
This electronic thesis or dissertation has been

downloaded from the King’s Research Portal at

https://kclpure.kcl.ac.uk/portal/

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing

details, and we will remove access to the work immediately and investigate your claim.

END USER LICENCE AGREEMENT

Unless another licence is stated on the immediately following page this work is licensed

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to copy, distribute and transmit the work

Under the following conditions:

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and

other rights are in no way affected by the above.

The copyright of this thesis rests with the author and no quotation from it or information derived from it

may be published without proper acknowledgement.

Edge Cloud and Network Optimization for Mobile Augmented Reality

Huang, Zhaohui

Awarding institution:
King's College London

Download date: 06. Oct. 2023

Edge Cloud and Network Optimization
for Mobile Augmented Reality

Zhaohui Huang

Supervisor: Prof. Vasilis Friderikos

Prof. Osvaldo Simeone

The Department of Engineering
King’s College London

This dissertation is submitted for the degree of
Doctor of Philosophy

July 2023

1

I would like to dedicate this thesis to my loving parents . . .

2

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university.
This dissertation is my own work and contains nothing which is the outcome of work
done in collaboration with others, except as specified in the text and Acknowledgements.
This dissertation contains fewer than 65,000 words including appendices, bibliography,
footnotes, tables and equations and has fewer than 150 figures.

Zhaohui Huang
July 2023

3

Acknowledgements

Studying Phd at King’s College London is quite challenging, especially confronted
with Covid-19. I would like to first appreciate much support from my supervisor Dr Vasilis
Friderikos. With lots of deep discussions and his wise suggestions, I manage to instruct
my research and pursue my phd degree.

I also need to thank all my my colleagues and friends in the Centre for Telecommuni-
cations Research that helped me with my research and cared me about my life. I would
like to thank to Dr Jongyul Lee and Dr Yantong Wang for guiding me and spending an
unforgettable time together.

Finally, I should thank my family, my father Guangxiang Huang and my mother
Fenghong Yao, for their consistent support and unconditional love. Without their encour-
agement, I could not overcome nervousness, loneliness and all other challenges.

4

Abstract

Mobile augmented reality (MAR) applications are still in a rather embryonic state but they
are currently attracting significant attention from both academic and industry stemming
from increased capabilities from the network side as well as the terminals. The ability
of augmented reality services to overlay digital content over the physical space and
surroundings result in an immersive metaverse type of environment which opens up a
plethora of potential use cases and applications. As with respect to mobile wireless
networks, mobility has been proved to be an important factor in service latency of MAR
systems. Previous research mainly focused on various techniques of offloading processing
without considering the decomposition of MAR functions and the effect of mobility in an
explicit manner.

To this end, our works in chapter 3 combine the mobile edge clouds (MEC) and MAR
to propose an optimization framework with a rich set of MAR specific constraints. In
chapter 4, we then consider the content aware aspect and allow the proactive caching of
high probability 2D field of views (FoVs) of AR Objects (AROs) to be stored instead of
caching the significantly larger and complex 3D original AROs. In chapter 5, multiple
view streams could also be brought in as another solution to proactive caching. In this
case, popular view streams are precached with preferred 3D AROs to improve the overall
user experience during different mobility events. In chapter 6, MAR is incorporated with
metaverse but such an extension seeks reliable and high quality support for the foreground
interactions and background contents from these applications, which intensifies their
consumption of energy, caching and computing resources. To tackle these challenges, a
more flexible request assignment and resource allocation with more efficient processing are
proposed through anchoring decomposed metaverse AR services at different edge nodes
and proactively caching background metaverse region models embedded with target AROs.
Advanced terminals capabilities are also considered to further reduce service delay at an
acceptable cost of energy consumption.

As illustrated by a broad set of numerical investigations, the proposed set of solutions
can efficiently decompose the MAR service to available edge cloud resources and hence
increase decision making quality compared to other previously proposed and baseline
schemes.

5

Table of contents

List of figures 8

List of tables 12

1 Introduction 13
1.1 Mobile Augmented Reality (MAR) Applications in Metaverse 13
1.2 Motivation and Objectives . 15
1.3 Contributions . 17

2 Related Work 21
2.1 5G and B5G Network Architecture . 21
2.2 Service Decomposition . 23
2.3 Metaverse supported AR Applications 25
2.4 MAR Resource Allocation . 27
2.5 Utilized Heuristic Algorithms . 32
2.6 Technical Gaps . 36

3 Optimal Service Decomposition for Mobile Augmented Reality with Edge
Cloud Support 37
3.1 Introduction . 37
3.2 Related work . 40
3.3 System Model . 42

3.3.1 Preliminaries . 42
3.3.2 Mathematical Programming Formulation 43
3.3.3 A Simulated Annealing Based Heuristic 49
3.3.4 A Long Short Term Memory (LSTM) Neural Network Based Scheme 50

3.4 Numerical investigations . 52
3.4.1 Parameterization . 52
3.4.2 Simulation Results . 57

3.5 Conclusions . 64

6

Table of contents

4 Field of View Aware Proactive Caching for Mobile Augmented Reality Appli-
cations 66
4.1 Introduction . 66
4.2 System Model . 69
4.3 Numerical Investigations . 73

5 Optimal Proactive Caching for Multi-View Streaming Mobile Augmented
Reality 80
5.1 Introduction . 80
5.2 System Model . 83

5.2.1 Multi-view streaming AR . 83
5.2.2 Wireless Channel Modeling and Achievable Data Rate 87
5.2.3 Latency and Preference . 88
5.2.4 Heuristic Algorithm using LSTM 90

5.3 Numerical Investigations . 92
5.3.1 Simulation Results . 94

6 Optimal Mobility Aware Wireless Edge Cloud Support for the Metaverse 101
6.1 Introduction . 101
6.2 Related Work . 106
6.3 System Model . 108

6.3.1 Multi Rendering in Metaverse AR 108
6.3.2 Wireless Resource Allocation and Channel Model 110
6.3.3 Latency, Engergy Consumption and Quality of Perception Experi-

ence . 111
6.4 Numerical Investigations . 117

7 Conclusions 125

References 127

7

List of figures

1.1 Characteristics and Distances to Users of Different Network Infrastructures
supporting Metaverse . 14

1.2 (a) Traditional view of a hot spot area in terms of the number of users and
(b) an emerging view where a hot spot area might relate to an increased
amount of virtual objects to be overlaid to the physical,world and not
necessarily to the number of mobile users, requiring in that respect the
provision of significant amount of network resources [42]. 15

1.3 Effect of user mobility on the selection of EC for supporting mobile
augmented reality applications. Latency significantly increases when
changing the point of attachment. [42] 16

1.4 3D AROs: Size vs Quantity (a) and Size vs Cumulative Distribution
Function (CDF) [117] . 16

1.5 Complexity of decomposed MAR functions (Microservices) Problem via
a toy example . 17

1.6 Links of Technical Chapters . 19

2.1 A general 5G/B5G Architecture [17] . 21
2.2 The General Architectural design of B5G/6G Network Planning [29] . . . 22
2.3 (a) Monolithic Architecture (MA) & (b) Microservice Software Architec-

ture (MSA) [21] . 24
2.4 An example chain of decomposed MAR functions applying MSA [42] . . 24
2.5 An example of Coded Distributed Computing (CDC) in Vehicular Meta-

verse [54] . 26
2.6 applying Digital Twin for ultra-reliable and low-latency communications

(URLLC) [28] . 27
2.7 Dynamic Adaptive Augmented Reality (DARE) protocol overview [66] . 28
2.8 An example scenario combining MEC and MAR [67] 28
2.9 Fast and Accurate Object Analysis (FACT) MAR system overview [67] . 29

8

List of figures

2.10 Centralized System model for VNF placement and resource allocation on
Network Slices [35] . 30

2.11 Collaborative Augmented Reality for Socialization (CARS) Framework
architecture [117] . 31

2.12 Schematic structural view of the sequence-to-sequence model [125] . . . 33
2.13 Deep Reinforcement Learning Architecture [53] 33
2.14 Example flow chart of Simulated Annealing Algorithm [4] 35
2.15 Example block architecture of Long Short Term Memory [103] 35

3.1 An example of EC-supported working flow of MAR applications including
2 types of MAR functions. 39

3.2 Illustrative toy examples on the effect of mobility on pro active resource
allocation of MAR functions. Differences between applying a complete
MAR application and its decomposed functions in a no mobility event, a
nominal mobility event and a mobility event with AROs 39

3.3 Typical tree-like designed network topology 42
3.4 A toy example for Equation (3.13a) . 45
3.5 Working process . 53
3.6 Layered structure of LSTM-based model (at time step t) 54
3.7 Relation between weight parameters µ and β 56
3.8 Overall delay for schemes under different EC capacities (P=1, µ = 0.5

and 30 requests) . 58
3.9 Difference in performance between LSTM and Optim 59
3.10 After mobility event delay for schemes under different EC capacities (P=1,

µ = 0.5 and 30 requests) . 59
3.11 Overall delay for schemes under different request rates (P=1, µ = 0.5 and

14 units of EC capacity) . 60
3.12 After mobility event delay for schemes under different request rates (P=1,

µ = 0.5 and 14 units of EC capacity) . 61
3.13 Training and Validation Accuracy with increasing iterations 63
3.14 Average execution time of the training phase (30 Requests and 14 units of

Capacity) . 63

4.1 The flow of the different nominal mobile AR functions, their characteristics
and the potential location where those functions can run (terminal and/or
at the EC). 67

4.2 Possible FoVs from different viewpoints on street (a) and Example FoVs
of the target ARO (b) . 67

4.3 Pro-active Caching for MAR . 68

9

List of figures

4.4 Weighted Fraction of Stored FoVs’ Probability per ARO under Different
Weights (µ) . 74

4.5 Average service delay of different schemes under different numbers of
requests (6 ECs and Capacity is 14) . 75

4.6 Average cache hit rate of Optim schemes in different weights under differ-
ent number of requests (6 ECs and Capacity is 14) 76

4.7 Average service delay of different schemes with different EC capacities
(µ = 0.5, 6 ECs and 30 requests) . 77

4.8 Average execution time of the training phase (6 ECs, 30 Requests and
Capacity is 14) . 78

5.1 An example of multi-view streaming AR application. 81
5.2 Illustrative toy examples where in case (a) mobility is not considered

and (b) where mobility of the end user is taken into account for service
decomposition and the different multi view streams on proactive resource
allocation of MAR functions. 83

5.3 Working Process of the LSTM-based Model. 91
5.4 A Toy Example of the LSTM-based Model. 92
5.5 Service delay with weight µ (6 EC, 30 requests, EC capacity is 14 and

total mobility probability is 1). 95
5.6 Preference of View Streams and Embedded AROs with Weight µ (6 EC,

30 Requests, EC Capacity is 14 and total mobility probability is 1) 95
5.7 Service Delay with Different Number of Requests (6 EC, µ = 0.5, EC

Capacity is 14 and Total Moving Probability is 1). 96
5.8 Service Delay with Different Number of ECs (30 Requests, µ = 0.5, EC

Capacity is 14 and Total Moving Probability is 1). 97
5.9 Service Delay with Different EC Capacities (6 EC, 30 Requests, µ = 0.5

and Total Moving Probability is 1). 97
5.10 Average Training and Validation Accuracy of the LSTM Scheme through It-

erations. 98
5.11 Average Processing Time for different stages in the LSTM Scheme 99

6.1 The general work flow of metaverse AR applications with delay of each
stage (6 EC, 30 requests, weight µ is 1, EC Capacity is 14 and total
mobility probability is 1) . 102

6.2 Illustrative toy examples of caching by a metaverse MAR application . . 104
6.3 Illustrative toy examples where in case (i) only terminals are activated, in

case (ii) only ECs are activated and in case (iii) both are activated 105

10

List of figures

6.4 Overall Delay with Weight µ (6 EC, 30 Requests, EC Capacity is 14 and
total mobility probability is 1) . 119

6.5 Average Energy Consumption with Weight µ 119
6.6 Overall Delay with Foreground Interaction Size (6 EC, 30 Requests, µ =

0.5, EC Capacity is 14 and total mobility probability is 1) 120
6.7 Average Energy Consumption with Foreground Interaction Size (6 EC, 30

Requests, µ = 0.5, EC Capacity is 14 and total mobility probability is 1) . 121
6.8 Overall Delay with Background Model Size (6 EC, 30 Requests, µ = 0.5,

EC Capacity is 14 and total mobility probability is 1) 121
6.9 Overall Delay with Average EC Utilization Rate (6 EC, µ = 0.5 and total

mobility probability is 1) . 122
6.10 Energy Consumption with Average EC Utilization Rate (6 EC, µ = 0.5

and total mobility probability is 1) . 123

11

List of tables

3.1 Notation . 47
3.2 Simulation parameters . 55
3.3 Combined delay table for different moving probabilities(msec) 58
3.4 Combined delay table for different weights(msec) 62
3.5 RMSE Values of All Schemes . 63
3.6 Processing time of algorithms . 64

4.1 Weighted Fraction of Stored FoVs’ Size per ARO under Different Weights
(µ) . 74

4.2 Delay (ms) for LSTM and Optim under different weights 76
4.3 rmse values and Delay in no mobility event (µ = 1, 6 ECs, 30 requests

and Capacity is 14) . 76
4.4 Variation of Training and Validation Accuracy for the LSTM based scheme 77
4.5 Average processing time of algorithms 79

5.1 Notation . 90
5.2 Simulation parameters . 93
5.3 RMSE Values & Service Delay in no mobility event (µ = 1, 6 ECs, 30

requests and EC Capacity is 14) . 96
5.4 Average processing time of algorithms 99

6.1 Simulation parameters . 118
6.2 Overall Delay in no mobility event (µ = 1, 6 ECs, 30 requests and EC

Capacity is 14) . 123

12

Chapter 1

Introduction

1.1 Mobile Augmented Reality (MAR) Applications in
Metaverse

Augmented reality (AR) attracts lots of attention on 5G and beyond networks due to its
promising growth in marketing and practice. Different from virtual reality (VR) that
separates the user from reality completely, AR represents a typical medium where overlay
virtual content on the physical world [80]. Different from traditional AR, MAR applica-
tions enable the further alignment between virtual content and physical world that improves
the user perception during a mobility event. MAR could be extended and enhanced in
wireless edge supported metaverse by today’s available technologies like digital twin and
head-mounted display (HMD) rendering [112][28]. Users could have mixed experience
seamlessly between metaverse and physical world through various metaverse AR applica-
tions like massively multiplayer online (MMO) video games and virtual concerts [112].
Users equipped with MAR devices can upload and analyze their environment through
AR customization to achieve appropriate AR objects (AROs) and access the metaverse in
mobile edge networks [111]. Rendering 3-dimensional (3D) AR objects (AROs) with the
background virtual environment and updating in metaverse consume lots of energy and can
be quite demanding for caching and computing resources [111][62]. Hence, it proposes a
series of higher requirements for AR data storage, processing and communication at the
same time.

In metaverse, the user can build interactions through the corresponding virtual image,
known as avatar [28]. Such foreground interactions may activate related MAR applications
and a 3D model of metaverse with target AROs at a defined amalgamated virtual and
physical location should be presented to the user according to his view port [33][57].
Although the background scene itself could be regarded as static or slowly changing, the
AROs in foreground interactions have to be updated more frequently. However, rendering

13

1.1 Mobile Augmented Reality (MAR) Applications in Metaverse

delicate 3D AROs and models based on user mobility are quite demanding in time and
energy while mobile devices suffer from a limited computing and battery capacity [111].
Hence, it could be more reasonable and flexible to leave some complex tasks to a more
powerful server but this causes more communication cost at the same time. According to
Fig. (1.1), the edge nodes are able to execute most tasks with low extra latency cost while
the far-away cloud data centers could store all necessary data for metaverse and provide
a final backup support. In addition, service decomposition has widely been accepted as
an effective method breaking a complex service into multiple chained microsevices to
better support the task assignment and resource allocation. In this way, decomposed MAR
microservices could be rearranged to suitable edge servers according to current computing
and caching resources.

Fig. 1.1 Characteristics and Distances to Users of Different Network Infrastructures
supporting Metaverse

Increased capabilities of mobile devices (e.g. over 1000 devices/km2 [111]) brings
about challenges in processing their target AROs according to different user mobility events.
Also, the addition of AR scanners on mobile phones further accelerates the immersion of
AROs in the physical world as they will ask for added flexibility and accuracy in placing
AROs due to their inherent capability of creating a depth map of the surrounding space.
In that case, the provision of an intelligent edge cloud is required that ‘follows’ the users
based on their mobility whilst taking into account resource requirements in different areas
of the network due to the proliferation of AROs. As illustrated in Figure (1.2), until now
network provision and resource management policies have considered hot spot areas in

14

1.2 Motivation and Objectives

terms of number of users, however the envisioned virtual immersion scenario might create
a new form of hot spot area where there is significant virtual content to be overlaid on the
physical space requiring in that respect new form of proactive network and edge cloud
resource management [42]. Noticing that rendering 3D AROs itself is still time consuming
and seriously affected by users’ view ports [62], replacing some of them by 2D images with
an acceptable level of loss in quality might be a way to further cut down the latency and
energy cost. Existing techniques allow them to be generated from 3D AROs according to
user view ports and even reconstructed or conversed back [41][77][102]. If more focusing
on view ports, creating multiple view streams embedded with AROs might be another
solution. In this case, instead of directly manipulating AROs, view streams are allocated
and proactively cached on edge servers.

Fig. 1.2 (a) Traditional view of a hot spot area in terms of the number of users and (b) an
emerging view where a hot spot area might relate to an increased amount of virtual objects
to be overlaid to the physical,world and not necessarily to the number of mobile users,
requiring in that respect the provision of significant amount of network resources [42].

Thus, MAR in metaverse needs to process and present AROs in a timely manner
without consuming much energy or sacrificing much quality. Clearly, it is not practical to
leave either the whole MAR service or required AROs executed at terminals which is a
heavy burden and hinders the synchronization between terminals and the metaverse. In
our works, a series of methods like decomposition, 2D Field of View, Multi-streaming and
heuristic algorithms based on optimal solutions are explored to provide efficient and high
quality solutions for MAR service on an edge cloud (EC) supported network.

1.2 Motivation and Objectives

Our works are motivated by a series of objects in this area and they are listed and explained
below.

Consideration of User Physical Mobility: Fig. (1.3) displays a toy example regarding
EC support for an AR application and the effect of mobility on the communication between
the end device and the selected EC. From the figure, changing the point of attachment

15

1.2 Motivation and Objectives

Fig. 1.3 Effect of user mobility on the selection of EC for supporting mobile augmented
reality applications. Latency significantly increases when changing the point of attachment.
[42]

during an MAR session might have a detrimental effect in terms of overall latency since
the new point of attachment is not optimized in terms of the EC support for such latency
sensitive application.

Fig. 1.4 3D AROs: Size vs Quantity (a) and Size vs Cumulative Distribution Function
(CDF) [117]

Proactive caching and processing of 3D AROs: As shown by (1.4), the size of 3D
AROs ranges from several MBytes to tens of MBytes. Although most AROs are within
20 MBytes, it is still much larger than 2D images which are usually tens or hundreds of
KBytes. Hence, it leaves a heavy burden of computing and storage for ECs.

Service Deployment and resource allocation: It is about placing decomposed MAR
functions and allocating sufficient resources to meet QoS requirements. Even for a static
scenario of this problem (without user mobility), the complexity grows in a rather (high
degree) polynomial manner. The underlying complexity of this problem is illustrated by
Fig. (1.5); this toy example illustrates the number of possible configurations (in this case
24) in the case of 4 CPU cores, 3 possible utilization levels and 2 memory allocations

16

1.3 Contributions

Fig. 1.5 Complexity of decomposed MAR functions (Microservices) Problem via a toy
example

(4x3x2). It is evident that as the level of granularity increases the complexity increases
substantially (cubic degree of polynomial) and therefore suitable mechanisms should be in
place to allow for an autonomous operation that can allow efficient decision policies to be
implemented.

Maintaining Interactions: It not only means the communication among decomposed
MAR functions but also includes clients. Too many requests from users may lead to
a serious congestion in the network. Thus, a balance should be achieved between the
simplicity of the client-side software and extensive implementation of decomposed MAR
functions at edge nodes. In addition, the entry module and the workload of decomposed
MAR functions should be carefully considered to avoid potential risks of overloading.
Similarly, the path-planning problem is closely related to service deployment and resource
allocation. Machine learning based designs seem to have advantages in finding good-
quality paths approaching to optimal ones within the service latency limit. In our works,
long short term memory and simulated annealing are brought in to provide high quality
predictions efficiently.

Fault tolerance Mechanism: The MAR should keep consistency of transactions during
the recovery from failures within milliseconds. A proper mechanism including appropriate
warning messages and redirection is required to handle partial failures to avoid the ripple
effect (disabling the whole system). The far-away cloud and a Feasibility Check stage are
brought in our works to help handle potential risks.

1.3 Contributions

This thesis is based on our main works including 4 conference papers, 3 journals and a
book chapter. These works are listed below with brief explanation of their contributions.

Decomposition granularity and Machine Learning in MAR service optimization:
Through a review of emerging advanced services, challenges and typical solutions in

17

1.3 Contributions

5G and beyond mobile communication networks, especially MAR, we shed light into the
architectural aspects of the above envisioned virtualized mobile network ecosystem. More
specifically, and as an example of advanced services, we discuss how AR applications can
be decomposed into several service components that can be located either at the end-user
terminal or at the edge cloud. Furthermore, we examine how this inherent service decom-
position can be considered under the lenses of VNF based microservices architectures. Key
areas where data-driven machine learning techniques can ease the network orchestration
are also outlined. These contributions are included in "Granular vnf-based microservices:
Advanced service decomposition and the role of machine learning techniques" [49].

Mobility-aware optimization with EC support: Through explicitly considering the
decomposition of MAR functions and the effect of mobility, an optimization framework
is proposed that also includes a rich set of AR specific constraints, provides service de-
composition and allows a trade off between service latency and frame accuracy to improve
the communication efficiency. In addition, based on this optimal scheme, a simulated
annealing based mobility aware AR (SAMAR) algorithm and a long short term memory
based scheme (LSTM) neural network for predicting edge clouds for anchoring MAR func-
tions are designed for achieving high-quality solutions whilst being amenable for real-time
implementation. These contributions are included in "Proactive edge cloud optimization
for mobile augmented reality applications" [42] and "Optimal service decomposition for
mobile augmented reality with edge cloud support" [48].

Optimized replacement for complex 3D AROs using 2D FoVs: This idea considers the
novel content-aware aspect of the proposed solution allows for proactive caching of high
probability 2D FoVs of the AROs to be stored instead of caching the significantly larger
and more complex 3D original AROs. To this end, a joint optimization scheme (Optim)
considering mobility and the trade-off between delay, storage capacity and FoV allocation
is proposed. A nominal LSTM deep neural network is further explored to provide efficient
pro-active decision making in real-time. These contributions are included in "Field of view
aware proactive caching for mobile augmented reality applications" [43].

AROs embedded in multi view streams: TO achieve better performance in ARO
sharing and synchronization, we explicitly utilize the notion of content popularity not only
to synthetic objects but also video view streams. In this case, popular view streams are
cached in a proactive manner, together with preferred AROs, in selected edge caching
locations to improve the overall user experience during different mobility events. To
achieve that, a joint optimization problem considering mobility, service decomposition,
and the balance between service delay and the preference of view streams and embedded
AROs is proposed. To tackle the curse of dimensionality of the optimization problem,
a nominal Long Short Term Memory (LSTM) neural network is proposed, which is
trained offline with optimal solutions and provide high quality real-time decision making

18

1.3 Contributions

during inference. These contributions are included in "Network resource optimization for
multi-view streaming mobile augmented reality" [45] and "Optimal proactive caching for
multi-view streaming mobile augmented reality" [46].

Terminal aware extension of MAR into metaverse: The metaverse MAR service is
decomposed and anchored at suitable edge caching/computing nodes in 5G and beyond
networks to enable efficient processing of background metaverse region models embedded
with target AROs. To achieve that, a joint optimization problem is proposed, which
explicitly considers the user physical mobility, service decomposition, and the balance
between service delay, user perception quality and power consumption. In addition, the
terminals are brought in and hence get another optimized framework for further comparison.
These contributions are included in "Mobility aware optimization in the metaverse" [44]
and "Optimal mobility aware wireless edge cloud support for the metaverse" [47].

Fig. 1.6 Links of Technical Chapters

Fig. (1.6) reveals the relation between following technical chapters. In Chapter 3,
we start with a nominal scenario where proactive caching is considered under mobility
events in an EC supported network. Noticing that 3D AROs are large for caching and
complex for processing, we then replace them by popular 2D Field of Views and hence
achieve the Field of View Aware proactive caching in Chapter 4. Undoubtedly, enabling
such 2D replacements for 3D AROs brings down the general frame quality. To avoid
degradation of user perception experience and unnecessary duplicate caching of same
AROs required by different users, 3D AROs are set in multiple view streams and preferred
ones are proactively cached; those techniques are detailed in Chapter 5. Finally, we study

19

1.3 Contributions

a scenario that integrates also foreground interactions and background models to capture a
nominal metaverse type of environment. Thus, the extensions for typical metaverse type of
AR applications are proposed in chapter 6.

20

Chapter 2

Related Work

In this chapter, related works are grouped in a top to bottom manner that starts with the
general 5G/B5G networks, then focuses on internal microservice architectures requiring
service decomposition and finally dives into metaverse supported MAR applications with
their resource allocation issues. Through comparison, we identify technical gaps and
explicitly show similarities and differences between our works and cited references.

2.1 5G and B5G Network Architecture

Fig. 2.1 A general 5G/B5G Architecture [17]

21

2.1 5G and B5G Network Architecture

Fig. 2.2 The General Architectural design of B5G/6G Network Planning [29]

We have been experiencing the new era of 5G and beyond 5G networks (B5G) that
brings about amazing elevation in service communication and quality. Naturally, we
take 5G/B5G networks as basic research background where MAR applications should
be deployed and executed. A general 5G and B5G architecture is shown by Fig. (2.1).
Clearly, it is a multi-layer system including at least users equipped with mobile terminals,
core networks, terrestrial stations and satellite stations. A series of researches focused
on different components in the B5G/6G system have been proposed to improve their
capabilities and related resource allocation. As shown by Fig. (2.2), aforementioned
resource allocation and request assignment problem could be regarded as a typical type of
network planning process consists of three main stages: pre-planning, detailed planning
and optimization [29]. In the pre-planning stage, the number of network elements and their
capacity are investigated or estimated through dimensioning. The later detailed planning
stage further analyses the initial size and configuration of the given 5G/B5G network
and provides automatic network planning through parameterization and prioritization, in
which the planner minimizes co-channel inference and adjacent channel noise. Finally,
the optimization stage operates measurements of network level and field test to filter and
handle problematic planning data before implementation [29].

In this theis, we expect that the proposed set of algorithms to be embedded into an edge
computing 5G and beyond platform. Native support of edge computing is being supported
even from Release 17 within 3GPP. According to Rel-17 3Gpp, the edge data network
provides the service to application clients and consists of edge application servers, edge
enabler servers and edge configuration servers. The proposed schemes could run by a
given module, known as Edge Application Server Discovery Function (EASDF), which
acts as a Domain Name System (DNS) resolver and complements the DNS queries with
user location and related information. At the same time, the enhancements in the User
Equipment route-selection policy (URSP) could better support the distributed anchoring
of applications and the relocation of the server. Thus, the EASDF module with the
URSP policy enables the utilization of advanced allocation schemes in an EC supported

22

2.2 Service Decomposition

network. The implementation of approaches further requires the dynamic availability
(e.g. deployment changes and user mobility), network capability exposure (e.g.Network
Exposure Function) and the support for seamless service continuity.

2.2 Service Decomposition

A series of recent researches provides an immersion into key technologies related to
microservices and how advanced services can be decomposed in order to acquire the full
benefits of such architectures. This section revolves around the case of MAR as an example
of a rich service offering where the above-mentioned aspects need to be amalgamated in
order to provide efficient service delivery; however, the overarching aspects are equally
applicable to other rich service offerings beyond MAR.

Network Functions Virtualization (NFV) is one technique that contributes to the so
called “softwarization” of the network. In essence, NFV decouples processing and con-
trolling software from specialized hardware (e.g., load balancer, firewalls, TCP optimizer)
[21][70], thereby leading to the replacement of physical network functions (PNFs) by
monolithic ones [21][90]. In addition to that, NFV allows that each service can be repre-
sented as an ordered set of different distinct virtual network functions (which might be
co-located or not) [61]. Based on the characteristics of a service request (for example
deploying a MAR service or any other application), network operators can flexibly deploy
a set of virtual network functions (VNFs) in the appropriate edge or core servers and chain
them. In this case, the data flow is steered to go through all the VNFs in a pre-defined
order.

It is worthy to point out that MAR applications can be decomposed into a set of atomic
VNFs and apply a web-scale deployment to achieve better efficiency [25][1]. Broadly
speaking, it can be split into four basic functions: Object Detection, Feature Extraction,
Object Recognition and Object Matching [117][81]. Firstly, frames recorded by camera
are detected and those with target objects are selected and uploaded. Then, feature points
are extracted and provided for recognizing the original image. The work by [66], proposes
an optimization engine for the increased precision on Object Detection with functions of
model selection and resource mapping deployed at an edge cloud. Finally, it goes to the
database to search and find an appropriate match. These functions can be extended or
further decomposed to achieve a better granularity and satisfy the different requirements
and constraints of the MAR system. For example, AR quality monitoring and AR adapting
are executed on a user device for better presentation on screen. In a slightly different
approach from [117] and [66], researchers focus on tailoring computationally intensive
functions apart and regroup them on mobile devices [51][114] or edge/cloud servers

23

2.2 Service Decomposition

[67][92]. The MAR system designed for socialization extends the “Feature Extraction”
with an offline probabilistic model that encodes feature descriptors to better compress them
[117]. It also splits “Object Matching” into three minor steps: Template Matching, Object
Tracking and Annotation Rendering. Specially focused on 3D objects, authors not only
find a match for recognized objects but also calculate the position of the target in Template
Matching [117].

Fig. 2.3 (a) Monolithic Architecture (MA) & (b) Microservice Software Architecture
(MSA) [21]

Fig. 2.4 An example chain of decomposed MAR functions applying MSA [42]

From the above discussion it becomes apparent that advanced services such as mobile
AR can be decomposed since the service per se builds by several different complex
functions. Therefore, the use of microservices, as explained in the sequel, is a natural
fit to explore the inherent decomposition of emerging complex services and applications
that embed multi-modal information and require various complex image/vision processing
algorithms to run efficiently. After decomposition, the chaining and arranging of VNFs
becomes an important issue. According to [21] and [27], monolithic architecture (MA) of
VNFs allow lots of repeated functionalities and the corresponding structure grows, which
eventually becomes a heavy burden for developing, managing, enabling efficient resource
allocation and causes extra processing latency, especially when networks operators need to
steer traffic in the sequences of chained VNFs in the so-called Service Function Chains

24

2.3 Metaverse supported AR Applications

(SFC). The main difference between MA and Microservice Software Architecture (MSA)
is illustrated by Fig. (2.3) [21]. MA ties the functions together while MSA decouples
them and enables a more flexible arrangement. In other words, managing of the different
functions can take place in a more granular manner using the MSA architecture whereas
in MA any decision about resource usage will reflect all the functions that are bundled
together. As a result, researchers like [21] and [56] adopt MSA as a better modular design
with a more flexible service composition. Noticing that a predefined sequence also exists
in MAR as explained earlier, the decomposed MAR microservices could also be assigned
to different servers instead of being tied together as shown by Fig. (2.4).

2.3 Metaverse supported AR Applications

The problem of efficient resource allocation for supporting metaverse type of applications
also starts to attract significant amount of attention and various aspects have been consid-
ered. In [36], the emphasis is placed in the synchronization of Internet of Things (IoT)
services, in which they employ IoT devices to collect real world data for virtual service
providers. Through calculating maximum awards, users could select the ideal virtual
service provider. Researchers then proposes the game framework considers such reward
allocation scheme and general metaverse sensing model [36]. In Fig. (2.5) the authors
also adopt a game theoretic framework by considering tasks offloading between mobile
devices based on Coded Distributed Computing (CDC) in a proposed vehicular metaverse
environment. It integrates AR reality and cars’ mobility data seamlessly to mix virtual and
real world entertainment experiences for passengers [54]. Another framework proposed
by [22] manages and allocates different types of metaverse applications so that common
resources among them could be shared through a semi-Markov decision process and an
optimal admission control scheme.

Although the above mentioned research works all provide an optimization framework
related to resource allocation in metaverse like ours, they mainly handle the general meta-
verse applications without diving into a specific one. The work in [74] applies a set of
proposed resource optimization schemes in a virtual education metaverse. More specifi-
cally, a stochastic optimal resource allocation scheme is developed with the aim to reduce
the overall cost of incurred by a service provider. Similar to the service decomposition in
this paper, they only upload and cache some parts of data or services to achieve reduced
levels of delay and offer better privacy [74]. The work shown by Fig. (2.6) is closely
relevant since in that paper not only latency but energy consumption is also considered as
is the case of our proposed model that uses a multi-objective optimization approach [28].
For ultra-reliable and low-latency communication (URLLC) services, researchers bring in

25

2.3 Metaverse supported AR Applications

Fig. 2.5 An example of Coded Distributed Computing (CDC) in Vehicular Metaverse [54]

digital twins and deploy a mobility management entity for each access point to determine
probabilities of resource allocation and data offloading [28]. Then, by applying a deep
learning neuro network the proposed scheme tries to identify a suitable user association and
an optimized resource allocation scheme for this association. While, in this paper, the core
idea is to decompose he service and allow a flexible allocation across edge clouds by taking
also into account user mobility. The work in[112] considers virtual reality applications in
the metaverse and regard the service delivery as a series of events in the market, in which
users are buyers and service provides are sellers. Hence, they apply Double Dutch Auction
(DDA) to achieve common price through asynchronous and iterative biding stages [112].
They emphazise the quality of user perception experience by Structural SIMilarity (SSIM)
and Video Multi-Method Assessment Fusion (VMAF). In our proposed framework, we
also utilize the SSIM metric to determine the frame quality after integrating background

26

2.4 MAR Resource Allocation

Fig. 2.6 applying Digital Twin for ultra-reliable and low-latency communications (URLLC)
[28]

scene and AR contents [112]. The work in [112] further brings in a deep reinforcement
learning-based auctioneer to reduce the information exchanging cost. While in this paper,
a multi-objective optimization approach is taken where we aim to balance across different
objectives using scalarization and considering user mobility in an explicit manner.

2.4 MAR Resource Allocation

The proposed Optim scheme in our works provides, in essence, an EC-supported MAR
system whereas MAR service decomposition and user mobility is explicitly taken into
account whilst balancing augmented reality objects caching, video frame length and
accuracy. In that frontier, there has been various recent research efforts to improve
overall MAR systems. The work in [34] proposes a trade-off model between workload
and service latency, whereas the research in [66] proposes a dynamic adaptive protocol
called DARE over the edge for an MAR system. As shown by Fig. (2.7), the DARE
protocol achieves optimized Model Selection, Resource Allocation, Frame Rate and Frame
Size by designing three hey components: Quality of Augmentation (QoA) Monitor, AR
adaptation and Optimization Engine. MAR clients first send requests with measurements
of network conditions to the edge server. Then the optimization engine determines the
suitable size of frames with computation models for Object Detection. Requests are
mapped for better computational resource allocation. Such optimized configuration data
are sent back to clients so that the AR Adaption module will adapt rate and size of
frames accordingly. Afterwards, suitable frames containing AR Objects are selected

27

2.4 MAR Resource Allocation

and transmitted for computing purposes. Finally, virtual content will be sent back to
augments the target objects on screen [66]. In a similar setting, the work in [50] considers a
cloud-based architecture to improve the performance of MAR applications in development,
deployment and maintenance. The above mentioned work considered the MAR system
as a whole, however some other relevant works considered specific aspect or a particular
functionality of a MAR application. The work in [64] improves object detection, while the
work in [52] improves object recognition. On the other hand, Wu et al. focus on finding a
better local cache management strategy [109]. Furthermore, Li et al. reduce the amount
of initially loaded model data to minimize computational pressure [62]. Among existing
works, mobility of AR applications is mentioned but its effect on service latency is not
considered explicitly as is the case in this work.

Fig. 2.7 Dynamic Adaptive Augmented Reality (DARE) protocol overview [66]

Fig. 2.8 An example scenario combining MEC and MAR [67]

In a closely related work [67] shown by Fig. (2.9), authors handling the relationship
between latency and frame resolution through the combination of MEC and MAR. After
given a similar mobile edge scenario (as shown in Fig. (2.8)), both algorithms consider
the service latency as the main driving factor and then propose a trade-off model to
solve the problem. According to the results provided by [67], FACT can achieve a low
latency with an acceptable frame accuracy. However, as they point out, diverse workloads
with heterogeneous servers lead to the problem that the minimization of latency may not

28

2.4 MAR Resource Allocation

Fig. 2.9 Fast and Accurate Object Analysis (FACT) MAR system overview [67]

happen for network latency and computational latency simultaneously. In that sense, not
all available EC can be made a full use in that scheme. They provide an edge network
orchestrator for EC-based MAR systems that considers the trade-off between service
latency and analytic accuracy [67]. This is similar to the proposed optimization trade-
off balancing model for EC-based MAR systems, however there are some significant
differences. The most important one is the inherent user mobility. In [67], user’s mobility
is not taken into account which means that the model considers only the path between user’s
initial location to assigned edge cloud. However, in this work, mobility is explicitly taken
into account which relates to the path between candidate user locations and different edge
clouds. Furthermore, another key difference is that in the so-called FACT scheme proposed
in [67], the MAR service is regarded as a whole while in this work it is decomposed
into two types of functions, i.e., computational and memory intensive. This allows us
to have a more flexible assignment, compared to other previous monolithic solutions,
according to cache size and CPU frequency. In addition, the work in [67] considers a
convex type of function between frame length and computational complexity which is only
affected by the frame length. However, this work takes into account differences between
EC CPU frequencies, i.e., considers heterogeneous edge clouds. Finally, the authors in
[67] considered three main constraints: minimum accuracy requirement, once service per
request and range of the decision variable. However, in this paper a more realistic scenario
is considered where additional constraints such the available capacity of the edge clouds,
the cache size and the cache miss penalty are explicitly taken into account. A more detailed
comparison in results between the previously proposed FACT algorithm and the proposed
schemes in this paper is presented in numerical investigation section.

In [110], the caching resource sharing problem is considered separately in a Radio
Access Network (RAN) and the Core Network (CN) under the view of fully 5G virtualiza-
tion. Similar to our work, a probability of requesting a set of popular content is assumed,
and this information is used to formulate the actual cache hit ratio. More specifically,

29

2.4 MAR Resource Allocation

Fig. 2.10 Centralized System model for VNF placement and resource allocation on Network
Slices [35]

in [110], a dynamic Cournot game in RAN is firstly solved, and this provides a probability
sorting algorithm to achieve the local optima for the CN. Then, a global equilibrium algo-
rithm is proposed to achieve the balance between the given local optimal solutions [110].
Although the demand and competition in mobile virtual network operators are carefully
researched in [110], the authors in [35] point out that the chaining of virtual network
functions is also a key feature of 5G and beyond virtual networks and should be considered.
In Fig. (2.10), a set of network slices is applied to generate a centralized optimization
problem that maximizes system utility [35]. A trade-off between efficiency and fairness
could be achieved through selecting the utility function for their optimization problem [35].
In [34], another trade-off targeting on workload and service latency is provided. In their
later work, two trade-offs are designed for the MAR system, where instead of choosing
different target functions under different conditions, a weighting parameter is brought in to
directly achieve the balance between latency and preference. Such an idea is also utilized
in this paper. However, it has to be noted that most of the previously proposed schemes for
MAR do not explicitly take into account wireless transmission, user mobility and service
decomposition jointly.

There are other relevant works proposing improved frameworks and networking with
the edge cloud support. Fig. (2.11) shows the architecture of a framework based on
decomposed functions [117]. In the application layer, the Recognition Proxy serves as a
bridge that links both layers. With the support of the Visual Tracker and the Annotation
Renderer, the application can track the object’s position in continuous camera frames and
augments objects based on virtual content sent from the Recognition Proxy. In the Base
Layer, a list of decomposed MAR functions handles frames uploaded from the application
layer. The Scene Matcher ensures a suitable match between AR objects and local resources
with the support from a Cloud Manager. The Motion Detector monitors the status of
recognized objects to determine whether they satisfy the current camera frames. The
Peer Manager together with the Annotation Synchronizer enable the simultaneous sharing
and interactions between different devices. As shown by arrows in Fig. (2.11), the flow

30

2.4 MAR Resource Allocation

Fig. 2.11 Collaborative Augmented Reality for Socialization (CARS) Framework architec-
ture [117]

has a pre-defined order among main microservices while some other modules provide
functionalities to satisfy extra requirements like detecting required poses and enabling
socializing. In [104], a tensor-based cloud-edge computing framework is designed for
cyber–physical–social systems, which can be separated to the cloud and edge plane.
In their framework, the cloud manages large-scale, long-term and global data, while
the edge servers react to real-time situations by processing small-scale, short-term and
local data [104]. The proposed framework in this paper also tends to allocate decomposed
services at edge servers while it turns to the further cloud when exceeding the caching
or computing boundary. Another optimization framework in [106], alternating direction
method of multipliers (ADMM), considers a general task and regards terminals, edge
nodes and remote clouds as a three-tier network. Similar to our framework, this one also
jointly optimizes offloading decisions and computing resource allocation to minimize
the task delay [106]. It then reduces problem complexity by decomposing the large-scale
problem into smaller sub-problems and finally provides near-optimal solutions subjecting
to the battery capacity [106]. The deep learning framework in [82] is specialized for AR
applications and considers trade-offs between accuracy and latency. However, they accept
a more powerful local “helper” (e.g., home servers), and hence, the AR application is
processed either locally or in a remote cloud. MAR with Viable Energy and Latency
(MARVEL) also accepts a simplified network structure including mobile AR devices and
clouds but integrates local inertial tracking, local optical flow and visual tracking into
a complete system [16].

There are relevant research works focusing on resource allocation problems for differ-
ent video view streams. In [11], multiple views of a live video in a cloud-based system
are considered in a similar fashion with this work. Similarly, they also try to optimize
the overall users’ satisfaction by formulating a Mixed Integer Linear Problem (MILP) with

31

2.5 Utilized Heuristic Algorithms

computational and bandwidth constraints. In addition, the paper proposes a Fairness-Based
Representation Selection (FBRS) heuristic algorithm to achieve near-optimal results [11].
However, the focus in that work is mostly on the application layer quality of experience
and received utility without emphasis on the wireless transmission process [11]. In [120],
an interactive multi-view HTTP adaptive streaming is proposed with the emphasis in ex-
ploring the optimal subset of views under channel constraints. Due to the NP-hardness
of the corresponding optimization problem, the paper offers the design of a sub-optimal
low-complexity greedy algorithm with focus on network congestion episodes in hot spot
areas. The work in [18] anchors its contribution in an optimization framework for the al-
location of power and bandwidth in multi-user video streaming to improve the quality
of user experience (QoE). Their work tracks requests in the unmanned aerial vehicle
(UAV) relay networks and proposes a decentralized allocation scheme to derive the optimal
solution [18]. The work in [121] shares a similar target with the current work. More
specifically, in order to solve the pro-caching problem for vehicular multi-view 3D video
streaming, the authors explicitly consider the mobility and construct a user mobility model
that includes predicted moving direction and destinations. The difference is that they
treat it as a Markov decision problem, and such a joint optimization problem concentrates
on the overall reward and cost in 5G small-cell networks [121]. Due to the complexity
of finding optimal decisions, a dynamic K-Nearest Neighbor algorithm is embedded into
their proposed deep learning approach to provide the allocation for cache memory and
the selection for the views set [121]. In [24], an object detection model of AR applications
in an EC-supported network is considered, and the authors provide effective task placement
and offloading strategies achieving the balance between latency and energy. Furthermore,
the work in [24] directly identifies three latency classes and achieves the task execution
time through historical data, while in this paper, a more detailed communication process is
focused and calculated from the given formula.

2.5 Utilized Heuristic Algorithms

As already eluded in the previous section, tackling network complexity issues for pro-
visioning granular advanced services under microservices architectures raises several
challenges. Leveraging heuristic algorithms on the MAR system after decomposition and
chaining, such as Simulated Annealing, Neural Networks and Reinforcement Learning,
are considered to have the potential to solve problems in this area. Till now, a series of
heuristic algorithms including machine learning ones are proposed with improved predic-
tion capabilities, flow path management and resource allocation features [10]. Compared
to optimized algorithms, they manage to achieve acceptable solutions within an acceptable

32

2.5 Utilized Heuristic Algorithms

Fig. 2.12 Schematic structural view of the sequence-to-sequence model [125]

Fig. 2.13 Deep Reinforcement Learning Architecture [53]

space and time cost. Direct integration of heuristic algorithms on container or controller
does simplify the overall structure and hence decreases the cost of communication and
deployment. A series of machine learning techniques like examples from (2.12) and [53]
are utilized as isolated modules to predict network states and provides suggestions for the
decision-making stage. According to Fig. (2.12), network paths are treated as sequential
data to construct a sequence-to-sequence model, in which source input and target paths
are treated as a sequence of nodes [125]. An attention mechanism oversees the data
collection to compute a relevant path from input sequence to target sequence based on
empirical records (summarized as context vector). The proposed beam search can avoid
the sinking in a local optimal solution and further explore global optimal solutions. With
the support of deep learning techniques for traffic engineering purposes (neural networks

33

2.5 Utilized Heuristic Algorithms

and Natural Language Processing sentences analysis), the proposed technique manages to
achieve an efficient network-level path. Furthermore, numerical simulations reveal that
such data-driven path planning techniques shows advantages in delay and throughput in
both congested and non-congested conditions. Thus, predictions can be generally accurate
and useful for network operation with reliable empirical data [125]. The other example is
shown by Fig. (2.13) [53]. A model applying Deep Reinforcement Learning (Deep Neural
Network, DNN) can also provide resource predictions in dynamic NFV environments.
Multiple agents spread over the network and provide their asynchronous observations of
the network to reinforce their learned policy and hence can achieve optimized prediction
output. According to the design shown in Figure 13, DNN algorithms in the Deep Re-
inforcement Learning (DRL) agent work as a non-linear approximators that provides an
automated dynamic scaling solution for resource allocation purposes and has advantages in
dealing with large numbers of outcomes and impacts over time. Based on these predictions,
their model then moves to an optimum learned stage that optimizes provisioned resources
and takes scaling action on the actual 5G infrastructure [53]. Clearly, through applying
an isolated module when processing algorithms like in our works, such modules do not
directly interfere with the deployment, allocation and configuration of NFVs, which is
computationally friendly and enhances the overall independency and flexibility. However,
because these algorithms generate solutions based on records and work separately from
the SFC, they are not able to validate their solutions immediately; in addition to that, this
might cause potential risks like path non-connectivity and low generalization accuracy
[125][53]. Extra prevention or re-computation mechanism are applied to increase stability
and fault tolerance. Hence, in our works, the predictions given from the machine learning
module are further validated by the Feasibility Check stage before putting into practice.

34

2.5 Utilized Heuristic Algorithms

Fig. 2.14 Example flow chart of Simulated Annealing Algorithm [4]

Fig. 2.15 Example block architecture of Long Short Term Memory [103]

In our works, two typical heuristic algorithms, Simulated Annealing (SA) and Long
Short Term Memory (LSTM), are utilized to improve overall computing efficiency. Fig.
(2.14) shows a typical example flow chart of Simulated Annealing Algorithm. It is

35

2.6 Technical Gaps

regarded as an extension of hill climbing algorithm and improves a certain energetic
objective function during each iteration until approaching the global optimum in an
acceptable level [4]. It consists of a outer loop representing the cooling scheme and a inner
loop representing the solution exploring scheme. SA algorithm brings in an occasional
acceptance mechanism that accepts worse solution at a decreasing range by a decreasing
probability to avoid sinking into the local optima. Fig. (2.15) shows a typical example
block architecture of Long Short Term Memory Algorithm. LSTM consists of a series of
memory blocks and each block is defined as a input gate, an output gate and a forget gate
[103]. Key features of information are maintained over time while inferences are filtered
and forgotten in a short period.

2.6 Technical Gaps

In this chapter, we go through related works about MAR in 5G/B5G networks and a series
of key technical gaps in this topic can be concluded as below.

In this topic, at the network level, the collocation between terminals, edge nodes,
far-away clouds remains as a big challenge including its planning, optimization and
implementation. When moving to the application level, serving as a whole adds extra
burden to terminals while the suitable application-specific decomposition granularity and
allocation strategy usually appear as non-polynomial problems and are hard to solve.
Although some references provide AI supported algorithms but their feasibility, reliability
and general quality might still be not satisfying. This thesis selects MAR as an example to
explore ideal network optimization. When turn into this area, few works explicitly handle
the user physical mobility with a series of realistic constraints. The balancing and Object
embedding of AR-specific applications also have not been fully discussed. Metaverse
integrates VR and AR into mixed reality while how it interacts with internal objects, virtual
scenes and users remains as a challenge.

To target with aforementioned technical gaps in this area, in following chapters, we
start with explicit consideration of user physical mobility in a nominal MAR scenario in
Chapter 3. In Chapter 4, we further consider the 2D field of view substitution to cut down
caching burden. The ARO embedding, sharing and synchronizing issue is considered
through view streams in Chapter 5. And finally, we extend MAR into metaverse managing
to embed AROs into background scenes and sychronize all updates to users in the same
region.

36

Chapter 3

Optimal Service Decomposition for
Mobile Augmented Reality with Edge
Cloud Support

The chapter is based on [42] and [48]. In this chapter, we contribute in the MAR service
decomposition, categorization and explicitly consideration of user physical mobility with
EC support. Heuristic algorithms are explored to identify their potential in elevating
computing efficiency.

3.1 Introduction

As mentioned earlier, the utilization of mobile augmented reality (MAR) applications is
expected to further increase by the proliferation of enhanced mobile devices and enhanced
capabilities offered by the current deployment of 5G networks. Whilst it is already widely
accepted in different industries (entertainment, advertisement and manufacturing) and
on different devices (i.e. smart glasses) it is well expected that the next frontier of AR
applications would be on mobile networks [14]. To enable lighter, highly mobile and
more technical advanced AR technologies and devices,we are facing a series of challenges
including platform diversity, computational efficiency and caching limitations [80][62].
According to [62], a significant volume of memory and CPU resources size is required
when rendering 3D objects which naturally emphasizes the insufficiency of computing and
caching resource when depending solely on the mobile terminal capabilities. Noticing that
MAR service not necessarily updates each frame, hereafter we assume a nominal frame
rate as 15 frames/second and the rendering happens at every other frame (1̃33.2ms interval)
[24][75][72]. Thus, the service delay of the aforementioned work flow within the interval
could be regarded as acceptable.

37

3.1 Introduction

Mobile edge cloud (MEC) architectures introduced earlier can better support MAR
applications because it is possible to anchor computational and memory intensive functions
of the service at computing-efficient nodes at the edge of the network in close proximity
to mobile devices [80][62][67]. Despite the gains that can be attained by offloading such
complex tasks to edge clouds (ECs) attention should be placed on the required volume
of data transmission that need to take place between end devices and the edge cloud. In
addition, during congestion episodes parts of the network might be overloaded resulting
in communication delays between the end terminal and edge clouds which might affect
the service quality [81]. Therefore, MAR system’s performance in response time can be
increased through enhancing transmission efficiency and optimizing the edge cloud servers
allocation and utilization [62][67][81][83]. For example, during congestion episodes
reducing the uploaded video frame size might ease the burden of data transmission and
computation supported by the MEC. Hence, frame selection and target area/object selection
could be used to reduce the amount of total uploaded data [67][50]. However, the analytic
accuracy of frames deteriorates with a smaller uploaded size. To this end, it is necessary to
achieve, inter alia, a balance between frame accuracy and service latency.

In the sequel, the different functions in which a typical MAR application can be
decomposed are explained. It is worth pointing out from the outset that the MAR functions
can serve as a network function virtualization (NFV) function chain. NFV service chaining
is a well known network architecture paradigm and focuses on decomposed functions’
placement, load balancing and availability [38][58]. It enables flexible and economical
implementation of applications in 5G networks and beyond [99][58]. In this work, the
decomposed MAR functions are categorized into two types: computational intensive
functions that consumes mainly computing resources and storage intensive functions that
requires significant amount of local cache memory. Firstly, the terminal is responsible
for selecting the video frames that have the potential to be augmented with AR objects
(ARO). Then, after a pre-processing those video frames are transmitted to an edge cloud
for Object Detection and Feature Extraction. Subsequently, the original image of objects
can be recognized from extracted features and according to auxiliary information from the
uploaded frames (i.e. point of view), the Object Matching function will provide validation
and selection of proper AROs in required gesture [117][109]. Different MAR system
architectures enable different modules to execute these functions with other supporting
ones in different layers (3.1) [81][83][117]. However, the general working process of the
decomposed functions in a MAR service can be, in general, summarized into an overall
decomposed flow of functions as presented in Figure (3.1).

It is worth pointing out that it is not efficient to deploy all the above mentioned functions
at the mobile device due to their limited computational resources [6][88][86]. The above
MAR functions can be further decomposed into computational and storage intensive ones,

38

3.1 Introduction

Fig. 3.1 An example of EC-supported working flow of MAR applications including 2 types
of MAR functions.

in essence related to those that consume significant CPU resources with the database
for ARO matching and those that consume significant cache memory resources. Such
decomposition of the underlying MAR functions leads to a more flexible arrangement
when some servers have sufficient computing resources with low availability on cache
resources or vice versa. Optimization of these functions was the focus by some previous
research to efficiently transmit AR tasks to the edge cloud but the mobility effect has not
been explicitly taken into account as well as the above classification of the different AR
functions [67][109] [66].

Fig. 3.2 Illustrative toy examples on the effect of mobility on pro active resource allocation
of MAR functions. Differences between applying a complete MAR application and its
decomposed functions in a no mobility event, a nominal mobility event and a mobility
event with AROs

As an illustration, several examples of an AR application applying service decomposi-
tion supported by ECs is presented by Figure (3.2). It reveals the mobility effect on the
communication between the terminal and the target EC. According to this figure, there
could be a detrimental effect in terms of the overall latency when changing the point
of attachment during the lifetime of a MAR session. The reason is that the new point
of attachment is not an optimized choice in terms of the EC support for such a latency
sensitive application. Compared to other applications, which might be tolerant to delay, the
mobility effect in MAR services should be carefully considered. When facing both AROs

39

3.2 Related work

and the user mobility, decomposition and proactive resource allocation can be combined to
achieve an optimized decision making.

Motivated by the above aspects, the key novelty is that in this chapter we explicitly
consider the user mobility and formulate a multi-objective optimization problem aiming to
balance the overall delay, video frame quality and caching of augmented reality objects in
the network faced by the MAR application that requires offloading task to an EC. To the best
our our knowledge no previous research work considered explicitly the user mobility and
service decomposition in order to optimize the service delivery and allocation of network
resources. We extend hereafter our previous work [42] to construct the proposed optimal
framework (via mathematical programming) including the development of a simulated
annealing based scheme and a long short term memory (LSTM) neural network based
scheme to provide competitive solutions, whilst being amenable to real-time decision
making. Through a wide set of simulations, the performance of the above proposed
schemes are compared with several baseline schemes stemming from closely related
research. Advantages of the proposed schemes are discussed in analysis and evaluation
section.

3.2 Related work

The proposed scheme in this chapter provides, in essence, an EC-supported MAR system
whereas MAR service decomposition and user mobility is explicitly taken into account
whilst balancing augmented reality objects caching, video frame length and accuracy. In
that frontier, there has been various recent research efforts to improve overall MAR systems.
The work in [34] proposes a trade-off model between workload and service latency. It
selects from candidate locations to place ECs and then focus on the users’ allocation issue.
While in this chapter, our proposed scheme could find optimal solutions for both proactively
caching and allocation decisions under pre-given network conditions. The research in
[66] proposes a dynamic adaptive protocol over the edge for an MAR system. It also only
focuses on the resource allocation and enables the AR reconfiguration by users to adapt to
variations in wireless channels and computation workload. However, our proposed scheme
reacts to changes through finding another suitable EC instead of changing configuration
and causes potential interference to other requests. In a similar setting, the work in [50]
considers a cloud-based architecture to improve the performance of MAR applications in
development, deployment and maintenance. The above mentioned work considered the
MAR system as a whole, however some other relevant works considered specific aspect
or a particular functionality of a MAR application. The work in [64] improves object
detection, while the work in [52] improves object recognition. On the other hand, Wu et al.

40

3.2 Related work

focus on finding a better local cache management strategy [109]. Furthermore, Li et al.
reduce the amount of initially loaded model data to minimize computational pressure [62].
Among existing works, mobility of AR applications is mentioned but its effect on service
latency is not considered explicitly as is the case in this work.

In a closely related work, Liu et al. focus on the relationship between latency and
frame resolution in MAR systems and edge clouds [67]. They provide an edge network
orchestrator for EC-based MAR systems that considers the trade-off between service
latency and analytic accuracy [67]. This is similar to the proposed optimization trade-
off balancing model for EC-based MAR systems, however there are some significant
differences. The most important one is the inherent user mobility. In [67], user’s mobility
is not taken into account which means that the model considers only the path between user’s
initial location to assigned edge cloud. However, in this work, mobility is explicitly taken
into account which relates to the path between candidate user locations and different edge
clouds. Furthermore, another key difference is that in the so-called FACT scheme proposed
in [67], the MAR service is regarded as a whole while in this work it is decomposed
into two types of functions, i.e., computational and memory intensive. This allows us
to have a more flexible assignment, compared to other previous monolithic solutions,
according to cache size and CPU frequency. In addition, the work in [67] considers a
convex type of function between frame length and computational complexity which is
only affected by the frame length. However, this work takes into account differences
between EC CPU frequencies, i.e., considers heterogeneous edge clouds. Finally, the
authors in [67] considered three main constraints: minimum accuracy requirement, once
service per request and range of the decision variable. However, in this chapter a more
realistic scenario is considered where additional constraints such the available capacity
of the edge clouds, the cache size and the cache miss penalty are explicitly taken into
account. In [91], authors also consider the cache hit/miss at ECs similarly to this work.
However, the emphasis is into the caching and power consumption of the mobile AR
devices and the associated mobile cache management. Hence, a different trade-off model
has been considered with focus on balancing between energy consumption of the MAR
device and latency in terms of caching size. In addition, service decomposition for the
MAR application is applied in [87]. Their proposed framework also achieves efficient
computing and offloading through dynamically reconfiguration of video and server. They
also take processing and transmission delay into account similarly to this work. However,
when considering the quality, they consider the user expected latency and user perceived
video quality. Thus, we consider the FACT algorithm in [67] as a typical example from
these related works to compare our proposed framework. A more detailed comparison in
results between the previously proposed FACT algorithm and the proposed schemes in this
chapter is presented in numerical investigation section.

41

3.3 System Model

3.3 System Model

3.3.1 Preliminaries

An undirected graph G = {V,L} is used to represent the mobile network, where V
expresses the set of vertices (i.e., network nodes) and L denotes the set of links. The
available ECs in the network are expressed with a location set which is defined as M=

{1,2, ...,M} ⊆ V. Requests r ∈ R are assumed to be created by a set of MAR devices
and their initial connected access router is f (r). Due to mobility events, they can connect
to different adjacent access routers k belonging to set K = {1,2, ...,K} ⊆ V. Based on
available historical data of a mobile network operator, it can be estimated with high
accuracy a probability matrix Pi j which denotes the total moving probability of a mobility
event between access routers i, j ∈K [124]. In this chapter, the model diagram is actually
a tree topology as shown by Fig. (3.3).

Fig. 3.3 Typical tree-like designed network topology

As already eluded above, two main AR sets of functionalities are required to run (i.e.,
offloading) on the ECs. These are categorized into ARO caching related functions that
require storage space and intense image processing functions requiring significant CPU
processing power [117][109]. Hence, these two functionalities are expressed with η and
ρ for CPU processing and caching respectively. We denote the set of available AROs as
N={1,2,...,N}. A subset of those AROs, denoted as Lr, are randomly allocated to each
request r ∈ R. Thus, l ∈ Lr = {1,2, ...,Lr} ⊆ N denotes each ARO l that is required in the
request r and its size is denoted as Or

l . Fηr and Fρr are used to describe the file size for
each function of the request r. Fηr represents the size of frames sent for object detection
while Fρr represents the size of recognized objects used for matching. Denoting the frame
length in its set as s ∈ S, Fηr is measured by σs2; we note that the product of frame length

42

3.3 System Model

s2 and σ express the number of bits to represent a single pixel [67]. A nominal frame
rate is assumed of 15 frames/second and the service could happen at every other frame
(1̃33.2ms interval) [24][75][72]. Thus, the service delay of the aforementioned work flow
within the above time interval could be regarded as acceptable.

Hereafter, we look into the scenario where a user requests a certain set of AROs and
functions η and ρ run in a pre-defined order at the same or different ECs. Due to the
consideration of mobility events, user’s potential points of attachment can influence these
functions’ hosted ECs. If a cache hit happens for all required AROs, the matched ones
will then be sent back to the MAR device for displaying [117][109]. Otherwise, an extra
latency D for ARO cache miss will be triggered since the AROs will have to be fetched
from a remote core network server that host the augmented reality objects [109].

3.3.2 Mathematical Programming Formulation

According to the overall MAR system model and aforementioned preliminaries, the
required decision variables are introduced paving the way for the proposed mathematical
programming formulation. To this end, the decision variables are defined as follows,

xr j =

1, if computational function for request r

located at node j,

0, otherwise.

(3.1)

yr j =

1, if caching function for request r located at

node j,

0, otherwise.

(3.2)

hrl j =

1, if ARO l of request r cached at

node j,

0, otherwise.

(3.3)

ars =

{
1, if request r use frame length s,

0, otherwise.
(3.4)

The following decision variables are also defined to capture the case of cache miss or
hit,

zr j =

1, if there is a cache hit for AROs of request r

at node j,

0, otherwise.

(3.5)

43

3.3 System Model

We describe the relationship between the decision variables hrl j and zr j as follows,

zr j =

1, if ∑

l∈N
hrl j ⩾ Lr,

0, otherwise.
(3.6)

As mentioned above, it is necessary to ensure that if ∑
N
l=1 hrl j ⩾ Lr then zr j = 1 in the

mathematical programming formulation. It means at the target server, if cached AROs
fulfill or even overfill (i.e., caching extra AROs for other requests to be served here) the
user’s requested AROs in the set Lr, then it is defined as a cache hit for this user. An
equivalent either-or constraint can be applied to replace this conditional constraint. More
specifically, it can be written as follows,(

∑
l∈N

hrl j < Lr

)
or (zr j = 1) (3.7)

A small tolerance value ε can be specified to change the first expression to inequality.
Thus, the either-or logical constraint can be written as,(

∑
l∈N

hrl j + ε ≤ Lr

)
or (zr j = 1) (3.8)

A new decision variable q j is now introduced with a large arbitrary number U to rewrite
the above either-or constraint into the following expressions that need to be added in the
mathematical programming formulation,

∑
l∈N

hrl j + ε ≤ Lr +U(1−q j)

zr j = 1−q j

(3.9)

The overall cost measured in terms of delay can be split into wireless delay, wired
network delay and computational delay [67]. The actual transmission time is mainly driven
by the uploaded frame size and can be written as follows,

σs2ars

R̃r
(3.10)

An average achievable data rate is assumed to be allocated to a user across the whole session
lifetime and we are not posing any constraints and/or requirements on the instantaneous
data rate. Hence, without loss of generality, an average rate of R̃r at different connected

44

3.3 System Model

cells is allocated to each request r based on a defined Service Level Agreement (SLA)
[76].

The delay between ECs is noted by Ci j, which encapsulate the least communication
delay (shortest path routing cost) between locations i and j [124]. Propagation delay is
also captured together with other types of delay during this period such as for example
nominal queuing delay.

Two types of computing delay at ECs are captured by parameters Vr j and Wr j and can
be estimated as follows [98],

Vr j = ∑
s∈S

ωFηrs

f j
V

asr, Wr j =
ωFρr

f j
V

(3.11)

where

∑
s∈S

asr = 1 (3.12)

In the formula above, the number of CPU cycles to process 1 byte input is represented
by ω [98][100][26][65]. The VM computational speed f j

V is assigned for request r at
location j and is assumed, without loss of generality, to be allocated equally [65]. Given
the condition that each VM takes up a fixed portion of a CPU core, the product of core
frequency and allocated percentage can express its computational speed [68]. Thus, in
above formula, the computing delay can be achieved through dividing total consumed CPU
cycles (the production of file size and cpu cycle-byte rate) by assigned portion of CPU
speed.

An EC at location j is assumed to have an allowable cache capacity Θ j and an allowable
computing capacity ∆ j measured by the number of server’s remaining available VMs [65].

Finally, notations including key variables and brief explanations are summarized in
table (3.1).

Fig. 3.4 A toy example for Equation (3.13a)

As shown in the formulation below, the overall service latency is captured including
transmission, computation and delay caused by cache retrieval and processing. The

45

3.3 System Model

Equation (3.13a) consists of 4 main parts in order, which are shown in Fig. (3.4). The
first term captures the wireless transmission delay from the user’s initial location to the
access point as shown by (a) in the figure. While the second term shown in the Figure by
(b) captures the link delay to the first target edge cloud server and the processing delay of
computational intensive functions at that location. The third term shown by (c) captures
the link delay between two edge clouds, the processing delay of the matching function and
the incurred delay of returning to the initial access point. Finally, the fourth term shown by
(d) captures the link delay from potential destinations. The repeated process like wireless
transmission or executing functions are not counted again for destinations. Note that both
the so-called before and after mobility events are included in the objective function and it
captures the overall service latency. To this end, the mathematical optimization problem
can be formulated as follows,

min ∑
r∈R

∑
s∈S

Fηrsars

R̃r
+ ∑

r∈R
∑

i∈M
(C f (r)i +Vri)xri+

∑
r∈R

∑
i∈M

∑
j∈M

(
Ci jxri +Wr j +C j f (r)+q jD

)
yr j+

∑
r∈R

∑
i∈M

∑
k∈K

Pf (r)kCik(xri + yri) (3.13a)

s.t. (3.12)

∑
r∈R

∑
l∈Lr

hrl jOl ≤Θ j,∀ j ∈M (3.13b)

∑
r∈R

xr j + yr j ≤ ∆ j,∀ j ∈M (3.13c)

∑
l∈N

hrl j + ε ≤ Lr +U(1−q j)∀ j ∈M,r ∈ R (3.13d)

zr j = 1−q j, ∀ j ∈M,r ∈ R (3.13e)

∑
j∈M

xr j = 1,∀r ∈ R (3.13f)

∑
j∈M

yr j = 1,∀r ∈ R (3.13g)

ars,xr j,yr j,hrl j,zr j,q j ∈ {0,1},
∀r ∈ R, j ∈M, l ∈ Lr,s ∈ S (3.13h)

The different costs added to delay are captured by the objective function (3.13a), which
embed the routing to the ECs and computational delays for the two functions of AR video

46

3.3 System Model

Table 3.1 Notation

Parameter Description
N Set of all AROs
M Set of Edge Clouds
R Set of User Requests
Θ j Cache capacity at EC j
S Set of possible frame lengths

f (s) get accuracy from frame length
g(r) Initial access router for request r
∆ j Number of available VMs at EC j
Pi j Mobility probability from EC i to j
D Fixed delay cost caused by a cache miss

η ,ρ Two types of AR functions (CPU, Cache)
Ci j Communication delay between nodes i and j

Ol,Lr Size of object l, and set of objects in request r
σ the number of bits required to represent 1 pixel
ars 0/1 var.: if the frame legnth s is selected for r

xr j,yr j 0/1 var.: if function η or ρ for r is set at EC j
ω, f j

V Computational load and CPU availability at EC j
Vr j,Wr j Processing delay for request r for function η , ρ at EC j
Fηr,Fρr Input video frame size for functions η , ρ in request r

hrl j 0/1 var.: if object l appearing in r is cached at EC j
zr j 0/1 var.: if there is a cache hit of all ARO for r at EC j

processing and ARO caching. Cache capacity limit is captured by constraint (3.13b), while
the limit on the number of utilized VMs is captured by constraint (3.13c). As explained
earlier, we initially have the case that if AROs required by a user are all pre-cached, then
it is a cache hit. This is equivalent to an either-or Constraint (3.7). Through adding a
tolerance value to be Constraint (3.8) and then bringing in the decision variable q j, the both
cases could be merged into an inequality expression, Constraint (3.13d), which describes
the cache hit/miss requirement. Constraint (3.13e) help bind decision variables zr j and
q j. Finally, constraints (3.13f) and (3.13g) capture the initialization requirement for MAR
functions which means they should run only once at a specific EC location for each request.

Note that the product of decision variables make the previous defined mathematical
program (3.13a) non-linear. However, it is possible to linearize the problem by introducing
the following auxiliary decision variables,

∑
r∈R

∑
i∈M

∑
j∈M

ξri j = ∑
r∈R

∑
i∈M

∑
j∈M

xriyr j (3.14)

47

3.3 System Model

∑
r∈R

∑
j∈M

ψr j = ∑
r∈R

∑
j∈M

q jyr j (3.15)

∑
r∈R

∑
s∈S

∑
j∈M

φrs j = ∑
r∈R

∑
s∈S

∑
j∈M

arsxr j (3.16)

In addition, the binding constraints added for these new decision variables are as follows,

ξri j ≤ xri, ∀r ∈ R, i, j ∈M (3.17)

ξri j ≤ yr j, ∀r ∈ R, i, j ∈M (3.18)

ξri j ≥ xri + yr j−1, ∀r ∈ R, i, j ∈M (3.19)

ψr j ≤ q j, ∀r ∈ R, j ∈M (3.20)

ψr j ≤ yr j, ∀r ∈ R, j ∈M (3.21)

ψr j ≥ q j + yr j−1, ∀r ∈ R, j ∈M (3.22)

φrs j ≤ ars, ∀r ∈ R,s ∈ S, j ∈M (3.23)

φrs j ≤ xr j, ∀r ∈ R,s ∈ S, j ∈M (3.24)

φrsi ≥ ars + xr j−1, ∀r ∈ R,s ∈ S, j ∈M (3.25)

Finally, the previous defined expression of delay can be rewritten into its linearized
version as follows,

min ∑
r∈R

∑
s∈S

Fηrsars

R̃r
+ ∑

r∈R
∑

i∈M
(C f (r)ixri +

Fηrsφrsi

f i
V

)+

∑
r∈R

∑
i∈M

∑
j∈M

(
Ci jξri j +(Wr j +C j f (r))yr j +ψr jD

)
+

∑
r∈R

∑
i∈M

∑
k∈K

Pf (r)kCik(xri + yri) (3.26a)

s.t. (3.12)

∑
r∈R

∑
l∈Lr

hrl jOl ≤Θ j,∀ j ∈M (3.26b)

∑
r∈R

(xr j + yr j)≤ ∆ j,∀ j ∈M (3.26c)

∑
l∈N

hrl j + ε ≤ Lr +U(1−q j)∀ j ∈M,r ∈ R (3.26d)

zr j = 1−q j, ∀ j ∈M,r ∈ R (3.26e)

∑
j∈M

xr j = 1,∀r ∈ R (3.26f)

48

3.3 System Model

∑
j∈M

yr j = 1,∀r ∈ R (3.26g)

(21)− (29) (3.26h)

ars,xr j,yr j,hrl j,zr j,q j ∈ {0,1},
∀r ∈ R, j ∈M, l ∈ Lr,s ∈ S (3.26i)

ψr j,ξri j,φrs j ∈ {0,1},∀r ∈ R, i, j ∈M,s ∈ S (3.26j)

The relation between uploaded frame size and its accuracy can be given below by an
approximation function in [67],

f (s) = 1−1.578e−6.5×10−3s (3.27)

Note that the RMSE (root mean square error) of function f (s) is less than 0.03 [67].
Thus, the product f (s)ars can transfer frame lengths into discrete values with high accuracy.

Finally, the frame selection, EC allocation and route decision problem in the MAR
system can be transferred into an optimization problem,

min F = µ
T

Tmax
− (1−µ) ∑

r∈R
∑
s∈S

f (s)ars

f (s)max

= µ
T

Tmax
− (1−µ)

|R| ∑
r∈R

∑
s∈S

f (s)ars (3.28a)

s.t. (3.12), (3.26b)− (3.26j) (3.28b)

Where µ ∈ [0,1] is the weight parameter, T is the objective function shown in (3.26a)
and f (s)max is assumed to be 1. The above described integer linear optimization problem
due to the combinatorial nature can not be solved efficiently for large network instances.
State of art branch and bound techniques can help finding the optimal solution for low to
medium size network instances. Hence, metaheuristic algorithms are needed to provide
competitive solutions whilst being amenable for real-time implementation.

3.3.3 A Simulated Annealing Based Heuristic

Although the proposed scheme can provide an optimal decision making, suffers from the
curse of dimensionality due to the combinatorial nature of the mixed integer linear program
(MILP). To this end, a Simulated Annealing framework is developed that evolves from a
basic greedy solution and avoids sinking into local optima (please refer to [108][30] and
references therein regarding the specifics of the simulated annealing framework). In this
chapter, a Simulated Annealing based algorithm firstly starts with a greedy scheme that
selects an EC which is close in distance (Euclidean) to the user and then continuously

49

3.3 System Model

switching to neighbor solutions to identify ones that increase the quality of the objective
function. The typical cooling process of Simulated Annealing allows a quick decision
making stage and accepts worse case sometimes in a smaller and smaller range during itera-
tions [108][30]. The pseudo-code of the proposed SA-based mobility aware AR algorithm
(SAMAR) is shown in (1). Temperature T can be calculated from T = 0.93k g

200 , where g
is the frame length and k is the current number of iterations (k ∈ [1,500]). Normalizing
the gap between neighbor solutions over the temperature through exp−

f (k)− f (k−1)
T into (0,1),

we get the probability on accepting the solution f (k) even if it’s worse (f (k)≥ f (k−1)).
Noticing that the temperature goes down with the number of iterations, the probability
becomes smaller as well. Thus, the SAMAR schemes also accepts the worse solution in
a decreasing probability. From (1), the first loop generates a basic greedy solution based
on the distance and CPU frequency. Then multiple iterations are applied to explore its
neighbor solutions to find a solution of increased quality. The neighbor solution means
that compared with the original solution, only one request’s assignment or frame length
choice is changed randomly to another feasible one. SAMAR accepts a better solution
and an inferior one within a probability controlled by the temperature parameter. Its time
complexity is O(n2) since the most complex nested loop shown by the pseudo code is in 2
layers, which takes n2 times to finish at the worst case (e.g. going through each request
and then each available frame length to achieve results from formula 3.28a).

3.3.4 A Long Short Term Memory (LSTM) Neural Network Based
Scheme

To increase the efficiency and reliability in responding to the changes in the network
conditions, a LSTM neural network based scheme with its time complexity as O(n2)

is developed in this section. It is a well known and used machine learning technique
that avoids gradient vanishing and gradient exploding through keeping the important
information and key features in the long term while forgetting unnecessary inferences
[40][125]. Hence, in this chapter, it is utilized to learn from optimal solutions and provide
high quality decision making during the inference phase in an efficient manner. Regarding
the service requests the possible destinations in terms of selecting edge cloud support are
limited to the adjacent servers compared to the current location of a user and is denoted as
dr ∈ K for each request. According to previous notations, routing paths per request are
pre-defined and denoted as RTr = [f (r),xri,yr j,dr]. The set of this matrix RT is provided
by the optimal scheme described in the previous section (denoted as Optim in the sequel).
During training, initial locations and destinations of requests can be fed as input and
decisions of where to anchor MAR functionalities can be provided as the output. Thus,
the route matrix can be separated into Xr = [sr,dr] ∈ X and Yr = [xri,yr j] ∈ Y. Most

50

3.3 System Model

Algorithm 1 SAMAR
Input: requests R, EC list ECL, weight µ, distances between servers C, frame length set

G, destinations set K
Output: server assignment A, chosen frame length CFL

1: for r ∈ R do
2: ECL← sort servers by its distance to starting

point s(r) and all possible destinations K;
3: FL← select n closest servers in ECL and sort

again according to vcpu frequency;
4: A← select {i, j} from top servers in FL;
5: if free VM at i == 0 then
6: ECL← remove i-th server;
7: end if
8: if free VM at j == 0 and i ̸= j then
9: ECL← remove j-th server;

10: end if
11: for g ∈G do
12: f (g)← value of formula (3.28a) with

assignment A and frame length G;
13: end for
14: f (0),CFL← minimum f (g) and corresponding g;
15: end for
16: for k = 1→ BOUND do
17: {A′,CFL′}← swift to neighbor solution
18: f (k)← value of formula (3.28a) with assignment

A′ and CFL′;
19: p← a random number from 0 to 1;
20: if f (k)< f (k−1) then
21: {A,CFL}← {A′,CFL′}
22: else
23: if p < exp−

f (k)− f (k−1)
T then

24: {A,CFL}← {A′,CFL′}
25: end if
26: end if
27: end for
28: return {A,CFL}

51

3.4 Numerical investigations

routes inside consist a training set while the rest of them are applied for testing. Thus,
XTrain,XTest ⊂ X and YTrain,YTest ⊂ Y are denoted to differentiate training
and testing sets. The predictions made by this scheme are denoted as Pred. Firstly, the
Optim scheme is executed to provide the optimal decision making for anchoring MAR
functionalities to different ECs. The process from obtaining optimal solutions to providing
predictions is presented in Fig. (3.5). YTrain is adapted to the categorical type to enable
the scheme to complete the classification work. Selecting any two different access routers
from the set K give K2 different types of results. Hence, each assignment is allocated
a unique index Indr ⊂ {1, ...,M2} to differentiate its type. During training, the scheme
will aim to classify and fathom out the relation between input sets. Then, the predictions
are provided and transferred back for Feasibility Check. This stage will check whether
the predictions can still fit the original network settings and satisfy all constraints. If an
overloaded EC is selected, the request will be sent to a core cloud deeper in the network
and as a result this allocation will trigger an extra penalty. The predictions are finally
compared with the optimal solutions to evaluate the quality of the LSTM-based scheme.

Fig. (3.6) shows the architecture of the LSTM-based scheme. The LSTM layer follows
the nominal design without modifying its state changing and gate controlling formula.
Therefore, the potential of nominal LSTM network for service decomposition is explored.
A dropout layer follows the LSTM layer to avoid over-fitting by setting a random number
of elements to 0 (rand(size(X))< P, X is a layer input and P is a self-defined probability)
and scaling other elements by 1

1−P [97][60]. Two sets of such layers are applied to improve
the overall performance. Then, a fully connected layer multiplies a weight matrix and adds
a bias vector to the result in order to combine features and learn the underlying pattern
[32][37]. Since the logistic sigmoid function is a smooth curve in (0,1) and good at classify
sets without very large differences,it is applied as the output activation function in the
softmax layer [12]. Finally, the classification layer calculates the entropy loss at the current
time step t, denoted as yt . This process is repeated until the training phase is concluded
and then the resulting LSTM neural network can be used for real-time prediction at the
inference stage.

3.4 Numerical investigations

3.4.1 Parameterization

In this section, the proposed schemes are investigated and compared vis-á-vis with baseline
schemes to assess their performances through a wide-set of numerical investigations.

Throughout the simulations, the wireless transmission rate from MAR device to the
access point under 5G environment is set in the range of 100 to 120 Mbps. Each EC is

52

3.4 Numerical investigations

Fig. 3.5 Working process

assumed to have a physical CPU with 8 cores and 16GB memory [124][117]. The CPU
frequency is generated randomly for each EC ranging from 2 to 4 GHz [117][68]. Each
VM in an EC is assumed to take up the CPU resources equally and hence virtual CPU
frequencies between these VMs can also be equally split [68]. In each EC, up to 14 VMs
are assumed to be available. In addition, the computation load ω at each EC is assumed as
10 cycles/bit [113]. The communication latency between the terminal and target ECs can
be achieved through adding link delays in the shortest path. The average latency for each
hop is assumed to be 2ms, including propagation delay and queuing delay [89][9]. When a
cache miss takes place, the corresponding penalty is triggered and set as 25ms. A tree-like
topology is created as presented in Figure (3.3) and is supported by dense ECs (20 in total).
Because MAR applications are not necessary to run on every EC in the network, only a
random subset of ECs are assumed to be active in simulations.

53

3.4 Numerical investigations

Fig. 3.6 Layered structure of LSTM-based model (at time step t)

The majority of AR applications tend to apply square shaped frames or vision markers
due to its advantage in providing multiple co-planar corresponding points [119]. To
balance the usability, efficiency, accuracy and reliability, frame lengths like VGA (640×
480 pixels) and Stefan (352× 288 pixels) are accepted as suitable ones, such as for
example in ARCore, ARToolKit and MixedRealityToolKit [96][119][93]. Although some
AR applications could handle high resolution images, a small-sized region of markers
(from 200× 200to514× 414 in VGA sized frames) are uploaded for processing when
focusing on its marker detection system such as for example in ARToolKit (ATK) or in
Siemens Corporate Research (SCR) [119]. Hence, in this chapter, the average length of
uploaded video frames (or region of markers) to the EC is chosen from the following
set: {200× 200,400× 400,600× 600,800× 800} (pixels). These video frame lengths
can be translated to approximately 0.12MB to 2MB in terms of data size [67]. After

54

3.4 Numerical investigations

extracting features from frames, each compact feature representation (using fisher vectors
for example) are around 25KB ([100,300]KB in total) [78]. Each ARO is (0,50]MB
[117] and we assume that follows a normal distribution. Since we simulate in a small
scale network, a nominal LSTM network, including a single LSTM layer is utilized. The
acceptable validation accuracy is set above 85% and if the trained network only fits the
training set without satisfying this requirement for other testing sets (over-fitting), the
network has to be retrained with fewer neurons and a larger dropout rate. In the simulation,
we start from 100 neurons and reduce by 5 until finding a suitable LSTM network with
80 neurons. 90% of 300 route vectors with corresponding optimal decisions are used
for training, while the rest 10% are used for validation. The initial learning rate is set to
0.005, the maximum number of epochs is 160 and the dropout probability is 5% to avoid
over-fitting. These key parameters used in the numerical investigations are summarized in
Table (3.2).

Table 3.2 Simulation parameters

Parameter Value
Number of available ECs 6

Number of requests [20,40]
AR object size (0,50] Mbyte

Total moving probability [0,1]
Frame length {2002,4002,6002,8002} pixels

Compact feature representations [100,300] KByte
CPU Memory Capacity 16 GByte

CPU frequency 2−4 GHz
CPU cores 8

CPU portion per VM 0.125−0.25
Computation load 10 cycles/bit

Wireless transmission rate [100,120] Mbps
Average hop’s latency 2 ms

Cache miss penalty 25 ms
Number of user route vectors / optimal decisions 300

Initial LSTM learning rate 0.005
Maximum number of epochs 160
LSTM Dropout probability 5%

The weight parameter (µ) as defined in (3.28a) belongs to [0,1] while the assumed β

value for the FACT scheme is a positive number (the assumed range is [0,100] in [67]).
When implementing the FACT scheme for comparison, detailed settings of simulation in
[67] are adjusted according to the system settings in this work. Besides, cache limit and

55

3.4 Numerical investigations

cache miss penalty are not considered in FACT [67]. During implementation, the penalty
is triggered whenever FACT’s solution excesses the limit. In order to compare the two
schemes fairly, after deciding a value for µ , we calculate the corresponding accuracy in
the proposed scheme and then experiment with different β values for the FACT scheme
to find a suitable one so that both schemes share the same level of accuracy. The relation
between the weighting parameters µ and β when sharing a common level of accuracy is
presented by Fig. (3.7). It shows a very different tendency between the FACT scheme and
the proposed optimal framework based on mathematical programming. For example, when
our proposed scheme sets the weight µ as 0.5 which regards accuracy and latency as equal,
the weight β of the FACT scheme is only 20 to achieve the same level of frame accuracy.
As pointed out by authors in [67], such a small value indicates a decreased importance on
the frame accuracy. Hence, by considering also mobility, service decomposition and an
increased set of constraints, the proposed scheme is able to provide better decision making
and hence increase the performance of the application. The comparison of service delay
with the same level of frame accuracy are discussed in detail in the next section.

Fig. 3.7 Relation between weight parameters µ and β

Three other schemes are also designed for comparison reasons. These are the random
selection scheme (RandS), the closest-first scheme (CFS) [101] and the utilization based
scheme (UTIL) [95]. The RandS scheme randomly selects an available EC and picks a
free VM from the selected EC. The CFS scheme focuses on the nearest EC to the user and
accepts an available neighbor EC as a backup choice [101]. Similarly, the UTIL scheme
selects the closest EC at first but will turn to neighbor least loaded ECs if the closest server
is highly utilized (for example over 80% of the total VMs are occupied) [95]. Note that
the penalty still works for the above schemes when their first and backup choices are all

56

3.4 Numerical investigations

not feasible in the network. Overall delay and after mobility event delay are defined here
for a more in-depth analysis of different schemes and a detailed comparison. The overall
delay includes the aggregated latency consumed in communication and is in essence the
result of formula (3.28a). However, the so called "after mobility event delay" captures the
communication process and acquired delay between the assigned EC and the potential
destinations. The results reported below are average values stemming from 50 Monte
Carlo simulations.

3.4.2 Simulation Results

As eluded in the related work section, mobility awareness in edge cloud support is one of
the main difference between the proposed schemes and other schemes. The LSTM scheme,
which is trained by the Optim scheme, is able to capture efficiently the effect of mobility.
Table (3.3) evaluates the impact of the total moving probability on the performance of
schemes’ delay (the results presented are for 30 Requests, the value of the weight µ is
equal to 0.5 and we assume 14 units for the EC capacity). Observe from rows 1-6 in
table (3.3) that the delay reduction achieved by the Optim scheme is increasingly more
significant compared to the other schemes when the total moving probability increases.
Note that, as expected, all schemes share a similar level of overall delay when there is
enough capacity and no mobility. As compared with the FACT scheme, the Optim scheme
reduces delay up to 8% and maintain the similar frame accuracy (β = 20) when the total
moving probability increases. From row 7-12 in table (3.3), CFS, UTIL and FACT schemes
faced increased delays which is significant evident in the after mobility event because they
always try to deploy the service at an adjacent EC to the end user instead of considering
potential destinations due to mobility effects. Therefore, the Optim scheme owns an
obvious advantage compared to the other schemes in a high moving probability scenario,
especially in the so-called after mobility event.

57

3.4 Numerical investigations

Table 3.3 Combined delay table for different moving probabilities(msec)

P Optim FACT CFS RandS UTIL SAMAR LSTM
0 47.2 47.2 47.6 56.1 50.4 47.4 48.5

0.2 49.4 50.3 50.8 59.1 53.1 49.8 50.9
0.4 51.5 53.5 54.0 62.3 55.7 52.1 52.7
0.6 53.6 56.7 57.3 65.4 58.5 54.5 55.2
0.8 55.8 59.9 60.5 68.6 61.3 57.0 57.2
1 58.2 63.2 63.8 71.8 64.1 59.7 59.9

Overall delay for schemes under different moving probabilities
0 0 0 0 0 0 0 0

0.2 10.6 12.0 12.2 11.2 12.4 10.8 10.8
0.4 21.3 24.1 24.6 22.7 24.7 21.6 21.7
0.6 32.0 36.1 36.9 33.9 37.0 32.4 32.6
0.8 42.5 48.1 49.2 45.4 49.4 43.1 43.4
1 53.2 60.2 61.5 56.7 61.8 53.9 54.2

After mobility event delay for schemes under different moving probabilities

Fig. 3.8 Overall delay for schemes under different EC capacities (P=1, µ = 0.5 and 30
requests)

58

3.4 Numerical investigations

Fig. 3.9 Difference in performance between LSTM and Optim

Fig. 3.10 After mobility event delay for schemes under different EC capacities (P=1,
µ = 0.5 and 30 requests)

Another aspect is the available EC capacity, i.e., the number of unused VMs in an
activated EC. Although the FACT scheme does not explicitly utilize the notion of VMs
as is the case of the proposed schemes and the Optim framework in this chapter, it still
has computing capacity measured by TFLOPS [67]. Thus, by translating this computing
capacity to EC capacity, results of the FACT scheme can be compared with others’. The

59

3.4 Numerical investigations

range of EC capacity is 10 to 14 and the corresponding computing capacity in the FACT
scheme is 0.63 to 0.88 TFLOPS. As shown in Figure (3.8) and (3.10), when EC capacity
increases, the average delay for all schemes decreases because an increased available
capacity usually leads to a better potential solution and a lower probability of overload and
cache miss. Notice that the UTIL scheme is more sensitive to capacity than others and
hence has the fastest dropping rate. The RandS scheme is worse in overall delay than CFS,
FACT and UTIL schemes, but is better in the after mobility event. The reason is that the
RandS scheme treats all active servers equally while other three schemes tend to select the
closest server to the user’s initial location. From this figure and Fig. (3.9), the LSTM-based
scheme is slightly better than the SAMAR scheme. It is interesting to show that the gap
between the Optim scheme and the proposed LSTM-scheme is also quite narrow. Different
values of parameters will not interfere its learning process and affect its learning effect.
Therefore, the gap between the LSTM-based scheme and the Optim scheme will maintain
narrow at different network conditions, which reveals the reliability and stability of this
proposed scheme. Clearly, the advantages of the proposed three schemes become more
evident in a congested network. Most greedy schemes tend to allocate MAR services to
a few ECs. They neglect the flexibility of decomposition and hence will suffer from a
serious penalty because of the limited memory space and computing resources in the case
of network congestion episodes.

Fig. 3.11 Overall delay for schemes under different request rates (P=1, µ = 0.5 and 14
units of EC capacity)

We are also looking into the effects of increased number of requests stemming from
mobile augmented reality users which increase network utilization and congestion in the

60

3.4 Numerical investigations

Fig. 3.12 After mobility event delay for schemes under different request rates (P=1, µ = 0.5
and 14 units of EC capacity)

network. The request rate is defined as the number of requests served in the given short
time slot. As expected, both types of delay has an increasing trend for all schemes as
the request rate increases but the Optim scheme seems to better maintain lower overall
latency with a slower ascending trend. These findings are illustrated in Figure (3.11)
and Figure (3.12). Observe that the CFS and FACT schemes witness an increased delay
and this is because their EC selection methods create several "hot spots" areas and these
"hot spots" lead inevitably to higher delays as the number of requests increases. Also,
the UTIL scheme by redirecting requests to adjacent ECs when an EC is operating at
more than 80% utilization make this scheme also this scheme more vulnerable to network
congestion episodes due to increased number of requests. However, it performs better
under a low utilization level in a mobility event due to its balanced workload. Finally, the
proposed SAMAR scheme approaches the Optim scheme and is less sensitive to increased
congestion compared to the other baseline schemes.

Table (3.4) shows the variation of delay under different values of weight µ (30 Requests,
P=1 and 14 units of EC capacity). The Optim scheme is around 10.2% less than the FACT
scheme in overall delay and around 14.0% less in after mobility event delay. According to
Table (3.4), the SAMAR scheme achieves a similar level of delay to the Optim scheme.
Compared with the SAMAR scheme, the LSTM-based scheme is more stable and only a
bit inferior to the SAMAR scheme with a large weight parameter.

61

3.4 Numerical investigations

Table 3.4 Combined delay table for different weights(msec)

µ Optim FACT CFS RandS UTIL SAMAR LSTM
0 163.7 177.8 179.3 184.2 180.8 167.1 165.4

0.2 104.9 114.2 115.3 122.6 116.1 108.0 106.5
0.5 58.2 63.1 64.3 71.7 64.1 59.6 59.6
0.8 29.5 33.9 34.9 41.7 35.5 30.7 30.8
1 29.4 33.9 34.8 41.6 35.3 30.5 30.7

Overall delay for schemes under different weights
0 158.9 174.7 176.7 169.4 177.1 161.5 160.8

0.2 100.3 111.0 112.7 107.8 113.3 102.6 102.9
0.5 53.2 60.2 61.3 56.7 61.9 53.8 54.7
0.8 24.7 30.9 32.3 26.8 33.2 25.3 25.9
1 24.7 30.8 32.2 26.8 33.1 25.2 25.9

After mobility event delay for schemes under different weights

In simulations, when comparing predictions (LSTM-based) and optimal solutions
(Optim), we get rmse < 1 (root mean square error), δ < 11% (relative error) and r2 >

0.88 (determination coefficient) in most of the cases. This is a clear indication that the
predictions can be deemed as reliable and highly competitive to the optimal solutions.
According to Formula (3.29) and (3.30), small values of rmse and δ indicate that the LSTM-
based scheme generates a decision policy that closely resembles the optimal solution. The
comparison of rmse values of all schemes is shown by Table (3.5). The indexes have a
location information, i.e., access routers which are topologically close have also adjacent
indices. The user mobility is limited to adjacent servers within each period for active
MAR sessions. Thus, the high similarity to the optimal solutions indicates the high-
quality solutions of the LSTM-based scheme. In addition, the value of r2 also reveals that
the LSTM-based scheme has a strong fitting ability in the MAR service decomposition
problem. It is rarely the case in experimentation when the request is served by a remote
cloud server, hence triggering a penalty. The variation of training and validation accuracy
is shown in Fig. (3.13). The LSTM-based scheme gradually increases its decision making
quality and closely follows the training set. The training and validation accuracy increase
with iterations and eventually converge at 93.6% and 88% respectively.

rmse =

√
∑

n
i=1 (Y Testi−Y Predi)

2

n
(3.29)

δ =
∑

n
i=1

∣∣∣ Y Testi
Y Predi

−1
∣∣∣

n
×100% (3.30)

62

3.4 Numerical investigations

Table 3.5 RMSE Values of All Schemes

Algorithm LSTM RandS CFS FACT UTIL SAMAR
RMSE 0.9 6.8 1.9 1.5 3.4 1.3

Fig. 3.13 Training and Validation Accuracy with increasing iterations

Fig. 3.14 Average execution time of the training phase (30 Requests and 14 units of
Capacity)

63

3.5 Conclusions

Compared with the Optim scheme, the SAMAR scheme and the inference stage of the
LSTM-based scheme are efficient in terms of complexity. The computational complexity
of the SAMAR scheme is O(n2). According to (3.6) (executed once), the SAMAR scheme
has a slight increased complexity compared to RandS, CFS and UTIL. Although relaxing
an ILP into an LP problem in general greatly reduces the computational time for FACT[67],
constructing and solving linear programming optimizing problems still consume more
time than other schemes. The Optim scheme solves a complex MILP problem and hence
is the most time consuming one. As shown by Fig. (3.14) and (3.6), the LSTM-based
scheme suffers from a time consuming process for obtaining the solutions for network
training, but its inference stage itself is efficient compared with other algorithms. Note
that its solution obtaining and network training stage only needs to execute once offline,
its efficient inference stage is more dominant in the whole process. However, it is also
possible to train the LSTM neural network with advanced metaheuristic algorithms (like
SAMAR for example) and provide real-time decision making during the inference phase.

Table 3.6 Processing time of algorithms

Algorithm Average Processing time(sec) STD
RandS 1.076 0.151
CFS 1.083 0.156
UTIL 1.091 0.155

SAMAR 1.497 0.163
FACT 2.132 0.447
LSTM 1.727 0.205
Optim 201.506 21.965

*tested in a PC with intel i7, 6500U, 2 cores

3.5 Conclusions

Mobile augmented reality applications are still in a rather embryonic state but they cur-
rently attracting significant attention from both academia and industry stemming from
the increased capabilities offered from the network side as well as the terminals. The
ability of augmented reality services to overlay digital content over the physical space
and surroundings results in an immersive metaverse type of environment which open up
the possibility for a plethora of potential use cases and applications. As with respect to
mobile wireless networks, mobility has been proved to be an important factor in service
latency of MAR systems. Previous research mainly focused on various techniques of

64

3.5 Conclusions

offloading processing without considering the decomposition of MAR functions and the
effect of mobility in an explicit manner. To this end, this chapter proposes an optimization
framework that considers a rich set of augmented reality specific constraints, provides
service decomposition and allows a trade off between service latency and frame accuracy
to improve the communication efficiency. Based on this scheme, a simulated annealing
based mobility aware AR (SAMAR) algorithm and a long short term memory based
scheme (LSTM) neural network for predicting edge clouds for anchoring MAR functions
are designed for achieving high-quality solutions whilst being amenable for real-time
implementation. Both proposed schemes deliver competitive performance and focusing on
the inference stage, the long short term memory based scheme (LSTM) shows enhanced
performance and shorter execution time.

As illustrated by a wide set of numerical investigations, the proposed set of solutions
can efficiently decompose the augmented reality service to available edge cloud resources
by considering mobility patterns of users and hence increase the quality of decision making
compared to other previously proposed and baseline schemes.

This chapter focuses on basic mobility scenario that transfers user physical mobility
into moving probability and the actual moving traces are not tracked. The utilization of
a random tracing model might greatly makes the work more practical but this requires
more efforts on the moving process and a much deeper exploration in changes of view
points during the mobility event. Current solutions hanlde requests together in the service
time slot and directly sacrifice frame accuracy for better latency. This also indicates the
limitation that, some users sending out requests late in the time slot might suffer from both
low quality and late response. In following chapters, we further think about user view
points and other potential trade-offs that might partly overcome the limitation.

65

Chapter 4

Field of View Aware Proactive Caching
for Mobile Augmented Reality
Applications

Based on the previous chapter, we further extend the research into multiple 2D field of
views (FoVs) of 3D AROs. When confronted with limited resources, we propose a novel
trade-off between service quality and latency through replacing some AROs by their most
popular 2D FoVs.

4.1 Introduction

The work in [42] shown by Chapter 3 outlines how a MAR application can be decomposed
into a series of granular micro-services together with an optimization framework to provide
optimal pro-active mobility-aware decision making in terms of EC assignment. As illus-
trated in Fig. (4.1), the captured video of a MAR application is preprocessed at the terminal
and then frames with AR objects are transmitted for detection, extraction and recognition.
The local cache is searched to find if there is a match. Finally, the matched results are
transmitted back for presentation. According to their features, these MAR functions are
categorized into two types: computational intensive ones that require significant CPU
resources and storage intensive ones that require significant cache resources. Clearly, they
have a predefined order when working as a service chain. When there is no mobility, it
could be possible to deploy the MAR application at a single server. However, it is clear
that, without decomposition, the complete MAR application uses significant levels of CPU
and cache memory resources. On the other hand, decomposition allows a more flexible
allocation but the proactive caching is still not necessary here because there is no target
objects distributed in the area. When bringing in both AR objects and the user mobility, an

66

4.1 Introduction

isolated module could be designed to provide predictions for proactive resource allocation
according to target AROs and the user’s possible future destination [2]. Thus, the given
prediction not only contains where to set functions and send requests, but also indicates
what AR content should be allocated to the target server.

Fig. 4.1 The flow of the different nominal mobile AR functions, their characteristics and
the potential location where those functions can run (terminal and/or at the EC).

Fig. 4.2 Possible FoVs from different viewpoints on street (a) and Example FoVs of the
target ARO (b)

As illustrated in Fig. (4.2), the different field of views (FoVs) can be achieved when
viewing the target ARO from different positions and two such typical 2D projections of
the target 3D ARO are presented as examples. Comparing with caching 3D AROs, which
are usually in the order of tens of Mbytes in terms of size[117], caching their 2D counter-
parts from given FoVs can be another choice. These 2D FoVs are only several hundred
KBytes in size and can also be easily reconstructed or conversed back (if needed) into
3D objects through algorithms like correlation-based, tracking-based and deep extraction
[77][102][41]. In addition only few FoV can be deemed as of interest. For example the
work in [8], collected and analyzed 295500 viewpoint samples from 153 volunteers. Sub-
sequently, they splitted a 360° range into several groups; for example, in 90% of time, the
X, Y and Z angles are within −15.31◦ ∼ 15.06◦, −34.73◦ ∼ 35.14◦, and −8.61◦ ∼ 8.62◦

[8]. This means the user prefer to observe the target in this angle which makes such FoV a
popular one. In [8][55] and [122], the probabilistic model are developed and learn from
the historical data of FoVs. According to results in [8], when considering applying 2D

67

4.1 Introduction

figures as an alternative, it is reported that up to 80% bandwidth can be saved through
caching only figures of popular FoVs. In addition, 3D AROs are more complex and the
matching function requires a pose calculation stage for them. Thus, 3D AROs suffer from
a higher computation complexity and require more computing resources. Although proac-
tive caching 2D FoVs with high probability cannot always ensure the proper pose of the
target ARO, it owns an obvious advantage in massively reducing caching and computing
resources requirements. Clearly, more stored FoVs per ARO leads to a higher probability
of a cache hit during matching but consumes more cache space and more processing delay.
The differences between nominal caching and pro-active caching for MAR applications in
this chapter is further revealed by Fig. (4.3). Therefore, the joint optimization problem
in this chapter subjects to strict edge resources constraints and seeks the balance between
service latency and allocation of FoVs in the mobility event.

Fig. 4.3 Pro-active Caching for MAR

Constructing and solving a complex mixed integer linear problem is quite time-
consuming and cannot respond to network changes in time. Therefore, the previous
scheme should be improved to take into account both high-quality solutions and compu-
tational efficiency. Leveraging machine learning (ML) techniques on the network, such
as neural networks or reinforcement learning, are considered to have the potential to
solve resource allocation problems in different types of networks [10][73][53]. Thus, a
well-known ML technique, long short term memory (LSTM), is applied in this chapter to
learn from optimal solutions and provide reliable predictions. LSTM is widely accepted as
an enhanced recurrent neural network due to its ability in memorizing significant infor-
mation and forgetting unnecessary inferences to overcome potential gradient vanishing
and gradient exploding problems [40][125]. As pointed out by our previous work [42], the
execution sequence of two main types of functions is pre-defined during the decomposition
of MAR services. Therefore, the correct order of the path could be figured out whenever the
assignment is provided. An extra feasibility check stage is added to ensure the predictions
can still satisfy constraints and fit the original network environment.

As discussed earlier, the obvious advantage in saving edge resources when caching 2D
FoVs motivates our research in its optimization problem. The mathematical programming

68

4.2 System Model

formulation consists of the service latency based on [42], the size and allocation of
pre-cached 2D FoVs; in that case, an edge cloud resource allocation joint optimization
framework is proposed to proactively allocate resources and to satisfy related requirements
of MAR applications. The user mobility is considered explicitly and the overall delay
is minimized as a multi-objective optimization problem. Although the optimal solution
is desirable however such a framework cannot be used to provide real-time decision
making since solving a mixed integer mathematical program suffers from the curse of
dimensionality which means that requires significant amount of time to provide a solution.
Therefore, in this chapter, an LSTM-based approach is further explored where the optimal
solutions are used to train the deep neural network in an offline manner.

4.2 System Model

Similar to Chapter 3, a set M= {1,2, ...,M} is defined to represent the available ECs in
the network and multiple users are assumed to create MAR service requests r ∈ R. With η

and ρ we also define computational intensive and storage intensive MAR functionalities
respectively [42]. The allowed destinations for a user are limited to adjacent access routers.
Thus, The probability of a user moving from the initial location to an adjacent server can
be defined as pri j ∈ [0,1], where adjacent servers {i, j} ⊂M. The location of executing
one functionality for a request can be denoted as Lηr ∈M or Lρr ∈M. Also, in a typical
MAR service, each request requires the execution of two functionalities in a pre-defined
order [42]. Thus, the assignment of one request can be arranged according to the route
of its flow. The route matrix can be denoted as RTr = [sr,Lηr,Lρr,dr]. This matrix can be
provided by the optimal scheme and consist a route assignment set RT [42]. In LSTM
training, requests’ initial locations and their destinations can be fed as inputs and decisions
of where to anchor MAR functionalities can be treated as the output. Thus, we further
split the route matrix into Xr = [sr,dr] ∈ X and Yr = [Lηr,Lρr] ∈ Y. The major part of
the route set RT is used as input and fed into the LSTM-based model for training. The
rest of this set remains as a testing set, Therefore, we denote with XTrain,XTest⊂ X
and YTrain,YTest ⊂ Y to differentiate training and testing sets. The output is the
predictions made by the trained model and hence denoted as YPred.

At first, a joint optimization scheme considering the service delay, the total size and
allocation of pre-cached FoVs is designed to track the MAR requests in the network.
Denote p ∈P as a 2D FoV to observe an 3D ARO. Then the decision variable hrl j in [42]
can be rewritten as hp

rl j that decides whether to pre-cache the FoV p of the ARO l required

69

4.2 System Model

by the request r at the location j.

hp
rl j =

1, if the FoV p of an ARO l required

by the request r is cached at node j,

0, otherwise.

(4.1)

With extra constraints,
∑
j∈M

∑
l∈N

∑
p∈P

hp
rl j ⩾ 1, ∀r ∈ R (4.2)

∑
r∈R

∑
l∈N

∑
p∈P

hp
rl j ⩽ 1, ∀ j ∈M (4.3)

(4.2) means at least one FoV of an ARO is required by each request. (4.3) means even
the same FoV is required by different requests at the same location, it only needs to be
pre-cached once. Then the decision variable for cache hit/miss can be written as,

zr j =

1, if ∑

l∈N
∑
p∈P

hp
rl j ⩾ Lr,

0, otherwise.
(4.4)

The constraints (19b) and (19d) in [42] that reveal the cache limitation and the cache
hit/miss relation can be updated as,

∑
r∈R

∑
l∈Lr

∑
p∈P

hp
rl jl

p
r j ≤Θ j,∀ j ∈M (4.5)

∑
l∈N

∑
p∈P

hp
rl j + ε ≤ Lr +U(1−q j)∀ j ∈M,r ∈ R (4.6)

where ε is a small positive real number [42]. More pre-cached FoVs lead to an extra
burden for processing the matching function. Hence, denote the size of a FoV p of an ARO
l at location j as lp

r j. The processing delay of the matching function can be written as,

Wr j =
ω(Fρr +∑l∈N ∑p∈P hp

rl jl
p
r j)

f j
V

(4.7)

Where ω is the computation load and Fρr is the extracted features defined in [42]. Noticing
that when processing the matching function at the location j (Wr jyr j), the production of
decision variables hp

rl jyr j appears inside and can be handled through bringing in a new
decision variable α

p
rl j with following constraints,

α
p
rl j = hp

rl jyr j (4.8a)

70

4.2 System Model

s.t.α p
rl j ⩽ hp

rl j (4.8b)

α
p
rl j ⩽ yr j (4.8c)

α
p
rl j ⩾ hp

rl j + yr j−1 (4.8d)

The service latency L maintains the same as (19a) in [42] and Lmax here means the
maximum possible latency. Thus, we have,

L
Lmax

∈ [0,1] (4.9)

The total size of pre-cached 2D figures can be written as,

S = ∑
r∈R

∑
j∈M

∑
l∈N

∑
p∈P

hp
rl jl

p
r j (4.10)

Smax here means the maximum allowable size of pre-cached FoVs. The allocation of FoVs
of an ARO at a location is ∑r∈R ∑p∈P hp

rl j. Denote t p
l j ∈Tlj as the probability of viewing a

certain FoV at the location. Due to the cache size constraint, sometimes not all FoVs but
only several preferred ones of a target ARO could be cached. For one ARO, maximizing
probabilities means caching its FoVs in an descending order of probability. Then, we sum
probabilities of all cached FoVs of all target AROs to allow the algorithm to cache the
most preferred FoVs. Thus the summary reveals the quality of FoV allocation and can be
written as,

A = ∑
j∈M

∑
l∈N

∑
r∈R

∑
p∈P

hp
rl jt

p
l j (4.11)

Amax here means the sum of probabilities of all available FoVs of target AROs. As
mentioned earlier, if the cache space is limited, pre-caching several FoVs with higher
probabilities from multiple AROs is better in achieving a better quality than storing the
same number of FoVs but from only several AROs. In addition, Tlj is defined as a
descending probability vector and t p

l j inside can be achieved through,

t p
l j =

{
1, if p = 1,

rand (t p−1
l j), if p > 1.

(4.12)

Where the function rand(x) means generating a random number within [0,x]. Then to limit
the sum of probabilities of an ARO’s different FoVs as 1, the normalization should be done

and each element t p
l j in the vector can be updated by

t p
l j

∑p∈P t p
l j

.

71

4.2 System Model

Therefore, the formula capturing both size and allocation can be written as,

1
2

(
S

Smax
+

A
Amax

)
∈ [0,1] (4.13)

Denote the weight parameter as µ ∈ [0,1], the joint optimization problem can eventually
be written as,

min µ
L

Lmax
− 1−µ

2

(
S

Smax
+

A
Amax

)
(4.14a)

s.t. zr j = 1−q j, ∀ j ∈M,r ∈ R (4.14b)

∑
r∈R

(xr j + yr j)≤ ∆ j,∀ j ∈M (4.14c)

∑
j∈M

xr j = 1,∀r ∈ R (4.14d)

∑
j∈M

yr j = 1,∀r ∈ R (4.14e)

ξri j ≤ xri, ∀r ∈ R, i, j ∈M (4.14f)

ξri j ≤ yr j, ∀r ∈ R, i, j ∈M (4.14g)

ξri j ≥ xri + yr j−1, ∀r ∈ R, i, j ∈M (4.14h)

ψr j ≤ zr j, ∀r ∈ R, j ∈M (4.14i)

ψr j ≤ yr j, ∀r ∈ R, j ∈M (4.14j)

ψr j ≥ zr j + yr j−1, ∀r ∈ R, j ∈M (4.14k)

xr j,yr j,h
p
rl j,zr j,q j,α

p
rl j,ψr j,ξri j ∈ {0,1},

∀r ∈ R, j ∈M, l ∈ L, p ∈ P (4.14l)

(4.2), (4.3), (4.5), (4.6)

(4.8b), (4.8c), (4.8d)

The constraint (4.14b) together with updated constraints (4.5) and (4.6) reveal the relation
between pre-caching decisions and the cache miss/hit for each request[42]. The constraint
(4.14c) is the cache limitation while (4.14d) and(4.14e) forces the once execution of each
function of a request at a single server as explained in [42]. The constraints (4.8b), (4.8c),
(4.8d) and (4.14f) to (4.14k) are brought in to solve products of decision variables for
linearization.

The optimal assignments generated by the aforementioned ILP model are grouped and
reshaped into a route matrix and then separated for training and testing. Since execution
locations for functionalities can only be selected from the set M, all possible different

72

4.3 Numerical Investigations

results can be calculated as selecting any two from M elements with order, which is M2.
For simplicity, each assignment can be given an index to show which type it belongs to.
The LSTM-based model will then classify and create a mapping between the two input
sets. After training, the model will provide its predictions according to the input training
set. The predictions are checked for feasibility in terms if constraints such as cache and EC
capacity limit are satisfied. If for an EC capacity is reached, remaining predicted requests
will be allocated to an available neighbor EC as a backup choice. However, if both ECs
are occupied, then the request is sent to a cloud deeper in the network and, as a result, an
extra penalty is triggered. In order to shed light into the quality of the decision making,
the assignments are compared with the optimal assignments to evaluate the quality of the
LSTM-based scheme. The architecture of the LSTM-based model follows the nominal
design and its state changing and gate controlling follows the original formula. The aim is
to explore the potential of using a nominal LSTM network for service decomposition.

4.3 Numerical Investigations

Hereafter, the effectiveness of the proposed Optim and LSTM-based schemes are investi-
gated via a wide-set of simulations and compared with previously proposed schemes.

We assume a typical tree-like network topology [42], with 20 ECs in total with 4 to
8 ECs being activated and up to 40 requests are sent by MAR devices. The remaining
available resources allocated for MAR support of an EC is assumed to be CPUs with 4 to
8 cores and 16GB memory[42]. Each request requires a single free unit for each service
function (for example a VM) and each 2D FoV of the target ARO is set from 0.1MB to
2MB to cover different use cases [67][77][102][41]. Each ARO is assumed to have up to
4 different FoVs. There are 14 available VMs in each EC, with equal splitting of CPU
resources [42]. Furthermore, available remaining storage for each EC is assumed to range
between 100 to 500 Mbytes for supporting MAR services. As eluded previously, users
move between adjacent access routers from the initial location. Optimal solutions are
calculated based on the proposed Optim scheme and a set of solutions are used to feed the
LSTM neural network. From that set, 90% is fed into the model as a training set while the
rest 10% is used for testing. In the LSTM layer, the initial learning rate is set to 0.005 and
the maximum number of epochs is 160. The probability in the dropout layer is set to 5%
to avoid over-fitting.

The proposed optimization framework (Optim) provides the optimal solutions by solv-
ing the underlying MILP problems [42]. The Mobility Oblivious Allocation scheme (MOA)
finds optimal solutions but without taking the user’s mobility effect into account[42]. Same
as Chapter 3, baseline schemes also include RandS, CFS and UTIL. They are FoV-oblivious

73

4.3 Numerical Investigations

which means storing all FoVs without considering their probability. As shown by Fig.
(4.4), the weighted fraction of stored FoVs’ probability per ARO drops as expected when
the weight µ increases. Table (4.1) shows the weighted fraction of stored FoVs’ size per
ARO under different weights. The value of such factor drops from 0.81 (over 3 FoVs per
ARO) to 0.28 (slightly over 1 FoV per ARO) and hence the Optim scheme can save much
storage resources as expected.

Fig. 4.4 Weighted Fraction of Stored FoVs’ Probability per ARO under Different Weights
(µ)

Table 4.1 Weighted Fraction of Stored FoVs’ Size per ARO under Different Weights (µ)

Weight 0 0.2 0.5 0.8 1
S

Smax
0.81 0.62 0.46 0.34 0.28

According to Fig. (4.5), the proposed Optim scheme has the least delay whilst depicting
a desired insensitivity as the weight increases. The gap between the Optim scheme (µ = 0)
and other baseline schemes increase with the number of requests and hence the Optim
scheme owns an obvious advantage in a more congested network. The greedy schemes
share a common tendency to execute decomposed MAR services on a few ECs. The
flexibility of decomposition is reduced and hence these greedy schemes can suffer a
penalty cost because of the narrow space and limited resources. However, the gains in
delay between Optim schemes with different weights are becoming narrow. Compared
to the CFS scheme, when µ = 0, the Optim scheme has a similar weighted fraction of
stored FoVs’ probability per ARO but can save around 24.4% in terms of delay. When
µ = 0.2, the Optim scheme reduce A/Amax by 16% to achieve around 47% less delay than

74

4.3 Numerical Investigations

the CFS scheme. When µ = 0.5, A/Amax reduced by 29% but for 62% less delay. In an
extreme condition that µ = 1, the Optim scheme saves 67.5% delay but has a 39% loss
in the weighted fraction of stored FoVs’ probability per ARO. Hence, a balance between
delay and amount of FoV cache should be carefully considered. This is also supported by
the narrowing gap between weighted fraction of stored FoVs’ size per ARO according to
Table (4.1). Corresponding average cache hit rate for these Optim schemes in the above
case are shown by Fig. (4.6). When there is enough resources, pre-caching and matching
target AROs at ECs are always better than ignoring them and suffering a much larger
penalty to fetch further cloud data. Thus, the variation of average cache hit rate matches the
variation of latency and clearly reveals that perception quality focus and growing requests
are negative to cache hit. Fig. (4.7) further dives into the case when µ = 0.5 that treats
service latency and user perception quality equally. Obviously, more available VMs at
an EC brings about more potential resources and result in better performance in overall
delay and hence causes a dropping trend as expected. However, when zooming the gap
between LSTM predictions and optimal solutions, we could see that the gap itself is not
stable and might become larger under a large capacity (e.g. capacity is 13). Our Feasibility
Checking Stage ensures each predicted server to be one of the activated server and hence
sometimes have to accept a neighbor available one. Thus, LSTM based scheme might not
keep approaching optimal solutions stably under any condition and in general fit congested
network conditions better.

Fig. 4.5 Average service delay of different schemes under different numbers of requests (6
ECs and Capacity is 14)

75

4.3 Numerical Investigations

Fig. 4.6 Average cache hit rate of Optim schemes in different weights under different
number of requests (6 ECs and Capacity is 14)

According to Table (4.2), the LSTM-based scheme can follow the Optim scheme
closely and performs better when focusing on delay. According to Table (4.3), when there
is no mobility and the network is not in a congested state, different schemes perform
similarly. The Optim scheme shares the same performance as the MOA scheme and is also
close to the CFS scheme. The LSTM-based scheme is only 1.8ms worse than the Optim
scheme. Compared with other baseline schemes, its performance is still acceptable in this
case.

Table 4.2 Delay (ms) for LSTM and Optim under different weights

Weight 0 0.2 0.5 0.8 1
LSTM 64.5 45.4 34.1 29.3 27.1
Optim 60.3 42.8 32.5 28.1 26.2

Table 4.3 rmse values and Delay in no mobility event (µ = 1, 6 ECs, 30 requests and
Capacity is 14)

Scheme Optim LSTM MOA CFS RandS UTIL
Delay (ms) 23.5 25.3 23.5 24.2 28.1 25.6

RMSE - 1.5 7.0 2.6 2.1 4.4

When comparing predictions and optimal solutions, we also have rmse < 1.6 (root
mean square error), δ < 14% (relative error) and r2 > 0.83 (determination coefficient) in
most cases, which indicate the predictions can be deemed as reliable and highly competitive

76

4.3 Numerical Investigations

Fig. 4.7 Average service delay of different schemes with different EC capacities (µ = 0.5,
6 ECs and 30 requests)

Table 4.4 Variation of Training and Validation Accuracy for the LSTM based scheme

Iterations 2 40 80 120 160
Training 22.5 70.9 91.0 98.3 98.4

Validation 21.3 66.2 83.8 93.7 94.3

to the optimal solutions. Small values of rmse and δ indicates that the proposed scheme
generates a very similar version to the Optim’s solution. rmse values compared to the
Optim scheme are also shown by Table (4.3). We note that the indexes have a location
information, i.e., access routers which are topologically close have also adjacent indices.
In addition, the user mobility is limited to adjacent EC within each period which is a
valid assumption for active MAR sessions. Thus, high similarity to the optimal solutions
usually indicates that the corresponding scheme has the ability to provide high-quality
solutions as well. The value of r2 is close to 1 and hence the proposed model shows a
high quality fitting ability in this problem. Clearly, the quality will deteriorate when the
output solution lead to an infeasible allocation. In that case, requests will have to be served
by a cloud server which will entail some penalty. Experimentation showed that this was
rarely the case during the training set but tends to appear in the testing set. As shown by
Table. (4.4), the validation accuracy increases with iterations, gradually appraoches to the
training accuracy and finally maintains stable at around 94.3%. This indicates that the
trained LSTM network could improve its predictions through more iterations and could
approach optimal solutions under given network conditions.

77

4.3 Numerical Investigations

Although obtaining optimal solutions and training the LSTM model based on the Optim
scheme can be time-consuming, the inference stage itself is highly efficient. Also, the
time required to train the network dominated by the time to provide the optimal solutions
as shown in Fig. (4.8) (averaged by 50 executions). The average processing time of
the inference stage is compared with other algorithms in Table (4.5) (executed once).
Considering the fact that optimal solutions obtaining and network training stage only
execute offline, the inference stage has a more dominant effect. Other greedy schemes
need to check and handle different constraints (e.g. capacity and cache size) repeatedly in
iterations and lead to a longer processing time. In the Optim scheme, a complex MILP
problem is constructed and solved to find optimal solutions and hence is the most time-
consuming one. Thus, the inference stage of the proposed scheme is the most efficient
one among all schemes. This is of a significant importance for network operation since it
achieves better performance and takes much less time to provide the decision making than
other algorithms.

Fig. 4.8 Average execution time of the training phase (6 ECs, 30 Requests and Capacity is
14)

Mobile Augmented Reality (MAR) applications are sensitive to the user mobility
and service delay. Service decomposition together with edge clouds allow for a more
flexible resource allocation to better tackle the mobility event with AR objects for MAR
applications. Enabling content-aware caching by storing high probability 2D FoVs instead
of 3D AROs could significantly ease the requirements for storage and computing resources
with limited effects on overall quality. To this end, this work proposes a joint optimization
framework considering the balance between service delay, field-of-view aware proactive
caching and FoV allocation. Furthermore, an LSTM-based deep neural network is explored
to provide real time decision making. The LSTM network is trained using optimal solutions
offline, and during inference can efficiently provide high-quality decision making in real-

78

4.3 Numerical Investigations

Table 4.5 Average processing time of algorithms

Algorithm Average Processing time (sec) STD
RandS 1.076 0.151
CFS 1.083 0.156
UTIL 1.091 0.155
LSTM 0.427 0.065

Optim [42] 201.506 21.965

*tested by PC, intel i7, 6500U, 2 cores

time. This is validated by a series of simulations showing that the proposed scheme
outperforms previously proposed solutions. Future avenues of research will articulate on
the use of advanced meta-heuristic algorithms to provide near-optimal decision making
for training the deep neural network in large network instances where optimal decision
making is not efficient.

It is necessary to point out that the 2D FoV substitution should only happen when having
really limited resources because applying static 2D figures sacrifice much user perception
quality, especially during the mobility event. In previous cases, the request from each user
is handled independently which means adjacent users might cause duplicate caching and
computing. To overcome this limitation, we take ARO sharing into consideration and try
to exploit the potential of video streams in the following chapter.

79

Chapter 5

Optimal Proactive Caching for
Multi-View Streaming Mobile
Augmented Reality

The chapter is based on [45] and [46]. Noticing that 2D FoVs are static and hinder users’
view during moving process, we explore a novel solution that embeds 3D AROs into a
continuous video stream. To realize flexible allocation and cut down resource consumption,
we enable adjacent users sharing a same video stream without losing much user perception
quality. A more realistic wireless channel model, Raleigh model, is applied and the user’s
physical location at initial and destination cells are handled in formulation.

5.1 Introduction

Although the utilization of 2D FoVs could be an alternative, its static nature might cause an
obvious deterioration in user experience, especially when the user keeps moving. Inserting
more view points could partly solve the problem but when user moves around, 2D FoVs still
suffer from its insufficiency in providing 360-degree ARO experience. Hence, we further
bring into the video stream providing continuous view during user’s moving process.

Multi-view streaming applications have recently attracted increased popularity es-
pecially in virtual reality (VR) and augmented reality (AR) fields. In these types of
applications, each viewpoint is a sequence of frames captured by a given camera and is
usually treated as a single view stream. Through transmitting different high-quality view
streams to the VR/AR equipment, the user could enjoy a more realistic perspective of
3D scenes [120, 5]. However, multi-view applications are still confronted with limited
resources in the network (e.g., the terminal, the wireless channel and cloud resources),
and hence, it is not recommended to store and transmit all view streams at a very high

80

5.1 Introduction

quality [123]. Thus, it is more efficient in terms of network resource utilization to endure
a subset of view streams or a lower quality level during the service optimization pro-
cess [120, 13]. In this chapter, a fixed given quality level is applied for the different view
streams during modeling, and only popular ones are proactively cached and transmitted for
multi-view streaming AR applications. To illustrate the use case, a toy example of the pro-
posed work flow of multi-view streaming AR applications is detailed by Figure 5.1. When
receiving a set of frames with recognized AROs, the target server searches the matched
view stream embedded with the requested ARO in its local cache. Clearly, a series of
view streams might contain the same requested ARO but only a popular subset (or in some
instances, depending on available resources, the most popular one) is proactively cached
and returned to the user according to the given network constraints.

Fig. 5.1 An example of multi-view streaming AR application.

Essentially, multi-view streaming MAR applications can be decomposed into two
main types of functions that can operate in tandem (i.e., as a chain), known as storage
intensive functions and computing intensive functions [42]. Service decomposition is
also suitable for such applications because they are susceptible to storage and computing
resources, especially when utilized in a high mobility scenario [42]. Figure 5.2 presents
toy examples of whether considering service decomposition and multi-view streaming
for MAR. In case (a), mobility is not considered, leading to a sub-optimal EC allocation.
However, case (b) depicts the proposed mobility-aware allocation that considers also
popular view streams and AROs. As shown in Figure 5.2, caching all AROs that are

81

5.1 Introduction

embedded in a multi-view streaming AR application at a single EC close to the user’s initial
location might be suitable only when there is no mobility event and there are sufficient
EC resources. However, when taking mobility and congestion episodes, the different
view streams and the number of AROs into account, it is more flexible and efficient to
apply service decomposition and cache popular view streams and AROs into different ECs.
Clearly, service decomposition allows a flexible assignment that fits better in a congested
network with limited cache and computing resources. As shown, for example, by view
stream 4 in case (b), if the target EC has limited resources, then for the selected view
stream, it is recommended to cache only the most popular AROs. As a result, users request
only popular view streams, such as for example view stream 4, as shown in the figure.
It can be accessed with very low latency, since it can be cached in an EC at the user
proximity. Hence, by exploring the popularity of the view streams and the AROs, a more
efficient allocation can be implemented without affecting the overall user experience, since
caching is taking place by considering the most popular service composition for the end
users. Hereafter, the view streams under consideration are assumed to be non real time,
so that they could be cached at suitable EC locations during the service period [79]. It is
also worth pointing out that in multi-view streaming AR applications, it is possible to
identify popular view streams and associated AROs through historical data [42, 115].
In that case, view streams and associated AROs per stream could be optimally anchored
and decomposed in different EC by exploring, at the same time, the mobility pattern of
the end users. In [116], a federated learning-based scheme is proposed to predict view
ports based on the view history, and then, a stochastic game is formulated to optimize
virtual reality video streaming through caching high or low-quality tiles of video according
to given conditions. Similarly, considering latency and user preference, we aim to optimize
the allocation of decomposed functions with popular view streams and embedded AROs
on different target cloud servers.

82

5.2 System Model

Fig. 5.2 Illustrative toy examples where in case (a) mobility is not considered and (b) where
mobility of the end user is taken into account for service decomposition and the different
multi view streams on proactive resource allocation of MAR functions.

A Mixed Integer Linear Problem (MILP) is formulated and solved to obtain optimal
solutions in this chapter. However, due to the curse of dimensionality, it is not ideal for
a large network with dynamic changes. Machine learning (ML)-based techniques can be
deemed as an effective method for AR applications as they are able to learn from given data
and provide reliable predictions [10, 71]. A well-known ML technique, the long short-term
memory (LSTM) neural network, is utilized in this chapter to learn from optimal solutions.
In this chapter, we consider a typical Rayleigh fading channel to model the wireless link of
a 5G access point, and the potential of multi-view streaming and service decomposition is
explored through a nominal LSTM network.

In this chapter, multiple view streams with embedded AROs are considered together
with user mobility and MAR service decomposition to construct a joint optimization
problem. The proposed framework seeks a balance between service latency and user
preference of view streams and embedded AROs. Due to the combinatorial nature of
the problem, the proposed optimization problem cannot be deemed as suitable for real-time
decision making. Thus, we further propose an LSTM-based scheme to learn from optimal
decision making in an offline manner to provide high-quality predictions during inference
in an efficient manner suitable for real-time operation.

5.2 System Model

5.2.1 Multi-view streaming AR

As shown in previous chapters, the set M = {1,2, . . . ,M} is still the available ECs
in the wireless network with requests r ∈ R (each user makes a single request). As already

83

5.2 System Model

mentioned in previous sections, a set of AROs is assumed to be embedded across the dif-
ferent non real-time view streams. To this end, we first define a set N= {1,2, . . . ,N} to
represent the set of available AROs. The video content available to each user has multiple
streams, and we define them as a set Sr = {1,2, . . . ,S}. Then, the decision variable for
proactively caching a view stream s at the EC j ∈M is denoted as ps j. The subset Lrs

represents the target AROs required by the user r in view stream s ∈ Sr and the size of
each target ARO l ∈ Lrs is denoted as Ol . Finally, the decision variable for proactively
caching an ARO required by a request r is denoted as hs

rl . More specifically, ps j and hs
rl

can be written as follows,

ps j =

{
1, if view stream s is cached at node j,

0, otherwise.
(5.1)

hs
rl =

1, if ARO l required by request r embedded

in view stream s is cached,

0, otherwise.

(5.2)

in addition to the above, the following constraints should also be satisfied,

∑
r∈R

hs
rl ⩽ 1, ∀ j ∈M, ∀s ∈ Sr, ∀l ∈ Lrs (5.3)

∑
s∈Sr

∑
l∈Lrs

hs
rl ⩾ 1, ∀r ∈ R (5.4)

∑
j∈M

ps j ⩾ hs
rl, ∀r ∈ R, ∀s ∈ Sr, ∀l ∈ Lrs (5.5)

hs
rl ⩽ hs

rl ∑
j∈M

ps j, ∀r ∈ R, ∀s ∈ Sr, ∀l ∈ Lrs (5.6)

The constraints in (5.3) ensure that each ARO can be cached at most once in a view
stream. The constraints in (5.4) ensure that at least one view stream and an ARO is
required to compose a valid request. The constraints in (5.5) guarantee that the ARO
must be allocated to a view stream first before deciding to proactively cache it, and the
constraints in (5.6) certify that any ARO planned to be stored in this view stream should
not be cached when deciding not to proactively cache a view stream at all. Constraints
(5.5) and (5.6) together ensure that either the view stream or ARO cannot be handled alone
during the formulation.

As alluded earlier, due to the resource constraints in the network, in case of congestion
episodes, an optimized subset of view streams and embedded AROs need to be proactively
cached at suitable ECs. Thus, we bring in the user preference for both view streams

84

5.2 System Model

and AROs. The preference of view streams and embedded AROs are measured by their
requesting probability, which enables the proposed scheme to select the more popular
ones. The probability of selecting a view stream s is denoted as ts and the probability
of requiring an ARO l is denoted as tl . Such probabilities are pre-defined and could be
achieved by exploring historical data; hereafter we assume that we have access to such
information. Thus, we further define Tl and Ts, respectively to represent two descending
probability vectors of AROs and view streams. The probability tl and ts inside can be
generated through,

tl =

{
1, if l = 1,

rand (tl−1), if l > 1.
(5.7)

ts =

{
1, if s = 1,

rand (ts−1), if s > 1.
(5.8)

where the function rand(x) generates a random number within [0,x]. Then, each element
should be normalized through,

tl
∑l∈Lrs tl

,
ts

∑s∈Sr ts
(5.9)

In a similar manner with [42], computational-intensive and storage-intensive MAR
functionalities are defined as η and ρ , respectively. In addition, the corresponding execu-
tion location for a functionality is denoted as xri and yri, respectively [42]. The starting
location of the request r is the access router where this user is initially connected to; this
initial location is defined as f (r). A user moves to a destination k ∈ K in the case of
a mobility event (i.e., changing the point of attachment). In this chapter, and without
loss of generality, only adjacent access routers can be regarded as allowable destinations
in the mobility event. Hence, u f (r)k ∈ [0,1] is defined to represent the probability of
a user moving from the initial location to an allowable destination, where adjacent servers
{ f (r),k} ⊂M. Such probabilities can also be learned from historical data, which are
readily available from mobile operators. The size of uploaded frames with target AROs
used in the Object Detection function is denoted as Fηr and the size of pointers used
for identifying target AROs is denoted as Fρr [42, 115]. During the matching process,
the target AROs are possibly not pre-cached in the local cache and such case is known
as a “cache miss” (otherwise there is a “cache hit”). Whenever confronted with a cache
miss, the request is redirected to a core cloud deeper in the network and suffers from
an extra latency D as penalty.

At first, a joint optimization scheme considering the balance between the service delay
and the preference of view streams and embedded AROs is designed to track the MAR
requests in the EC-supported network. The cache hit/miss is captured by the decision

85

5.2 System Model

variable zr j and can be written as follows,

zr j =

1, if ∑

l∈Lrs

∑
s∈Sr

ps jhs
rl ⩾ Lrs,

0, otherwise.
(5.10)

In [42], constraints (10b) and (10d) reveal the cache limitation and the cache hit/miss
relation. In this chapter, they should be rewritten as follows,

∑
r∈R

∑
l∈Lrs

∑
s∈Sr

ps jhs
rlOl ≤Θ j,∀ j ∈M (5.11)

∑
l∈N

∑
s∈Sr

hs
rl + ε ≤ Lrs +U(1−qr j)∀ j ∈M,r ∈ R (5.12)

where Θ j is the cache capacity at node j. In (5.12), to rewrite the either-or constraint
that ∑l∈N ∑s∈Sr hs

rl < Lrs or zr j = 1, we define ε as a small tolerance value, U as a large
arbitrary number and qr j as a new decision variable satisfying 1−qr j = zr j [42]. Requiring
more pre-cached view streams and embedded AROs in a request naturally lead to an extra
burden for the matching function. More specifically, the processing delay of the matching
function can be written as,

Wr j =
ω(Fρr +∑l∈Lrs ∑s∈Sr ps jhs

rlOl)

f j
V

(5.13)

where ω is the computation load, f j
V is the virtual CPU frequency and Fρr are the size of

the uploaded pointers [42, 115]. When finding the target ARO during matching, other view
streams containing it should also be transferred to the user. Hence, the delay of sending
results back to the user can be written as follows,

∑
s∈Sr

∑
i∈M

∑
j∈M

Ci jyri ps j + ∑
s∈Sr

∑
r∈R

∑
j∈M

∑
k∈K

C jku f (r)k ps j (5.14)

where u f (r)k is the moving probability from the initial location f (r) to a potential des-
tination k. In previous expressions, the product of decision variables ps jhs

rl and ps jyr j

exists and creates a non-linearity. In addition, note that when executing the matching
function at the location j (Wr jyr j), the product of decision variables ps jhs

rlyr j also appears.
To linearize the expressions above, so that to utilize linear integer programming solution
methodologies, new auxiliary decision variables are brought in. A new decision variable

86

5.2 System Model

αrs j is introduced as αrs j = ps jyr j and the constraints should be added as follows,

αrs j ⩽ ps j,

αrs j ⩽ yr j,

αrs j ⩾ ps j + yr j−1

(5.15)

similarly, a new decision variable βrsl j is introduced as βrsl j = ps jhs
rl and the constraints

should be added as follows,
βrsl j ⩽ ps j,

βrsl j ⩽ hs
rl,

βrsl j ⩾ ps j +hs
rl−1

(5.16)

the aforementioned constraint (5.6) is affected and should be rewritten as follows,

hs
rl ⩽ ∑

j∈M
βrsl j, ∀r ∈ R, ∀s ∈ Sr, ∀l ∈ Lrs (5.17)

In addition, note that ps j is a binary decision variable and causes ps j = p2
s j. Thus,

we have ps jhs
rlyr j = αrs jβrsl j. A new decision variable λrsl j is introduced as λrsl j =

αrs jβrsl j and the following constraints should be added as follows,

λrsl j ⩽ αrs j,

λrsl j ⩽ βrsl j,

λrsl j ⩾ αrs j +βrsl j−1

(5.18)

5.2.2 Wireless Channel Modeling and Achievable Data Rate

In previous chapters, we considered a nominal average wireless transmission rate for each
user. However, this neglects the influence of the wireless channel such as for example link
gain variation due to the user distance (Euclidean) to the access router. To capture a more
detailed use case scenario, we further consider user location and apply a well used wireless
channel model (a fast-fading channel following Rayleigh distribution) to achieve a more
representative achievable data rate for each user.

According to Shannon formula, the achievable wireless data rate for the user in a 5G
access point is B j log2(1+ γr j), where B j is the bandwidth allocated to the user’s resource
block and γr j is the Signal to Interference plus Noise Ratio (SINR) of the user r at the node
j. We denote Pj as the current resource block power, Hr j as the channel gain, N j as
the noise, a as the path loss exponent and dr j as the Euclidean Distance between the user
and the access router in the cell. Furthermore, we utilize a nominal Rayleigh fading
channel to model the channel between a 5G access point and the users [31]. In this case,

87

5.2 System Model

the channel gain Hr j can be written as follows [20],

Hr j =

√
1
2
(t + tJ) (5.19)

where J2 =−1, t is a random number following the standard normal distribution. Then,
the SINR γr j in a 5G wireless network can be written as follows [20, 105],

γr j =
PjH2

r jd
−a
r j

N j +∑i∈M,i̸= j PiH2
rid
−a
ri

(5.20)

Thus, the wireless transmission delay in a mobility event can be written as follows,

∑
r∈R

Fηr +∑s∈Sr ∑l∈Lrs hs
rlOl

B f (r) log2(1+ γr f (r))
+

∑
r∈R

∑
k∈K

u f (r)k
Fηr +∑s∈Sr ∑l∈Lrs hs

rlOl

Bk log2(1+ γrk)

(5.21)

5.2.3 Latency and Preference

Based on the above derivations and in line with [42], the service latency can be written as
follows,

L =(5.21)+ ∑
r∈R

∑
i∈M

(C f (r)i +Vri)xri+

∑
r∈R

∑
i∈M

∑
j∈M

(
ω(Fρryr j +∑l∈Lrs ∑s∈Sr λrsl jOl)

f j
V

+

Ci jξri j +C j f (r)yr j +ψr jD)+

∑
s∈Sr

∑
i∈M

∑
j∈M

Ci jαrs j + ∑
s∈Sr

∑
r∈R

∑
j∈M

∑
k∈K

C jku f (r)k ps j

(5.22)

Lmax here denotes the maximum allowed service latency. Thus, we have,

L
Lmax

∈ [0,1] (5.23)

The overall preference of view streams and embedded AROs is measured by the summation
of probabilities of the chosen view streams and AROs. It is denoted as Q and can be written
as follows,

Q = ∑
s∈Sr

∑
j∈M

ps jts + ∑
r∈R

∑
s∈Sr

∑
j∈M

∑
l∈Lrs

ps jhs
rltl

= ∑
s∈Sr

∑
j∈M

ps jts + ∑
r∈R

∑
s∈Sr

∑
j∈M

∑
l∈Lrs

βrsl jtl
(5.24)

88

5.2 System Model

similarly, Qmax here denotes the maximum allowable preference of view streams and
embedded AROs. Hence, for the preference of view streams and embedded AROs, we also
have,

Q
Qmax

∈ [0,1] (5.25)

The weight parameter is denoted as µ ∈ [0,1], and the joint optimization problem can
eventually be written as follows,

min µ
L

Lmax
− (1−µ)

Q
Qmax

(5.26a)

s.t. zr j = 1−qr j, ∀ j ∈M,r ∈ R (5.26b)

∑
r∈R

(xr j + yr j)≤ ∆ j,∀ j ∈M (5.26c)

∑
j∈M

xr j = 1,∀r ∈ R (5.26d)

∑
j∈M

yr j = 1,∀r ∈ R (5.26e)

ξri j ≤ xri, ∀r ∈ R, i, j ∈M (5.26f)

ξri j ≤ yr j, ∀r ∈ R, i, j ∈M (5.26g)

ξri j ≥ xri + yr j−1, ∀r ∈ R, i, j ∈M (5.26h)

ψr j ≤ zr j, ∀r ∈ R, j ∈M (5.26i)

ψr j ≤ yr j, ∀r ∈ R, j ∈M (5.26j)

ψr j ≥ zr j + yr j−1, ∀r ∈ R, j ∈M (5.26k)

xr j,yr j, ps j,hs
rl,zr j,q j ∈ {0,1},

αrs j,βrsl j,λrsl j,ψr j,ξri j ∈ {0,1},
∀r ∈ R, j ∈M, l ∈ Lrs,s ∈ Sr (5.26l)

(5.3), (5.4), (5.5), (5.11), (5.12), (5.15), (5.16), (5.17), (5.18)

As mentioned earlier, the constraint (5.26b) together with constraints (5.3) to (5.5),
(5.11), (5.12) and (5.17) reveal the relation between pre-caching decisions and the cache
miss/hit for each request [42]. The constraint (5.26c) is the virtual machine limitation while
(5.26d) and(5.26e) guarantee the once execution of each function of a request at a single
server as explained in [42]. The constraints (5.15), (5.16), (5.18) and (5.26f) to (5.26k)
are auxiliary and required to solve the product of decision variables for linearization. Key
variables defined in the formulation are shown with their description in the following Table
5.1.

89

5.2 System Model

Table 5.1 Notation

Parameter Description
N Set of all AROs
M Set of Edge Clouds
R Set of User Requests
Sr Set of View Streams
K Set of User Destinations

Lrs Set of target AROs for request r in corresponding view stream s
Tl,Ts Accessing probability vectors of AROs and view streams
η ,ρ Two types of AR functions (CPU, Cache)
Ol Size of ARO l
hs

rl 0/1 var.: if ARO l in view stream s for the request r is cached
ps j 0/1 var.: if view stream s is cached at node j

xr j,yr j 0/1 var.: if function η or ρ for r is set at EC j
zr j 0/1 var.: if a cache hit is spotted for request r
Ci j Communication delay between nodes i and j

Fηr,Fρr Input size for functions η , ρ in request r
Hr j Channel gain for request r at node j
γr j SINR for request r at node j

B j,Pj,N j Resource block bandwidth, power and noise at node j
α path loss exponent
dr j Euclidean distance between user r to node j
f (r) Initial access point for request r
D Cache miss penalty

u f (r)k Moving probability from initial location f (r) to destination k
ω, f j

V Computation load and CPU availability at EC j
Vr j,Wr j Processing delay for request r for function η , ρ at EC j

L,Q Overall Latency and User Preference
Θ j Cache capacity at EC j

5.2.4 Heuristic Algorithm using LSTM

The aforementioned optimization problem could provide a series of optimal solutions
for learning. These optimal solutions are grouped and reshaped into a route matrix and
then separated for training and testing purposes. A nominal LSTM network developed in
previous Section 3.3 is then applied here to explore the potential of multi-view streaming
and improve the computing efficiency. Its state changing and gate controlling also follow
the nominal LSTM architecture. As shown in Figure 5.3, we feed user initial locations and
destinations into the LSTM network as input and optimized locations of servers anchoring
MAR functionalities as output. All possible different results can be calculated as selecting
any two execution locations from the set M with order, which is M2. Then, the LSTM-based

90

5.2 System Model

model classifies and creates a mapping between the two sets. A Feasibility Check Stage is
required afterwards to guarantee that predictions from the LSTM network could still satisfy
the given constraints in the original network. If violating a constraint, such as exceeding
an EC’s available cache size for example, the remaining predicted requests served by this
EC will be redirected to an available neighbor EC as a backup choice. However, if both ECs
are fully occupied, such remaining requests have to be transmitted to a further core network
cloud and hence suffer from an extra penalty in latency. Figure 5.4 shows a toy example
of applying the LSTM network in our case. The LSTM network treats vectors with low
appearance frequency such as [1,3]/[2,4] and [3,1]/[2,2] as unimportant ones and forgets
them during iterations. When several types of optimal solutions (e.g., [2,5] and [4,5])
for the same user route vector (e.g., [1,5]) share a similar level of appearance frequency,
it is possible that the LSTM network generates a prediction between given solutions (e.g.,
[3,5]). The validation accuracy might still be acceptable, but in the Feasibility Check Stage,
an activated neighbor EC with enough resources will substitute the current one (e.g., [2,5]
replaces [3,5])

Fig. 5.3 Working Process of the LSTM-based Model.

91

5.3 Numerical Investigations

Fig. 5.4 A Toy Example of the LSTM-based Model.

5.3 Numerical Investigations

Hereafter, the effectiveness of the proposed optimization scheme (noted as Optim) and
the heuristic algorithm using the LSTM network (noted as LSTM) are investigated via
a wide set of simulations and compared with a number of nominal/baseline schemes.

Parameterization

The same as in [42], a typical tree-like network topology as shown by Figure 3.3 is applied
with 20 ECs in total with four to eight ECs being activated for the current MAR service, and
20 to 40 requests are sent by MAR devices. The remaining available resources allocated
for MAR support of an EC are assumed to be CPUs with four to eight cores and 100 to 400
MBytes of cache memory [42]. Each request requires a single free unit for each service
function (for example, a VM) [67]. There are 10 to 14 available VMs in each EC, with equal
splitting of the available CPU resources [42]. Up to four different view streams of the video
content per user can be cached and are similar to each other. All target AROs must be
embedded within the corresponding view stream before being streamed to an end user
based on a matched result. The user could trigger the MAR service by a certain behavior
(e.g., clicking an AR label), and pointers such as a name or index are transferred to the EC
to identify the ARO [115]. The size of such pointers used for matching are only a few bytes
in size, and hence, their transmission and processing latency is neglected in the simulations.
The bandwidth of a nominal 5G access point is set to 20 MHz, its transmission power
is assumed to be 20 dBm with the maximum of 100 resource blocks, and we assume,
without loss of generality, each user can utilize only one resource block [59, 63, 19].
The noise power is 10−11 W and the path loss exponent is 4 [59]. The location of the users

92

5.3 Numerical Investigations

is randomly generated as well as the potential destinations. Furthermore, we assume that
each cell has a radius as 250 m in the 5G wireless network [59]. For the LSTM network,
90% of 300 route vectors with corresponding optimal decisions are utilized for training,
while the remaining 10% are used for testing and validation. The initial learning rate is
set to 0.005, the maximum number of epochs is 160 and the dropout probability is 5% to
avoid over-fitting. Key simulation parameters are summarized in the following Table 5.2.

Table 5.2 Simulation parameters

Parameter Value
Number of available ECs [4,8]

Number of available VMs per EC (EC Capacity) [10,14]
Number of requests [20,40]

Number of view streams per user 4
AR object size (0,20] MByte

Total moving probability [0,1]
Cell Radius 250m

Remained Cache Capacity per EC [100,400] MByte
CPU frequency [2,4] GHz

CPU cores [4,8]
CPU portion per VM 0.125−0.25

Computation load 10 cycles/bit
Bandwidth of Access Router 2 GHz

Power of Access Router 20dBm
Path Loss Exponent 4

Noise Power 10−11W
Number of Resource Blocks 100

Average hop’s latency 2 ms
Cache miss penalty 25 ms

Number of user route vectors / optimal decisions 300
Initial LSTM learning rate 0.005

Maximum number of epochs 160
LSTM Dropout probability 5%

To appreciate the quality of the proposed set of solutions, baseline schemes for caching
MAR content are also included in the investigations, such as RandS, CFS and UTIL from
previous chapters. Note that all such baseline schemes assign view streams and embedded
AROs according to the above mentioned policies and hence neglect the user mobility (i.e.,
they are mobility oblivious). Furthermore, they will also suffer from a penalty cost if their
target ECs (including backup EC choices) are all fully occupied.

93

5.3 Numerical Investigations

5.3.1 Simulation Results

According to Figure 5.5, an increasing weight (µ) leads to a dropping overall delay as
expected. A larger weight means that the proposed Optim scheme targets a solution with
less latency and is willing to sacrifice some preference for this in terms of importance.
As a result, the Optim scheme tends to proactively cache fewer view streams with fewer
embedded AROs, and such a decision naturally results in a reduced overall delay in trans-
mission and computation. As shown by Table 5.3, it is interesting to point out that when
the emphasis is placed solely in delay reduction (µ = 1) and without considering user
mobility, the proposed Optim scheme closely relates to the other greedy baseline schemes.
This means those schemes commonly tend to anchor view streams with embedded AROs
as close as possible to the user. However, the Optim scheme is still superior to others and
is around 15.5% better than the CFS scheme in this case because its service decomposition
and separation of view streams enables flexible allocation and hence avoids overloading.
In addition, it is worth pointing out that solutions offered from other greedy schemes
sometimes provide non-feasible solutions due to constraints violations. Thus, the Optim
scheme significantly outperforms other schemes especially in a high mobility scenario
and/or in the cases where changes of the point of attachment take place during the service
time. The observed gains between the proposed Optim scheme and other baseline schemes
also increase with overall delay when continuously seeking a larger preference and caching
a higher number of view streams and AROs. Because the UTIL scheme prevents further
transmitted requests when the activated ECs reach the 80% occupation limit, it becomes
the most sensitive scheme to the weight µ and hence its performance is heavily affected
in a congested network. Figure 5.6 shows the relation between preference and weight (µ)
and further reveals the advantage of the proposed Optim scheme in preference. Noticing
that even in the extreme case when µ = 1, the proposed Optim scheme still achieves
approximately 59.6% preference due to its optimized selection of the most preferred
view streams with the most popular AROs set inside. This means the proposed Optim
scheme minimizes the cost of weight by exploring preference when seeking to reduce
service latency

94

5.3 Numerical Investigations

Fig. 5.5 Service delay with weight µ (6 EC, 30 requests, EC capacity is 14 and total
mobility probability is 1).

Fig. 5.6 Preference of View Streams and Embedded AROs with Weight µ (6 EC, 30
Requests, EC Capacity is 14 and total mobility probability is 1)

According to Figure 5.7, the service delay increases when the network congestion
levels increase due to a higher number of requests from the users. The LSTM scheme
shows a 5.6% to 9.8% optimality gap compared to the Optim scheme and approaches
the Optim scheme better in a non-congested condition. The above aspect can also be seen

95

5.3 Numerical Investigations

Table 5.3 RMSE Values & Service Delay in no mobility event
(µ = 1, 6 ECs, 30 requests and EC Capacity is 14)

Scheme Optim LSTM CFS UTIL RandS
Delay (ms) 25.7 27.9 30.2 31.1 37.4

RMSE - 2.4 8.5 3.6 5.8

from Figures 5.8 and 5.9. All schemes suffer from an increased delay when fewer ECs
are activated or there is less available capacity per EC. However, in all use cases under
investigation, the proposed schemes show much better performance in latency than other
baseline schemes.

Fig. 5.7 Service Delay with Different Number of Requests (6 EC, µ = 0.5, EC Capacity is
14 and Total Moving Probability is 1).

96

5.3 Numerical Investigations

Fig. 5.8 Service Delay with Different Number of ECs (30 Requests, µ = 0.5, EC Capacity
is 14 and Total Moving Probability is 1).

Fig. 5.9 Service Delay with Different EC Capacities (6 EC, 30 Requests, µ = 0.5 and Total
Moving Probability is 1).

To shed light on the performance, we calculate the rmse (root mean square error), δ

(relative error) and r2 (determination coefficient) for the LSTM scheme. The predictions
from the LSTM network are compared with the optimal solutions, and we have rmse < 2.5,
δ < 15% (relative error) and r2 > 0.83 (determination coefficient) in most cases. Hence,

97

5.3 Numerical Investigations

the predictions of the LSTM scheme can be regarded as reliable and closely follow
the optimal solutions. Table 5.3 shows rmse values including the LSTM scheme and
greedy baseline schemes for comparison. In simulations, topologically close servers
are allocated adjacent indices, and the user mobility is limited to the adjacent server
in a period of an MAR session. Hence, indices decided for each server also reveal
their location information. Thus, the similarity between the predictions of the LSTM
scheme and the optimal solutions reveals the LSTM scheme’s competitive edge over
other greedy baseline schemes. Noticing that an infeasible prediction might appear and
cause a deteriorating quality of service after adjusted in the Feasibility Check Stage.
However, according to Figure 5.10, the LSTM network’s validation accuracy is maintained
at around 86.3% and is less than 6% worse than its training accuracy, which indicates that
the infeasible solutions are rare and the general learning capabilities are effective.

Fig. 5.10 Average Training and Validation Accuracy of the LSTM Scheme through Itera-
tions.

Before training the LSTM scheme, it requires a long computational time to create
a large number of optimal solutions (∼810 s in Fig. (5.11)) from the Optim scheme.
However, this stage only needs to be executed a few times and is a purely offline task.
Similarly, the network training (∼70 s in Fig. (5.11)) is also offline and does not need to
repeat itself if the validation accuracy of the trained LSTM network meets the expectation.
As a result, these offline stages do not have a serious detrimental effect on the general
computing efficiency. As shown in Table 5.4, based on a trained LSTM network, the online
decision-making stage of the LSTM scheme can generate predictions in an efficient manner
for MAR sessions. Because the Optim scheme constructs and solves a complex mixed

98

5.3 Numerical Investigations

integer linear problem, it suffers from the longest processing time and is not ideal for
a highly dynamic network environment. The greedy baseline schemes own the obvious
advantage in average processing time, but as discussed earlier, they cannot approach
optimal solutions as well as the decision-making quality offered by the LSTM scheme.

Fig. 5.11 Average Processing Time for different stages in the LSTM Scheme

Table 5.4 Average processing time of algorithms

Algorithm Average Processing time (sec) STD
RandS 0.696 0.284
CFS 0.731 0.295
UTIL 0.753 0.308
LSTM 1.386 0.223
Optim 168.277 15.392

*tested by PC, intel i7, 1.3GHz, 4 processors

Multi-view streaming applications with embedded augmented reality objects (AROs)
are highly delay sensitive and confronted with a series of constraints in terms of storage
and computing resources. In this chapter, an optimization framework is proposed to realize
optimal service decomposition in an edge-cloud supported 5G and beyond wireless network
aiming to balance service latency and content popularity by taking into account the inherent
user mobility. In addition, a nominal long short-term memory (LSTM) neural network is
proposed that is trained using optimal solutions to explore real-time decision making for
supporting edge proactive caching for multi-view streaming with popular augmented reality

99

5.3 Numerical Investigations

objects. It is important to note that the proposed framework is generic enough to be applied
in a plethora of mobile-augmented reality applications that are composed by multiple view
streams and popular augmented objects per stream. Numerical investigations reveal that
the proposed schemes outperform a number of previously defined baseline schemes. More
specifically, gains up to 38% are reported in terms of reducing the delay compared to
previously proposed techniques that do not explicitly take into account user mobility and
the inherent decomposition of the MAR services. in the proposed framework, during the
online inference stage, the LSTM-based scheme is able to efficiently provide competitive
predictions approaching the optimal solutions. On the other hand, the learning and training
stage of the LSTM network require longer processing times, but those phases can be
executed in an offline manner where high-quality solutions from the defined optimization
framework could be explored. In that way, the proposed framework is able to provide high-
quality decision making in an online manner by exploring the capabilities of the LSTM
neural network and the powerful integer programming formulation that is able to provide
optimal decision making that can be used for training the neural network.

Although the video stream does provide a continuous experience, nowadays it is usually
divided into segments for better transmission. The user might have special interest on
certain segments instead of treating all segments equally like in this chapter. Hence,
considering popularity of internal segments and their relation with embedded AROs could
be an interesting extension.

100

Chapter 6

Optimal Mobility Aware Wireless Edge
Cloud Support for the Metaverse

The chapter is based on [44] and [47]. Based on previous research, MAR is extended
into metaverse in this chapter. The similarity could be identified during our modelling in
Rayleigh channel modelling, user mobility and service decomposition. We also accept the
general sharing idea of applying view streams in chapter 5 and hence enable the metaverse
region sharing and multi-rendering in this chapter. However, metaverse environment
owns unique features in consuming much energy during rendering and providing mixed
experiences through foreground interactions and background interactions. Thus, in this
chapter, we apply decomposed MAR functions following metaverse features and construct
a trade-off between energy consumption and latency under the constraint of quality. Ad-
ditional to all previous chapters, we further consider terminals’ capacities and make a
detailed comparison between whether using terminals.

6.1 Introduction

Recently, the metaverse, which could be described as an endless virtual world where users
interact with their avatars, has become popular in both academic and commercial areas
[7]. Augmented reality manages to combine digital information with the real world for
real-time presentation, and such experiences can be regarded as a continuum ranging from
assisted reality to mixed reality, according to the level of local presence [84, 85]. Mobile
augmented reality (MAR) could be extended and enhanced in the wireless edge-supported
metaverse with today’s available technologies, such as digital twin and head-mounted
display rendering [112, 28]. In addition, compared to existing MAR applications, users
could seamlessly mix their experience of the metaverse and physical world through various
metaverse MAR applications, such as massively multiplayer online video games and

101

6.1 Introduction

virtual concerts [112]. Users equipped with MAR devices can upload and analyze their
environment through AR customization to achieve appropriate AR objects (AROs) and
access the metaverse in mobile edge networks [111]. AR marketing is regarded as having
potential in metaverse, and can be seen as a typical example of a more forward-looking
metaverse AR application because it replaces physical products with AR holograms and
enables direct foreground interactions between the customer and the digital-marketing
application interface in the background environment [84, 23]. Rendering three-dimensional
(3D) AROs with the background virtual environment and updating in the metaverse
consume significant amounts of energy and could be highly demanding in terms of required
caching and computing resources [111, 62]. Hence, such applications are delay- and energy-
sensitive and face challenges in ensuring the quality of user experience and providing
reliable and timely interactions with the metaverse [112, 111]. Similar to previous chapters,
a nominal frame rate is assumed as 15 frames/second and the metaverse rendering takes
place at every other frame (1̃33.2ms interval) [24][75][72].

Fig. 6.1 The general work flow of metaverse AR applications with delay of each stage (6
EC, 30 requests, weight µ is 1, EC Capacity is 14 and total mobility probability is 1)

Generally speaking, a metaverse scene will, in essence, consist of a background view
as well as many objects in foreground interactions. The background view at a defined
amalgamated virtual and physical location can be deemed as static or slowly changing
[111, 33]. A typical background scene can be the 3D model of the metaverse, a presentation
of a related background virtual environment based on a certain user viewport [33, 57].
Its size can reach tens of MB and the corresponding complexity of rendering related

102

6.1 Introduction

functionalities measured by computation load is also large (e.g., 10 CPU cycles/bit) [33,
113]. On the other hand, objects (such as, for example, avatars) in foreground interactions
which are embedded in the metaverse scene change much more frequently; however,
they are significantly less complex than the background scene (e.g., 4 CPU cycles/bit)
[62, 33]. Howeve, even though those objects are less complex than the background scene,
due to their frequent changes they also require rendering in a timely manner to avoid a
considerable degradation in the quality of user experience. Thus, in this chapter, rendering
for both foreground and background are deployed at the edge clouds (ECs) rather than
only at the terminals, to make full use of caching and computing resources. Notice that
uploaded information is focused in foreground interactions, while background content
checking consumes not only computing resources but also a significant amount of local
cache to match and integrate AROs and related models of the metaverse. Hence, similar
to our previous work in [42], the metaverse MAR application could also be decomposed
into computational- and storage-intensive functions, which serve as a chain for improved
assignment and resource allocation.

The general work flow of a metaverse MAR application supported by ECs is shown
in Figure 6.1. A metaverse region is a fraction of the complete metaverse and is assumed
to be located on a server geographically close to its corresponding service region in the
mobile network (not necessarily running within an EC). The metaverse MAR service could
be triggered by certain behavior including foreground interactions [111, 33, 39]. Then,
content related to background content, such as, for example, pre-cached 3D models and
AROs, are first searched in the EC cache to check if they are what the user requires. If the
target AROs or model information cannot be found in the cache, then this case is labelled
as a “cache miss” and the request is redirected to the original metaverse region stored in a
cloud deeper in the network. Finally, according to the user’s physical mobility and virtual
orientation extracted from foreground interactions, the matched AROs and model are
integrated into a final frame and transmitted back to the user [111, 33]. At the same time,
updated information is also sent to the metaverse region for synchronization. Thus, the user
could be aware of changes caused by other participants if they share the same metaverse
region during the service. Based on the above discussion, it is becoming apparent that the
overall quality of metaverse MAR applications depends on communication delays and the
capabilities of the above-mentioned network entities, which participate in service creation.

Figure 6.2 further reveals the difference between cases with consideration, or not,
of user mobility with service decomposition to render requirements by metaverse MAR
applications. Clearly, when neglecting user mobility and service decomposition, as shown
in case (a), models, target AROs and metaverse MAR applications are all cached as close
as possible to the user’s initial location. This might leave a heavy burden for the adjacent
server when there are multiple users at the same cell and cause a “hot-spot” area [42].

103

6.1 Introduction

(a) Traditional caching without user mobility and service decomposition

(b) Proactive caching with user mobility and service decomposition

Fig. 6.2 Illustrative toy examples of caching by a metaverse MAR application

104

6.1 Introduction

Fig. 6.3 Illustrative toy examples where in case (i) only terminals are activated, in case (ii)
only ECs are activated and in case (iii) both are activated

However, when user mobility and service decomposition are enabled, as shown in case (b),
decomposed functions can spread over ECs between user’s initial location and potential
destination. Hence, the service delivery becomes more flexible and efficient in terms of
assigning requests and allocating network resources. In case (a), although user A only
needs wireless communication in the initial location, it takes two hops after moving to the
middle cell. However, when taking mobility and local resources into consideration, the
same user, A, in case (b) could experience a shorter delay in the after-mobility event by
allowing two more hops before the mobility event. Hence, in a high-mobility scenario, it
might not always be ideal to allocate requests and services as close as possible to the user’s
initial location. As shown in the figure for users A and B in case (b), the AR contents in
the model might be similar in terms of the viewport of different users. Hence, participating
users should be aware of each other’s updates and could share rendering functions to reduce
the consumed resources. In this chapter, we apply structural similarity (SSIM), proposed
by [107], for user perception experience. It is a widely accepted method which measures
the user perception quality of an image by comparing to its original version [107]. Caching
more models and AROs also causes more processing and transmission delays, with energy
consumption [112, 111]. Hence, the joint optimization has to accept some potential loss
due to constraints of computing and storage resources.

Figure 6.3 further reveals the difference among cases which allocate MAR service on
either terminals or ECs. Note that when neglecting the EC support and service decomposi-
tion, the whole MAR application should run on the terminal and could be a heavy burden;
this is shown in case (i). According to [111, 15], MAR applications on terminals take up
around 47% of the available power consumption and could also affect the performance

105

6.2 Related Work

of other (potentially critical) functionalities on the terminal when this service becomes
more complex, such as in the metaverse. In case (ii), the processing time is significantly
reduced through enabling EC support with the cost of an increased transmission delay [44].
Although the terminals are still limited in computing resources and more sensitive to energy
consumption, neglecting their capabilities is not an optimal configuration, especially when
recent technical improvements showcase their computing and caching potential. Noticing
that the foreground interactions are much less complex than background scenes and are
more suitable to terminals, we further consider terminals in the scenario, as shown by case
(iii), and execute only computationally intensive functions. Hereafter, the optimization of
the integration of terminals and ECs becomes the scheme OptimT and is compared to the
previous case, (ii), which neglects the terminals (OptimNT). To maintain a fair comparison
and focus on energy consumption and service latency, the overall energy consumption is
measured explicitly (in Joules) instead of the power, as in [44], and the user perception
quality is accepted as a given boundary.

In this chapter, by explicitly considering the terminals, user mobility, service decom-
position and models of metaverse regions with embedded AROs, a joint optimization
framework (OptimT) is constructed for the metaverse MAR application in the edge-
supported network. The proposed optimization framework seeks a balance between energy
consumption and service delay under a given level of user perception quality. To reveal the
influence of capacity and cost of terminals on the metaverse MAR application, this OptimT
scheme is further compared with another optimized framework (OptimNT) proposed in
our previous work [44], which only focuses on ECs and neglects terminals.

6.2 Related Work

Hereafter, a series of closely related works in the area edge/cloud support of metaverse
type of applications over 5G and beyond wireless networks are discussed and compared
with the approach proposed in this chapter.

Noticing that despite their limitations MAR terminals have witnessed a series of
technical improvements, their joint utilization with ECs for network optimization can
bring significant benefits. In [94], the authors aim to minimize the energy consumption
of multicore smart devices, which are usually applied for AR applications. Through
tracking the response process of an AR application, they manage to measure the terminal’s
energy consumption by Amdahl’s law. Although the law and a similar framework for
the terminal energy consumption are also applied in this chapter, we consider a broader
use case scenario that includes the edge servers and a more complex balance between
energy and latency. The work in [16] shares a similar target like in this chapter, which

106

6.2 Related Work

relates to achieve a balance between latency and energy consumption under an level of
acceptable image quality. However, [16] brings in local sensors at MAR devices for
recognizing and tracking AROs so that their scheme could realize selective local visual
tracking (optical flow) and selective image offloading. Object recognition stage is more
focused in [16] with four AR applications requiring different types of AROs. Without
support from ECs, they utilize a further cloud server as a heavy database for 3D AROs and
leave most tasks at the terminals whilst cloud offloading only triggered when confronted
with a calibration. However in this work, we consider an EC supported network and
compare the difference between schemes utilizing explicitly the MAR terminals or not.
In [91], the energy efficiency is optimized under required service latency for MAR in an
EC supported network. Similarly, authors consider the proactively caching and propose a
tradeoff between energy and latency in terms of cache size. However, their mobile cache
and power management scheme still focuses the energy consumption on terminals. Clearly,
above mentioned works do not explicitly consider user mobility, perception quality, service
decomposition and metaverse application features like ours.

The problem of efficient resource allocation for supporting metaverse type of applica-
tions is starting to attract significant amount of attention and a plethora of aspects have
already been considered. In [36], the emphasis is placed in the synchronization of Internet
of Things services, in which they employ IoT devices to collect real world data for virtual
service providers. Through calculating maximum awards, users could select the ideal
virtual service provider. Researchers then proposes the game framework considers such
reward allocation scheme and general metaverse sensing model [36]. In [54], the authors
also adopt a game theoretic framework by considering tasks offloading between mobile
devices based on Coded Distributed Computing in a proposed vehicular metaverse envi-
ronment. Another framework proposed by [22] manages and allocates different types of
metaverse applications so that common resources among them could be shared through a
semi-Markov decision process and an optimal admission control scheme. The work in [74]
applies a set of proposed resource optimization schemes in a virtual education metaverse.
Mores specifically, a stochastic optimal resource allocation scheme is developed with the
aim to reduce the overall cost of incurred by a service provider. Similar to the service
decomposition in this paper, they only upload and cache some parts of data or services to
achieve reduced levels of delay and offer better privacy [74]. The work in [28] is closely
relevant since in that paper not only latency but energy consumption is also considered as
is the case of our proposed model that uses a multi-objective optimization approach. For
ultra-reliable and low-latency communication services, researchers bring in digital twins
and deploy a mobility management entity for each access point to determine probabilities
of resource allocation and data offloading [28]. Then, by applying a deep learning neuro
network the proposed scheme tries to identify a suitable user association and an optimized

107

6.3 System Model

resource allocation scheme for this association. While, in this chapter, the core idea is to
decompose he service and allow a flexible allocation across edge clouds by taking also
into account user mobility. The work in[112] considers virtual reality applications in the
metaverse and regards the service delivery as a series of events in the market, in which
users are buyers and service provides are sellers. Hence, they apply Double Dutch Auction
to achieve common price through asynchronous and iterative biding stages [112]. They
emphasize the quality of user perception experience by Structural SIMilarity (SSIM) and
Video Multi-Method Assessment Fusion. In our proposed framework, we also utilize the
SSIM metric to determine the frame quality after integrating background scene and AR
contents [112]. The work in [112] further brings in a deep reinforcement learning-based
auctioneer to reduce the information exchanging cost. While in this chapter, a multi-
objective optimization approach is taken where we aim to balance different objectives
functions using the scalarization method whilst considering the inherent user mobility in
an explicit manner.

6.3 System Model

6.3.1 Multi Rendering in Metaverse AR

Similarly, with the set M = {1,2, ...,M} we denote the available locations, including
available edge clouds and terminals. Also assuming that each user makes a single request,
requests defined by r ∈ R in the metaverse region generated by mobile users could be
equipped with MAR devices. f (r)still represents the initial access router where this user
is firstly connected to. For each request, the user terminal could also be viewed as a
valid location to cache or to process information locally. Thus, we define with jr ∈M as
the terminal sending the request r. The terminals are brought into consideration in the
following formulation. Through defining the location with constraint as j ∈M, j ̸= jr, this
could only enable the ECs. Clearly, for the OptimNT scheme, this works for all locations.
While in the following formulation for the OptimT scheme, we force that the storage
intensive functions are executed only on the ECs while the computing intensive ones
could also hosted at the end terminals. During the mobility event, a user could move to
different potential destinations k ∈K (i.e., changing of the anchoring point). Hereafter, and
without loss of generality, we only accept adjacent access routers as available destinations
in the mobility event. A series of metaverse regions are set on ECs to interact with users.
The corresponding metaverse region serving the user can be found through functions
A(f (r)),A(k). As explained earlier, each metaverse region is pre-deployed on a server
close to the mobile network and its distance to an EC is also predefined. In this chapter, as
already alluded, a set of AROs is assumed to be embedded across the different background

108

6.3 System Model

metaverse region models and is defined as N = {1,2, ...,N}. A set Sr = {1,2, ...,S} is
defined for multiple rendering of the available metaverse region model to each user. Thus,
we denote the decision variable ps j for pre-caching a metaverse region model s ∈ Sr at the
EC j (j ∈M, j ̸= jr). The subset Lrs represents the target AROs required by the user r in
the related model s ∈ Sr and the size of each target ARO l ∈ Lrs is denoted as Ol . Lastly,
the decision variable hs

rl is brought in for proactively caching an ARO required by a request
r. Based on the above, the decision variables ps j and hs

rl can be defined as follows,

p j =

{
1, if rendering the related model s at node j,

0, otherwise.
(6.1)

hs
rl =

1, if ARO l required by request r embedded

in the model s is cached,

0, otherwise.

(6.2)

Furthermore, the additional set of constraints need to be satisfied,

∑
r∈R

hs
rl ⩽ 1, ∀ j ∈M, j ̸= jr, ∀s ∈ Sr, ∀l ∈ Lrs (6.3)

∑
s∈Sr

∑
l∈Lrs

hs
rl ⩾ 1, ∀r ∈ R (6.4)

∑
j∈M, j ̸= jr

ps j ⩾ hs
rl, ∀r ∈ R, ∀s ∈ Sr, ∀l ∈ Lrs (6.5)

hs
rl ⩽ hs

rl ∑
j∈M, j ̸=Jr

ps j, ∀r ∈ R, ∀s ∈ Sr, ∀l ∈ Lrs (6.6)

Constraints in (6.3) force each ARO to be pre-cached at most once in a related model.
Constraints (6.4) ensure thay a valid request consists of at least one model and an embedded
ARO. Constraints in (6.5) guarantee that the allocation of an ARO happens in conjunction
to the decision of proactive caching whilst constraints in (6.6) further certify that the
rejection of the model’s proactive caching causes any ARO planned to be embedded in this
model should not be pre-cached as well. Thus, (6.5) only accepts ARO in an pre-cached
model and (6.6) rejects all related ones when failing to cache a model, which together
could ensure the model and corresponding AROs cannot be handled separately during the
formulation.

109

6.3 System Model

6.3.2 Wireless Resource Allocation and Channel Model

With B j we express the bandwidth of the resource block and γr j denotes the Signal to
Interference plus Noise Ratio (SINR) of the user r at the node j. With Ptran

r j we denote the
transmit power of the user r at the node j, and Pi is transmission power at the base station.
Furthermore, Hr j is the channel gain, N j is the noise power and a is the path loss exponent
whilst dr j is the distance between the user and the base station. Finally, a nominal Rayleigh
fading channel is used to capture the channel between the base stations and the users[31].
More specifically, the channel gain Hr j can be written as follows [20],

Hr j =

√
1
2
(t + t

′
J) (6.7)

Where J2 =−1, t and t
′
are random variables following the standard normal distribution.

Based on the above, the SINR γr j in a 5G wireless network can be written as follows
[20][105],

γr j =
Ptran

r j H2
r jd
−a
r j

N j +∑i∈M,i̸= j PiH2
rid
−a
ri

(6.8)

The data rate is denoted as g ∈G and the binary decision variable erg decides whether
to select the data rate g for user r,

erg =

{
1, if data rate g is selected for user r,

0, otherwise.
(6.9)

Noticing that the chosen data rate can also be written as B j log2(1+γr j), after choosing
a data rate as gerg for the user, the current transmit power Ptran

r j can be written as follows,

Ptran
r j =

N j +∑i∈M,i ̸= j PiH2
rid
−a
ri

H2
r jd
−a
r j

(2
gerg
B j −1) (6.10)

Note that 2
gerg
B j = (1−erg)+erg2

g
B j and should satisfy the following constraint to ensure

that a single data rate is selected per user,

∑
g∈G

erg = 1,∀r ∈ R (6.11)

110

6.3 System Model

6.3.3 Latency, Engergy Consumption and Quality of Perception Ex-
perience

Similar to our previous work in [42], the MAR service can be decomposed into computa-
tional intensive and storage intensive functionalities and are defined as η and ρ respectively.
For these functionalities, their corresponding execution locations are then denoted as xri and
yri respectively [42]. In a mobility event, the user’s moving probability from the starting
location to an allowable destination could be known to mobile operators through learning
from the historical data and hence is defined as u f (r)k ∈ [0,1] ({ f (r),k} ⊂M). The size of
foreground interactions is denoted as F f ore

ηr , the size of pointers used for matching AROs is
denoted as Fρr and the size of the related model s used for background content checking is
Fback

sr [42][33]. During the matching and background content validation process, the target
AROs and/or the background content are possibly not pre-cached in the local cache and
such case is known as a "cache miss" (otherwise there is a "cache hit"). A cache miss in
the local cache inevitably triggers the redirection of the request to the metaverse region
stored in a core cloud deeper in the network and this extra cost in latency is defined as the
penalty D. After rendering, the model and target AROs are integrated into a compressed
final frame for transmission and its compressed size is denoted as Fres

sr .
In this section, a joint optimization scheme is proposed that aims to balance the service

delay and the energy consumption under the constraint of the user perception quality of
the decomposed Metaverse AR services in the EC supported network. The cache hit/miss
is expressed by the decision variable zr j and can be written as follows,

zr j =

1, if ∑

l∈Lrs

∑
s∈Sr

ps jhs
rl ⩾ Lrs,

0, otherwise.
(6.12)

The cache capacity of an EC and the cache hit/miss relation can be written as follows,

∑
r∈R

∑
l∈Lrs

∑
s∈Sr

ps jhs
rlOl ≤Θ j,∀ j ∈M, j ̸= jr (6.13)

∑
l∈N

∑
s∈Sr

hs
rl + ε ≤ Lrs +U(1−qr j)

∀ j ∈M, j ̸= jr,r ∈ R
(6.14)

where Θ j is the cache capacity at node j. In (6.14), to rewrite the either-or constraint that

∑l∈N ∑s∈Sr hs
rl < Lrs or zr j = 1, we define ε as a small tolerance value, U as a large arbitrary

number and qr j as a new decision variable satisfying 1− qr j = zr j [42]. Undoubtedly,
increased levels of pro-caching decisions related to the background models and embedded

111

6.3 System Model

AROs in a request inevitably brings about an extra execution burden for the matching
function. Taking the above into account, the actual processing delay of the computational
intensive function can be expressed as follows,

Vr j =
ωηF f ore

ηr

f j
V

(6.15)

Similarly, the processing delay of the matching and background content checking
function is assumed happen only at serves and can be written as,

Wr j =
ωρ(Fρr +∑l∈Lrs ∑s∈Sr ps jhs

rlOl +∑s∈Sr Fback
sr ps j)

f j
V

(6.16)

where ωη and ωρ (cycles/bit) represent the computation load of foreground interaction
and background matching, f j

V is the virtual CPU frequency (cycles/sec), Fρr are the size of
uploaded pointers of AROs in foreground interactions [42][33]. When finding the target
AROs during matching, their pointers included by foreground interactions should also be
transferred to the metaverse for updating. Finally, the final frame integrating the model
and target AROs are transmitted back to the user. Hence, the overall transmission delay for
each user after processed by functions can be written as follows,

∑
s∈Sr

∑
j∈M, j ̸= jr

(C jA(f (r))+C jA(k))ps j+

(CA(f (r)) f (r)+ ∑
k∈K

CA(k)ku f (r)k)
(6.17)

Note that the product of decision variables, ps jhs
rl , ps jyr j and ps jhs

rlyr j, create a non-
linearity. Observe that ps jhs

rl and ps jyr j appear directly while the product ps jhs
rlyr j appears

in Wr jyr j, which represents the execution of the matching function at the location j
(j ∈M, j ̸= jr). To express the optimization problem in a nominal linear programming
setting, we linearize the above expressions via new auxiliary decision variables. To this
end, a new decision variable αrs j is introduced as αrs j = ps jyr j and the constraints should
be added as follows,

αrs j ⩽ ps j,

αrs j ⩽ yr j,

αrs j ⩾ ps j + yr j−1

(6.18)

112

6.3 System Model

Similarly, a new decision variable βrsl j is introduced as βrsl j = ps jhs
rl and the constraints

should be added as follows,
βrsl j ⩽ ps j,

βrsl j ⩽ hs
rl,

βrsl j ⩾ ps j +hs
rl−1

(6.19)

The aforementioned constraint (6.6) is affected and should be rewritten as follows,

hs
rl ⩽ ∑

j∈M
βrsl j, ∀r ∈ R, ∀s ∈ Sr, ∀l ∈ Lrs (6.20)

Also, note that ps j is a binary decision variable and causes ps j = p2
s j. Thus, we have

ps jhs
rlyr j = αrs jβrsl j. A new decision variable λrsl j is introduced as λrsl j = αrs jβrsl j and

the following constraints should be added as follows,

λrsl j ⩽ αrs j,

λrsl j ⩽ βrsl j,

λrsl j ⩾ αrs j +βrsl j−1

(6.21)

Hence, the product Wr jyr j can be rewritten as follows,

ωρ(Fρryr j +∑l∈Lrs ∑s∈Sr λrsl jOl +∑s∈Sr Fback
sr αrs j)

f j
V

(6.22)

By checking whether users share the same metaverse region by A(f (t))=A(f (r)),{t,r}⊂
R, we can ensure the user could also view other updates happening in the same metaverse
region. Based on the previous modelling of wireless channel, the wireless transmission
delay in a mobility event can be written as follows,

∑
r∈R

F f ore
ηr +∑t∈R,A(f (t))=A(f (r))∑s∈Sr ps jFres

st

gerg
+

∑
r∈R

∑
k∈K

u f (r)k
F f ore

ηr +∑t∈R,A(t)=A(k)∑s∈Sr ps jFres
st

gerg

(6.23)

Noticing that with constraint (6.11), 1
erg

can be replaced by erg for linearization. By
introducing a new decision variable φrlsg with following constraints,

φrsg ⩽ erg,

φrsg ⩽ ps j,

φrsg ⩾ erg + ps j−1

(6.24)

113

6.3 System Model

Thus, the previous formula (6.23) can be updated as follows,

1
g ∑

r∈R
(1+ ∑

k∈K
u f (r)k)(F

f ore
ηr erg+

∑
t∈R,A(f (t))=A(f (r))

∑
s∈Sr

φrsgFres
st)

(6.25)

Based on the above derivations and inline with [42], the overall latency can be written
as follows,

L =(6.25)+ ∑
r∈R

∑
i∈M

(C f (r)i +Vri)xri+

∑
r∈R

∑
i∈M

∑
j∈M, j ̸= jr

((6.22)+Ci jξri j +CA(f (r)) f (r)+ψr jD)+

∑
s∈Sr

∑
j∈M, j ̸= jr

(C jA(f (r))+C jA(k))ps j+

∑
r∈R

∑
k∈K

(CA(k)k +Ckixri)u f (r)k

(6.26)

where Vri is the processing delay of computational intensive function [42]. Lmax here
denotes the maximum allowed service latency and has L

Lmax
∈ [0,1].

The energy efficiency of the system during each service time slot is measured by
the production of its total power and running time. The server total power consists of
the transmission power and CPU processing power at target ECs. Denote the required
CPU processing power of the user r at the node j as Pcpu

r j and the CPU chip architecture
coefficient as k0 (e.g. 10−18) [28]. Then the power at the EC can be achieved through
k0(f j

V)
2 (J/s) based on measurements in [118][69]. Noticing that for both conditions, the

background contents are processed at servers, hence the consumed processing time of the
server is,

Tcpu = ∑
r∈R

∑
j∈M, j ̸=mr

Vr jxr j + ∑
r∈R

∑
j∈M

Wr jyr j (6.27)

The wireless transmission happens no matter if executing foreground interactions at
terminals. Since the selected data rate is gerg, the wireless transmission time is,

Ttran = ∑
r∈R

∑
j∈M, j ̸= jr

F f ore
ηr

gerg
+ ∑

r∈R
∑

j∈M, j= jr

Fρr

gerg
(6.28)

114

6.3 System Model

Finally, the total consumed energy at the server side can be written as follows,

Eserver = ∑
r∈R

∑
j∈M

(Ptran
r j Ttran +Pcpu

r j Tcpu)

= ∑
r∈R

∑
j∈M

(
N j +∑i∈M,i ̸= j PiH2

rid
−a
ri

H2
r jd
−a
r j

(2
gerg
B j −1))

(∑
j ̸= jr

F f ore
ηr

gerg
+ ∑

j=mr

Fρr

gerg
)

+ ∑
r∈R

∑
j∈M

k0(f j
V)

2(Wr jyr j + ∑
j ̸= jr

Vr jxr j)

(6.29)

Regarding the terminal side, in this chapter we follow the Amdahl’s law to model
the energy consumption, in which considers the potential speedup of potential parallel
computations in the function [3]. In this chapter, the metaverse AR functions work by
serial and for simplicity the parallel portion is assumed to be zero like [94]. As mentioned
earlier, the dynamic foreground interactions including some highly used AROs could be
proactively cached at terminals with the matching function. The 3D background model,
on the other hand, is much larger and might serve multiple users in a region. Hence, it
is not recommended to be stored or processed at the terminal. In addition, the metaverse
application should not exceed a certain portion of the whole terminal cpu resources so
that other functionalities could work properly [94]. Denoting the consumed portion as
Γr ∈ [30%,50%] [94], then Vr jxr j

Γr
means processing metaverse AR functions at the terminal

requires a longer time. The Energy consumption of terminals could be written as follows,

Eterminal =PterminalTterminal

= ∑
r∈R

∑
j= jr

k0(f j
V)

2Vr jxr j

Γr

(6.30)

Finally, the overall system energy consumption is E = Eserver +Eterminal . Emax repre-
sents the maximum possible energy consumption of the system. It also has E

Emax
∈ [0,1].

SSIM is applied to reveal the quality of perception experience. In this chapter, the
video coding scheme (e.g. H.264) and frame resolution (e.g. 1280×720) are assumed as
pre-defined [57]. Then SSIM is mainly affected by data rate and a concave function could
be applied to reveal the relation between them[57]. Hence, denote the set of SSIM values
for each ARO under corresponding data rates as SSIMl, l ∈ Lr. The overall quality of
perception experience Q can be written as follows,

Q = ∑
r∈R

∑
l∈Lr

∑
g∈G

∑
c∈SSIMl

ergc (6.31)

115

6.3 System Model

To maintain the user experience above an acceptable level, the perception quality
constraint could be added as follows,

Q
Qmax

≥ Qbound (6.32)

where Qmax is the maximum quality through selecting max allowable data rate and storing
as many AROs as possible.

Using a weighting parameter µ ∈ [0,1], the bi-opbjective optimization problem can be
written as follows,

min µ
L

Lmax
+(1−µ)

E
Emax

(6.33a)

s.t. zr j = 1−qr j, ∀ j ∈M,r ∈ R (6.33b)

∑
r∈R

(xr j + yr j)≤ ∆ j,∀ j ∈M, j ̸= jr (6.33c)

∑
j∈M

xr j = 1,∀r ∈ R (6.33d)

∑
j∈M, j ̸= jr

yr j = 1,∀r ∈ R (6.33e)

ξri j ≤ xri, ∀r ∈ R, i, j ∈M, j ̸= jr (6.33f)

ξri j ≤ yr j, ∀r ∈ R, i, j ∈M, j ̸= jr (6.33g)

ξri j ≥ xri + yr j−1, ∀r ∈ R, i, j ∈M, j ̸= jr (6.33h)

ψr j ≤ zr j, ∀r ∈ R, j ∈M, j ̸= jr (6.33i)

ψr j ≤ yr j, ∀r ∈ R, j ∈M, j ̸= jr (6.33j)

ψr j ≥ zr j + yr j−1, ∀r ∈ R, j ∈M, j ̸= jr (6.33k)

xr j,yr j, ps j,hs
rl,zr j,q j ∈ {0,1},

αrs j,βrsl j,λrsl j,φrslg,ψr j,ξri j ∈ {0,1},
∀r ∈ R, j ∈M, l ∈ Lrs,s ∈ Sr (6.33l)

(6.3), (6.4), (6.5), (6.20), (6.11), (6.13), (6.14),

(6.18), (6.19), (6.21), (6.24), (6.32)

As mentioned earlier, any assignment relating to the storage intensive functions (yr j)
are limited to only ECs and hence should apply the constraint j ̸= jr. The constraint
(6.33b) together with constraints (6.3) to (6.20) reveal the relation between pre-caching
decisions and the cache miss/hit for each request [42]. The constraint (6.33c) is the virtual
machine limitation while (6.33d) and(6.33e) guarantee the once execution of each function

116

6.4 Numerical Investigations

of a request at a single server as explained in [42]. The constraints (6.18) to (6.21) and
(6.33f) to (6.33k) are auxiliary and required to solve the product of decision variables for
linearization.

6.4 Numerical Investigations

In this section, the effectiveness of the proposed optimization scheme, which will be
referred to as Optim in the sequel, is investigated and compared with a number of nomi-
nal/baseline schemes.

Same nominal tree-like network topology used in previous chapters is applied for the
current metaverse AR service and 30 requests are sent by MAR devices. The remaining
available resources allocated for metaverse AR support within an EC are assumed to be
CPUs with frequency as 4 to 8 GHz, CPU chip architecture coefficient as 10−18 (affected by
the chip’s design and structure) [28], 4 to 8 cores and [100,400]MBytes of cache memory
[42]. Similarly, the mobiles AR devices are assumed to own a CPU with 1 GHz frequency,
4 cores and [0,100]MBytes available cache memory for Metaverse AR applications [94].
According to [15], the power of AR applications should not exceed 50% of the mobile
device’s CPU total power of the mobile device (2−3W) so that other functionalities could
operate efficiently. Thus, the service delay of the aforementioned work flow within the
above time interval could be regarded as acceptable. Each request requires a single free
resource unit for each service function, such as for example a Virtual Machine (VM) [67].
Up to 14 available VMs are assumed in each EC, with equal splitting of the available CPU
resources [42]. Note that different view ports lead to different models of the metaverse [33]
and up to 4 different models can be cached. All target AROs must be integrated with the
corresponding model and rendered within the frame before being streamed to the end user
based on a matched result. After triggering the metaverse MAR service, pointers to identify
AROs like a name or index are usually a few bytes [115] and hence their transmission and
processing are neglected in the following simulations. The set of available data rates is
{2,3, ...,8}Mbps and its corresponding SSIM values set is {0.955,0.968, ...,0.991} [57].
We require the acceptable average SSIM above 0.97 (Qbound). We maintain the assumptions
for a nominal 5G base station as in previous chapters like its cell radius (250m), its carrier
frequency (2GHz) and etc. And without the loss of generality, each user can utilize only
one resource block [59][63][19]. As mentioned earlier, we accept a predefined video
coding scheme H.264 with a fixed frame resolution as 1280×720 [57] in RGB (8 bits per
pixel). Based on the given resolution, the size of foreground interactions after decoding
and compressing can be calculated through multiplying the coefficients 5

9 and 10−3 [33].

117

6.4 Numerical Investigations

Matlab on a personal PC with its CPU of intel i7, 6500U and 2 cores is applied for the
simulation. Key simulation parameters are shown below in Table (6.1).

Table 6.1 Simulation parameters

Parameter Value
Number of available ECs 6

Number of available VMs per EC (EC Capacity) 14
Number of requests 30

Number of available models per user 4
AR object size (0,10] MByte

Total moving probability [0,1]
Cell Radius 250m

Remained Cache Capacity per EC [100,400] MByte
EC CPU frequency [4,8] GHz

EC CPU cores [4,8]
EC CPU core portion per VM 0.25−0.5

Remained Cache Capacity per Terminal [0,100] MByte
Terminal CPU frequency 1 GHz

Terminal CPU cores 4
CPU Architecture Coefficient 10−18

Foreground Interaction Computational Load 4 cycles/bit
Background Content Checking Computational Load 10 cycles/bit

Carrier Frequency 2 GHz
Transmission Power 20dBm
Path Loss Exponent 4

Noise Power 10−11W
Number of Resource Blocks 100

Frame Resolution 1280×720
Average latency per hop 2 ms

Cache miss penalty 25 ms

In following figures and discussion, the optimized scheme considering terminals is
denoted as OptimT, while the other one that does not include the terminals is denoted as
as OptimNT. The OptimNT scheme could be regarded as an natural extension from our
previous work [44]. Two other baseline schemes sharing same caching decisions as the
proposed Optim scheme are also implemented for comparison. Those are the RandS and
the CEC schemes as applied in previous chapters.

118

6.4 Numerical Investigations

Fig. 6.4 Overall Delay with Weight µ (6 EC, 30 Requests, EC Capacity is 14 and total
mobility probability is 1)

Fig. 6.5 Average Energy Consumption with Weight µ

According to Fig. (6.4), the service delay for each request of the proposed schemes
decrease, as expected, with an increasing weight µ . With a larger weight, the proposed
schemes tend to select a larger data rate and direct the service to more powerful ECs, which
naturally lead to a smaller overall delay. Compared to the OptimNT scheme, for example,
the gain in delay of the OptimT scheme ranges from 1.9% to 10.4%. When seeking for the
best energy efficiency (µ = 0), since the CPU resources at the terminals are also shared by

119

6.4 Numerical Investigations

other functionalities, the OptimT scheme also tries to avoid the occupation of terminals.
Hence, in this case, these two schemes share similar solutions and approach to each other.
Noticing that the proposed schemes do not care about latency cost, they could choose
further and busy EC which even cause the OptimNT scheme become worse than the CEC
scheme. Afterwards, as the weight µ increases and the emphasis is placed on latency
rather than energy, causes the OptimT scheme to allocate some foreground interactions at
terminals and becomes better than OptimNT. Since the baseline schemes neglect energy
consumption, service decomposition and mobility, their gaps to the proposed schemes
become larger with an increasing weight. However, such gain in delay comes with an extra
cost in energy consumption. As shown by Fig. (6.5), the energy consumption per request
of the proposed schemes increase with a larger weight. Compared to the OptimNT scheme,
the OptimT scheme consumes 2.9% to 23.0% more energy under different weights. Thus,
it might not always be worthy to endure lots of energy consumption for narrow gains in
delay. By selecting a suitable weight, a balance could be achieved with the OptimT scheme
between delay and energy consumption. Through the utilization of terminals, the OptimT
scheme becomes the most sensitive to the energy consumption and there could be instances
that it might consume more energy that the RandS scheme.

Fig. 6.6 Overall Delay with Foreground Interaction Size (6 EC, 30 Requests, µ = 0.5, EC
Capacity is 14 and total mobility probability is 1)

120

6.4 Numerical Investigations

Fig. 6.7 Average Energy Consumption with Foreground Interaction Size (6 EC, 30 Requests,
µ = 0.5, EC Capacity is 14 and total mobility probability is 1)

Fig. 6.8 Overall Delay with Background Model Size (6 EC, 30 Requests, µ = 0.5, EC
Capacity is 14 and total mobility probability is 1)

Clearly, the user experience could be elevated through viewing more AROs in fore-
ground interactions or more delicate scenes from background models. Fig. (6.6) reveals
the variation of delay with the increasing foreground interaction size.When the average
foreground interaction size is not too large and there are still enough resources at target

121

6.4 Numerical Investigations

ECs, OptimNT and baseline schemes increase almost linearly at a similar speed. When
the size keeps increasing and resources become limited, the CEC scheme becomes the
most sensitive one because it only targets on several closest ECs and is easier to trigger the
penalty. The optimT scheme, on the other hand, maintains the least latency and the least
increasing tendency. To this end, it could save up to 13.8% and 51.7% delay compared
respectively to the OptimNT scheme and the CEC scheme. Fig. (6.7) further reveals
the variation of energy in this case. Baseline schemes process foreground interactions
at ECs without considering energy. Hence, their decisions are not obviously affected
by the size of foreground interactions and their energy consumption increases almost
linearly. The OptimNT schemes keeps finding more suitable ECs according to current
foreground interaction size and remained resources while the OptimT schemes further
enables terminals to process some works. Compared to the CEC scheme, they could save
over 14.3% energy. It is necessary to point out that the energy consumption will not be
taken into account when redirecting the request to the further core cloud and triggering
the penalty. According to Fig. (6.8), the background model size is much larger and could
cause a significant increase in delay. Note that the terminals could take charge of some
foreground interactions and hence could make room for background models in the OptimT
scheme. It is still the best scheme in terms of delay and could be up to 9.8% less than
the OptimNT scheme. As mentioned earlier, the proactively caching and processing of
background models only happen at ECs, these schemes share a similar level of increased
energy consumption until triggering the overloading penalty.

Fig. 6.9 Overall Delay with Average EC Utilization Rate (6 EC, µ = 0.5 and total mobility
probability is 1)

122

6.4 Numerical Investigations

Fig. 6.10 Energy Consumption with Average EC Utilization Rate (6 EC, µ = 0.5 and total
mobility probability is 1)

The number of available VMs activated in an EC is known as the EC capacity. For
a given EC capacity (e.g. 14), the ratio between the different number of requests (e.g.
[30,40]) and the EC capacity could be applied to represent the average EC Utilization in the
network. Then, this rate is normalized into [0,1] for better presentation. As shown in Fig.
(6.9) and (6.10), the increasing EC Utilization rate indicates a more congested network
and hence as expected the delay and energy consumption increase as well. Compared to
the OptimT scheme, the OptimNT scheme is still more sensitive in terms of energy but
better in terms of delay. Thus, its consideration of terminals benefits delay at the cost of
energy. Observe from Table (6.2), that even when there is no mobility event, the proposed
OptimT scheme is still slightly better than other baseline schemes because its flexibility of
terminals could better avoid potential EC overloading. Therefore, the proposed OptimT and
OptimNT schemes have an obvious advantage over baseline schemes and is recommended
in a congested network and a high user physical mobility scenario. Especially when the
MAR terminal still owns enough energy capacity, its computing resources should not be
neglected and hence the OptimT scheme is more suitable in this case.

Table 6.2 Overall Delay in no mobility event
(µ = 1, 6 ECs, 30 requests and EC Capacity is 14)

Scheme OptimT OptimNT CFS RandS
Delay (ms) 38.8 40.1 40.7 60.8

123

6.4 Numerical Investigations

Extending MAR applications into the metaverse is expected to incorporate the rendering
and updating of high-quality AR metadata in order to provide a more realistic experience.
Hence, such forward-looking applications are highly delay- and energy-sensitive and are
significantly demanding in terms of caching and computing resources. In this chapter,
a joint optimization scheme is proposed by explicitly considering the model rendering
performance, user mobility and service decomposition to achieve a balance between energy
consumption and service delay under the constraint of user perception quality for metaverse
MAR applications. Recent technical improvements in AR devices allow them to process
more tasks locally. To this end, we explore their potential in the metaverse and compare
the performance with terminal-oblivious schemes which reside on cloud support. A wide
range of numerical investigations reveals that the proposed terminal-aware framework
provides improved decision making compared to baseline schemes for energy consumption
and resource allocation for metaverse MAR applications, especially under a congested
network and a high-mobility scenario.

Noticing that obtaining optimal solutions is time consuming but the metaverse is quite
different from normal network conditions in previous chapters, a deeper and more efficient
heuristic algorithm like deep reinforcement learning could be useful. In addition, metaverse
in this chapter is defined as a mixed world with features like foreground interactions
and background content creation. However, metaverse is still experiencing evolutionary
changes and its cooperation with internal applications is not fixed. Hence, this chapter
could be a starting point for further research targeting on above limitations.

124

Chapter 7

Conclusions

MAR applications are still in a rather embryonic state but they are currently attracting
significant attention from both academic and industry stemming from increased capabilities
from the network side as well as the terminals. The ability of augmented reality services to
overlay digital content over the physical space and surroundings results in an immersive
metaverse type of environment which open up a plethora of potential use cases and
applications.

In [42] and [46], mobility has been proved to be an important factor in service latency
of MAR systems. An optimization framework is proposed that considers a rich set of
AR specific constraints, provides service decomposition and allows a trade off between
service latency and frame accuracy to improve the communication efficiency. Based on this
scheme, a simulated annealing based mobility aware AR (SAMAR) algorithm and a LSTM
based neural network for predicting edge clouds for anchoring MAR functions are designed
to achieve high-quality solutions whilst being amenable for real-time implementation. Both
proposed schemes deliver competitive performance and focusing on the inference stage,
the LSTM based scheme shows enhanced performance and shorter execution time.

In [43], enabling content-aware caching by storing high probability 2D FoVs instead
of 3D AROs could significantly ease the requirements for storage and computing resources
with limited effects on overall quality. This work proposes a joint optimization framework
considering the balance between service delay, field-of-view aware proactive caching and
FoV allocation. Furthermore, an LSTM-based deep neural network is explored to provide
real time decision making. The LSTM network is trained using optimal solutions offline,
and can efficiently provide high-quality decision making in real-time during inference.

In [45] and [46], Multi view streaming applications with embedded AROs are highly
delay sensitive and confronted with a series of constraints in terms of storage and computing
resources. Hence, an optimization framework is proposed to realize optimal service
decomposition in an edge-cloud supported 5G and beyond wireless network aiming to

125

balance service latency and content popularity by taking into account the inherent user
mobility. In addition, a nominal long short term memory (LSTM) neural network is
proposed that is trained using optimal solutions to explore real-time decision making for
supporting edge proactive caching for multi view streaming with popular augmented reality
objects.

In [44] and [47], experiences in the metaverse are expected to be significantly demand-
ing in terms of energy consumption, persistent high data rate support and advanced edge
caching/computing capabilities in 5G and beyond networks. Through considering a more
forward looking application that combines the metaverse and MAR, a joint optimization
framework is proposed that explicitly considers the model rendering, user mobility and
service decomposition to achieve a balance between power consumption, user perception
quality and service delay for content rich metaverse type of applications. Based on whether
neglecting the capacity of terminals, two versions of optimized schemes are utilized for
further comparison.

According to a wide set of simulations in above works, the results show that our
proposed schemes are superior to given baseline schemes and could provide a significant
reduction in delay without suffering much loss in user experience or other related factors.
Thus, they own an obvious advantage over baseline schemes and are suitable for MAR
applications during a mobility event in the EC supported networks.

Except for some unique limitations mentioned in previous chapters, above works also
share some common limitation requiring more efforts in the future. They are all simulated
under a small-scale tree topology to achieve optimal solutions. However, for a large-scale
dynamic network, optimal solutions are out of reach and though we try several heuristic
algorithms, the quality their predictions for large networks are hard to determine since
there are no optimal ones for comparison. In addition, when turning to real time decision
and synchronization, it still remains as a big challenge because decision efficiency and
quality are hard to maintain both for most proposed algorithms. Our research could be
further tested in a more realistic scenario where mobile AR devices and applications are
utilized. The proposed LSTM based algorithms could be elevated into a more complex
and robust version to better fit a larger and more dynamic network. In addition, user
mobility is focused in above mentioned works while current technology achievements
further bring the mobility for access points with Unmanned Aerial Vehicle (UAV). In
future 6G networks, such mobile events are common for mixed reality and require more
advanced machine learning solutions like penetrated Artificial Intelligence in different
network layers to achieve millisecond level service latency and render a fully immersive
metaverse scene from multiple perspectives.

126

References

[1] Akhtar, N., Matta, I., Raza, A., Goratti, L., Braun, T., and Esposito, F. (2018). Virtual
function placement and traffic steering over 5g multi-technology networks. In 2018 4th
IEEE Conference on Network Softwarization and Workshops (NetSoft), pages 114–122.
IEEE.

[2] Alencar, D., Both, C., Antunes, R., Oliveira, H., Cerqueira, E., and Rosário, D. (2021).
Dynamic microservice allocation for virtual reality distribution with qoe support. IEEE
Transactions on Network and Service Management.

[3] Amdahl, G. M. (1967). Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, spring joint
computer conference, pages 483–485.

[4] Amine, K. (2019). Multiobjective simulated annealing: Principles and algorithm
variants. Advances in Operations Research, 2019.

[5] Avila, L. and Bailey, M. (2016). Augment your reality. IEEE computer graphics and
applications, 36(1):6–7.

[6] Bachhuber, C., Martinez, A. S., Pries, R., Eger, S., and Steinbach, E. (2019). Edge
cloud-based augmented reality. In 2019 IEEE 21st International Workshop on Multime-
dia Signal Processing (MMSP), pages 1–6. IEEE.

[7] Ball, M. (2022). The metaverse: and how it will revolutionize everything. Liveright
Publishing.

[8] Bao, Y., Wu, H., Zhang, T., Ramli, A. A., and Liu, X. (2016). Shooting a moving
target: Motion-prediction-based transmission for 360-degree videos. In 2016 IEEE
International Conference on Big Data (Big Data), pages 1161–1170. IEEE.

[9] Barb, G. and Otesteanu, M. (2019). On the influence of delay spread in tdl and cdl
channel models for downlink 5g mimo systems. In 2019 IEEE 10th Annual Ubiquitous
Computing, Electronics & Mobile Communication Conference (UEMCON), pages
0958–0962. IEEE.

[10] Bianchini, R., Fontoura, M., Cortez, E., Bonde, A., Muzio, A., Constantin, A.-M.,
Moscibroda, T., Magalhaes, G., Bablani, G., and Russinovich, M. (2020). Toward
ml-centric cloud platforms. Communications of the ACM, 63(2):50–59.

[11] Bilal, K., Erbad, A., and Hefeeda, M. (2017). Crowdsourced multi-view live video
streaming using cloud computing. IEEE Access, 5:12635–12647.

[12] Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

127

References

[13] Chakareski, J., Velisavljevic, V., and Stankovic, V. (2015). View-popularity-driven
joint source and channel coding of view and rate scalable multi-view video. IEEE
Journal of Selected Topics in Signal Processing, 9(3):474–486.

[14] Chatzopoulos, D., Bermejo, C., Huang, Z., and Hui, P. (2017). Mobile augmented
reality survey: From where we are to where we go. Ieee Access, 5:6917–6950.

[15] Chen, H., Dai, Y., Meng, H., Chen, Y., and Li, T. (2018a). Understanding the
characteristics of mobile augmented reality applications. In 2018 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pages 128–138.
IEEE.

[16] Chen, K., Li, T., Kim, H.-S., Culler, D. E., and Katz, R. H. (2018b). Marvel: Enabling
mobile augmented reality with low energy and low latency. In Proceedings of the 16th
ACM Conference on Embedded Networked Sensor Systems, pages 292–304.

[17] Chen, S., Sun, S., and Kang, S. (2020a). System integration of terrestrial mobile com-
munication and satellite communication —the trends, challenges and key technologies
in b5g and 6g. China Communications, 17(12):156–171.

[18] Chen, Y., Zhang, H., and Hu, Y. (2020b). Optimal power and bandwidth allocation
for multiuser video streaming in uav relay networks. IEEE Transactions on Vehicular
Technology, 69(6):6644–6655.

[19] Chettri, L. and Bera, R. (2019). A comprehensive survey on internet of things (iot)
toward 5g wireless systems. IEEE Internet of Things Journal, 7(1):16–32.

[20] Cho, Y. S., Kim, J., Yang, W. Y., and Kang, C. G. (2010). MIMO-OFDM wireless
communications with MATLAB. John Wiley & Sons.

[21] Chowdhury, S. R., Salahuddin, M. A., Limam, N., and Boutaba, R. (2019). Re-
architecting nfv ecosystem with microservices: State of the art and research challenges.
IEEE Network, 33(3):168–176.

[22] Chu, N. H., Hoang, D. T., Nguyen, D. N., Phan, K. T., and Dutkiewicz, E. (2022).
Metaslicing: A novel resource allocation framework for metaverse. arXiv preprint
arXiv:2205.11087.

[23] Chylinski, M., Heller, J., Hilken, T., Keeling, D. I., Mahr, D., and de Ruyter, K.
(2020). Augmented reality marketing: A technology-enabled approach to situated
customer experience. Australasian Marketing Journal (AMJ), 28(4):374–384.

[24] Cozzolino, V., Tonetto, L., Mohan, N., Ding, A. Y., and Ott, J. (2022). Nimbus:
Towards latency-energy efficient task offloading for ar services. IEEE Transactions on
Cloud Computing.

[25] Cziva, R. and Pezaros, D. P. (2017). On the latency benefits of edge nfv. In 2017
ACM/IEEE Symposium on Architectures for Networking and Communications Systems
(ANCS), pages 105–106. IEEE.

[26] Dang, T. and Peng, M. (2019). Joint radio communication, caching, and computing
design for mobile virtual reality delivery in fog radio access networks. IEEE Journal
on Selected Areas in Communications, 37(7):1594–1607.

128

References

[27] De Lauretis, L. (2019). From monolithic architecture to microservices architecture.
In 2019 IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW), pages 93–96. IEEE.

[28] Dong, R., She, C., Hardjawana, W., Li, Y., and Vucetic, B. (2019). Deep learning for
hybrid 5g services in mobile edge computing systems: Learn from a digital twin. IEEE
Transactions on Wireless Communications, 18(10):4692–4707.

[29] Elbadawy, H. M. and Sadek, R. A. (2022). B5g/6g service planning process for the
deployment of smart cities as a model for massive urban area applications. In 2022 39th
National Radio Science Conference (NRSC), volume 1, pages 332–341.

[30] Fausto, F., Reyna-Orta, A., Cuevas, E., Andrade, Á. G., and Perez-Cisneros, M.
(2020). From ants to whales: metaheuristics for all tastes. Artificial Intelligence Review,
53(1):753–810.

[31] Gemici, Ö. F., Hökelek, İ., and Çırpan, H. A. (2021). Modeling queuing delay of 5g
nr with noma under sinr outage constraint. IEEE Transactions on Vehicular Technology,
70(3):2389–2403.

[32] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In Proc. 13th international conference on artificial
intelligence and statistics, pages 249–256.

[33] Guo, F., Yu, F. R., Zhang, H., Ji, H., Leung, V. C., and Li, X. (2020a). An adaptive
wireless virtual reality framework in future wireless networks: A distributed learning
approach. IEEE Transactions on Vehicular Technology, 69(8):8514–8528.

[34] Guo, Y., Wang, S., Zhou, A., Xu, J., Yuan, J., and Hsu, C.-H. (2020b). User
allocation-aware edge cloud placement in mobile edge computing. Software: Practice
and Experience, 50(5):489–502.

[35] Halabian, H. (2019). Optimal distributed resource allocation in 5g virtualized net-
works. In 2019 IFIP/IEEE Symposium on Integrated Network and Service Management
(IM), pages 28–35. IEEE.

[36] Han, Y., Niyato, D., Leung, C., Miao, C., and Kim, D. I. (2021). A dynamic resource
allocation framework for synchronizing metaverse with iot service and data. arXiv
preprint arXiv:2111.00431.

[37] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification. In Proc. IEEE intern.
conference on computer vision.

[38] Herrera, J. G. and Botero, J. F. (2016). Resource allocation in nfv: A comprehensive
survey. IEEE Transactions on Network and Service Management, 13(3):518–532.

[39] Hertzmann, A. and Perlin, K. (2000). Painterly rendering for video and interaction.
In Proceedings of the 1st international symposium on Non-photorealistic animation and
rendering, pages 7–12.

[40] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8):1735–1780.

129

References

[41] Huang, X., Wang, L., Huang, J., Li, D., and Zhang, M. (2009). A depth extraction
method based on motion and geometry for 2d to 3d conversion. In 2009 Third Interna-
tional Symposium on Intelligent Information Technology Application, volume 3, pages
294–298. IEEE.

[42] Huang, Z. and Friderikos, V. (2021). Proactive edge cloud optimization for mobile
augmented reality applications. In 2021 IEEE Wireless Communications and Networking
Conference (WCNC), pages 1–6. IEEE.

[43] Huang, Z. and Friderikos, V. (2022a). Field of view aware proactive caching for mo-
bile augmented reality applications. In 2022 IEEE Global Communications Conference,
pages 1–6. IEEE.

[44] Huang, Z. and Friderikos, V. (2022b). Mobility aware optimization in the metaverse.
In 2022 IEEE Global Communications Conference, pages 1–6. IEEE.

[45] Huang, Z. and Friderikos, V. (2022c). Network resource optimization for multi-
view streaming mobile augmented reality. In 2022 IEEE 96th Vehicular Technology
Conference (VTC2022-Fall), pages 1–7. IEEE.

[46] Huang, Z. and Friderikos, V. (2022d). Optimal proactive caching for multi-view
streaming mobile augmented reality. Future Internet, 14(6):166.

[47] Huang, Z. and Friderikos, V. (2023a). Optimal mobility aware wireless edge cloud
support for the metaverse. Future Internet, 15(2):47.

[48] Huang, Z. and Friderikos, V. (2023b). Optimal service decomposition for mobile
augmented reality with edge cloud support. Computer Communications. ISSN:0140-
3664, doi:https://doi.org/10.1016/j.comcom.2023.02.002.

[49] Huang, Z., Friderikos, V., Dohler, M., and Aghvami, H. (2021). Granular vnf-based
microservices: Advanced service decomposition and the role of machine learning
techniques. In Design Innovation and Network Architecture for the Future Internet,
pages 250–271. IGI Global.

[50] Huang, Z., Li, W., Hui, P., and Peylo, C. (2014). Cloudridar: A cloud-based
architecture for mobile augmented reality. In Proceedings of the 2014 workshop on
Mobile augmented reality and robotic technology-based systems, pages 29–34.

[51] Huynh, L. N., Lee, Y., and Balan, R. K. (2017). Deepmon: Mobile gpu-based deep
learning framework for continuous vision applications. In Proceedings of the 15th
Annual International Conference on Mobile Systems, Applications, and Services, pages
82–95.

[52] Jain, P., Manweiler, J., and Roy Choudhury, R. (2015). Overlay: Practical mobile
augmented reality. In Proceedings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services, pages 331–344.

[53] Jalodia, N., Henna, S., and Davy, A. (2019). Deep reinforcement learning for
topology-aware vnf resource prediction in nfv environments. In 2019 IEEE Conference
on Network Function Virtualization and Software Defined Networks (NFV-SDN), pages
1–5. IEEE.

130

https://doi.org/ https://doi.org/10.1016/j.comcom.2023.02.002

References

[54] Jiang, Y., Kang, J., Niyato, D., Ge, X., Xiong, Z., and Miao, C. (2021). Reliable
coded distributed computing for metaverse services: Coalition formation and incentive
mechanism design. arXiv preprint arXiv:2111.10548.

[55] Kan, N., Zou, J., Tang, K., Li, C., Liu, N., and Xiong, H. (2019). Deep reinforcement
learning-based rate adaptation for adaptive 360-degree video streaming. In ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 4030–4034. IEEE.

[56] Karmel, A., Chandramouli, R., and Iorga, M. (2016). Nist definition of microservices,
application containers and system virtual machines. Technical report, National Institute
of Standards and Technology.

[57] Kato, H., Kobayashi, T., Sugano, M., and Naito, S. (2021). Split rendering of
the transparent channel for cloud ar. In 2021 IEEE 23rd International Workshop on
Multimedia Signal Processing, pages 1–6. IEEE.

[58] Kaur, K., Mangat, V., and Kumar, K. (2020). A comprehensive survey of service
function chain provisioning approaches in sdn and nfv architecture. Computer Science
Review, 38:100298.

[59] Korrai, P. K., Lagunas, E., Sharma, S. K., Chatzinotas, S., and Ottersten, B. (2019).
Slicing based resource allocation for multiplexing of embb and urllc services in 5g
wireless networks. In IEEE CAMAD.

[60] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with
deep convolutional neural networks. Communications of the ACM, 60(6):84–90.

[61] Laghrissi, A. and Taleb, T. (2018). A survey on the placement of virtual resources
and virtual network functions. IEEE Communications Surveys & Tutorials, 21(2):1409–
1434.

[62] Li, L., Qiao, X., Lu, Q., Ren, P., and Lin, R. (2020a). Rendering optimization for
mobile web 3d based on animation data separation and on-demand loading. IEEE
Access, 8:88474–88486.

[63] Li, S., Lin, P., Song, J., and Song, Q. (2020b). Computing-assisted task offloading
and resource allocation for wireless vr systems. In IEEE 6th International Conference
on Computer and Communications (ICCC).

[64] Liu, L., Li, H., and Gruteser, M. (2019). Edge assisted real-time object detection
for mobile augmented reality. In The 25th Annual International Conference on Mobile
Computing and Networking, pages 1–16.

[65] Liu, M. and Liu, Y. (2017). Price-based distributed offloading for mobile-edge
computing with computation capacity constraints. IEEE Wireless Communications
Letters, 7(3):420–423.

[66] Liu, Q. and Han, T. (2018). Dare: Dynamic adaptive mobile augmented reality with
edge computing. In 2018 IEEE 26th International Conference on Network Protocols
(ICNP), pages 1–11. IEEE.

131

References

[67] Liu, Q., Huang, S., Opadere, J., and Han, T. (2018). An edge network orchestrator for
mobile augmented reality. In IEEE INFOCOM 2018-IEEE Conference on Computer
Communications, pages 756–764. IEEE.

[68] Liu, Z., Xiang, Y., and Qu, X. (2015). Towards optimal cpu frequency and different
workload for multi-objective vm allocation. In 2015 12th Annual IEEE Consumer
Communications and Networking Conference (CCNC), pages 367–372. IEEE.

[69] Miettinen, A. P. and Nurminen, J. K. (2010). Energy efficiency of mobile clients
in cloud computing. In 2nd USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 10).

[70] Mijumbi, R., Serrat, J., Gorricho, J.-L., Bouten, N., De Turck, F., and Boutaba, R.
(2015). Network function virtualization: State-of-the-art and research challenges. IEEE
Communications surveys & tutorials, 18(1):236–262.

[71] Minaee, S., Liang, X., and Yan, S. (2022). Modern augmented reality: Applications,
trends, and future directions. arXiv preprint arXiv:2202.09450.

[72] Naman, A. T., Xu, R., and Taubman, D. (2013). Inter-frame prediction using motion
hints. In 2013 IEEE International Conference on Image Processing, pages 1792–1796.
IEEE.

[73] Nath, S. B., Chattopadhyay, S., Karmakar, R., Addya, S. K., Chakraborty, S., and
Ghosh, S. K. (2019). Ptc: Pick-test-choose to place containerized micro-services in iot.
In 2019 IEEE Global Communications Conference (GLOBECOM), pages 1–6. IEEE.

[74] Ng, W. C., Lim, W. Y. B., Ng, J. S., Xiong, Z., Niyato, D., and Miao, C. (2021).
Unified resource allocation framework for the edge intelligence-enabled metaverse.
arXiv preprint arXiv:2110.14325.

[75] Niu, G. and Chen, Q. (2018). Learning an video frame-based face detection system
for security fields. Journal of Visual Communication and Image Representation, 55:457–
463.

[76] Patel, P., Ranabahu, A. H., and Sheth, A. P. (2009). Service level agreement in cloud
computing. Technical report, Wright State University.

[77] Patoommakesorn, K., Vignat, F., and Villeneuve, F. (2019). The 3d edge recon-
struction from 2d image by using correlation based algorithm. In 2019 IEEE 6th
International Conference on Industrial Engineering and Applications (ICIEA), pages
372–376. IEEE.

[78] Perronnin, F., Liu, Y., Sánchez, J., and Poirier, H. (2010). Large-scale image re-
trieval with compressed fisher vectors. In 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 3384–3391. IEEE.

[79] Pervez, F., Raheel, M. S., Gill, J., and Iqbal, K. (2016). Uplink resource allocation
of multiple dash streams for qoe-based real and non-real time viewing over lte. In
10th International Conference on Next Generation Mobile Applications, Security and
Technologies (NGMAST).

132

References

[80] Qiao, X., Ren, P., Dustdar, S., Liu, L., Ma, H., and Chen, J. (2019a). Web ar: A
promising future for mobile augmented reality—state of the art, challenges, and insights.
Proceedings of the IEEE, 107(4):651–666.

[81] Qiao, X., Ren, P., Nan, G., Liu, L., Dustdar, S., and Chen, J. (2019b). Mobile web
augmented reality in 5g and beyond: Challenges, opportunities, and future directions.
China Communications, 16(9):141–154.

[82] Ran, X., Chen, H., Zhu, X., Liu, Z., and Chen, J. (2018). Deepdecision: A mobile
deep learning framework for edge video analytics. In IEEE INFOCOM 2018-IEEE
Conference on Computer Communications, pages 1421–1429. IEEE.

[83] Rattanarungrot, S. and White, M. (2016). Development of service oriented mobile ar
applications for museum learning activities. In 2016 22nd International Conference on
Virtual System & Multimedia (VSMM), pages 1–8. IEEE.

[84] Rauschnabel, P. A., Felix, R., and Hinsch, C. (2019). Augmented reality marketing:
How mobile ar-apps can improve brands through inspiration. Journal of Retailing and
Consumer Services, 49:43–53.

[85] Rauschnabel, P. A., Felix, R., Hinsch, C., Shahab, H., and Alt, F. (2022). What is xr?
towards a framework for augmented and virtual reality. Computers in Human Behavior,
133:107289.

[86] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once:
Unified, real-time object detection. In IEEE conference on computer vision and pattern
recognition, pages 779–788.

[87] Ren, J., Gao, L., Wang, X., Ma, M., Qiu, G., Wang, H., Zheng, J., and Wang, Z.
(2021). Adaptive computation offloading for mobile augmented reality. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 5(4):1–30.

[88] Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural information
processing systems, pages 91–99.

[89] Saarnisaari, H., Laiyemo, A. O., and de Lima, C. H. (2019). Random access process
analysis of 5g new radio based satellite links. In 2019 IEEE 2nd 5G World Forum
(5GWF), pages 654–658. IEEE.

[90] Selmadji, A., Seriai, A.-D., Bouziane, H. L., Mahamane, R. O., Zaragoza, P., and
Dony, C. (2020). From monolithic architecture style to microservice one based on
a semi-automatic approach. In 2020 IEEE International Conference on Software
Architecture (ICSA), pages 157–168. IEEE.

[91] Seo, Y.-J., Lee, J., Hwang, J., Niyato, D., Park, H.-S., and Choi, J. K. (2021). A
novel joint mobile cache and power management scheme for energy-efficient mobile
augmented reality service in mobile edge computing. IEEE Wireless Communications
Letters, 10(5):1061–1065.

[92] Shea, R., Sun, A., Fu, S., and Liu, J. (2017). Towards fully offloaded cloud-based ar:
Design, implementation and experience. In Proceedings of the 8th ACM on Multimedia
Systems Conference, pages 321–330.

133

References

[93] Shu, H. and Chau, L.-P. (2005). Frame size selection in video downsizing transcoding
application. In 2005 IEEE International Symposium on Circuits and Systems, pages
896–899. IEEE.

[94] Song, S., Kim, J., and Chung, J.-M. (2019). Energy consumption minimization
control for augmented reality applications based on multi-core smart devices. In 2019
IEEE International Conference on Consumer Electronics (ICCE), pages 1–4. IEEE.

[95] Sonmez, C., Ozgovde, A., and Ersoy, C. (2019). Fuzzy workload orchestration for
edge computing. IEEE Transactions on Network and Service Management, 16(2):769–
782.

[96] Speicher, M., Hall, B. D., Yu, A., Zhang, B., Zhang, H., Nebeling, J., and Nebeling,
M. (2018). Xd-ar: challenges and opportunities in cross-device augmented reality
application development. Proceedings of the ACM on Human-Computer Interaction,
2(EICS):1–24.

[97] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting. The journal
of machine learning research, 15(1):1929–1958.

[98] Sun, C., Zhou, J., Liuliang, J., Zhang, J., Zhang, X., and Wang, W. (2018a). Compu-
tation offloading with virtual resources management in mobile edge networks. In 2018
IEEE 87th Vehicular Technology Conference (VTC Spring), pages 1–5. IEEE.

[99] Sun, G., Zhu, G., Liao, D., Yu, H., Du, X., and Guizani, M. (2018b). Cost-efficient
service function chain orchestration for low-latency applications in nfv networks. IEEE
Systems Journal, 13(4):3877–3888.

[100] Sun, Y., Chen, Z., Tao, M., and Liu, H. (2019). Communications, caching, and
computing for mobile virtual reality: Modeling and tradeoff. IEEE Transactions on
Communications, 67(11):7573–7586.

[101] Toczé, K. and Nadjm-Tehrani, S. (2019). Orch: Distributed orchestration framework
using mobile edge devices. In 2019 IEEE 3rd International Conference on Fog and
Edge Computing (ICFEC), pages 1–10. IEEE.

[102] Tsubaki, I., Shimeno, A., Tsukuba, T., Suenaga, T., and Shioi, M. (2012). 2d to 3d
conversion based on tracking both vanishing point and objects. In The 1st IEEE Global
Conference on Consumer Electronics 2012, pages 110–114. IEEE.

[103] Van Houdt, G., Mosquera, C., and Nápoles, G. (2020). A review on the long
short-term memory model. Artificial Intelligence Review, 53(8):5929–5955.

[104] Wang, X., Yang, L. T., Xie, X., Jin, J., and Deen, M. J. (2017a). A cloud-edge com-
puting framework for cyber-physical-social services. IEEE Communications Magazine,
55(11):80–85.

[105] Wang, Y., Haenggi, M., and Tan, Z. (2017b). The meta distribution of the sir
for cellular networks with power control. IEEE Transactions on Communications,
66(4):1745–1757.

134

References

[106] Wang, Y., Tao, X., Zhang, X., Zhang, P., and Hou, Y. T. (2019). Cooperative
task offloading in three-tier mobile computing networks: An admm framework. IEEE
Transactions on Vehicular Technology, 68(3):2763–2776.

[107] Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality
assessment: from error visibility to structural similarity. IEEE transactions on image
processing, 13(4):600–612.

[108] Wu, C., Wang, M., Ma, B., and Chen, K. (2020). Heterogeneous networks topology
optimization based on simulated annealing algorithm. In 2020 IEEE 4th Information
Technology, Networking, Electronic and Automation Control Conference (ITNEC),
volume 1, pages 2074–2078. IEEE.

[109] Wu, C.-C., Tung, L.-P., Lin, C.-Y., Lin, B.-S. P., and Tseng, Y.-C. (2014). On local
cache management strategies for mobile augmented reality. In Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and Multimedia Networks
2014, pages 1–3. IEEE.

[110] Xie, R., Wu, J., Wang, R., and Huang, T. (2019). A game theoretic approach
for hierarchical caching resource sharing in 5g networks with virtualization. China
Communications, 16(7):32–48.

[111] Xu, M., Ng, W. C., Lim, W. Y. B., Kang, J., Xiong, Z., Niyato, D., Yang, Q., Shen,
X. S., and Miao, C. (2022). A full dive into realizing the edge-enabled metaverse:
Visions, enabling technologies, and challenges. arXiv preprint arXiv:2203.05471.

[112] Xu, M., Niyato, D., Kang, J., Xiong, Z., Miao, C., and Kim, D. I. (2021). Wireless
edge-empowered metaverse: A learning-based incentive mechanism for virtual reality.
arXiv preprint arXiv:2111.03776.

[113] Yang, X., Chen, Z., Li, K., Sun, Y., Liu, N., Xie, W., and Zhao, Y. (2018).
Communication-constrained mobile edge computing systems for wireless virtual reality:
Scheduling and tradeoff. IEEE Access, 6:16665–16677.

[114] Zeng, X., Cao, K., and Zhang, M. (2017). Mobiledeeppill: A small-footprint mobile
deep learning system for recognizing unconstrained pill images. In Proceedings of the
15th Annual International Conference on Mobile Systems, Applications, and Services,
pages 56–67.

[115] Zhang, A., Jacobs, J., Sra, M., and Höllerer, T. (2021a). Multi-view ar streams for
interactive 3d remote teaching. In Proceedings of the 27th ACM Symposium on Virtual
Reality Software and Technology, pages 1–3.

[116] Zhang, R., Liu, J., Liu, F., Huang, T., Tang, Q., Wang, S., and Yu, F. R. (2021b).
Buffer-aware virtual reality video streaming with personalized and private viewport
prediction. IEEE JSAC.

[117] Zhang, W., Han, B., Hui, P., Gopalakrishnan, V., Zavesky, E., and Qian, F. (2018a).
Cars: Collaborative augmented reality for socialization. In Proceedings of the 19th
International Workshop on Mobile Computing Systems & Applications, pages 25–30.

[118] Zhang, W., Wen, Y., Guan, K., Kilper, D., Luo, H., and Wu, D. O. (2013). Energy-
optimal mobile cloud computing under stochastic wireless channel. IEEE Transactions
on Wireless Communications, 12(9):4569–4581.

135

References

[119] Zhang, X., Fronz, S., and Navab, N. (2002). Visual marker detection and decoding
in ar systems: A comparative study. In Proceedings. International Symposium on Mixed
and Augmented Reality, pages 97–106. IEEE.

[120] Zhang, X., Toni, L., Frossard, P., Zhao, Y., and Lin, C. (2018b). Adaptive streaming
in interactive multiview video systems. IEEE Transactions on Circuits and Systems for
Video Technology, 29(4):1130–1144.

[121] Zhang, Z., Yang, Y., Hua, M., Li, C., Huang, Y., and Yang, L. (2019). Proactive
caching for vehicular multi-view 3d video streaming via deep reinforcement learning.
IEEE Transactions on Wireless Communications, 18(5):2693–2706.

[122] Zhao, L., Cui, Y., Liu, Z., Zhang, Y., and Yang, S. (2021). Adaptive streaming of
360 videos with perfect, imperfect, and unknown fov viewing probabilities in wireless
networks. IEEE Transactions on Image Processing.

[123] Zhao, M., Gong, X., Liang, J., Guo, J., Wang, W., Que, X., and Cheng, S. (2015). A
cloud-assisted dash-based scalable interactive multiview video streaming framework.
In 2015 Picture Coding Symposium (PCS), pages 221–226. IEEE.

[124] Zheng, G., Tsiopoulos, A., and Friderikos, V. (2018). Optimal vnf chains man-
agement for proactive caching. IEEE Transactions on Wireless Communications,
17(10):6735–6748.

[125] Zuo, Y., Wu, Y., Min, G., and Cui, L. (2019). Learning-based network path planning
for traffic engineering. Future Generation Computer Systems, 92:59–67.

136

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Mobile Augmented Reality (MAR) Applications in Metaverse
	1.2 Motivation and Objectives
	1.3 Contributions

	2 Related Work
	2.1 5G and B5G Network Architecture
	2.2 Service Decomposition
	2.3 Metaverse supported AR Applications
	2.4 MAR Resource Allocation
	2.5 Utilized Heuristic Algorithms
	2.6 Technical Gaps

	3 Optimal Service Decomposition for Mobile Augmented Reality with Edge Cloud Support
	3.1 Introduction
	3.2 Related work
	3.3 System Model
	3.3.1 Preliminaries
	3.3.2 Mathematical Programming Formulation
	3.3.3 A Simulated Annealing Based Heuristic
	3.3.4 A Long Short Term Memory (LSTM) Neural Network Based Scheme

	3.4 Numerical investigations
	3.4.1 Parameterization
	3.4.2 Simulation Results

	3.5 Conclusions

	4 Field of View Aware Proactive Caching for Mobile Augmented Reality Applications
	4.1 Introduction
	4.2 System Model
	4.3 Numerical Investigations

	5 Optimal Proactive Caching for Multi-View Streaming Mobile Augmented Reality
	5.1 Introduction
	5.2 System Model
	5.2.1 Multi-view streaming AR
	5.2.2 Wireless Channel Modeling and Achievable Data Rate
	5.2.3 Latency and Preference
	5.2.4 Heuristic Algorithm using LSTM

	5.3 Numerical Investigations
	5.3.1 Simulation Results

	6 Optimal Mobility Aware Wireless Edge Cloud Support for the Metaverse
	6.1 Introduction
	6.2 Related Work
	6.3 System Model
	6.3.1 Multi Rendering in Metaverse AR
	6.3.2 Wireless Resource Allocation and Channel Model
	6.3.3 Latency, Engergy Consumption and Quality of Perception Experience

	6.4 Numerical Investigations

	7 Conclusions
	References

