moves and Tabu List Management  

We define five moves to generate neighbors for exploration in Tabu search: 

 VNF reassignment:  A VNF is selected randomly and moved to another replica 

server that has enough capacity as well as minimum hosting cost. All of the 

subsequent requests are also rerouted to the new location. 

 Bulk VNF reassignment: A replica server is selected randomly, and all the VNFs on 

that replica server are migrated to another replica server with enough capacity and 

minimum hosting cost. All the requests that are served by those VNFs are also re-

routed to the new location. 

 VNF-FG request reassignment: A VNF-FG request is selected randomly and 

assigned to another instance of one of its VNFs (with enough capacity to tolerate 

the request traffic) such that the sum of the hosting costs and the communication 

costs to the predecessor and successor VNFs in the chain is reduced. 

 Bulk VNF-FG request reassignment: A VNF is selected randomly, and all of its 

VNF-FG requests are assigned to another VNF instance that has a replica server 

with enough capacity and minimum hosting cost. The former VNF instance and its 

associated resources are then released. 

 Content server reassignment: A VNF-FG request is selected and reassigned to 

another content server with a minimum communication cost to the first VNF of this 

VNF-FG request. 

The moves that lead to already-visited solutions are marked as “Tabu” and placed in 

the Tabu list to avoid visiting the same solution repeatedly. The algorithm forbids 

employing the Tabu moves kept in the Tabu list for 𝑖𝑡𝑎𝑏𝑢 iterations according to the 

Tabu-tenure concept [83]. However, some aspiration criteria are defined to remove a 
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certain move from the Tabu list. The criteria are satisfied when the move results in a 

placement with lower reconfiguration costs than the reconfiguration cost of the best 

found solution. If after  𝑖𝑠𝑡𝑜𝑝 iterations, the best found solution is not improved, the Tabu 

process will be terminated.  

5.3.3. Solution Evaluation 

We evaluate a placement solution through an aggregation of reconfiguration costs, 

considering constraint violations as penalties. This directs the search process towards a 

feasible placement with minimum reconfiguration cost. The fitness of a solution 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is calculated in Eq. (22) as follows: 

 

where 𝑃(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡) presents the penalty function for the current solution. For constraints 

(12), (13), (14), and (17), the penalty is calculated proportional to the level of violations. 

Considering the 𝐿𝑐 and 𝑅𝑐 as the left and right sides of the above-mentioned constraint 

equations, these constraints can be defined as 𝐿𝑐 ≤ 𝑅𝑐. Accordingly, the penalty is 

calculated as follows:  

𝑃(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡) = ∑ 𝑦𝑐. max (0, 𝐿𝑐 − 𝑅𝑐)𝑐∈𝐶  (23) 

where 𝑦𝑐 is the normalization coefficient required  to put the penalty and objective 

function on the same scale. 

𝐸(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡) = 

𝑜𝑏𝑗(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡)  If 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝜖 𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (22) 𝑜𝑏𝑗(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡) + 𝑃(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡)  otherwise 
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5.4. Performance evaluation 

In this subsection, we first explain the simulation setup and then we provide the 

evaluation results. 

5.4.1. Simulation Setup 

We assume network nodes that are located according to the geographical distribution 

of the cities in North America. The communication bandwidth between each pair of 

nodes in the network has been selected randomly as between 100, 1000 and 10000 Mbps 

[22]. The cost for bandwidth usage is randomly selected between $0.115 and $0.09 per 

GB according to Amazon [84] and IBM’s cloud [85] pricing policy. The delay between 

nodes was selected in the range of 2 to 50 ms, based on WonderNetwork [86], a service 

that provides real-time delay information between various pairs of locations.  

Each replica server has the capacity of 8 vCPU [59], with the usage cost randomly 

selected between $5  and $10 per vCPU [22].  

We assume that each VNF-FG request requires 1 to 3 VNF types which are randomly 

selected among the mixer, transcoder, and compressor, as discussed in subsection 5.2. 

The traffic variation coefficients are also set according to the discussions in the 

subsection 5.2 (see Fig. 5.1). The delay threshold of the VNF-FG requests is selected 

randomly in the range of 1800 to 2000 ms [87]. The initial traffic of the VNF-FG 

requests is assumed to be 0.5 MB. At least 2 replica servers are selected randomly as 

the content server for the end-users of each VNF-FG request. The license cost for each 

VNF instantiation is $100 [22] and the processing delay is 100 ms for each unit of traffic 

being processed at the VNF[22]. We assume each VNF uses a medium OpenStack VM 

with 2 vCPUs for the execution [58]. The migration cost is calculated as the bandwidth 

cost of migrating the snapshot of the VM that is hosting the VNF, from one replica 

server to another. Snapshot migration is selected because it imposes less cost compared 
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to other existing methods such as live migration [88][46]. The size of a medium size 

OpenStack snapshot is considered to be 7 GB. For the experiments, we assume that the 

whole capacity of the VNFs, replica servers and communication links can be used.   

We set i𝑡𝑎𝑏𝑢with the value of 20, which we found appropriate for the experiments, to 

prevent cycling of the placements during the Tabu search process. The parameter i𝑠𝑡𝑜𝑝 

was selected to be 50, which provides an appropriate trade-off between the execution 

time and the placement quality. Table 5.2 summarizes the simulation parameters. The 

simulation was carried out in JAVA, on a server with 2×12-Core 2.20 GHz Intel Xeon 

E5-2650 v4 CPUs with 128GB of memory.  

Table 5.2. Simulation Parameters for VAS VNF placement. 

Parameter 
ILP 

Notation 
Value 

Link bandwidth capacity (Mb/s) 𝐵𝑖,𝑗 Rand [100,1000,10000]  

Link bandwidth cost ($/GB) 𝐶𝑖,𝑗 Rand [0.115, 0.09] 

Link delay (ms) 𝐷𝑖,𝑗 2-50 

Number of replica servers - 3-16  

Replica servers’ capacity (vCPU) 𝐺𝑠 8 

Replica servers’ cost ($/vCPU) 𝜌𝑠 5-10  

VNF license cost ($) 𝐿𝑘 100 

VNF resource requirements (vCPU) 𝑅𝑘 2 

VNF processing delay (ms) 𝑀𝑘𝑠 100  

Number of end-users - 6-60  

VNFs in each VNF-FG request 𝑉𝑓 Rand [1-3] 

VNF-FG request delay threshold (ms) 𝑋𝑓  Rand [1800-2000] 

Traffic units of VNF-FG request f (MB) 𝑇𝑓 0.5  
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5.4.2. Evaluation Results  

To evaluate the effectiveness of the proposed initial solution and the moves in the 

placement quality, we define two modified versions of DVPVC: i) DVPVC- Random 

Initial Solution, which is the same as the algorithm described in subsection 5.3, but with 

the initial solution generated based on a random assignment. More precisely, for each 

required VNF type in a VNF-FG request, an already-deployed VNF is selected 

randomly and assigned to the VNF-FG request. If such a VNF instance is not found, the 

Random Initial Solution will instantiate a new VNF on a randomly selected replica 

server and will assign it to the VNF-FG request. Content servers are also selected 

randomly. ii) DVPVC- Random Exploration, which exploits random exploration instead 

of the suggested moves in subsection 5.3.2.   Note that in DVPVC-Random Exploration, 

all the assignments described in the moves (in subsection 5.3.2) are done randomly. For 

example, for VNF reassignment, a VNF is selected randomly and is assigned to another 

 

Figure 5.2. Effectiveness of the Greedy Initial Solution and proposed moves  

for 20-50 newly-arrived VNF-FG requests when 10 VNF-FGs already exist with 8 replica servers 

 offered as NFVI.  
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randomly-selected replica server. Fig. 5.2 shows the reconfiguration cost when there are 

8 replica servers in the system. In this figure, we assume 10 VNF-FG requests are 

already in the system and 20-50 new VNF-FG requests will arrive at the system in the 

next snapshot. As can be observed in Fig. 5.2, DVPVC outperforms the other two 

versions. This highlights the effectiveness of cost-oriented decisions made in the initial 

solution and the proposed moves as specified in subsection 5.3.2. We can also observe 

that DVPVC-Random Initial Solution shows a better performance than DVPVC- 

Random Exploration. This underlines the fact that the moves that direct the solution 

exploration towards a lower cost play more critical roles in cost reduction compared to 

the initial solution fed to the Tabu as a starting point to begin the search.  

To assess the effectiveness of considering the traffic variation in placement decisions, 

we compare DVPVC with a modified version of it called “DVPVC-constant traffic”, 

 

Figure 5.3. The impact of traffic variations on reconfigurations cost 

 for 20-50 VNF-FG requests when 10 VNF-FGs already exist, with 8 replica servers offered as NFVI. 
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where the traffic is considered to be static. In this case, the traffic bitrate does not change 

as it traverses through the VNFs of the VNF-FG. Fig. 5.3 shows the evaluation results. 

As can be observed, DVPVC outperforms the modified version of it with constant 

traffic. We notice that applying the traffic variations yields to reductions of up to 24.7% 

in reconfiguration costs compared to the DVPVC-constant traffic. This is mainly 

because a VNF type like the compressor decreases the traffic, which can lead to less 

processing capacity usage in already-deployed VNFs that are the successors of the 

compressor in related VNF-FGs. Furthermore, less bandwidth and computation 

resources are needed to transmit and process the traffic.  

To investigate the impact of reusing the already-deployed VNFs for newly-arrived 

VNF-FGs, we compare DVPVC with a placement strategy called “VNFs not shared”, 

in which the required VNFs for the newly-arrived VNF-FG requests in the next snapshot 

are deployed from scratch, without reusing the already-deployed VNFs of the current 

snapshot. Fig. 5.4 shows the results for 10 existing VNF-FG requests and 8 replica 

servers. DVPVC has reduced the reconfiguration cost by up to 58.8 % compared to the 

 

Figure 5.4. The impact of sharing VNFs between existing and new VNF-FG 

 for 20-50 VNF-FG requests when 10 VNF-FG already exists with 8 replica servers offered as NFVI. 
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case where already-deployed VNFs are not shared with newly-arrived VNF-FG 

requests. This highlights the advantages of reusing already-deployed VNFs to reduce 

the reconfiguration costs, as advocated in DVPVC.  

In the rest of this section we compare DVPVC performance with the optimal 

solutions obtained by IBM CPLEX 12.08, here called “Optimal”, and a proposed first-

fit greedy algorithm, named “First-Fit”. The First-Fit algorithm iterates over the set of 

existing and newly-arrived VNF-FG requests. For each required VNF type of VNF-FG, 

it selects the first already-deployed VNF with adequate residual capacity (Eq. (13)) and 

bandwidth to communicate with the immediate predecessors/successors of the VNF and 

assigns it to the VNF-FG request. If the appropriate VNF is not found, First-Fit  

instantiates a VNF of the required type on the first non-saturated replica server in terms 

of hosting resources (Eq. (12)) with adequate bandwidth for communications with the 

immediate predecessors/successors of the VNF (Eq. (14)) and assigns it to the VNF-FG 

request. First-Fit ensures that all constraints defined in subsection 5.2 are satisfied 

throughout all of the steps.  

Fig. 5.5 shows the reconfiguration cost when 4 VNF-FG requests already exist in the 

current snapshot of the system and new requests arrive at the system in the next 

snapshot. The number of newly-arrived requests changes in the range of 2 to 16. Three 

sizes of NFVIs with 3, 5, and 8 replica servers are considered. As shown in Fig. 5.5, 

DVPVC outperforms the First-Fit algorithm and moreover, it reaches optimality, as the 

results are very close to the optimal ones obtained from CPLEX. In particular, we can 

see that the average gap to the optimal solution remains less than 2% for DVPVC. On 

the other hand, the gap between the First-Fit and Optimal performance reaches up to 

90%. This very large gap is mainly because First-Fit always chooses the first replica 

server or VNF for assignments regardless of their imposed costs for VNF hosting and 

traffic transmission, while DVPVC considers those costs in the placement.  
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(a) 

 
(b) 

 
(c) 

Figure 5.5. Reconfiguration cost for DVPVC, first-fit and optimal solution 

and the gap from optimality for 2-16 newly arrived VNF-FG requests when 4 VNF-FG requests 

already exist in the system with (a) 3 servers, (b) 5 servers, and (c) 8 servers. 
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As shown in Fig. 5.5, when the size of the NFVI increases, the gap between the First-

Fit and Optimal approaches increases as well. This demonstrates that the First-Fit 

placement strategy in larger NFVIs with more diverse resources (from the aspect of 

cost) leads to placements farther from the optimal. On the other hand, there are only 

very slight gap increments for the DVPVC, which highlights the effectiveness of our 

proposed method to find placements with near-optimal reconfiguration cost.  

Fig. 5.6 shows the results for a larger scale of NFVI and VNF-FG requests where 

obtaining an optimal solution in a practical time is not feasible. In this figure, we assume 

10 VNF-FG requests already exist in the system and 20-50 new VNF-FG requests arrive 

at the system in the next snapshot. Different NFVI sizes including 8, 12 and 16 replica 

servers are considered.  As can be seen, DVPVC has reduced the reconfiguration cost 

by up to 51.3% in comparison with First-Fit, which is much better than its performance 

in small-scale scenarios (see Fig. 5.5).  
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(a) 

 
(b) 

 
(c) 

Figure 5.6. Reconfiguration cost for DVPVC and first-fit algorithm 

 for 20-50 new VNF-FGs  when 10 VNF-FG requests already exist in the system with (a) 8 

servers, (b) 12 servers, and (c) 16 servers. 
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Table 5.3 compares the complexity of the DVPVC and Optimal approaches in terms 

of execution time. The results show that DVPVC is much faster than Optimal, even for 

small-scale scenarios where the execution time is in order of seconds. For 20 VNF-FG 

requests and 8 replica servers, Optimal finds the optimal placement in almost 2   hours, 

while DVPVC finds the near-optimal placement in 67 seconds. When the number of 

requests is increased to 30, Optimal could not give the result even though it ran for more 

than 24 hours. 

 

5.5. Conclusion  

This chapter proposes a method, called DVPVC, for the dynamic placement and 

chaining of VNFs for CDN VASs. The method exploits the reuse of already-deployed 

VNFs to serve newly-arrived VNF-FG requests. The traffic variations that occur as a 

result of content customizations performed by VNFs have been considered in the 

placement decision. The placement problem was modeled as an ILP optimization, which 

minimizes the reconfiguration costs including VNF hosting, instantiation, migration and 

Table 5.3. Average execution time for optimal placement and DVPVC 

Experiment Parameters Execution Time (s) 

Number of VNF-

FG requests 

Number of 

replica servers 
Optimal DVPVC 

6 3 29 6 

20 3 338 38 

6 5 72 12 

20 5 665 46 

6 8 93 15 

20 8 6606 67 

30 8 > 24 ℎ𝑜𝑢𝑟𝑠 79 
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traffic routing costs while satisfying the required QoS in terms of delay for all of the 

already-existing and newly-arrived VNF-FG requests. To increase the problem 

tractability, a Tabu-based algorithm was proposed to find the near-optimal placement. 

To improve the quality of the placement a heuristic has been presented for an initial 

solution. The simulation results show that reusing the already-deployed VNFs and 

considering traffic variation significantly reduces reconfiguration cost. Furthermore, the 

proposed algorithm operates very close to optimal placement in small-scale simulations 

and greatly improves the reconfiguration cost for larger scales of simulations.   
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Chapter 6 

 

6. Conclusion and Future Work 

 

Network softwarization has emerged in recent years to facilitate the provisioning of 

CDN components and services. It brings several benefits such as scalability, elasticity, 

adaptability, and flexibility. However, service and component provisioning in CDNs are 

still challenging. This thesis addressed key architectural and algorithmic challenges 

related to network softwarization in CDNs. The key architectural and algorithmic 

requirements are derived in chapter 2, according to some motivating scenarios. 

Thereafter, it presented three main contributions.  

As the first architectural contribution, in chapter 3, it proposed an architecture for 

on-the-fly provisioning of CDN components. This is very beneficial especially when 

CDNs are required to react fast in extending their coverage by provisioning new 

components when unpredicted surge of requests for a specific content arrives at the 

CDN. It also enables the CDN component upgrades on-the-fly when needed.  The 
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proposed architecture is in-line with ETSI NFV framework and microservices 

architectural style. The CDN components are designed as a set of microservices and 

they are implemented, packaged and deployed using NFV technology. Then, the 

required process is proposed to integrate them into the existing CDN and fill them with 

the popular contents. The measurements show that the proposed architecture accelerates 

CDN component deployment and upgrades with minimum service downtime.   

To enable on-the-fly provisioning of CDN VASs, chapter 4 of this thesis proposed 

an architecture based on NFV and SDN technologies. The proposed approach addressed 

architectural challenges in the dynamic composition of required middle-boxes for CDN 

VAS provisioning because existing SDN frameworks lack features to support the 

dynamic chaining of the application-level middle-boxes that are essential building 

blocks of CDN VASs. Our proposed architecture consists of extensions to the existing 

SDN switches and controllers to support the dynamic chaining of application-level 

middle-boxes. Moreover, this approach reduces the significant delay of using 

application-level middle-boxes, by providing additional features for caching partially 

and fully customized videos for value-added services. The measurements show the 

feasibility of the approach and highlight the fact that the caching features reduce the 

content delivery time significantly. The measurements also lead to an observation about 

the location of VAS VNFs that has a great impact on QoS.  

The observations in chapter 4 yielded to the third contribution of this thesis about the 

optimal placement of CDN VASs. CDN VASs have a particular characteristic which is 

the fact that they have an unknown endpoint prior to VNF placement. The few proposals 

to date that tackle VNF placement for CDN VASs, have focused on static placement. 

However, such mode of placement is not adequate for dynamic systems such as CDNs, 

in which the end-user requests are difficult to forecast and may vary in time and space. 
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On algorithmic side, Chapter 5 proposes a method, called DVPVC, for the dynamic 

placement and chaining of VNFs for CDN VASs. The traffic variations that occur as a 

result of content customizations performed by VNFs have been considered in the 

placement decision. The placement problem was modeled as an ILP optimization, which 

minimizes the reconfiguration costs including VNF hosting, instantiation, migration and 

traffic routing costs while satisfying the required QoS in terms of delay for all of the 

already-existing and newly-arrived VNF-FG requests. To increase the problem 

tractability, a Tabu-based algorithm was proposed and validated to find the near-optimal 

placement. The measurements show that the proposed algorithm operates very close to 

optimal placement in small-scale simulations and greatly improves the reconfiguration 

cost for larger scales of simulations. 

 

6.1. Future work 

This thesis presented significant contributions in the provisioning of service and 

component for CDNs. Yet, there exist several research directions planned as the future 

work. 

6.1.1. Distributed and virtualized CDN Controller 

CDN Controller is a key component in CDN architectures that is in charge of 

redirecting end-user requests to the appropriate replica server.  Traditionally, CDN 

controllers are designed as centralized building blocks that are hardly coupled to 

underlying hardware. However, a distributed and virtualized design of CDN controllers 

brings about notable benefits such as easy deployment and management and also an 

improved end-user perceived QoS, since they can be deployed at the edge of the 

network, close to end-users. For example in architectures that replica servers are 

designed as NFV-based micro-caches that can be deployed at the edge of the network 
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such as home set-top boxes, local light-weight CDN controllers can be deployed close 

to the micro-caches, so that they redirect the end-user request to the local micro-caches 

if the requested content is available there. Therefore the end-user request does not need 

to traverse the whole network to hit the centralized CDN controller and leads to less 

bandwidth usage and reduces the load on the centralized CDN controller. It would be 

interesting to investigate the enabling architectures, placement algorithms, and 

collaboration models between distributed CDN controllers, to realize the distributed and 

virtualized CDN controllers.  

6.1.2. VAS VNF chain composition 

Chapter 4 proposed an architecture for on-the-fly provisioning of CDN VASs. As 

observed in the measurements, the order of VNFs in the VNF-FG affects the QoS in 

terms of content delivery latency. In CDN context, when it comes to content 

customization VNFs, the order of VNFs in VNF-FG does not affect the result; however, 

it affects the delivery time. For example, it is more efficient to start by reducing the 

video size via compression so that it takes less time when going through the transcoder. 

This is regarded as a key stage in NFV resource allocation [28] and is called VNFs-

Chain Composition (VNFs-CC) that defines the way that VNFs should be composed in 

a VNF-FG such that the service provider requirements are met. . The selection of the 

optimal VNF order is a potential future work. It requires the introduction of innovative 

algorithms to define the best order of VNFs in a chain such that end-to-end content 

delivery time is minimized while the end-user QoS are met. 

6.1.3. Prediction Algorithms 

In Chapter 5, we studied the problem of dynamic placement of VNFs for CDN VASs. 

In real life, the VNF-FG requests can arrive at the CDNs at any given time. The 

approaches that dynamically place the VNFs, can reconfigure the VNF topology in the 
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network when a change in service usage pattern happens or when new VASs are 

introduced that might reuse the already-deployed VNFs. Prediction algorithms claim 

that they can predict the upcoming VNF-FG requests so that the required resources can 

be planned and reserved in advance. It would be interesting to investigate the accuracy 

and the cost in both cases, i.e. the dynamic VNF placements vs. prediction models. 
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