
UNIVERSITÉ DE SHERBROOKE
Faculté de génie

Département de génie électrique et de génie informatique

Allocation des ressources dans les
environnements informatiques en périphérie

des réseaux mobiles
Resource Allocation in Mobile Edge Computing Network

Environments

Thèse de doctorat
Specialité: génie électrique

Amine ABOUAOMAR

Sherbrooke (Québec) Canada

Novembre 2021

JURY MEMBERS

Pr. Soumaya CHERKAOUI
Supervisor

Pr. Abdellatif KOBBANE
Co-supervisor

Pr. João Pedro TROVÃO
Examiner

Pr. Abdelhakim SENHAJI HAFID
Examiner

Pr. Abdelkrim HAQIQ
Examiner

RÉSUMÉ

L’évolution des technologies de l’information entraîne la prolifération des dispositifs connec-
tés qui mène à l’exploration de nouveaux champs d’application. Ces applications de-
mandent une latence ultra-faible, qui ne peut être atteinte par les infrastructures en nuage
traditionnelles étant donné la distance qui les sépare des utilisateurs. En rapprochant les
ressources aux utilisateurs, le paradigme de l’informatique en périphérie, récemment ap-
paru, vise à répondre aux besoins de ces applications. L’informatique en périphérie s’inspire
de l’informatique en nuage, en l’étendant à la périphérie du réseau, à proximité de l’endroit
où les données sont générées. Ce paradigme tire parti de la proximité entre l’infrastructure
de traitement et les utilisateurs pour garantir une latence ultra-faible et un débit élevé des
données.

L’objectif de cette thèse est l’amélioration de l’allocation des ressources à la périphérie
du réseau pour offrir une meilleure qualité de service et expérience pour les applications
à faible latence. Pour une meilleure allocation des ressources, il est nécessaire d’avoir une
bonne connaissance sur les ressources disponibles à tout moment.

La première contribution de cette thèse consiste en la proposition d’une représentation
des ressources pour permettre à l’entité de supervision d’acquérir des informations sur les
ressources disponibles à chaque dispositif. Ces informations sont ensuite exploitées par le
schéma d’allocation des ressources afin d’allouer les ressources de manière appropriée pour
les différents services. Le schéma d’allocation des ressources est basé sur l’optimisation
de Lyapunov, et il n’est exécuté que lorsque l’allocation des ressources est requise, ce qui
réduit la latence et la consommation en ressources sur chaque équipement de périphérie.

La deuxième contribution de cette thèse porte sur l’allocation des ressources pour les ser-
vices en périphérie. Les services sont composés par le chaînage d’un ensemble de fonctions
réseau virtuelles. L’allocation des ressources pour les services consiste en la recherche d’un
placement, d’un routage et d’un ordonnancement adéquat de ces fonctions réseau vir-
tuelles. Nous proposons une solution basée sur la théorie des jeux et sur l’apprentissage
automatique pour trouver un emplacement et routage convenable ainsi qu’un ordonnan-
cement approprié de ces fonctions en périphérie du réseau.

La troisième contribution de cette thèse consiste en l’allocation des ressources pour les
services véhiculaires en périphérie du réseau. Dans cette contribution, les services sont mi-
grés et déplacés sur les différentes infrastructures en périphérie pour assurer la continuité
des services. Les services véhiculaires sont en particulier sensibles à la latence et liés prin-
cipalement à la sûreté et à la sécurité routière. En conséquence, la migration des services
véhiculaires constitue une opération complexe. Nous proposons une approche basée sur
l’apprentissage par renforcement profond pour migrer de manière proactive les différents
services tout en assurant leur continuité sous les contraintes de mobilité élevée.

Mots-clés : Allocation des ressources en périphérie du réseau, fonctions chainées des
services, migrations des services.

ABSTRACT

The evolution of information technology is increasing the diversity of connected devices
and leading to the expansion of new application areas. These applications require ultra-
low latency, which cannot be achieved by legacy cloud infrastructures given their distance
from users. By placing resources closer to users, the recently developed edge computing
paradigm aims to meet the needs of these applications. Edge computing is inspired by
cloud computing and extends it to the edge of the network, in proximity to where the data
is generated. This paradigm leverages the proximity between the processing infrastructure
and the users to ensure ultra-low latency and high data throughput.

The aim of this thesis is to improve resource allocation at the network edge to provide an
improved quality of service and experience for low-latency applications. For better resource
allocation, it is necessary to have reliable knowledge about the resources available at any
moment.

The first contribution of this thesis is to propose a resource representation to allow the
supervisory xentity to acquire information about the resources available to each device.
This information is then used by the resource allocation scheme to allocate resources ap-
propriately for the different services. The resource allocation scheme is based on Lyapunov
optimization, and it is executed only when resource allocation is required, which reduces
the latency and resource consumption on each edge device.

The second contribution of this thesis focuses on resource allocation for edge services. The
services are created by chaining a set of virtual network functions. Resource allocation
for services consists of finding an adequate placement for, routing, and scheduling these
virtual network functions. We propose a solution based on game theory and machine
learning to find a suitable location and routing for as well as an appropriate scheduling
of these functions at the network edge. Finding the location and routing of network
functions is formulated as a mean field game solved by iterative Ishikawa-Mann learning. In
addition, the scheduling of the network functions on the different edge nodes is formulated
as a matching set, which is solved using an improved version of the deferred acceleration
algorithm we propose.

The third contribution of this thesis is the resource allocation for vehicular services at the
edge of the network. In this contribution, the services are migrated and moved to the
different infrastructures at the edge to ensure service continuity. Vehicular services are
particularly delay sensitive and related mainly to road safety and security. Therefore, the
migration of vehicular services is a complex operation. We propose an approach based
on deep reinforcement learning to proactively migrate the different services while ensuring
their continuity under high mobility constraints.

Keywords: Resource allocation at the network edge, service function chaining, service
migration.

À mes parents, ma soeur et mes frères.

ACKNOWLEDGEMENTS

I would like to thank my dear mother Amina and my dear father Mustapha who continually
supported and encouraged me. I also thank my sister Safaâ, and my two brothers Anas
and Mehdi for their love and encouragement. A special thanks to you all!

I would like to thank my advisor Professor Soumaya Cherkaoui and my co-advisor Pro-
fessor Abdellatif Kobbane for their insightful guidance, advice, and motivation during the
development of my thesis.

I would like to thank my lab mates Zoubeir, Abderrahime, Afaf, Boubakr, Hajar, and
Oussama for being wonderful colleagues and more than just friends. I would also like to
thank all my friends, and especially Soukaina, Manal and Okba for their encouragement
and support.

A special acknowledgement for the examination committee for the effort they made to
evaluate my thesis. I would like to thank Professor Wael Suleiman, Professor João Pedro
Trovão, Professor Abdelhakim Senhaji Hafid, and Professor Abdelkrim Haqiq, for their
valuable comments and suggestions.

Thank you all!

TABLE OF CONTENTS

1 Introduction 1
1.1 Objectives . 2
1.2 Contributions and Originality . 4
1.3 Thesis Plan . 5

2 State of the Art 7
2.1 Edge Computing / Multi-Access Edge Computing 7

2.1.1 Background . 7
2.2 Resource Allocation at the Edge . 11

2.2.1 Single-resource focus . 13
2.2.2 Multiple-resource focus . 14
2.2.3 Conclusion . 15

2.3 Service Function Chaining Resource Provisioning at the Edge 21
2.3.1 Background . 21
2.3.2 SFC Composition . 22
2.3.3 SFC Scheduling . 24
2.3.4 Conclusion . 25

2.4 Service Migration at the Edge: Vehicular Network Use Case 31

3 Resource Provisioning in Edge Computing for Latency Sensitive Appli-
cations 35
3.1 Abstract . 35
3.2 Introduction . 36
3.3 System Model . 38

3.3.1 Network architecture . 38
3.3.2 Local processing . 41
3.3.3 Edge processing . 42
3.3.4 Problem Formulation . 43

3.4 Proposed Solution . 46
3.4.1 Solution Overview . 46
3.4.2 Proposed Solution . 46

3.5 Simulation Results . 51
3.6 Related Works . 58
3.7 Conclusion . 60

4 Service Function Chaining in MEC: A Mean-Field Game and Reinforce-
ment Learning Approach 63
4.1 Abstract . 64
4.2 Introduction . 64
4.3 System Model . 67

4.3.1 Physical network substrate . 67

xi

xii TABLE OF CONTENTS

4.3.2 Service Requests . 70
4.3.3 EN Physical Resources . 71

4.4 Problem Formulation . 72
4.4.1 The VFN placement and chaining subproblem 72
4.4.2 The VNF scheduling subproblem 74

4.5 Theoretical Game Approach solution . 76
4.5.1 The VNFs Placement and Chaining 76
4.5.2 The VNF scheduling subproblem 80

4.6 Simulation Results . 83
4.6.1 Games stability and convergence 85
4.6.2 System Evaluation . 85

4.7 Conclusion . 88
4.8 Related Works . 89

5 A Deep Reinforcement Learning Service Migration in Slice-enabled In-
ternet of Vehicles 93
5.1 Abstract . 93
5.2 Introduction . 94
5.3 System Model . 95
5.4 Problem Formulation . 98
5.5 Problem Formulation . 101
5.6 Proposed Solution . 103

5.6.1 The MDP Formulation . 104
5.6.2 The Training Phase of DQL . 105
5.6.3 The Inference Phase of DQL . 107

5.7 Simulation Results . 107
5.8 Related Works . 110
5.9 Conclusion . 112

6 Conclusions and Future Works 115
6.1 Conclusion . 115
6.2 Future Works . 116
6.3 Conclusion . 119
6.4 Travaux Futurs . 120

LIST OF REFERENCES 125

LIST OF FIGURES

2.1 Abstract three layered EC architecture. 9
2.2 Specific three layered EC architecture, where the edge consists of edge con-

trollers, gateways and servers. 10
2.3 Three layered EC architecture. 12
2.4 Standard SFC architecture [1]. 21
2.5 Different SFCs topologies [2]. 21
2.6 Standard SFC architecture [1]. 23
2.7 Standard SFC architecture [1]. 25
2.8 Migration process . 31
2.9 Migration process at the vehicular edge . 32

3.1 Overview of the different entities of the edge computing architecture. . . . 40
3.2 Example of output for an ED exposing information about its CPU 49
3.3 Testbed components; The VM-Workers (EDs) on left and right and the

VM-Master (ENS) on the center. 52
3.4 Average queues sizes over time . 53
3.5 Average queue size evolution in function of the parameter V 54
3.6 Average latency evolution in function of the parameter V 54
3.7 The average network interface utilization on each ED of the simulation setup 55
3.8 The average storage utilization of each ED from the setup 56
3.9 Latency evolution over the queue size . 57
3.10 Average CPU utilization at the EDs. 57
3.11 The average storage utilization of each ED from the setup 58
3.12 The reallocation frequency in function of the queue size 59

4.1 An illustration of the considered MEC architecture and the different sys-
tem’s entities. 67

4.2 Scheduling time example for an SFC. 80
4.3 MFG Stability for finite number of VNFs. λ = 0.05, v = 10. 84
4.4 MFG Stability for infinite number of VNFs. λ = 0.05, v = 1000. 84
4.5 Placement and chaining delay in function of the packet size. 86
4.6 Scheduling delay in function of the number of VNFs. 87
4.7 Processing time in function of the packet size. 88
4.8 CPU consumption evolution in function of the number of VNFs. 88
4.9 Memory consumption evolution in function of the number of VNFs. 89

5.1 Illustration of the system model . 96
5.2 The training rewards for MEC server. 110
5.3 The objective function vs. the computational power of the MEC servers. . 111
5.4 The objective function vs. the request sizes of the vehicles. 112

xiii

xiv LIST OF FIGURES

LIST OF TABLES

2.1 Definitions of EC . 11
2.2 Summary of contributions for resource allocation in edge computing 20
2.3 Summary of important works investigating resource provisioning for SFC. . 30

3.1 Summary of System Variables . 39
3.2 Experimental Setup . 53

4.1 Summary of important notations . 68
4.2 Summary of the simulation parameters . 86

5.1 Simulation parameters . 109

xv

xvi LIST OF TABLES

LIST OF ACRONYMS

Acronym Definition
CC Cloud computing
DAA Deferred Acceptance Algorithm
DDQN Double Deep Q-Network
DQL Deep Q-Learning
DQN Deep Q-Network
DRL Deep Reinforcement Learning
EC Edge computing
eMBB enhanced Mobile Broadband
EN Edge node
eNB eNodeB
ETSI European Telecommunications Standards Institute
FC Fog computing
GA Genetic Algorithm
gNB gNodeB
IID Independent and Identical Distributed
IMLA Ishikawa-Mann Learning Algorithm
IoE internet of everything
IoT Internet of Things
ITS Intelligent Transportation Systems
LTE Long-Term Evolution
MDP Markov Decision Process
MEC Multi-access edge computing
MFG Mean-Field Game
MG Matching Game
MILP Multi-Integer Liner Program
MMDP Multi-Agent Decision Process
mMTC massive Machine Type Communication
MSDA Multi-Stage Deferred Acceptance Algorithm
NFV Network function virtualization
QoE Quality of experience
QoS Quality of service
RA Resource allocation
RB Resource block
RL Reinforcement Learning
RSU Roadside unit
SDN Software defined networks
SFC Service function chain
uRLLC ultra-Reliable Low-Latency
V2I Vehicle to infrastructure
V2V Vehicle to Vehicle

xvii

xviii LIST OF ACRONYMS

VANET Vehicular Adhoc networks
VM Virtual machine
VNF Virtual network function

CHAPTER 1

Introduction

Throughout the last decade, we have witnessed a fast evolution of information system
technologies, and the word ‘smart’ is part of the names of most of the devices we use
in daily life. Smart devices are often delivered with applications to make our daily life
more pleasant through the gathering and analysis of data. Nevertheless, processing the
increasing amount of data generated by smart devices requires a significant amount of
resources. The fifth generation of mobile network technologies (5G) was conceived to
address the increasingly high amounts of data generated from different smart devices while
offering a high quality of experience (QoE) and quality of service (QoS). Additionally, the
envisioned services require low to ultra-low latency and good resource provisioning. A key
feature of 5G is the edge computing (EC) paradigm. EC has emerged from the concept of
cloud computing to offer resources at the edge of the network near the data source.

EC is shaped to meet the crucial performance needs of data-based ser- vices by moving
computational, storage, and communication resources to the end user’s vicinity [3, 4].
Unlike cloud computing, which is a homogeneous, scalable, and highly maintained envi-
ronment, the network edge is heterogeneous and resource-constrained, and achieving high
performance at the network edge requires the consideration of constraints such as latency,
bandwidth utilization, and the limited capabilities of edge devices. Indeed, promising
resource allocation schemes need to be proposed to provide the expected edge efficiency.
Additionally, a software-defined network (SDN) is an innovative approach to network man-
agement that provides a dynamic network configuration for efficient network performance
and monitoring, and it is considered to be a key feature of 5G. An SDN has the role of
separating the data plane (i.e., the traffic of the network) from the control plane (i.e., the
intelligent part of the network), which has a global view over the network [5]. Another key
feature of 5G is network functions virtualization (NFV), which allows the virtualization
of entire classes of network functions into pieces of software to enable one to flexibly add
and remove network functions [6].

To achieve a promising ecosystem, it is crucial to propose effective and efficient resource
provisioning schemes. From an architectural perspective, EC is a heterogeneous ecosystem,
in which different EC devices with different purposes and capabilities need to communicate
to achieve collaborative data processing. Resource-wise, EC devices that are deployed

1

2 CHAPTER 1. INTRODUCTION

among different service providers (and even users in some cases) are resource-constrained
in comparison to cloud computing facilities. For such reasons, many research challenges
arise regarding resource provisioning at the edge.

From a service deployment perspective and given that services can be formed in many
ways, this research area is challenging. SDNs and NFV can be leveraged to create complex
array services by linking/chaining multiple network functions across multiple EC facilities.
Such a paradigm is referred to as service function chaining (SFC), and as mentioned
previously, many challenges arise in this context. These challenges include choosing the
appropriate location for network functions, determining proper schemes to chain them,
and determining how the network functions should be executed (scheduled). Moreover, a
specific use case of SFC resource provisioning is the vehicle edge network, where services
must not only be placed and scheduled appropriately but should be migrated due to the
high mobility of the vehicles. Hence, it is of great importance to investigate the migration
of services at the network edge.

1.1 Objectives
In this thesis, we will investigate resource provisioning at the edge from a range of view-
points and levels of EC architecture. One part of resource provisioning is overcoming the
heterogeneity of re- sources forming the EC. To fulfil this objective, it is highly important
to propose a unified representation of EC resources, in such a way that various heteroge-
neous devices can expose and share information about their resources with other devices.
Moreover, there is also a need to provide efficient schemes to wisely and properly exploit
the exposed resources to reach the required network performance. Finally, the resource
provisioning process itself is resource-demanding and only needs to be performed when
required.

On the service side, the entire process of allocating EC resources consists of placing the
virtual network functions (VNFs) appropriately in the edge facilities with sufficient re-
sources. Next, the proper route must be found to provide the communication links for
VNF data streams. At last, the VNFs must be scheduled, which refers to the various VNFs
being executed in the different facilities. This problem is NP-hard [7, 6, 5], so advanced
mathematical tools are required to solve it. As an example, game theory is an effective
tool to use to formulate the problem as a game or multiple games, where the VNFs are
players competing for EC resources. However, solving these games in some formulations
requires machine learning due to the complex structure of the games.

1.1. OBJECTIVES 3

In some cases, SFC resource provisioning requires the migration of services due to the
users’ mobility. Specifically, there is the case of vehicular services, for which the mobility
is high, and the services are related to the safety and security of the users. Therefore, the
mobility constraints require some services to be moved (i.e., migrated) from one infras-
tructure to another to guarantee service continuity. It is therefore an attractive use case
to study because it requires the consideration of the mobility constraints and low latency
requirements for different services.

To accomplish efficiently the main objective of this thesis, we divided it into a set of
intermediate objectives. The first intermediate objective is dedicated to resource provi-
sioning at the edge, which requires complete knowledge of over-the-edge resources. This
knowledge represents valuable information on how resources are to be provisioned for the
required performance. In addition, resource allocation rates must be reasonable so as not
to deprive users who benefitted from several resources during a previous allocation cycle.
The corresponding research questions for this objective are as follows,

– How can the resource exposure of the heterogeneous edge devices be enabled to
formulate an efficient resource provisioning scheme?

– What is the scheme that is most suited to exploiting the full potential of the exposed
resources?

– How many times should a resource provisioning operation be performed, and at what
cost?

The second intermediate objective is dedicated to resource provisioning for the SFC . SFCs
at the edge are delivered by multiple parties sharing the same infrastructure. Indeed, it is
crucial to have a resource provisioning scheme for the requirements of the different SFCs,
and more importantly, for the VNFs that constitute these SFCs. It is therefore important
to investigate this particular problem at all of its various steps. We formulate the following
research questions for this intermediate objective,

– How can VNFs be adequately placed over different EC infrastructures to meet the low
latency requirements, and at the same time guarantee the proper links allocation?

– How can the placement policy be efficiently exploited to achieve stable resource
scheduling for different VNFs over different EC facilities?

Finally, the migration of services at the vehicular edge requires not only a good knowledge
of the various resources but also predictive models to initiate the migration process at a
convenient time. Furthermore, vehicles’ mobility patterns are often not known a priori,

4 CHAPTER 1. INTRODUCTION

making the system model a bit more complex than that of a static service placement.
Consequently, we propose the following research questions regarding this intermediate
objective,

– What are the mechanisms that can be used to enable fast service migration at the
vehicular edge?

– What is the impact of the mobility patterns on the migration cost?

1.2 Contributions and Originality
The main contributions and originality of this thesis are summarized as follows.

The first contribution offered by this thesis is efficient resource provisioning in edge com-
puting. We propose the following: (1) a resource representation model that enables dif-
ferent edge equipment devices to expose their resources information to solve the problem
of heterogeneity. Such a problem is crucial since some devices need to perform tasks that
they are not supposed to perform or that they are not able to perform. (2) We also pro-
pose a resource provisioning model that leverages the resource information gathered from
the previous stage and adequately distributes the tasks among the different edge equip-
ment devices. Finally, (3) we propose a workload-based resource reallocation to reduce
the frequency of the resource provisioning process itself. To the best of our knowledge, our
contributions represent one of the first attempts, if not the first attempt , to investigate
the resource representation and the resource reallocation frequency at the edge of the net-
work. Additionally, we performed simulations on a testbed by running a face recognition
application that we deployed.

The second part of this thesis concerns service function chaining resources provisioning. In
this problem, the main contributions are clear in the methodology that we adopted to solve
such a problem. Resource provisioning at the edge for the SFCs is divided into three parts,
namely, (i) VNF placement, (ii) VNF chaining, and (iii) VNF scheduling. The first two
parts are often tackled together, while the third is tackled alone under the assumption that
(i) and (ii) have already been solved. In our contributions, we propose a mean-field game-
based (MFG) formulation of the problem of VNF placement, and due to the complexity
of the problem, we adopt a reinforcement learning (RL)-based solution for the MFG. The
RL-based approach leverages the iterative learning algorithm of Ishikawa-Mann, and the
output of this solution is then used by the matching-based formulation of VNF scheduling.
To solve the matching-based game, we used the classic deferred acceptance (DA) algorithm
to build our enhanced multi-stage DA (eMSDA). The main particularity of the eMSDA is

1.3. THESIS PLAN 5

that it guarantees stability (i.e., all VNFs will get a share of resources). Both algorithms
offer better performance than benchmarks from the literature.

The last contribution is dedicated to a special case of service resource allocation: ve-
hicular services. Additionally, due to the previously discussed three stages for resource
provisioning services, in some cases, the services are migrated from one edge infrastructure
to another due to mobility constraints. We formulated the problem of service migration as
a non-linear integer program and then we linearized it; next, we leveraged CPLEX tools
to solve it. The solution to the problem is provided through deep reinforcement learning,
specifically, the deep Q-networks (DQN) framework.

1.3 Thesis Plan
This thesis is divided into six chapters and is organized as follows:

– The first chapter presents a brief contextualization of this thesis and its objective,
originality, and contributions to resource allocation in edge computing. The first
chapter also includes a general overview of the research project and the challenges
to be faced.

– The second chapter provides a detailed literature review related to this thesis.
Namely, it concerns edge computing, resource allocation in edge computing, service
function chaining, and the migration of services at the edge.

– The third chapter is dedicated to proposing a resource representation scheme to cope
with the heterogeneity of resources at the network edge. It also provides a resource
allocation scheme that leverages the resource representation to adequately distribute
the resources among the requests. Additionally, a testbed was deployed to test the
performance of the model in the real-world scenario of edge face recognition.

– The fourth chapter addresses SFC resource provisioning at the edge. This chapter
tackles the problem from the perspective of VNF placement, chaining, and then
scheduling. We propose a game theory-based approach in addition to a machine
learning-based solution.

– The fifth chapter deals with the special case of resource provisioning at the vehicular
edge. Specifically, in this scenario, the services must be migrated to cope with the
high-mobility aspect of the problem.

– The final chapter concludes this research project and provides a set of research
directions that can be investigated to enhance this study in future works.

6 CHAPTER 1. INTRODUCTION

CHAPTER 2

State of the Art

This literature review will be divided into three sub-parts. First, (i) a general overview of
EC will be presented, including different architectures and standardization efforts in this
field. (ii) Then, there will be a review of the most relevant resource allocation methods
at the edge concerning low latency and resource consumption constraints. (iii) Next,
there will be a review of the most significant resource allocation methods for SFCs in EC.
Finally, (iv) a special use case of SFC, discussing the migration of services at the edge
under mobility constraints, will be presented.

2.1 Edge Computing / Multi-Access Edge Computing
2.1.1 Background
Edge computing (EC) is an extension of cloud computing to the edge of the network that
consists of placing computational, storage, and networking resources in the vicinity of the
data source [8, 4]. EC emerged from cloudlet concepts [3] and has also been referred to
as micro-datacentres (mDCs) [9], fog computing (FC) [10], and multi-access edge com-
puting (MEC) [4]. The origins of EC are back in the early 1990s, when content delivery
networks (CDNs) emerged to improve the performance of the web [11] by placing copies
of content in different locations to reduce the latency. However, the first real EC deploy-
ments efforts occurred in early 2013, when IBM, in a joint project with Nokia, deployed
an EC platform for 4G/LTE networks. Another project was proposed in mid-2015 by
three giants of technology and communication: Vodafone, Intel, and Huawei participated
in the Open Edge Computing (OEC) Initiative. These efforts, in addition to many others,
gave birth to many standardization efforts, which were mainly incubated by the Euro-
pean Telecommunications Standards Institute (ETSI) [12, 13]. The authors of [4] wrote
a holistic review of the proposed architectures and discussed how to integrate them with
different communication network generations.

In the literature, EC takes many shapes and forms depending on the use case studied.
However, it is possible to group these architectures into three main architectures, which
are summarized in Fig. 2.4, Fig. 2.2, and Fig. 2.3. Table 2.1 summarizes the various def-
initions of EC from different perspectives using the corresponding architectures proposed
in Fig. 2.4, Fig. 2.2, and Fig. 2.3. The common point between these architectures is

7

8 CHAPTER 2. STATE OF THE ART

the cloud infrastructure, which is defined as the last level and as the permanent host for
different applications.

Fig. 2.4 illustrates the most abstract shape for the edge computing architecture, a three-
layered architecture, where the edge represents the level directly beneath the users. The
edge in this case can take the form of any kind of computing and storage facility.

The definition of edge computing in [14, 15] assumes that the edge is the ideal place to
perform data processing because there is no need to go through the Internet to access
distant cloud infrastructures. These architectures decompose the edge layer into three
categories of components, namely, the edge controllers compose the far-edge layer, edge
gateways compose the mid-edge layer, and edge servers compose the near-edge layer. The
edge controller (the far-edge layer) is considered to be the first place where the data
(sensing data, for instance) can be processed. It includes the controlling components,
development components, such as algorithms and libraries, and finally, the networking
components, which ensure protocol conversion and device access. The mid-edge layer is
considered the intelligent part of this edge. This layer is a place for the edge gateways
and includes management modules. Equipment registration, access authorization, and
communication management modules are examples of management modules. The mid-
edge layer also includes storage components where the data aggregation, edge caching,
and data pre-processing are performed. Finally, it also includes computing components
such as data analysis tools and virtualization hypervisors.

Like the other definition considering the edge to be a place closer to where the data is
generated, the definition in [17, 18], as illustrated in Fig. 2.3, not only considers the
edge an independent layer but considers it a layer in which users can participate in the
formation of the edge layer. As illustrated in Fig. 2.3, users can be data producers or
consumers and can offer to participate in the task processing operation by allowing some
amount of their resources to be managed by the edge supervisor, if it exists, or just by
acting in a distributed manner, as in mobile ad hoc networks (MANETs), for instance.

The cloud computing (CC) paradigm offers almost infinite resources, including elastic
and expendable resources, and most of the infrastructure is homogeneous (servers and
equipment are from the same supplier with the same performance indices) and within
the premises of the same service provider. EC, by contrast, is resource-limited, and het-
erogeneous equipment, such as routers, switches, edge servers, and in some scenarios,
users’ equipment (i.e., the equipment is outside the service provider’s (SP) premises), is
used, due to the placement of the edge within the network architecture. Despite all these

2.1. EDGE COMPUTING / MULTI-ACCESS EDGE COMPUTING 9

Figure 2.1 Abstract three layered EC architecture.

10 CHAPTER 2. STATE OF THE ART

Figure 2.2 Specific three layered EC architecture, where the edge consists of
edge controllers, gateways and servers.

2.2. RESOURCE ALLOCATION AT THE EDGE 11

Table 2.1 Definitions of EC

Authors Definition

Satyanarayanan [8] - Zhang et
al. [16]

EC represents the paradigm under which computing and
storage resources are placed at the network’s edge in the
vicinity of users. (Fig 2.4)

Tie et al. [14] and CISCO [15] Edge Computing or simply Edge, brings processing capa-
bilities closer to the data source, without the need to send
data to remote Cloud infrastructures or other centralized
infrastructures. EC aims to reduce the additional time to
access distant cloud infrastructures by eliminating the dis-
tance that data needs to travel to centralized sources. (Fig
2.2)

Weisong et al. [17] and Lopez
et al. [18]

Edge Computing refers to the paradigm where diverse pri-
vate or public platforms expose the core capabilities of net-
works, computing, storage, and applications to provide in-
telligent services at the network edge closer to where the
data is being generated to meet the crucial requirements of
applications such as real-time services, data optimization,
the intelligence of application, security and privacy. (Fig
2.3)

limitations, EC represents a promising solution for processing data, enabling real-time
applications. However, under such constraints, many challenges related to resource provi-
sioning, management, and fault tolerance need to be investigated to enable the real-world
use of EC.

In the remainder of this thesis, we will adopt a three-layered EC architecture, and we will
adopt the definition described in [8, 4]: we will consider the terms EC and MEC to be the
same. In the next section, we will discuss the literature regarding resource allocation at
the edge; specifically, we will discuss different types of resources and the objectives that
are sought after resource management.

2.2 Resource Allocation at the Edge
Resource allocation is the process of providing available resources from a set of physical
devices to different users subject to specific constraints related to the use case. From
the point of view of EC, it is the allocation of the EC node’s resources to given services
requested by the users. A proper resource allocation, depending on the studied resources,

12 CHAPTER 2. STATE OF THE ART

Figure 2.3 Three layered EC architecture.

must guarantee a high QoE and QoS, improved load balancing, and a very low / ultra-low
latency.

Before going further into the resource allocation literature, it is very important to identify
what types of resources can be allocated within EC use cases. The widely studied types
of resources are computational and communication resources [4]. These resources are
well investigated in EC, specifically from the perspective of minimizing the latency while
maintaining the appropriate utilization of the available resources. Storage resources are
another type of resource: they are widely studied from the perspective of edge caching
[19]. Since EC is resource-limited compared to CC, it makes sense to talk about energy
consumption within the EC context. Resource allocation, from the conducted literature
review, can be studied from the perspective of placement and the perspective of scheduling.
The placement perspective is about where to process data within the EC facilities and is
mostly related to the offloading of tasks [20, 21, 22]. The scheduling perspective, on the
other hand, is about how to process data at the EC facilities [23, 24, 25].

In this thesis, we focus on computational, communication, and storage resources, and we
can divide the literature into two categories of works. The first category is comprised of a
single resource focus: the studies in this category focus only on one type of resource without

2.2. RESOURCE ALLOCATION AT THE EDGE 13

considering the others. The second category of literature focuses on multiple resource
allocation, in which multiple resources are considered even under complex constraints.
For both categories, we will also specify the metrics used to study the performance of the
proposed schemes and solutions.

2.2.1 Single-resource focus
Resource allocation in this context is either tackled through specifying a given type of
resources (i.e., computation or communication) or tackled as a generic type of resources
(i.e., an abstraction of resource type).

The authors of [26] defined a generic measurement unit referred to as the virtual resource
value. The work proposed a scheme for resource provisioning that leverages fog computing
by measuring the fluctuating relinquish probability of the user, the type of service, the
pricing of services, and the variance of the relinquish probability. In addition, the work in
[27] considered a generic resource type and proposed a scheme that covers the challenges
of resource prediction, customer resource demand estimation, and the pricing for different
users based on their application types and requirements. In [28], the authors proposed
a platform for collaborative computing that enables proximate devices to act in an ad
hoc network fashion to provide diverse capabilities such as cloud services. The proposed
scheme is context-aware and exploits the collective capabilities of the participating devices.
Additionally, the authors presented a revised version of the Hungarian algorithm to assign
tasks among the devices to reduce the load balancing and the latency. The work of [29]
focused on the computational resources under the constraints of energy consumption and
response time in a general-purpose fog computing architecture. The authors proposed
an algorithm to solve the energy and response time minimization problem that improves
the energy consumption while keeping a low completion time for the requests. In [30],
the authors investigate the resource allocation of computational resources for users that
request computational resources from the MEC infrastructure at the base stations, with the
aim of reducing the energy consumption. The work proposed a time-slotted MEC system
with queuing dynamics for tasks and energy, and then proposed a dynamic throughput
maximization algorithm using Lyapunov optimization. It is important to mention that in
this work, energy is used as a performance metric.

Other works considered data as resources, such as [31] and [20]. The work in [20], which
was based on the follow-me cloud concept proposed in [31], included a migration scheme
at the edge with mobility prediction as an enabler.

14 CHAPTER 2. STATE OF THE ART

2.2.2 Multiple-resource focus
The multiple-resource allocation works study two or more types of resources. Computation
and communication are investigated jointly to reduce the overall response time. Other
researchers studied also computation and communication resource types in addition to
storage or energy.

The authors in [32] investigated network resource optimization, specifically the channel
selection, which is critical to ensuring reliable resource allocation. The authors also pro-
posed a learning-based channel selection with a focus on the service reliability, energy,
backlog, and contention; they used the Lyapunov optimization framework to optimize the
channel provisioning strategy, and they used a matching game to solve the channel selec-
tion subproblem. The authors of [33] considered the wireless bandwidth and computing
resources to decide whether to handle a request in a cloudlet or in the cloud. Another
example is the work by Bittencourt et al. [23], who considered the bandwidth between the
cloud and a cloudlet, as well as cloudlet processing capabilities, when evaluating different
scheduling strategies.

Computational resources can be addressed at a physical level, for example, when discussing
CPU cycles, or at a conceptual level, such as when virtual machines (VMs) are used as
resource elements. In the surveyed articles, Wang et al. [34] considered CPU cycles, Singh
et al. [25] considered millions of instructions per second (MIPS), and Rodrigues et al.
[35] considered the number of processors per cloudlet. At a conceptual level, Zamani et
al. [36] considered different computing resources based on the average number of tasks
completed per unit of time, and Plachy et al. [22] allocated computational resources in the
form of VMs. Sometimes the VMs are used to ensure that a task can run, given enough
underlying resources, in the device hosting the VM [37].

Instead of using VMs, Yi et al. [38] adopted lightweight OS-level virtualization and a
container technique, arguing that resource isolation can be provided at a much lower cost
using OS-level virtualization. They also point out that the creation and destruction of
container instances are much faster and thus enable the deployment of an edge computing
platform with minimal effort. In [39], the authors formulated the resource allocation as a
mixed-integer nonlinear programming problem to optimize computational task offloading
and communication resources. The problem was relaxed through the Lyapunov optimiza-
tion framework, and then solved using a convex decomposition approach and a matching
game. In their proposed algorithm for optimal task offloading, the decision concerning
resource allocation is made at each time slot, which may lead, in some scenarios, to the
modification of the overall decision to offload a small portion of the tasks.

2.2. RESOURCE ALLOCATION AT THE EDGE 15

2.2.3 Conclusion
By far, the majority of the works surveyed on resource provisioning in EC investigate
computational and communication resources. As summarized in Table 2.2, few papers
consider storage resources, while energy is considered a performance metric. Moreover, in
the works where storage and/or energy are addressed, these resources are studied either
independently or considered to be a metric (as in energy); the optimizations of these
types of resources are carried out independently of each other. Additionally, resource
provisioning at the edge is always tackled for a given type of resources; for a specific use
case, it is meant to reduce the response time, maximize the throughput, or reduce the
energy consumption, without considering the composition of the resources at the edge and
the nature of the infrastructure that is used. Moreover, it is worth considering the resource
allocation frequency, which represents the number of times a resource allocation operation
takes place. In the literature, nearly all of the proposed works assume that this operation
takes time at each time slot. However, it is possible to reduce this time through the
investigation of the composition of the EC infrastructure/nodes. Even though the network
edge is essentially formed by heterogeneous devices and these devices are situated away
from the service provider’s facilities, no work in particular, to the best of our knowledge,
has addressed the representation of edge resources.

16
C

H
A

P
T

E
R

2.
STA

T
E

O
F

T
H

E
A

R
T

Resource focus Ref Tools Resources Contributions & Assumptions Parameters
[34] Iterative algorithm Networking

– Minimizing operators’ cost while meeting
the task’s latency constraints

– Mobile cloud completes tasks for the mobile
user then transmits the outcome back to the
users using the C-RAN

– Cost-effective resource allocation between
MCC and C-RAN

Cost

[25] Custom algorithm Computational

– Providing balance performance and data
privacy/security constraints for different
applications

– Real-time scheduling solution to support
the integration of a micro-datacenter and
cloud datacenter

– Throughput

– Success ration

Si
ng

le
re

so
ur

ce [26, 27] Custom algorithm Generic type of resources

– Resource prediction based on the resource
demand for different applications and type
of requirements

– Measuring the fluctuating relinquish proba-
bility of users and services

– Latency

– Generic measurement unit
(virtual resource value)

– Pricing of resources

[28] Hungarian algorithm for
task assignment

Generic type of resources

– Context-aware scheme for tasks offloading

– Collaboration between the equipment

– Tasks assignment is performed using the
Hungarian algorithm

– Latency

– Load balancing

2.2.
R

E
SO

U
R

C
E

A
LLO

C
A
T

IO
N

A
T

T
H

E
E

D
G

E
17

[29]

– Integer Linear Program-
ming

– Custom algorithm

Computational resources

– General purpose fog architecture

– Energy and time efficient task offload-
ing and resource allocation within IoT-fog-
cloud architecture

– Leveraging advantages of both fog and
cloud and studied the resource allocation as
an energy and time cost minimization prob-
lem

– Resources allocation is performed in two
stages: (i) computation offloading selection
and (ii) transmission power allocation

– Energy consumption

– Latency

[30] Lyapunov optimization
tool

Computational resources

– Lyapunov optimization for queuing dy-
namic

– Time-slotted queuing dynamic

– Latency

– Energy consumption

– Throughput

Si
ng

le
re

so
ur

ce [31] Custom algorithm Data as resources

– MEC services follow their users during their
movement by migrating all of services com-
ponents

– Migration decision is based on mobility con-
straints and network policies of the operator
(e.g., P-GW relocation operation)

– QoE

– Latency

– Migration cost

[20] Multiple Attribute Deci-
sion Making

Storage

– Proposition of a cohesive end-to-end archi-
tecture based on information-centric net-
working together with MEC

– Enhancement of the migration cost and con-
tent caching in MEC

– The proposed algorithm reaches up to 500%
in content availability when requested by a
user

– Latency

– Users’ satisfaction

– Cache hit ratio

18
C

H
A

P
T

E
R

2.
STA

T
E

O
F

T
H

E
A

R
T

[32]

– Machine learning

– Lyapunov optimization
tools

– Matching game

– Networking

– Computational

– Energy

– Optimization of channel selection for effi-
cient and reliable distribution of tasks

– Throughput

– Energy pricing

– Latency

[40]

– Semi

– Markov decision process

– Integer Linear Program-
ming

– Computational

– Networking

– A multi

– resource allocation scheme for the cloudlet
environment to overcome bottlenecks of
cloudlet’s computational resources, and the
networking resource between users and
cloudlets

– Admission control optimization with a focus
on services reliability

– Latency

– Queue’s length

– Energy backlog

M
ul

ti
pl

e
re

so
ur

ce
s [23]

– Custom algorithm – Networking

– Computational

– An introduction to the scheduling problem
in the hierarchical composition of fog and
cloud computing

– Scheduling policies are designed to deal
with various applications based on users’ de-
mand, benefiting from fog proximity to the
users and cloud computing properties

– Number of application mod-
ules migrated

[36]

– Custom algorithm

– Experimental testbed

– Storage

– Networking

– Computational

– Leveraging SDN capabilities to control data
transport services aiming to dynamically es-
tablish data routes to exploit computational
capabilities located along the network path

– Acceptance ratio

– Admitted jobs

– Latency

– Completion time

2.2.
R

E
SO

U
R

C
E

A
LLO

C
A
T

IO
N

A
T

T
H

E
E

D
G

E
19

[37]

– Custom algorithm – Networking

– Computational

– Storage

– Proposing a model that captures the het-
erogeneity of cost and capacity of a MEC
network

– The model bridges MEC and DCC
paradigms by modeling multiple types of re-
sources among the network and serves both
mobile devices but client within and beyond
the network perimeter

– The algorithm is seen as an application
placement scheme that considers features
such as network links capacities, user la-
tency threshold, and user mobility

– Execution cost

– Round trip time

– Resource consumption

M
ul

ti
pl

e
re

so
ur

ce
s [38]

– Mixed integer non

– linear programming
problem (MINLP)

– Sequential Quadratic
Programming

– Branch and bound

– Networking

– Computational

– Storage

– Leveraging containers to significantly re-
duce the latency due to the fast startup and
destruction of different services

– The proposed solution ensures low latency
and flexibility in using hierarchical re-
sources from client nodes

– Computation offloading default choice is set
to be the edge infrastructure

– Execution time

– Latency

– Throughput

– Tasks placement

20
C

H
A

P
T

E
R

2.
STA

T
E

O
F

T
H

E
A

R
T

[39]

– Mixed

– integer nonlinear pro-
gramming

– Lyapunov optimization

– Energy

– Computational

– Networking

– Decision and resource allocation is made at
each time slot, which may lead in some sce-
narios to modify the overall decision to of-
fload a small portion of the tasks

– Offloading decision and computation re-
source scheduling is reached through de-
composition methods, while radio resource
allocation is addressed by matching game
and geometric programming

– Proposing an implementation in a semi

– distributed way with low complexity

– Energy efficiency

– Queue length

– Latency

M
ul

ti
pl

e
re

so
ur

ce
s [41] Integer Linear Program-

ming – Computation

– Networking

– Independent from time migration cost of
VNFs

– The VNFs tolerate a given threshold for the
latency violation

– The placement of VNFs takes place at any
host of the network

– The model adapts to changing network dy-
namics, demands and mobility of users

– Latency

– Num. of violations

Table 2.2 Summary of contributions for resource allocation in edge computing

2.3. SERVICE FUNCTION CHAINING RESOURCE PROVISIONING AT THE
EDGE 21

2.3 Service Function Chaining Resource Provisioning

at the Edge
2.3.1 Background
In this section, we will discuss various SFC approaches and introduce the different topolo-
gies and the definition adopted for this thesis. Table 2.3 summarizes the most relevant
literature for service function chain resource allocation in EC.

With the emergence of SDNs and NFV, network functions (e.g., firewalls, network monitor-
ing, and compression network functions) are being deployed across multiple geographically
dispersed computing infrastructures, namely, cloud and edge facilities. Chaining these net-
work functions to form a full end-to-end network service is a complex, time-consuming,
and cost-intensive operation. Service function chaining (SFC) is a technique that allows
different service functions to be interconnected to form a single service or multiple services
that allow operators to take advantage of a fully virtualized software environment [42, 5].
SFC provides a flexible and cost-effective replacement for the current static environment,
which consists of hardware-based service providers.

As mentioned before, NFV is a fully virtualized concept in which abstract network func-
tions are deployed over an infrastructure. Therefore, resource allocation for these functions
is a necessity.

Figure 2.4 Standard SFC architecture [1].

Figure 2.5 Different SFCs topologies [2].

By way of illustration, Fig. 2.5 illustrates different SFC topology types. The right side
of the figure shows the linear topology, which is the most commonly adopted topology for

22 CHAPTER 2. STATE OF THE ART

SFC. The middle of the figure shows the split topology, where the egress of a VNF is split
onto two different VNFs. Finally, the right side of the figure shows the split and merge
topology, where the ingress of a VNF takes two or more egress results of other VNFs.

From the perspective of EC, the SFC resource provisioning process consists of three stages.
The first stage is related to the placement of the VNFs within the edge network and the
resource allocation at the hosting infrastructure. The second stage deals with the routing
of the data flow among the VNFs and links the allocation between different EC facilities.
The third and final stage is the scheduling, which represents the order of the execution of
the VNFs within the EC infrastructure. In the literature, the first two stages are often
tackled together and are referred to as SFC composition. It is justified to tackle both
placements and routing at the same time due to the relationship between them. Indeed,
sometimes, it is important to check for the capacity of the links before placing the VNFs.
Meanwhile, the scheduling is tackled independently. In this literature review, we will
divide the literature into two categories: (i) SFC composition and (ii) SFC scheduling.

The first category, which is SFC composition, consists of first placing the VNFs in adequate
EC facilities, and then linking these VNFs through virtual links allocation. Let us mention
here that an SFC can be deployed over a set of EC facilities that are distributed over a
geographical area and communicate over physical links. The VNF placement problem seeks
to find proper locations for VNFs (either VMs or containers) within the EC facility, where
each EC facility has various physical devices serving as VM/container hosting facilities
depending on the demand. The benefit of deploying VNFs at the edge is the proximity to
the users, which enables the low latency feature.

2.3.2 SFC Composition
The proper placement of VNFs is driven by the optimization of resource utilization and
the overall network performance while maintaining a minimum cost (in terms of energy
consumption, latency, and financial costs) or reducing service level agreement (SLA) vi-
olation penalties. Although these parameters are quite suitable for NFVs, most of the
work that has been proposed in this context concentrates exclusively on reducing the cost
of deployment and improving QoS and availability, overlooking the constraints associated
with the EC facility itself.

As demonstrated in Fig. 2.6, the VNFs are deployed over different EC nodes and linked
virtually over the physical links between the EC nodes. Note here that the orchestration
of the VNFs can take place on the SDN controller, since it is a central entity with a
global view of the network, as detailed in [4]. The orchestration can also take place on

2.3. SERVICE FUNCTION CHAINING RESOURCE PROVISIONING AT THE
EDGE 23

the EC nodes independently; however, in this case, it is required that the EC nodes
exchange information about their resources to allow dynamic VNF placement, routing,
and scheduling, which is also exhaustively discussed in [4]. This exchange can be made
possible through the resource representation proposed in [43, 44].

Figure 2.6 Standard SFC architecture [1].

In [45], the authors studied the online provisioning for NFVs by defining the optimal
SFC composition policy. The work divided the instantiated VNFs into mandatory and
best-effort network functions. They proposed a primal-dual solution to approximate the
optimal solution. The authors of [46] proposed a uRLLC-aware VNF placement scheme
as an optimization problem to minimize the access latency and maximize the service
availability. The authors proposed a genetic algorithm to solve the optimization problem
and compared the results to the optimal solution. In [47], the authors proposed joint
optimal decision-making for VNF and CPU resource allocation at the hosting facility using
a queuing-based system model, taking into account all the entities of the 5G networks,
such as arbitrary VNF graphs and flexible CPU usage; it has the ability to instantiate the
same VNF multiple times. The solution is given based on the placement heuristic to make
joint VNF placement and CPU allocation decisions. The work of [48] investigated the
routing problem for requests through the consideration of dynamic VNF placement and
multiple resource constraints within an NFV-enabled SDN network. The authors divided
the problem into two subproblems formulated as integer linear programming problems.
The first subproblem is the dynamic placement of VNFs on the networks and the second

24 CHAPTER 2. STATE OF THE ART

subproblem is the request routing subproblem. As in the majority of the literature, the
metrics investigated in this work are the delay, packet loss, and jitter. To solve the
subproblems, the authors proposed an auxiliary edge-weight graph-based algorithm. The
authors of [49] proposed a centralized scheme allowing SFC partitioning and embedding
over multiple domains under the constraints of the global infrastructure visibility. The
SFC placement was formulated as a multi-objective optimization problem through the
physical programming method. Such a method has the ability to describe the decision
maker’s preferences using meaningful parameters and then propose an adequate method
in addition to a scalable heuristic solution.

2.3.3 SFC Scheduling
The scheduling stage can be defined as the sequence in which the VNFs that are co-
hosted on the EC facilities will be executed to meet the minimum overall execution time
requirements (i.e., the delay experienced between executing the ingress of the VNF and
the completion at the egress of the VNF). This particular problem is NP-complete and
thus cannot be solved in polynomial time [7, 50, 51].

Fig. 2.7 illustrates the scheduling of two SFCs with their VNFs hosted on three different
nodes. In the literature, different performance parameters were used, but the most inves-
tigated parameter is the scheduling delay. The scheduling delay is often considered to be,
as illustrated in 2.7, the sum of the processing time at the EC facility, the queuing time,
and the transmission time, which depends on the quality of the links and their capacities.

The scheduling problem in the literature is frequently formulated as a mixed-integer linear
program and then reduced to a less complex formulation. For instance, in [52, 53], the
authors reduced the problem to a Markov decision process, which was solved using rein-
forcement learning. The learning results provide the best scheduling policy through con-
tinuous interaction with the networks. Meanwhile, in [54], the authors jointly investigate
the scheduling and mapping of VNFs to enhance the performance of service provisioning.
The problem was relaxed using a two-stage algorithm. The VNFs were mapped and sched-
uled on an SFC through the greedy minimization of the waiting time of VNFs. When the
requirements in terms of the delay are difficult to satisfy, the algorithm reschedules the ex-
isting VNFs. Such an approach guarantees the flexibility of VNF placement and increases
the service acceptance ratio. Both advantages, which are studied in this work, are rarely
studied in the literature. The authors of [7]proposed a matching game-based approach
to properly schedule the execution of the VNFs within different hosting infrastructures.
Although the problem is NP-complete and the resolution takes a non-polynomial time,
the authors proposed a solution that guarantees stability but not optimality. The work

2.3. SERVICE FUNCTION CHAINING RESOURCE PROVISIONING AT THE
EDGE 25

Figure 2.7 Standard SFC architecture [1].

proposed a one-to-one matching game where the VNF resources are allocated on different
nodes forming the networks. Within the same context, [55] enhanced the intelligent part
of the NFV infrastructure (NFVI), which is the NFV orchestrator (NFVO), by providing
a latency-aware placing and routing scheme. In the proposed scheme, VNFs are initially
allocated to the proper entity, and then they are scheduled on their instance locations,
scaled, or migrated, and destroyed based on the network status. The problem of schedul-
ing in [56] was tackled as a flexible job-shop problem to minimize the overall scheduling
latency. The problem was solved through an RL-based algorithm. Additionally, this ap-
proach can detect the fluctuations of the MEC infrastructure and adequately adapt the
SFC scheduling.

2.3.4 Conclusion
From the conducted literature review, the SFC resource allocation problem at the edge
is divided into three subproblems, namely, the placement, routing, and scheduling of
the VFNs, which represent the vital component of the SFC. However, in the literature,
these subproblems are tackled independently, and the main contributions investigate the
placement and the routing subproblems, with very few contributions to VNF scheduling.

26 CHAPTER 2. STATE OF THE ART

This is due to the aforementioned issue that the majority of the contributions focus on the
problem of resource allocation without considering the composition of the resources; they
assume that a given resource is a homogeneous entity. However, at the edge, the resources
can be distributed according to various forms and shapes, as discussed previously in the
description of the EC architecture. Another important aspect within this context is the
request arrival model, which directly impacts the way that resources are allocated in
different EC facilities. In the literature, request arrival models are not well investigated,
and most of the contributions adopt existing queue systems, without considering the SFC
constraints related to the routing and composition of chains [6]. However, the various
SFC architectures can take many forms, as previously discussed, and thus, they require
adequate request arrival models. The problem of SFC resource allocation in the EC
context should be studied as an integral problem, since the scheduling subproblem requires
knowledge of where the VNFs are placed and how they are routed.

2.3.
SE

RV
IC

E
F
U

N
C

T
IO

N
C

H
A

IN
IN

G
R

E
SO

U
R

C
E

P
R

O
V

ISIO
N

IN
G

A
T

T
H

E
E

D
G

E
27

Ref Tools Resources of focus Contributions & Assumptions Parameters
[45] Primal-method

– Networking

– Computational

– Two kind of VNFs, the mandatory and the
best effost VNFs

– Requests arrives in batches having the same
requirements of resources

– No precision over the request arrival model

– Throughput

– Profit value (generic; adaptable to
different parameters)

[46] Genetic algorithm

– Computational

– Networking

– Leveraging genetic algorithm and compar-
ing the results to the optimal

– URLLC-aware scheme under latency con-
straints

– Service availability

– Latency

[47] Heuristics Computational

– Joint optimal decision making for the VNFs
and CPU resource allocation

– Queuing-based model taking into consider-
ation all the 5G entities

– Stochastic requests arrival

– Account for the flexible CPU allocation to
VNFs running on the same host

Latency

[48] Integer Linear Programing

– Networking

– Computational

– Auxiliary edge-weight graph-based algo-
rithm to solve the placement and chaining
problem

– Joint dynamic VNF placement under mul-
tiple resources and QoS constraints

– Leveraging Lagrange relaxation to cope
with the delay and the packet loss to dy-
namically place and chain VNFs

– Latency

– Packet loss

– Jitter

28
C

H
A

P
T

E
R

2.
STA

T
E

O
F

T
H

E
A

R
T

[49]

– Multiple-Integer Linear Programing

– Physical Programming

– Meta-heuristics

Networking

– Proposition of a centralized scheme to parti-
tion and embed SFCs over multiple domains
while ensuring a global infrastructure visi-
bility

– Flexible description of the decision makers’
preferences using meaningful parameters

– Latency

– Generic cost

– Resources consumption

[52, 53]

– Multiple-Integer Linear Program-
ming

– Markov Decision Process

– Reinforcement Learning

Generic resource

– Minimizing the overall completion time of
services and satisfying differentiated E2E
delay requirements

– MDP formulation for the problem of place-
ment and scheduling

– RL-based solution to find the optimal place-
ment and schedule for VNFs on different in-
frastructures

– Latency

– Makespan

– Average reward

– Scalability

[54]

– Greedy algorithms

– MILP

Generic resource

– Investigation of VNFs mapping and
scheduling

– two-stage online algorithm to address the
NP-hardness of the MILP

– Proposition of a delay-aware rescheduling
scheme in which selected existing VNFs are
remapped and rescheduled

– Minimizing the waiting time greedily

– Acceptance ratio

– Latency

– Generic cost (revenue)

[7] Game theory

– Computational

– Networking

– Memory

– Focusing on the stability rather considering
the optimality

– Scheduling different VNFs over different in-
frastructures

– Execution time

– Completed VNFs

– Resource consumption

2.3.
SE

RV
IC

E
F
U

N
C

T
IO

N
C

H
A

IN
IN

G
R

E
SO

U
R

C
E

P
R

O
V

ISIO
N

IN
G

A
T

T
H

E
E

D
G

E
29

[55] Testbed implementation Generic resource

– Enhancing the orchestrator (NFVO)
through providing a latency-aware placing
and routing scheme

– VNFs allocate resources on the proposer in-
frastructure entity then scheduled on their
instance locations, scaled, or migrated, and
destroyed based on the network status

– Resources consumption

– Latency

[56] RL-based solution Generic resource

– Ability to detect fluctuations of MEC in-
frastructure to adequately adapt the SFC
scheduling

– A job-shop problem. formulation to mini-
mize the overall scheduling latency

– Latency

– Resources consumption

– Completion of SFC

[57] Linear Programming

– Computational

– Networking

– Considering reliability, delay, and resource
allocation for SFC

– Proposition of an SFC sub chaining method
to deal with reliability

– ILP-based formulation for SFC placement
using matching algorithm

– Providing new-optimal polynomial solution
for the SFC resource allocation

– Reliability

– Latency

– Cost

– Resource consumption

[58]

– Heuristics

– Integer Non-Linear Programming

– Computational

– Networking

– Proposition of a configurable service alloca-
tion scheme for VNFs embedding and rout-
ing

– Greedy algorithm-based solution

– Resource consumption

– Latency

30
C

H
A

P
T

E
R

2.
STA

T
E

O
F

T
H

E
A

R
T

[59] Integer non-linear programming

– Networking

– Computation

– Enhancing network resources usage as well
as the minimization of end-to-end delay for
network services

– Proposing a genetic algorithm with im-
proved crossover and mutation operations

– High computational cost

– Completed services

– Resources cost

– Resource consumption

Table 2.3 Summary of important works investigating resource provisioning for SFC.

2.4. SERVICE MIGRATION AT THE EDGE: VEHICULAR NETWORK USE CASE31

2.4 Service Migration at the Edge: Vehicular Network

Use Case
As discussed before in the section on service function chaining, functions can be placed,
chained, and scheduled. However, services under mobility constraints need to be moved
and migrated to follow the mobility of the users.

Figure 2.8 Migration process

The authors of [60] provide a QoE-aware system to ensure service continuity in a mobile
cloud computing environment. This scheme is based on a buffer usage threshold scheme
that classifies new requests from mobile users. The suggested scheme protects the migrated
service from the traffic fluctuation of the new demands. Moreover, the cloud server can
change the buffer threshold dynamically for different categories of requests. In [61] and
[62], the authors proposed the Follow-Me Chain algorithm to address the problem of SFC
placement and migration in EC networks. In particular, the work studied the problem of
cross-MEC handovers to achieve higher user satisfaction in high-mobility situations. This
problem is NP-hard, and the authors proposed an integer programming formulation of the
problem, which is solved using the Follow-Me Chain algorithm. The authors of [63] studied
the problem of VNF relocation in a cloud infrastructure under mobility and resource
heterogeneity constraints. Specifically, the authors investigated the effect of the relocation
process on the service latency and the frequency of VNF relocations (i.e., the number of
times the same VNF is moved from one cloud to another). The relocation problem was
formulated as a MILP problem and solved using an ant colony optimization meta-heuristic
approach. In a similar context, the works of [64] and [65] proposed an evaluation of three
container-based schemes for VNF migration as a way to achieve service continuity. In

32 CHAPTER 2. STATE OF THE ART

particular, the schemes consider two cases of mobility patterns, respectively, the a priori
known and unknown mobility patterns. For the a priori known pattern, temporary file
systems and driverless migration are discussed, but the work emphasizes the unknown
mobility pattern: the authors proposed a solution that involves storing the container file
system in the system images in a shared pool. Additionally, the authors of [66] presented
a holistic overview of different service migration methods, namely, full slice migration, and
partial slice migration through slice breathing, splitting, and merging.

Figure 2.9 Migration process at the vehicular edge

From the resource perspective, previous works focus only on a single type of resource,
either communication or computational resources, and occasionally they are studied in a

2.4. SERVICE MIGRATION AT THE EDGE: VEHICULAR NETWORK USE CASE33

joint formulation. Storage represents an important resource, especially in caching-related
scenarios, which makes it a resource worth investigating due to the importance of edge
caching in 5G and beyond network architectures. From the structure perspective, SFCs in
the literature are often considered to be linear, which means that the data flow traverses
a set of VNFs in a pre-set order. However, in some cases, when a VNF is migrated from
one MEC node to another, it is necessary to consider that a VNF can take place in two
different SFCs. For instance, the splitting and merging of the data flow may occur during
the execution of the SFC. Consequently, the migration of one VNF from one MEC node
to another may impact the performance of other SFCs. From the diversity perspective of
SFCs, VNFs from different service providers may be deployed in the same EC facility, which
requires schemes to deal with the heterogeneity of the SFCs. Therefore, it is necessary
to consider the diversity of the SFCs and VNFs as a key pillar parameter in shaping
solutions for VNF migration. Finally, there are few works that investigated cases in which
the mobility pattern is unknown, and most of the contributions assume that the mobility
pattern is a priori known. However, the mobility pattern should be studied from different
angles and through extensive complex scenarios to ensure the efficient continuity of the
service under extremely unpredictable use cases.

34 CHAPTER 2. STATE OF THE ART

CHAPTER 3

Resource Provisioning in Edge Computing for
Latency Sensitive Applications

Date de parution: 18 January 2021
Revue: IEEE Internet of Things Journal
Titre français: Approvisionnement des ressources dans l’informatique de périphérie pour
les applications sensibles à la latence.

Resumé français
Les applications IoT à faible latence, telles que les véhicules autonomes, les dispositifs de
réalité augmentée/virtuelle et les applications de sécurité, nécessitent des ressources de cal-
cul élevées pour prendre des décisions instantanément. Cependant, ces types d’applications
ne peuvent pas tolérer de confier leurs opérations à une infrastructure en nuage en raison
de la latence qu’elles subissent. C’est pourquoi l’informatique de périphérie est introduite
pour permettre une faible latence en rapprochant le traitement des tâches des utilisateurs
à la périphérie du réseau. La périphérie du réseau est caractérisée par l’hétérogénéité des
dispositifs de périphérie qui la composent. Par conséquent, il est donc crucial de concevoir
de nouvelles solutions qui tiennent compte des différentes ressources physiques de chaque
équipement. Dans cet article, nous proposons un schéma de représentation des ressources,
permettant à chaque dispositif de périphérie d’exposer les informations relatives à ses
ressources au superviseur du nœud de périphérie par l’intermédiaire des interfaces de pro-
grammation d’applications proposées par ETSI. L’information sur la ressource de chaque
équipement est exposée au superviseur du nœud périphérique chaque fois qu’une allocation
de ressource est requise. À cette fin, nous utilisons l’optimisation de Lyapunov pour allouer
dynamiquement les ressources aux équipements. Afin d’étudier la performance du modèle
proposé, nous avons effectué des simulations théoriques et expérimentales intensives sur
un déploiement d’essais pour valider le schéma proposé et son impact sur les différents
paramètres du système. Les simulations ont montré que l’approche proposée surpasse les
autres approches de référence et fournit une faible latence et une consommation optimale
des ressources.

3.1 Abstract
35

36
CHAPTER 3. RESOURCE PROVISIONING IN EDGE COMPUTING FOR

LATENCY SENSITIVE APPLICATIONS

Low-Latency IoT applications such as autonomous vehicles, augmented/virtual reality
devices, and security applications require high computation resources to make decisions
on the fly. However, these kinds of applications cannot tolerate offloading their tasks to
be processed on a cloud infrastructure due to the experienced latency. Therefore, edge
computing is introduced to enable low latency by moving the processing of the task closer
to the users at the edge of the network. The edge of the network is characterized by
the heterogeneity of edge devices forming it; thus, it is crucial to devise novel solutions
that take into account the different physical resources of each edge device. In this paper,
we propose a resource representation scheme, allowing each edge device to expose its
resource information to the supervisor of the edge node through the mobile edge computing
application programming interfaces proposed by European Telecommunications Standards
Institute. The information about the edge device resource is exposed to the supervisor of
the EN each time a resource allocation is required. To this end, we leverage a Lyapunov
optimization framework to dynamically allocate resources at the edge devices. To test
our proposed model, we performed intensive theoretical and experimental simulations on
a testbed to validate the proposed scheme and its impact on different system parameters.
The simulations have shown that our proposed approach outperforms other benchmark
approaches and provides low latency and optimal resource consumption.

3.2 Introduction
The evolution of technologies and communication systems in the last decade gave birth to
new Internet-based applications and services that require low latency. Cloud computing
was proposed as a powerful technology to enable low latency requirements and optimized
resource consumption by offering many advantages such as high availability, scalability,
and reduced costs [67]. However, to meet the latency requirement in tasks processing,
a remote cloud computing infrastructure may not be suitable for latency-sensitive ap-
plications such as industrial process monitoring, automated vehicles, virtual/augmented
reality, surveillance and security, and human emotions detection. Therefore, the proxim-
ity to the processing infrastructure is the key when it comes to reducing the experienced
latency [8]. Such infrastructure is located at the edge of the network, enabling to address
of the limitations of cloud computing infrastructure through distributed and low latency
computation.

EC has emerged as a promising solution to lower the experienced latency by distributing
the processing, communication, and control closer to where the data is generated [4, 8, 68].
EC, therefore, extends cloud computing by providing applications with the computational,
storage, and communication resources at the edge of the network. The main standard-

3.2. INTRODUCTION 37

ization efforts in EC were initially proposed by the Industry Specification Group (ISG)
within the ETSI [13, 69, 70, 71, 12]. Unlike cloud computing, which is scalable and highly
maintained, EC is more heterogeneous and resource-constrained. The edge of the network
is built-up on edge nodes (ENs). ENs are the aggregation of heterogeneous edge devices
(EDs) such as edge routers and switches, edge servers, sensors, and even some end users
(EUs) equipment (e.g. laptops and smartphones). From the location point of view, the
EDs are located outside the premises of the operator which makes the maintenance and
management difficult. From the architectural point of view, EDs could have different hard-
ware architectures and have different capabilities. For instance, an EN could have several
edge routers and edge servers. Some edge servers may have high processing resources or
specialized ones such as graphical processing units (GPUs), which make them suitable
to perform intense computation tasks. Some other edge servers could have big storage
space to serve as caching and storing infrastructure at the edge of the network. Finally,
edge routers may have moderate processing resources but powerful networking resources,
allowing them to handle more traffic than others.

The disparity of available resources at the edge of the network requires efficient and optimal
resource provisioning, especially because of the limited available resources compared to the
cloud. However, adequate and optimal resource provisioning requires a good knowledge of
available resources. The unavailability of information about EDs capabilities at the ENs
can increase the latency and cause additional delay because some EDs could be asked
to perform tasks they are noted best suited for. Therefore, providing the information
about ED’s resources at an EN will make the process of tasks distribution more optimal.
Thus, any supervising entity that oversees tasks distribution can build suitable resource
provisioning schemes based on this information.

In this paper, we propose a resource representation model to characterize the different
physical resources of the EDs. There are four resources of interest in this paper: process-
ing, storage, memory, and networking. Since each ED is aware of its different available
resources, the ENs will be capable of discovering the resource information of the EDs
independently of the architecture or manufacturer. In the literature, most of the works
investigate the problem of edge resource allocation considering only communication and
computation resources [72, 40, 73, 74, 75, 32, 76, 77]. A few works also consider other types
of resources but without specifically targeting the delay minimization problem [78, 79, 80].
In this work, we formulate the resource allocation optimization problem as a Lyapunov
optimization with the aim of minimizing the overall applications experienced latency by

38
CHAPTER 3. RESOURCE PROVISIONING IN EDGE COMPUTING FOR

LATENCY SENSITIVE APPLICATIONS

jointly considering all the above-mentioned resources. The main contributions of this
paper are summarized as follows:

– To characterize the physical resource in an EC environment, we propose a resource
representation model which adheres to the ETSI standard [13, 69, 70, 71, 12]. The
model represents different kinds of resources (processing, storage, memory, and net-
working) of EDs and their capabilities.

– We propose a resource allocation scheme based on Lyapunov optimization to mini-
mize the experienced delay through the study of the service queues dynamics at the
ENs.

– We propose an algorithm to optimize the frequency of resource allocation and infor-
mation exchange. The proposed algorithm is based on the workload at each EN.

– We simulate the proposed scheme under different configurations of parameters. We
also use a testbed inspired by the work in [81] to experiment the proposed scheme.
We evaluate the latency, the consumption of different resources at the EDs, and the
queue evolution over time. The simulations show that our proposed approach out-
performs other benchmark approaches and provides low latency and optimal resource
consumption.

The remainder of the paper is organized as follows. The system model is first detailed in
Section II. Subsequently, we formulate the problem of latency minimization, the dynamic
of the queues, and the different requirements in Section III. In Section IV, we detail the
proposed resource representation scheme, the resource allocation scheme, and the task
distribution model. The performance of the system is simulated in Section V. We discuss
the related works in Section VI. And we conclude the paper in Section VII.

3.3 System Model
3.3.1 Network architecture
Let us consider an edge computing network architecture as the one depicted in Fig. 4.1 that
adheres to the requirement of ETSI standard based architecture [13, 8, 70, 71, 12]. In this
architecture, the end users are depicted in the lower layer which is called EUs’ layer. EUs
can be drones, surveillance cameras or virtual reality equipment. For simplicity, EU are to
be referred to as users. Let U be the set of N users U = {u1, ..., uN}. Users communicate
with the edge layer through gateways that connect to one or several edge nodes (ENs).
The gateways are used as intermediary devices to connect the user equipment to the edge
nodes. For example, these intermediary devices can be routers or switches within the same

3.3. SYSTEM MODEL 39

Table 3.1 Summary of System Variables
Symbol Description
U Set of users
E Set of EN
xu
i Association index

Di Devices of the EN i
R(i,j) Set of resources of device j
C(i,j) Set of containers of device j
S(i,j) Set of services
V

s(i,j)
r Requirement resource vector a service
1r Identification function
As(i,j) Matrix of required resources per service
Tout Timeout of a request
ϱ(i,j) Request
Ξ∼,p
(i,j) Amount of resources consumed by a container

λi Arrival rate of requests
Rqi Number of request at a time slot
δ∼L Delay for a given resource
D(i,j,l) Data size for local processing
fP Processing capacity
idxr/w Read/Write index
ξui Link data rate
h. Channel gain
P. Power of communication
ρi∼ Data size for edge processing
Qi Queue vector of an EN i
H History vector
bi Queue’s request arrival process
ai Queue’s service arrival process
Zi Queue dynamic of EN i
yk Penalty process variable
L
r∼
(i,j)

(i,j,k) Load for a given resource
V Trade off parameter
pavgm average resource loss
αi(t) Resource allocation scheme
βi(t) Resource state vector
yi(t) Vector of penalties
Lnorm
(i,j,k) Normal load

ratenorm Rate of request arrival

level of the hosting organization. ENs belong to the set E = {e1, e2, ..., eM} of M EN. We
assume that users are already associated to ENs following the strategy proposed in [82].

40
CHAPTER 3. RESOURCE PROVISIONING IN EDGE COMPUTING FOR

LATENCY SENSITIVE APPLICATIONS

GPU
FPGA

Edge Server

Edge Server Edge Server

Access
Point

Edge�
Router/Switch

Edge
Router/Switch

% Memory
% CPU/Cores

% Storage
% Networking

% CPU/Cores �
% Networking

% CPU/Cores

% Networking

% CPU/Cores�
% Networking

Gateway

Inner Physical link

Edge node supervisor

GatewayUser's Layer

Edge Layer

Edge
node

Edge
node

Outer Physical link

% Memory
% CPU/Cores

% GPU
% Storage

% Networking

Edge Layer

Cloud Layer

Core network
gateway

Core network
gateway

Infrastructure

Host OS

Docker

A
p

p
 1

A
p

p
 2

A
p

p
 k

..

Figure 3.1 Overview of the different entities of the edge computing architec-
ture.

Let xu
i (t) be a binary variable that ensures the user-EN association, described as follows:⎧⎪⎨⎪⎩

xu
i (t) ∈ {0, 1},∀i ∈ E ,∀u ∈ U∑︂

i∈E

xu
i (t) = 1,∀u ∈ E (3.1)

Each EN is considered to be an aggregation of heterogeneous EDs denoted by Di =

{d(i,1), d(i,2), ..., d(i,K)}. In addition, users-EN matching is distributed which makes the
system standalone, but in case we have a huge number of EDs, the discovery phase could
take much more time. Therefore, each EN ei is supervised by an edge node supervisor
(ENS), denoted e∗i . Each ED has resources in terms of processing (P), storage (S),
memory (M) and networking (N), denoted by the set R(i,j) = {r∼(i,j),∼∈ P ,S,N ,M},
with i representing the EN and j the ED. Each ED j hosts a set of containers [83] C(i,j) =

{c1(i,j), ..., cP(i,j)} representing the different services deployed on the EN i. We denote by
Ξ∼,k
(i,j) the amount of resource ∼ consumed by the container k executed on the ED j at

the EN i. Let S(i,j) = {s(i,j) | i ∈ E and j ∈ Di} be the set of services hosted on
the jth ED at the ith EN. Each service requires resources in terms of processing, storage,

3.3. SYSTEM MODEL 41

memory and networking, which are represented by a vector V
s(i,j)
r = ⟨1r, As(i,j)⟩ where

1r(∼) = 1 if the resource ∼ is required by s(i,j) and 1r(∼) = 0 otherwise. As(i,j) represents
the resource amounts required by service s(i,j). The resource capacity at each device is a
crucial parameter that should be considered for a good resource allocation. The following
equation describes the constraint on the resource capacities and is given as:

|C(i,j)|∑︂
k=1

Ξ∼,k
(i,j) ≤ r∼(i,j) | ∼ ∈ {P ,M,N ,S} (3.2)

C(i,j) represents the set of containers, Ξ(∼,k)
(i,j) represent the amount of resources required by

the container k, r(i,j) represents the maximum capacity of the resource ∼. Users perform
service requests on the EN. We denote a single request by ρ(i,j) = ⟨D(i,j,l), s(i,j), Tout⟩, where
D(i,j,l) is the data size to be processed by service s(i,j) and Tout is the time duration upon
which the user gives up service s(i,j). Without loss of generality, the time is considered
to be discreet and indexed by slots t ∈ N and the requests are identically independent
distributed (i.i.d.). The requests arrival rate is then proportional to the number of request,
and for a given EN i we have the arrival rate [40]:

λi =
E
[︁
V

s(i,j)
r

]︁
t

(3.3)

where V
s(i,j)
r represents the vector of the required resources by the service s(i,j) at the

time slot t. In this paper, we consider that requests are either processed locally, using the
residual resources of the user, processed at the edge, or both in a proportional manner;
locally and at the EN.

3.3.2 Local processing

Local processing delay consist in both computational and storage delay. The computa-
tional delay is given as follows:

δPL =
Duk

fP
(3.4)

where, fP represents the computing capacity of the ED which is the amount of data that
the processing unit can process per time unit. Duk represents the data size. At this stage
there is no communication. Therefore, no queuing delay which represents the time that
the request spends at the queue of a shared resources (the EN in this case). For the local
processing case, the user equipment uses its own capabilities to process the task. Thus,
the communication delay is, δCL = 0. We considered the storage delay which is the delay
from storing/reading to/from the storage support of ED. Since the ED are heterogeneous,

42
CHAPTER 3. RESOURCE PROVISIONING IN EDGE COMPUTING FOR

LATENCY SENSITIVE APPLICATIONS

some of the EDs can be equipped with HDD storage supports while others might have
SSD, and it is well known that writing/reading to/from SSD is faster than HDD [84, 85].
In addition the caching at the edge represents a use case in which the storage performance
have an important impact on the latency [86]. For these considerations we considered the
storage delay, and we put:

δSL = Duk

(︃
idxw

sw
+

idxr

sr

)︃
(3.5)

where, sw and sr are respectively the storage support writing and reading speed of the
ED, idxw and idxr are binary variables denoting either writing/reading is active. Reading
index is defined as follows:

idxr =

⎧⎨⎩0 if request requires no reading

1 otherwise
(3.6)

and writing index as:

idxr =

⎧⎨⎩0 if request requires no writing

1 otherwise
(3.7)

In this case of local processing, the total delay experienced by a given request is given as:

δtotalL = δPL + δSL (3.8)

In this paper, the queuing delay represents the time that the request spends at the queue
of a shared resources in the edge network. For this reason, we considered the queuing
delay in the edge processing scenario and we adopted the Lyapunov framework to study
the queues dynamics. For the local processing case, the queuing delay is not considered,
because the user equipment uses its own capabilities to process the task and thus it has
no queue of a shared resources.

3.3.3 Edge processing

We consider that the links between the users and EN are reliable, also, the communication
setup is already done. Processing at the EN entails a queuing delay and a propagation
delay. The propagation delay is the sum of, (i) the delay that a service request experiences
to get to the EN and (ii) the delay t that the corresponding response experiences to get

3.3. SYSTEM MODEL 43

back to the user from the EN. This propagation delay depends on the communication
link’s data rate, which is defined as follows [40]:

ξui = Bw. log2

⎛⎜⎜⎜⎜⎝1 +
Pu

⃓⃓
h(u,i)

⃓⃓2
σ2 +

∑︂
v∈U
v ̸=u

Pv

⃓⃓
h(v,i)

⃓⃓2
⎞⎟⎟⎟⎟⎠ , (3.9)

where Bw represents the bandwidth of the communication link, Pu is the transmission
power or user u, h(u,i) is the channel gain between user u and EN i and σ2 represents the
noise variance. The transmission is the ratio of the packet size to be transmitted to the
communication data rate and is given as follows:

δC(i,u) =
ρ∼i
ξui

(3.10)

The total delay for task processing is given as:

δtotal(i,u) = δC(i,u) + δS(i,u) + δP(i,u) + δwait
(i,u) (3.11)

where δC(i,u), δS(i,u), δP(i,u) and δwait
(i,u) represent respectively, the transmission delay, storage

delay, processing delay and the waiting time at the queue of the EN.

3.3.4 Problem Formulation
In order to optimize the total delay, we start by analyzing the queuing delay which is
an essential component of the overall delay. To achieve that, we could use tools such as
Little’s Law that affirms that the queuing time is proportional to queue length. However,
this would allow to consider the queue length and not the queue tail, which would not
help guaranteeing the constraints regarding the low latency. We leverage the Lyapunov
optimization framework due to its capabilities to provide optimized and stable queuing
dynamic [87].

We assume that all the requests are stored in the same queue and i.i.d. Let Qi(t) be the
queue vector of EN i that evolves in time. The evolution of the queue Qi(t) is based on
the event of requests arrival. Let us assume that the value of Qi(t) have the structure of
{µ(−1), µ(0), µ(1), ...} where Qi(0) = µ(−1) is the initial state of the vector Qi, where
µ(t) represents the requests arrived in time t. The values of Qi(t) are based on the values
of {Q(0), µ(0), ..., µ(t − 1)} and let H(t) be the history vector up to the time t − 1. The

44
CHAPTER 3. RESOURCE PROVISIONING IN EDGE COMPUTING FOR

LATENCY SENSITIVE APPLICATIONS

queue Qi(t) evolves in time as follows:

Qi(t+ 1) = max [(Qi(t)− bi(t) + ai(t)) , 0] (3.12)

Where ai(t) and bi(t) represents respectively the arrival process and the service process
[87]. Values of ai(t) and bi(t) are defined by general functions aî(t) and bî(t) respectively
ads defined in Eq. (3.14). In addition, we define the queue dynamic at the EN i as follows:

Zi(t+ 1) = lim
t→∞

1

t

t∑︂
τ=1

P (max [(Qi(t) + bi(t))− ai(t), 0] > ∆Tout(t)) (3.13)

Where, Qi(t) is the queuing dynamic at the EN i, and ∆Tout(t) is the queue length bounds
when the tolerable bound relative to the timeout of the tasks. For a given resource
allocation scheme αi(t) and a resource state βi(t) of the EDs in the EN i. βi(t) is used as
intermediary variable to find the optimal value of αi(t) that will be used as input to our
resource allocation algorithm. For each βi(t), which is the resource state represented as
a vector with values of different values of available resources there is an associated αi(t),
which is the resource allocation scheme.

The objective is to find an optimal value of αi(t). Each allocation scheme αi(t) incurs a
vector of penalties yi(t) = {y0(t), y1(t), ..., yK(t)}. The arrival process ai(t), the service
process bi(t), and the penalty vector yi(t) can be expressed as a function of αi(t) and βi(t)

as follows [87]:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ai(t) = aî(αi(t), βi(t))

bi(t) = bî(αi(t), βi(t))

yk(t) = yk̂(αi(t), βi(t))

(3.14)

3.3. SYSTEM MODEL 45

For t > 0, we define āi(t), b̄i(t), ȳk(t) and Q̄i(t) the average sizes of ai(t), bi(t), yk(t) and
Qi(t) defined as :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

āi(t) =
1
t

t−1∑︂
τ=0

ai(τ)

b̄i(t) =
1
t

t−1∑︂
τ=0

bi(τ)

ȳk(t) =
1
t

t−1∑︂
τ=0

yk(τ)

Q̄i(t) =
1
t

t−1∑︂
τ=0

Qi(τ)

(3.15)

The ENS compute the optimal value of αi(t) through solving the following optimization
problem:

lim sup
t→∞

ȳ0(t) (3.16)

Subject to

– (C1’) : lim sup
t→∞

ȳk(t) ≤ 0

– (C2’) : Stability of Qi(t) ∀ t ∈ {0, 1, ...}
The delay optimization problem is formulated as follows:

minimize {δtotal(i,u)} (3.17)

subject to:

– (C1): Eq. (3.2) to ensure resource consumption and maximum capacities.

– (C2): Eq. (3.1) for user-EN association.

– (C3): Eq. (3.12), (3.13) to ensure the queue dynamic.

– (C4): Eq. (3.14), (3.15) for resource allocation.

– (C1’) and (C2’) for penalties conditions.

To solve the problem in (3.17), problem (3.16) should be solved and thus constraints
(C1’) and (C2’) should be respected. Further, constraints (C1)-(C4) should be respected
to obtain an optimal solution to (3.17). It is known that problem (3.16) can be solved
in an optimal way but tuning a parameter denoted as V [87]. Thus, after verifying the
constraints C1-C4, we can solve (3.17) optimally as well. Our detailed solution is described
in the sequel.

46
CHAPTER 3. RESOURCE PROVISIONING IN EDGE COMPUTING FOR

LATENCY SENSITIVE APPLICATIONS

3.4 Proposed Solution

3.4.1 Solution Overview
Before going deep into the details of the solution, we provide the basic idea of the proposed
resource provisioning approach. At the beginning of each resource provisioning cycle, we
verify the constraints (C1)-(C4) related to the association, maximum resource capacities,
type and requirement of each task. Then, we provide the resource provisioning through
solving the optimization problem in (3.16) by leveraging the Lyapunov optimization when-
ever a resource provisioning is needed under the constraints of (C1’) and (C2’). Note here
that we focus on the tasks that are to be processed at the edge of the network. At the EN
side, the ENS checks the requirements for each task in terms of type and required amounts
of resources. More details about our proposed approach are provided in the remainder of
this section.

3.4.2 Proposed Solution
In order to solve problem in (3.16), we consider ymin

0 as the minimum value of the penalty;
in our case is the resource consumed over time slot t, and we put:

yk(t) = pk(t)− pavgk (3.18)

pk(t) is the resource loss in the ED k in the EN i at the time slot t, and pavgk is the average
resource loss, and the constraint (C1’) in (3.16) holds if:

lim sup
t→∞

ȳk(t) ≤ pavgk (3.19)

Therefore, considering the Eq. (3.13), we can rewrite Zk(t + 1) = max [Zk(t) + yk(t), 0]

and we have Zk(τ + 1) ≥ Zk(τ) + yk(τ) for τ ∈ {0, 1, ..., t − 1}, due to requests arrival
process which is i.i.d. Thus we can write [87]:

Zk(t)− Zk(0) ≥
t−1∑︂
τ=0

yk(τ) (3.20)

3.4. PROPOSED SOLUTION 47

we divide by t in (3.20), and we obtain:

Zk(t)

t
− Zk(0)

t
≥ 1

t

t−1∑︂
τ=0

yk(τ) (3.21)

Clearly, Zk(t)
t

→ 0 when Zk(t) is stable, thus, Qi(t) is stable and (C2’) is met.

Assuming that the queues are empty initially, we define θ(t) = [Qi(t), Zk(t)] as the com-
bination of the queue vectors, the Lyapunov function is expressed as follows:

L(θ(t)) =
1

2

⎡⎣∑︂
i∈E

Qi(t)
2 +
∑︂
k∈Di

Zk(t)
2

⎤⎦ (3.22)

The drift plus penalty process requires the minimization of E[∆(t)+V.yk(t) | H(t)], where
∆(t) = L(Q(t+ 1))− L(Q(t)) and V is a performance tradeoff parameter.
Let us assume that the functions of (3.14) satisfy the following conditions for all values of
αi(t) and βi(t) : ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ai(t) ≥ 0

bi(t) ≥ 0

ymin
0 (t) ≤ y0(t) ≤ ymax

0

(3.23)

Where ymin
0 and ymax

0 are the maximum and minimum values of y0(t). Let D ≥ 0 be a
constant that for every resource allocation scheme αi(t) based on values of βi(t) we have
[87]: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

E [aî(αi(t), βi(t))
4] ≤ D

E
[︂
bî(αi(t), βi(t))

4
]︂
≤ D

E [yk̂(αi(t), βi(t))
4] ≤ D

(3.24)

48
CHAPTER 3. RESOURCE PROVISIONING IN EDGE COMPUTING FOR

LATENCY SENSITIVE APPLICATIONS

Where E[.] represents the expectations taken, considering βi(t) and the decisions αi(t).
The drift-plus-penalty expression for a finite constant B > 0, satisfies the following [87]:

E [∆(t) + V.y0(t)|H(t)] ≤ B + V.E [y0(t)|H(t)] +
∑︂
i∈E

(Qi(t))E [ai(t)− bi(t)|H(t)] +∑︂
k∈Di

(Zk(t))E [yk(t)|H(t)]

(3.25)

The right-hand-side of Eq. (3.25) is minimized when choosing a minimal value of αi(t)

corresponding to the states of the Qi(t) and Zk(t) and the state of resource at EN i, βi(t):

V.y0(t) +
∑︂
i∈E

Qi(t) [ai(t)− bi(t)] +
∑︂
k∈Di

[Zk(t)yk(t)] ≤ C (3.26)

Qi(t) and Zk(t) are updated according to (3.12) and (3.13), with the existence of a given
constant C ≥ 0, optimal value of αi(t) is chosen when C is small as possible, and:

V.y0(t) +
∑︂
i∈E

Qi(t) [ai(t)− bi(t)] +
∑︂
k∈Di

[Zk(t)yk(t)]

≤ C+

inf
αi(t)

[V.y0(t) +
∑︂
i∈E

Qi(t) [ai(t)− bi(t)] +∑︂
k∈Di

[Zk(t)yk(t)]]

(3.27)

In case C = 0, the exactly minimum value of αi(t) is reached, thus the optimal resource
allocation scheme is obtained.

The resource representation allows characterizing the exact capabilities of the EDs pre-
cisely and uniformly. The resource representation allows the ENS to get information about
the EDs resource status, which correspond to the values of βi(t) in our proposed approach
in the previous section. Each ED is aware of its purpose (the types of operations that could

3.4. PROPOSED SOLUTION 49

be handled), its capacities and available resources. For this purpose, each ED exposes its
available resource to the ENS through the MEC API standard of ETSI [13, 69, 70, 71, 12].

Figure 3.2 Example of output for an ED exposing information about its CPU

The resources are exposed in XML format to the supervising entity. In order to get
information about the physical resource, each ED uses low-level operations and commands
including CPUID to get the CPU properties such as the architecture, number of cores
and the frequency. The ED, depending on its OS, uses commands such as cpuinfo and
meminfo for Linux based machines to obtain the current state of the CPU usage and
memory respectively, wmic for Windows-based EDs. We proceeded with the same to
cover the majority of the used OS in the EDs. Collecting all these commands within
the same program that, depending on the ED used OS, collects the information about
the EDs and their available resources. Figure 3.2 shows an example of an ED’s response
when the supervisor requested information about the CPU resource. The output is an
XML response with all the different information about the CPU such as the family, the
frequency, number of cores and the architecture. Also, XML can be parsed by almost all
EDs, which makes the information about the resource easier and more understandable to
the ENS.

Algorithm 1 is performed in order to define the optimal allocation scheme for determining
the adequate EDs that will participate in processing the incoming request. The time
complexity of the proposed Lyapunov-based optimization algorithm is around O(N2) [87],
which ensures an low complexity of our proposed algorithm in Algorithm 1, since it is the
only heavy task to perform by the ENS.

50
CHAPTER 3. RESOURCE PROVISIONING IN EDGE COMPUTING FOR

LATENCY SENSITIVE APPLICATIONS

The frequency of checking ED resources (through resource representation model) depends
essentially on the frequency of reallocating the resources. More precisely, the resource’s
status is checked every time the resource allocation is needed instead of being checked at
each given time slot as in [72, 40, 73, 74, 75, 32, 76, 77]. We could solve this problem
either statically or dynamically. In the static scheme, the problem is solved by fixing a
time interval on which we perform the resource’s checking, which is not optimal since the
resource reallocation interval on a given EN is longer under a low load and shorter under a
high load. We can solve the problem of reallocation resources dynamically by monitoring
the load on devices [88]. Below, we consider that the moment of checking resource’s status
is the moment of reallocating resources. In fact, reallocating virtual resources for edge
computing applications costs additional computational resource. Thus, overly frequent
reallocation of resources might decrease the efficiency of the EN resources usage. Inspired
from the the work in [88], we define the workload of an ED for a given resource ∼ (where
∼ ∈ {P ,S,N ,M}) as follows:

L
r∼
(i,j)

(i,j,k) = r∼(i,j) −
|C(i,j)|∑︂
k=1

Ξ∼,k
(i,j) (3.28)

Algorithm 1: Resource allocation based on resource representation and Lyapunov
optimization (LRR)
Input: incoming requests ϱ(i,j)
Initialization: place ϱ(i,j) at the queue

1 get Duk
and s(i,j);

2 if free(r∼(i,j)) then
3 Allocate resource at ED d(i,j);
4 Instantiate container ck(i,j) for the requested service with respect to constraint in

equation (2);
5 Destroy the ck(i,j) after task completion;
6 end
7 Find αi from the problem in (3.16) determine the candidate ED with respect to Tout;
8 Allocate the adequate amount of resource on each selected ED from (3.16);
9 Distribute the subtasks to the ED;

10 Create containers on each ED;
11 Destroy containers after all subtasks are finished;
12 Wait for the next request;

3.5. SIMULATION RESULTS 51

If we assume that the maximum workload of an ED is given by Lmax
(i,j,k), we define the

normal workload Lnorm
(i,j,k) as follow:

Lnorm
(i,j,k) = Lmax

(i,j,k) × ratenorm with ratenorm ∈ [0, 1] (3.29)

Finally, we can define Lth
(i,j,k) as the threshold that triggers the resource reallocation process

as :
Lth
(i,j,k) = rateth × (1− ratenorm)×K × Lmax

(i,j,k) (3.30)

Where K represents the number of container on execution on the ED j. A resource
reallocation takes place when the value of Lth

(i,j,k) changes.

The time complexity of algorithm (2) depends on the number of ED in the EN. Since
the ENS has the information about each ED at the beginning of the network operations,
information about the loads are available, since the ENS is aware of the tasks’ sizes and the
capabilities of each ED. Moreover, the number of the resource allocation scheme changing
in some cases remains unchanged due to the availability of resource on a given ED, which
ensures the optimality of the resources used to compute the optimal allocation scheme
αi(t) [88]. In other words, the frequency of performing resource allocation is lower when
compared to other schemes that perform the same operation not only at each request
arrival but at each time slot [72, 40, 73, 74, 75, 32, 76, 77].

3.5 Simulation Results
We evaluated our proposed resource provisioning approach through extensive simulations.
The experimental testbed was inspired from the work of [81]. For simplicity, we used
the same OS (Linux) and we deployed Docker on these VMs, then we used Kubernetes
as container management engine. We then configured the VMs to act as a swarm from
the point of view of Docker. We deployed our resource representation component over
these VMs, and we deployed our resource allocation algorithm on the master device (the

Algorithm 2: Resource Reallocation Calculation
1 Use (29) and (30) to calculate Lnorm

(i,j,k) , Lth
(i,j,k) and Lmax

(i,j,k);
2 for each d(i, j) in Di do
3 if Lcurr

(i,j,k) > Lnorm
(i,j,k) + Lth

(i,j,k) then
4 Send resource information request to d(i, j);
5 end
6 end

52
CHAPTER 3. RESOURCE PROVISIONING IN EDGE COMPUTING FOR

LATENCY SENSITIVE APPLICATIONS

Figure 3.3 Testbed components; The VM-Workers (EDs) on left and right and
the VM-Master (ENS) on the center.

ENS). Moreover, we tested the resource representation component on different versions of
OSs and different hardware architectures (x86, x64 and ARM). However, the testbed with
heterogeneous configuration is yet to be investigated in a future work. The experimental
simulations consist of an EN with 3 EDs. As illustrated of Fig. 3.3, with the ENS (master)
is at the middle having the role of supervising the EN, receiving the request and executing
the resource provisioning schemes. The central ED in the Fig. 3.3 is considered to host the
master of the EN, thus, the ENS. The other EDs are the workers. The ENS is responsible
for checking the EDs resource information, performing the resource provisioning (comput-
ing the optimal scheme and values of αi(t)) and forwarding the requests to the adequate
nodes based on the αi(t) values). We tested the proposed approach by implementing a
face recognition based on OpenCV framework [89]. We simulated the proposed approach
using a setup that is closely equal to the experimental one, having a power of processing
of 2.5Ghz, a memory variation between {2− 4} Gb and a storage between {20− 30} Gb.
We also considered the V parameter ranging in 0 − 100. To put the testbed to work, we
considered the following scenario, in which we used a face recognition application inspired
from [90]. The user’s device (smartphone for instance) sends the images to the EN for
recognition. The face recognition classifier is already trained in the EN. After receiving
the image, the EN solves the optimization problem and select the EDs in which the face
detection should take place. The EDs have different capabilities and configurations as
described in the table follows:

We compare our approach to the MGRA benchmark approach [74] both theoretically and
in simulations. We also compare our approach when using both resource representation
and Lyapunov optimization (LRR in Fig. 4-11) with using the proposed Lyapunov frame-

3.5. SIMULATION RESULTS 53

Figure 3.4 Average queues sizes over time

Table 3.2 Experimental Setup
Nodes/Resource capabilities Memory Processing Storage

EN
ED1 2Gb 2 Cores 20Gb
ED2 2 Gb 4 Cores 30Gb
ED3 4Gb 2 Cores 20Gb

work alone. Fig. 3.5 illustrates the average queue size evolution in time. The queue size
is minimized in LRR compared to MGRA. The figures also show that using resource rep-
resentation in our approach has a positive effect in minimizing the queue size compared
to using our proposed Lyapunov framework alone. In addition, the mechanism we used is
lightweight and could be executed within a tiny shred of resources.

In order to test the impact of the parameter V of Eq. (3.26) on the overall system
performance, we evaluated the average queue size under the different values of V to find the
optimal configuration of the performance-delay tradeoff. As a reminder the V parameter
represents the tradeoff between the performance and the allowable latency.

We illustrate the evolution of the queue under the variation of the V parameter. Fig. 3.5
which shows that a lower value of V means that the user is interested in being served
within a low delay. In the MGRA scheme, there is no consideration to such parameter,
which causes the constant behavior of the average queue size. Fig. 3.5 shows that the
queue size of is less congested when using our Lyapunov framework and even less congested

54
CHAPTER 3. RESOURCE PROVISIONING IN EDGE COMPUTING FOR

LATENCY SENSITIVE APPLICATIONS

0 20 40 60 80 100
Tradeoff parameter V

200

400

600

800

1000

Av
er

ag
e

qu
eu

e
siz

e
(K

b)

MGRA
MGRA Exp.
Lyapunov RA (Our proposition)
LRR (Our proposition)
LRR Exp.(Our proposition)

Figure 3.5 Average queue size evolution in function of the parameter V

0 20 40 60 80 100
Tradeoff parameter V

40

60

80

100

120

140

160

Av
er
ag

e
la
te
nc

y
(m

s)

MGRA
MGRA Exp.
Lyapunov RA (Our proposition)
LRR (Our proposition)
LRR Exp.(Our proposition)

Figure 3.6 Average latency evolution in function of the parameter V

when using LRR. Even for high values of V , the queue is far from reaching the queue size
of the benchmark MGRA scheme.

We evaluated the impact of the parameter V on the average latency and we conclude that
a higher value of V implies a higher latency, which is also very clear from the figure 3.4.
Our proposed approach shows an improvement in terms of latency. Fig. 3.9 illustrates

3.5. SIMULATION RESULTS 55

ED1 ED2 ED3
Edge devices

0

20

40

60

80

100

Re
so
ur
ce
 c
on

su
m
pt
io
n
%
 (M

em
or
y) MGRA

Lyapunov
LRR

Figure 3.7 The average network interface utilization on each ED of the simu-
lation setup

the average latency evolution with the queue size under the different schemes of resource
provisioning. The average latency represents the overall delay spent from the moment of
requesting a task processing, to selecting the adequate ED to process the task and then
receiving the results. Our proposed LRR approach outperforms the MGRA approach.

Our approach achieves the lowest latency with the evolution of the queue size, and with
further examination, Fig. 3.9 shows that LRR improves the latency up to 40%. This can
be explained by the fact that the ENS is all the time aware of the available resources
at the ED and their capabilities. Therefore, based on the resource information, the ENS
allocates the resources on the adequate EDs, which distribute the tasks in an adequate
way that guarantees a lower latency for the users and resource consumption at the ED
following the Lyapunov optimization framework.

The results for our study of the testbed ED resources behavior under the different resource
provisioning schemes are illustrated in Fig. (3.4-3.11). Our proposed LRR scheme shows
a significant improvement in terms of CPU consumption as shown in Fig. 3.10. This en-
hancement is due to the ENS awareness of the resource status of each ED. When adopting
the benchmark MGRA approach, a portion of the resources from the devices are used to
compute the optimal matching between the users and the EN which takes almost O(N2)

compared to Lyapunov which takes only O(1
N2

). In some cases, the MGRA benchmark ap-
proach which is based on a matching game, takes long delay to reach a stable distribution,

56
CHAPTER 3. RESOURCE PROVISIONING IN EDGE COMPUTING FOR

LATENCY SENSITIVE APPLICATIONS

which may cause higher consumption of resources. In LRR, the resource representation
guarantees the information about the ENs resources. Using Lyapunov optimization for
addressing the queue’s congestion offers better resources utilization on one hand. On the
other hand, it is mathematically proved that an optimal resource allocation scheme is al-
ways guaranteed within a reasonable delay. Fig. 3.10 shows that LRR guarantees a lower
resource consumption in terms of CPU compared to the benchmark approach; specifically
approximately a 11% lower consumption on ED1 and ED2, and approximately a 18%
lower on ED3.

ED1 ED2 ED3
Edge devices

0

20

40

60

80

Re
so

ur
ce

 c
on

su
m

pt
io

n
%

 (B
an

dw
id

th
)

MGRA
Lyapunov
LRR

Figure 3.8 The average storage utilization of each ED from the setup

Fig. 3.11 illustrates the storage consumption under the MGRA, and our approach using
Lyapunov with and without considering the resource representation. Fig. 3.11 shows that
the different schemes have almost the same performance for ED1 and ED2. However,
in ED3, LRR significantly improves the performance of storage use by almost 25% com-
pared to MGRA, due to the fact that in our proposed scheme we used containers as a
virtualization technology instead of VMs used in the MGRA approach.

The network performance is illustrated in Fig. 3.8, in which the Lyapunov-based approach
shows an enhancement of the bandwidth consumption as it was already been discussed
in previous papers such as the works in [39, 40]. In addition, the resource representation
gives better results, 15% lower than MGRA and 6% lower than the Lyapunov-only based
approach.

3.5. SIMULATION RESULTS 57

0 200 400 600 800 1000
Queue size (Kb)

50

100

150

200

250

300

Av
er

ag
e

la
te

nc
y

(m
s)

MGRA
MGRA Exp.
Lyapunov RA (Our proposition)
LRR (Our proposition)
LRR Exp.(Our proposition)

Figure 3.9 Latency evolution over the queue size

ED1 ED2 ED3
Edge devices

0

20

40

60

80

100

Re
so

ur
ce

 c
on

su
m
pt
io
n
%
 (C

PU
)

MGRA
Lyapunov
LRR

Figure 3.10 Average CPU utilization at the EDs.

Fig. 3.7 illustrates the memory consumption on the different EDs of our testbed. The
results show that LRR uses 14% less resources compared to the benchmark scheme. This
result could be explained by the fact that in a matching game approach, EDs are not
aware of what the other devices have in terms of capabilities. Also, the matching game
is distributed and the discovery phase could take much more time. Our LRR approach

58
CHAPTER 3. RESOURCE PROVISIONING IN EDGE COMPUTING FOR

LATENCY SENSITIVE APPLICATIONS

ED1 ED2 ED3
Edge devices

0

10

20

30

40

50

Re
so
ur
ce
 c
on

su
m
pt
io
n
%
 (S

to
ra
ge

) MGRA
Lyapunov
LRR

Figure 3.11 The average storage utilization of each ED from the setup

which makes the information about available resources accessible to the ENS while using
a Lyapunov approach makes the resource allocation more efficient.

Fig. 3.12 illustrates the evolution of the reallocation frequency in LRR compared to a
baseline scheme. The baseline scheme referred to in Fig. 3.12, is used in several previous
works [39, 40, 73, 74, 75, 32, 76, 77, 88] and consists in allocating resources at each
time slot where a request is received. However, adopting such policy may make the EN
reallocate resources continuously at each node to satisfy the requests, which may have a
direct impact on the latency. In LRR, the ENs have sufficient information about each
ED’s capabilities and up-to-date resource states, making it easier to allocate resources on
nodes with available resource without the need of recomputing the allocation scheme.

3.6 Related Works
Several previous works investigated the resource allocation and management from the
edge computing perspective. Most of these works, such as in [39, 40, 73, 74, 75, 32, 76, 77]
investigate the resource allocation problem for only one or two types of resources, and very
few investigated the problem of resource allocation with more than two types of resources
[68]; mainly the computational and networking resources. In this paper, we propose a
resource allocation scheme for four kind of resources including processing, storage, memory
and networking through resource representation. Resource representation allows the ENS
to acquire information about all the available resources at each device in the EN. Some

3.6. RELATED WORKS 59

0 50 100 150 200
Queue size

0

25

50

75

100

125

150

175

200

Re
al

lo
ca

tio
n

ra
te

Baseline
LRR

Figure 3.12 The reallocation frequency in function of the queue size

of the previous works did address the resource allocation problem using the Lyapunov
optimization framework for minimizing the queuing time [39, 40, 73, 32, 91]. However,
these works focus on few types of resource and the allocation cycle takes place at each time
slot, which may lead in some cases to compute the optimal allocation scheme even when
the current scheme can deal with incoming requests. Therefore, in our proposed approach
the resource allocation scheme is only performed when the incoming request requires a re-
computation of the resource allocation scheme. Other studies such as in [74, 75, 32, 76, 77]
used theoretical game-based approaches such as matching games and coalitional games.

In some papers, authors propose a combination of different techniques such as in [39, 40,
73], combining Lyapunov optimization and matching game frameworks or combining mul-
tiple optimization framework such as in [32]. In [39] the authors proposed a mixed-integer
nonlinear programming problem to optimize the task offloading, computation schedul-
ing and the radio resources. The problem was relaxed to subproblems by leveraging the
Lyapunov optimization framework, then proposing a convex decomposition approach and
matching game to solve the subproblems. In their proposed algorithm for the optimal
task offloading, decision and resource allocation is taken at each time slot, which may
lead in some scenarios to changing the overall decision to offload a small portion of tasks.
In the study in [40] the authors proposed a user-server association scheme that takes the
channel quality in account in addition to the computational capabilities and workloads
of the servers. The authors also used a Lyapunov optimization and a matching game

60
CHAPTER 3. RESOURCE PROVISIONING IN EDGE COMPUTING FOR

LATENCY SENSITIVE APPLICATIONS

to propose a dynamic task offloading and resource allocation policy. The authors of [73]
proposed a resource allocation scheme for computational and communication resources
jointly with users’ access point association. The proposed solution in [73] is based also on
a Lyapunov framework to stabilize the queue and a matching game theory to associate
the users to the access points. From the game theoretical perspective, the resource allo-
cation scheme proposed in [74] is based on a joint Stackelberg game to efficiently allocate
computing resources to devices, and a one-to-many matching game to match the users to
access points. The approach is similar to the one in [75], where instead of using differ-
ent game theory frameworks, the authors proposed two-tiers matching game to optimize
computing resource allocation and pricing, under limited computing and communication
resources constraints. The first tier aims at associating users and small base stations
with the goal of maximizing the social welfare. The second tier aims at achieving the
collaboration between the different small base stations in order to ensure an efficient com-
puting resources consumption. In some papers such as in [32], the authors investigated
the optimization of the network resources, more specifically the channel selection which
is critical to ensure a reliable task allocation. The authors proposed the combination of
three optimization tools to optimize the long-term throughput under energy cost and ser-
vice reliability constraints. The authors also proposed a learning-based channel selection
with service reliability, energy, backlog, and conflict awareness through with a Lyapunov
optimization framework to optimize the strategy to allocate the channel, and a matching
game approach for the channel selection. However, in these works, the aspect of resource
is used in an abstract manner, and the proposed approaches does not put assumptions
about either the heterogeneity of the equipment used, neither the interaction between the
equipment.

3.7 Conclusion
In this paper, we investigated resource provisioning at the edge of the network under la-
tency and resource consumption constraints. In order to reduce the latency, we studied
the experienced delays at the different levels of the considered architecture. Precisely, we
studied the queue dynamic at the EN by leveraging a Lyapunov optimization framework.
We also proposed a resource representation for EDs which allows the exposition of EDs
resource information (processing, storage, memory, and networking) at any time through
the ETSI standard for edge computing applications. The ENS uses the gathered infor-
mation on available resources to define the optimal resource provisioning scheme based
on the drift-plus penalty of the Lyapunov optimization framework. We also studied the
frequency of resource reallocation and we proposed an algorithm based on the workload at

3.7. CONCLUSION 61

each ED of the EN to reduce the number of times at which the ENS performs a resource
reallocation operation. Moreover, we performed extensive theoretical and experimental
simulations to prove the effectiveness of our proposed approaches. The numerical results
have shown that our proposed approach outperforms the benchmark approach in terms of
latency which drops up to 25% in some cases, and up to 40% in terms of lower resource
consumption.

62
CHAPTER 3. RESOURCE PROVISIONING IN EDGE COMPUTING FOR

LATENCY SENSITIVE APPLICATIONS

CHAPTER 4

Service Function Chaining in MEC: A Mean-
Field Game and Reinforcement Learning Ap-
proach

Date de parution: -
Status: Soumis
Revue: IEEE Systems Journal
Titre français: Chaînage des fonctions de service dans les MEC : un jeu de champs
moyens et une approche d’apprentissage par renforcement.

Resumé français: Les technologies de l’informatique en MEC et la virtualisation des
réseaux sont des outils importants pour que les réseaux de cinquième génération (5G)
puissent fournir diverses applications et services. Les services sont souvent fournis sous
forme de VNFs entièrement connectées, par le biais du SFC. Cependant, le problème de
l’allocation des ressources SFC à la périphérie du réseau reste confronté à de nombreux
défis liés à la manière dont les VNF sont placées, enchaînées et exécutées. Dans cet article,
nous proposons une approche basée sur la théorie des jeux dont l’objectif est de réduire
la latence des services dans le contexte du SFC à la périphérie du réseau. Le problème
de l’allocation des ressources SFC peut être divisé en deux sous-problèmes. 1) le sous-
problème du placement et du routage des VNF, et 2) le sous-problème de l’exécution
des VNFs. Pour le premier sous-problème, nous le formulons comme un jeu de champ
moyen (MFG) dans lequel les VNFs sont modélisés comme des entités se disputant les
ressources de la périphérie dans le but de réduire la consommation de ressources des
nœuds MEC et de réduire la latence pour les utilisateurs. Nous proposons une technique
basée sur l’apprentissage par renforcement, où l’algorithme d’apprentissage Ishikawa-Mann
(IMLA) est utilisé. Pour le dernier sous-problème, nous le formulons comme un jeu de
correspondance entre les VFNs et une ressource du MEC afin de trouver l’ordre d’exécution
des VNFs tout en réduisant la latence. Pour le résoudre efficacement, nous proposons une
version modifiée de l’algorithme d’acceptation différée classique plusieurs-à-un, appelée
algorithme d’acceptation différée à étapes multiples. Pour illustrer les performances des

63

64
CHAPTER 4. SERVICE FUNCTION CHAINING IN MEC: A MEAN-FIELD GAME

AND REINFORCEMENT LEARNING APPROACH

approches proposées, nous des simulations approfondies. Les résultats obtenus montrent
que les approches proposées sont plus performantes que les autres méthodes de l’état de
l’art attendant jusqu’à 37,5% de performance.

4.1 Abstract
MEC and network virtualization technologies are important enablers for fifth generation
(5G) networks to deliver diverse applications and services. Services are often provided as
fully connected VNFs, through SFC. However, the problem of allocating SFC resources at
the network edge still faces many challenges related to the way VNFs are placed, chained,
and scheduled. In this chapter, to solve these problems, we propose a game theory-based
approach with the objective to reduce service latency in the context of SFC at the network
edge. The problem of allocating SFC resources can be divided into two subproblems. 1)
The VNF placement and routing subproblem, and 2) the VNF scheduling subproblem. For
the former subproblem, we formulate it as a mean-field game (MFG) in which VNFs are
modeled as entities contending over edge resources with the goal of reducing the resource
consumption of MEC nodes and reducing latency for users. We propose a reinforcement
learning-based technique, where the Ishikawa-Mann learning algorithm (IMLA) is used.
For the later subproblem, we formulate it as a matching game between VFNs and edge
resources to find the execution order of the VNFs while reducing the latency. To efficiently
solve it, we propose a modified version of the many-to-one deferred acceptance algorithm
(DAA), called the enhanced multi-step deferred acceptance algorithm (eMSDA). To illus-
trate the performance of the proposed approaches, we performed extensive simulations.
The results show that the approaches achieve up to 40% less resource consumption, and
up to 38% less latency than the benchmarked state-of-the-art methods.

4.2 Introduction
The fifth-generation (5G) of mobile systems is being promoted to accelerate the devel-
opment of smart cities, not only through improved data throughput but also through
support for the expected large amount of connected devices [92]. Many of the use cases
involving latency-sensitive applications and highly responsive services are now achievable
with less effort and cost [93]. To enable such services, 5G relies on emerging technologies
such as cloud computing, multi-access edge computing (MEC), and virtualization tech-
nologies that can meet the demands of network flexibility and elasticity. MEC on one hand
[4] emerged to address the limitations of cloud computing primarily in terms of latency.
MEC enables data processing closer to where it is generated and acts as an extension to
the cloud computing paradigm at the network edge [4]. In addition, MEC can assist 5G in

4.2. INTRODUCTION 65

enabling ultra-reliable and low-latency communication (URLLC), enhanced mobile broad-
band (eMBB), and support massive machine-like communication (mMTC) [92]. On the
other hand, virtualization technologies have appeared as a remarkable concept to provide
efficient provisioning for 5G and beyond networks through software-defined networking
(SDN) and network functions virtualization (NFV) [94, 95].

With the help of virtualization technologies, physical network components and hardware
devices can be abstracted into software called virtual network functions (VNFs). VNFs
can be instantiated and run in the data plane as virtual machines or containers hosted
in devoted infrastructures such as cloud or MEC platforms. Services are often delivered
as a bundle of multiple VNFs to compose a service function chain (SFC). For an SFC
to meet the required performance, VNFs that compose it need to acquire resources from
the MEC infrastructure in an efficient manner. Such a process is often referred to as
SFC resource provisioning. Resource provisioning in the context of SFCs requires solving
multiple subproblems, including (i) VNF placement, (ii) VNF chaining, and (iii) VNF
scheduling [96, 4]. To achieve all the required performance, it is necessary to treat these
three sub-problems as an indivisible part of the SFC resource provisioning process.

The SFC resource provisioning problem should be solved regarding different types of re-
sources, namely computation, storage, and transmission. In fact, many works have studied
the problem of SFC resource provisioning but consider only computation or transmission,
ignoring the storage resources. However, on many occasions, services may require content
storage for caching purposes [97] or for storing results of the processing as in some machine
learning paradigms [98]. In addition, most existing solutions [7, 99, 57, 54, 52, 56, 100, 58]
assume that the VNFs have equal requirements and are homogeneous within a single
MEC node. However, in real use cases, VNFs often require different amounts and types
of resources and have different purposes.

The VNFs placement and chaining problem aims to find a suitable location for the VNFs
(VMs/containers) in MEC nodes while finding an optimal path to transmit the processed
packets when the number of transmission links or their capacities are limited. MEC
has physical devices on which VMs/containers can be instantiated according to demand
[96]. Proper placement of VNFs is motivated by optimizing resource consumption or
overall network performance, while minimizing the cost (in terms of energy consumption,
latency, and financial) or penalties for service level agreement violations. Although these
parameters are quite appropriate for NFVs, most of the work proposed in this context
focuses only on reducing the cost of deployment, improving QoS and availability, while
neglecting the constraints related to MEC itself. The MEC constraints are related to the

66
CHAPTER 4. SERVICE FUNCTION CHAINING IN MEC: A MEAN-FIELD GAME

AND REINFORCEMENT LEARNING APPROACH

fact that the MEC nodes are not entirely in the premises of the service provider, but
many service providers can share the same MEC nodes. In addition, the equipment used
in the MEC nodes is not always homogeneous, which in consequence makes the operation
of resource allocation for different services and service providers hard. Moreover, VNFs
can be deployed/duplicated on several network sites.

Finally, the SFC scheduling subproblem should be solved considering different MEC nodes,
since SFCs are often running within a shared physical network and thus, several VNFs can
be hosted in the same MEC node [96]. The VNFs scheduling subproblem can be defined as
finding the sequence in which the collocated VNFs on each MEC node will be executed in
order to achieve the minimum SFC execution time (i.e., the experienced delay between the
execution of the source VNF and the completion of the destination VNF). This problem is
in the NP-complete complexity class and thus cannot be solved in polynomial time unless
P = NP [7].

To summarize, the main contributions of this paper are synthesized as follows:

– We study the SFC resource provisioning problem as an integral problem in which we
consider the subproblems of VNFs placement, VNFs chaining, and VNFs scheduling
with the aim to reduce the overall latency and resource consumption while consid-
ering different types of resources, namely computational, storage and transmission
resources.

– We model the VNF placement and chaining subproblems on different MEC nodes
as a mean-field game (MFG) to provide the adequate placement and chaining of
VNFs on different MEC nodes. The game involves heterogeneous VNFs that require
different amounts and types of resources. We also consider a stochastic arrival of
requests.

– We model VNF scheduling as a matching game to address the problem of multiple
heterogeneous VNFs running within the same MEC node. We extend the classical
deferred acceptance algorithm, and we propose the enhanced multistage deferred
acceptance algorithm (eMSDA) to support constraints on processing completion,
routing time, and resource consumption.

– We provide a theoretical study for both games by proving their stability and equi-
librium.

The remainder of this paper is structured as follows. Section II presents the system
model. Subsequently, we formulate the problem of resource provisioning and we present
the different system requirements in Section III. In Section IV, we provide the details

4.3. SYSTEM MODEL 67

GPU
FPGA

Edge Server

Edge Server Edge Server

Access
Point

Edge�
Router/Switch

Edge
Router/Switch

% Memory
% CPU/Cores

% Storage
% Networking

% CPU/Cores �
% Networking

% CPU/Cores

% Networking

% CPU/Cores�
% Networking

Gateway

Inner Physical link

Edge node supervisor

GatewayUser's Layer

Edge Layer

Edge
node

Edge
node

Outer Physical link

% Memory
% CPU/Cores

% GPU
% Storage

% Networking

Edge Layer

Cloud Layer

Core network
gateway

Core network
gateway

Infrastructure

Host OS

Docker

A
p

p
 1

A
p

p
 2

A
p

p
 k

..

Figure 4.1 An illustration of the considered MEC architecture and the different
system’s entities.

about the proposed solutions for the VNFs placement, chaining, and scheduling. The
performance of the system is simulated in Section V. Last but not least, the related works
are discussed in Section VI. Finally, we conclude the paper in Section VII.

4.3 System Model
In this section, we present the considered entities of the system model, followed by the
system description, namely, service requests and the physical resources of edge nodes.
Table 4.1 summarizes the important notations used in the system model.

For sake of clearness, in what follows, we denote by the index i represents the MEC nodes,
j represents the users, k represents the services, and v represents the VNFs.

4.3.1 Physical network substrate
In this work, we consider a slotted system with t ∈ N that represents the time slots, where
N represents the set of natural numbers. We consider a MEC network consisting of N
edge nodes (ENs) E = {e1, . . . , eN} distributed over a geographical area and intercon-
nected through physical links (PhyL) having transmission capacity of L(i,i′) with (i, i′ ∈ E)
in packet/t for horizontal data exchanges. Fig. 4.1 illustrates the considered MEC ar-

68
CHAPTER 4. SERVICE FUNCTION CHAINING IN MEC: A MEAN-FIELD GAME

AND REINFORCEMENT LEARNING APPROACH

Table 4.1 Summary of important notations
Symbols Definition

E Set of edge nodes
Ui Set of users
Fi Set of VNFs hosted in EN i
Fk Set of VNFs composing the SFC k
S Set of SFCs

ρ(j,k) Request for service k by yser j
ᾱv Requirement of VNF v
ci Computational capacity of EN i
si Storage capacity of EN i
ωi Transmission of EN i
fsrc First VNF of SFC k
fdest Destination VNF of SFC k
Lk Virtual links of SFC k
xi
j User-EN assignment

xf
(i,v) VNF-EN assignment
ylz VNF-SFC assignment
ziz,l VNF-SFC-EN assignment
mv Mean field term
rv Payoff function
aj Strategy taken by VNF j
A Set of strategies
λ Learning rate

≻f(i,j) Preferences of VNFs overs EN
≻i Preferences of EN over VNFs
µ(.) Many-to-One mapping
qmin
i Quota min
qmax
i Quota max

4.3. SYSTEM MODEL 69

chitecture where we consider three layers. The bottom layer represents the users who
communicate with the edge layer through edge gateways. Gateways forward the requests
to the associated edge node. In this paper, we consider that the network is supervised
by an SDN controller. Both user’s layer and edge layer belong to the edge of the net-
work and communicate with the top layer that consists of the core network layer. An
example of users could be an extended reality equipment [101], unmanned aerial vehicles
[58], or connected vehicles [102]. We denote the set of users associated to a given EN
by Ui = {u(i,1), . . . , u(i,J)}. Each i ∈ E is an aggregation of heterogeneous edge devices
such as edge servers, routers, access points, and even eNodeBs/gNodeBs. These devices
host a set of VNFs Fi = {f(i,1), . . . , f(i,v)}. Without loss of generality, we consider the
placement of the VNFs within a given EN regardless of the specific assignment between
the VNFs and the devices of the corresponding EN. Moreover, in this paper, we leverage
our previous works [44, 43] on resource representation to allow the EN to exchange their
resource availability status and we consider the overall available resources of the EN. Each
VNF requires an amount of resources to perform its tasks in terms of computing, storage,
and transmission. The available resource at the EN i at time-slot t is given by,

αi(t) = ⟨ci(t), si(t), ωi(t)⟩ (4.1)

where ci(t) is the available computational resource, si(t) the available storage resource,
and ωi(t) the available transmission resource. Services are represented by the set S =

{s1, ..., sO} in which a single service sk is given by the following tuple:

sk = ⟨Fk, f
k
src, f

k
dest, Lk⟩, (4.2)

where Fk denotes the set of VNFs composing the SFC sk in the ascending order. The
source and destination VNFs of SFC sk are given by fsrc and fdest, respectively. The
virtual links (VLs) between the VNFs of the SFC sk is denoted as Lk and is represented
with Lk = {l(v,v′)|(v, v

′
) ∈ Fk with v ̸= v

′}. We also consider that VNFs have different
requirements,

ᾱv =
⟨︁
cv(i,j), s

v
(i,j), ω

v
(i,j)

⟩︁
, (4.3)

where, cv(i,j) represents the computational requirement, sv(i,j) the storage requirement, and
ωv
(i,j) transmission. We assume that users are already associated to the ENs as proposed

in [82]. We consider a binary parameter to represent the user-EN assignment xi
j, defined

70
CHAPTER 4. SERVICE FUNCTION CHAINING IN MEC: A MEAN-FIELD GAME

AND REINFORCEMENT LEARNING APPROACH

as:

xi
j =

⎧⎨⎩1, if user j is associated to EN i,

0, otherwise.
(4.4a)

where ∑︂
ei∈E

xi
j = 1, ∀j ∈ Ui. (4.4b)

We define the VNF-EN association with the variable xf
(i,v) as,

xf
(i,v) =

⎧⎨⎩1, if the replica of VNF v is selected in EN i,

0, otherwise.
(4.5)

4.3.2 Service Requests
In the literature, many request arrival models have been studied and applied to queuing
based systems such as the Poison processes [103], statistic arrivals based on observing the
state of the system to build an arrival model [104, 105] and stochastic arrival models [106,
107, 108]. The impact of the request arrival model is crucial, especially when investigating
an online-related problem such as in [45]. In [45], the authors considered that the requests
arrive in a sequence but did not consider a precise model. However, the requests arrival
model has a crucial role in studying resource allocation in a MEC architecture. The
work in [106] investigates the problem of stochastic online matching and considered an
independent and identical distributed (IID) request arrival model. This model’s requests
arrival is stochastic-based that has been studied in a variety of online problems such as the
k-server problem [107] and matching problem [108]. Adopting an IID model for request
arrival with a stochastic framework can improve the quality of the results regarding the
resource allocation [106].

In this paper, we adopt IID request arrival model as described in [106]. We model the
request arrival to denote the means of requests received by an EN using the variable σ

described as follows:
σ = {σi, i ∈ E}. (4.6)

Let ρ(j,k) represents a request for the service k by the user j, and is defined as,

ρ(j,k) = ⟨sk, dj, Tout⟩ , (4.7)

4.3. SYSTEM MODEL 71

where, sk is the requested service, dj is the data packet and Tout is the timeout; the time
at which the users must complete the service.

4.3.3 EN Physical Resources

As mentioned before, the ENs are formed by aggregating different heterogeneous edge
devices such as servers, edge routers, small base stations, or even eNodeBs and gNodeBs.
In [44, 43], we proposed a resource representation model that allows these heterogeneous
devices to exchange information about their resource capabilities in terms of the type
of operations that can handle. For instance, the edge routers are more into network
operations, unlike edge servers that are more into data processing and edge learning. In
this paper, we will leverage our proposed resource representation model to get the overall
capacities of each EN. In other words, we will focus on the position of the VNFs at the
EN in general. The ENs communicate horizontally through PhyL that can generally be
wired or wireless.

Virtual Links Allocation

The virtual links must allocate a portion of the physical links resources to transmit the
packets. We introduce ri(v,v′) as binary parameter to denote whether VNFs are located into
different EN. In fact, ri(v,v′) defines whether a VL allocation on PhyL is necessary or not.
We also define the binary parameter yzl to denote VL-PhyL assignment. ri(v,v′) and yzl are
defined as follows:

yzl =

⎧⎨⎩1, if VL z is allocated on PhyL (i, i′),

0, otherwise,
(4.8a)

ri(v,v′) =

⎧⎨⎩0, if VNFs are within the same EN,

1, otherwise,
(4.8b)

∑︂
z∈Lk

∑︂
l∈L(i,i′)

ri(v,v′) × yzl = 1| i ̸= i′ and v ̸= v′, (4.8c)

In case VNFs of the same SFC are located within the same EN, Eq. (4.8c) ensures that
the PhyL-VL allocation operation is not performed.

Processing Model

In the considered system model, each VNF process the forwarded packets using the allo-
cated resource from the EN. Given a request ρ(j,k) with a packet size dj, the processing

72
CHAPTER 4. SERVICE FUNCTION CHAINING IN MEC: A MEAN-FIELD GAME

AND REINFORCEMENT LEARNING APPROACH

delay of a packet j by the VNF v is given as follows:

γv
(i,j)(t) =

dj
αv
i (t)

(4.9)

where αv
i (t) is the portion of resource allocated to the VNF v. In fact, the division by

αv
i (t) can be written explicitly as follows,

γv
(i,j)(t) = xc

i,j

dcj
ci

+ xs
i,j

dsj
si

+ xω
i,j

dωj
ωi

where xc
i,j is a binary variable to denote if the request requires the CPU capabilities,

xs
i,jtorage for storage capabilities, and xω

i,j for transmission capabilities. (x∼
i,j = 1) if the

request requires the resource . Also, dcj represents the data size in terms of CPU, dsj for
the storage, and dωj for the packet size for transmission. For simplicity, we consider the
notation in eq. (4.9). The transmission delay between two consecutive VNFs in EN i and
i′ is given as follows,

γz
j (t) = ri(v,v′)

dj
lz(i,i′)(t)

(4.10)

where lz(i,i′) represents the virtual link z capacity, given as follows,

lz(i,i′) = B. log2

⎛⎜⎝1 +
Pi

⃓⃓
g(i,i′)

⃓⃓2
ζ2 +

∑︁
i′′∈E
i′′ ̸=i

Pi′′
⃓⃓
g(i′′,i′)

⃓⃓2
⎞⎟⎠ , (4.11)

where B is the bandwidth, Pi the power of transmission of i, g(i,i′) the channel gain between
the ENs, and ζ2 the noise variance. The overall delay experienced from requesting service
k is given as follows,

γj(t) = σi

∑︂
ei∈E

γv
(i,j)(t) +

∑︂
l∈Lk

γl
j(t) + γqueue (4.12)

where γqueue is the queuing time at the full controller queue. Without loss of generalities,
we consider an M/M/1 queue, and we adopt the Little’s law to cope with queuing delay.

4.4 Problem Formulation
4.4.1 The VFN placement and chaining subproblem
The problem of VNFs placement and chaining aims at finding the adequate placement of
VNFs in their different virtual forms (e.g., VMs or containers) within the MEC nodes,

4.4. PROBLEM FORMULATION 73

where each MEC has an aggregation of physical edge devices on which VMs/containers
can be lunched following the demand. We formulate the problem as a mean-field resource
allocation game [109, 110] in which many VNFs in the ENs are trying to operate within
the available resources. We denote the game in MEC node i with Gi. We consider a set
A to represent the set of actions (strategies) to be chosen by players, which are given by
the VNFs. An action aj ∈ A could be a demand for a resource such as CPU, storage, or
transmission. The game Gi is given as follows:

Gi = ⟨Fi,A, (rj)j∈Fi
⟩, (4.13)

where rj denotes the payoff function of player j. It represents the amount of the allocated
resources, given as follows [110]:

rj(A) = αi ×
h(aj)∑︂

j′∈Fi

j ̸=j′

h(aj′)
− aj × γ(i,j), (4.14)

where γ(i,j) is the expected delay of using the resources at the EN i (i.e. aj×γ(i,j) represents
the cost of the service) and h(·) is a mapping that should meet the following conditions:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑︂
v′∈Fi
v ̸=v′

h(aj′) > 0,

h(0) = 0, and h(·) is a positive function.

(4.15)

We define the mean-field term mv, which represents an important parameter in the study
of the mean-field game,

mv =

⎛⎝ 1

F

∑︂
j′∈Fk

aβj′

⎞⎠ 1
β

(4.16)

where aβj′ represents the action taken by the player j′, beta represents the weight of the
action (should be always β > 0), and Fk is the set of VNFs in the requested SFC. Hence,

74
CHAPTER 4. SERVICE FUNCTION CHAINING IN MEC: A MEAN-FIELD GAME

AND REINFORCEMENT LEARNING APPROACH

we can express the payoff function and the mean-field terms differently as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
r∗v
(︁
aj,m(v,−j)

)︁
= αi

v

(︂
aj
mv

)︂β
− aj × γ(i,j)

m(v,−j) =
1

v−1

∑︂
j,j′∈Fi

j ̸=j′

aβj′
(4.17)

We could then simplify the term of m(v,−j) and rewrite it as:

m(v,−j) =
1

v − 1

(︄
mβ

v −
aβj
v

)︄
(4.18)

where m(v,−j) is the weighted mean when the action of user j is not chosen, and αi is
the amount of resource available of the requested resources. We note here that the payoff
depends only on the chosen action and the mean mv. Finally, we rewrite the term of the
payoff as:

r∗v
(︁
aj,m(v,−j)

)︁
=

aβj × αi

m(v,−j)(v − 1) + aβj
− aj × γ(i,j) (4.19)

In the previous part, we discussed the game within a beforehand known number of VNFs.
Nevertheless, the number of VNFs competing over the resources is variable and changes
over time depending on the number of requests. With an increasing number of requests,
the number of VNFs to be instantiated increases. Therefore, it is necessary to study this
special case of MFG. In this case, we will study the MFG under an infinite number of
players, which can be performed by applying a slight modification to the payoff function.

Let Gī = ⟨A, r̄v⟩ be the game in which the number of players is infinite. A reformulation
of the payoff function is required. Thus, we define the new payoff function as follows:

r̄v
(︁
aj,m(v,−j)

)︁
=

⎧⎨⎩
aβj
m̄β − aj × γ(i,j),m > 0

0,m = 0
(4.20)

The problem of VNF placement and chaining can be defined as the optimal value of the
strategy aj ∈ A to be obtained while solving (4.20) for infinite number of VNFs and solving
(4.17) for a finite number of VNFs.

4.4.2 The VNF scheduling subproblem
The objective of VNFs scheduling is to reach a stable scheduling guaranteeing that all
the VNFs can get a fair share of MEC resources to accomplish their tasks. The aim is to
allocate the MEC nodes resources for the VNFs in order to reduce the completion time

4.4. PROBLEM FORMULATION 75

for each VNF. By the completion time we mean the necessary time required from a VNF
to finish its processing. The VNF scheduling problem is NP-complete [7], thus, cannot be
solved in polynomial time, unless P = NP . To efficiently solve the problem, we formulate
it as a many-to-one matching game where the VNFs and the EN represent players with a
list of preferences.

We consider that the access to the EN resource by the VNF starts if and only if the
previous VNF for a given SFC is completely finished and forwarded to the following VNF
whenever it exists. Let us consider the processing time for each VNF as pv. We also define
the starting time of VNF v at EN i as τ iv. The completion time ξiv is simply the maximum
of the sum of the values of pv and τ iv.

We introduce time related parameters to express the operational assignment between the
VNFs and the time slots. Let xf,t

(i,v) represents the assignment of time slot t to instance f

of VNF v in EN i. τ f(i,v) is the starting time for the forward operation of the instance f of
VNF v at the EN i, subsequently, θi(v,t) is the forwarding operation delay.

The objective is to minimize the completion time,

ξiv = min

{︄
max
i∈E
v∈Fi

{pv + τ iv + θi(v,t)}

}︄
(4.21)

considering the following constraints,

pv + τ iv ≤ τ iv+1 (4.22a)

T∑︂
t=1

xf
(i,v).x

f,t
(i,v) ≥ xf

(i,v) (4.22b)

τ f(i,v) +
T∑︂
t=1

xf,t
(i,v).x

f
(i,v) ≤ τ i(v′) (4.22c)

τ iv +
T∑︂
t=1

xf
(i,v).x

f,t
(i,v) ≤ Tout (4.22d)

τ f(i,v) +
T∑︂
t=1

xf,t
(i,v).x

f
(i,v) ≤ τ f(i,v′) (4.22e)

76
CHAPTER 4. SERVICE FUNCTION CHAINING IN MEC: A MEAN-FIELD GAME

AND REINFORCEMENT LEARNING APPROACH

τ f(i,v) +
T∑︂
t=1

θi(v,t).y
l
z ≤ τ iv+1 (4.22f)

T∑︂
t=1

xf
(i,v,t) + θi(v,t) ≥ γv

(i,j) (4.22g)

Constraint in Eq. (4.22a) ensures the order of starting time for the VNF v. Constraint in
Eq. (4.22b) ensures the sufficiency of the total allocated time for the VNF v. Constraint
in Eq. (4.22c) ensures that the scheduling for the VNF v is not performed earlier than it
should be (i.e., in cases where VNF v′ is waiting to be processed/forwarded). Constraint
in Eq. (4.22d) ensures that the time out of the processing/forwarding of the VNF v

is respected. Constraint in Eq. (4.22e) ensures the completness of the process-forward
process (i.e., forwarding only the finished VNFs) Constraint in Eq. (4.22f) similar to Eq.
(4.22e) ensures that a VNF will not be processed until the total forward of the previous
VNF. Constraint in Eq. (4.22g) ensures that the requirement of each VNF are met.

4.5 Theoretical Game Approach solution
In this section, we will present our approach for MEC-enabled SFC resource allocation.
The VNFs placement and chaining are provided through the resolution of the MFG. Then,
based on the placement and chaining provided by the previous step, we provide a matching-
based solution to schedule the VNFs’ execution on different ENs. The proposed algorithms
are executed sequentially. The first algorithm provides the second algorithm with the
input, which is the placement of the different VFNs and the chaining logic between them.
The second algorithm exploits this information to execute the SFC in a way that reduces
latency and executes the SFC in the correct sequence.

4.5.1 The VNFs Placement and Chaining
Mean-Field Game based resource provisioning

The MFG-based solution relay on the IMLA algorithm (Algorithm 3). IMLA is performed
on three stages; the learning stage, the placement stage, and the routing stage. In the
learning stage (line 1-5), the algorithm trains the model to find the optimal strategy
for each VNF by updating the mean-field term for several iterations. In each iteration,
the controller chooses a random action, then computes the best response correspondence
solution from Eq. (4.33). The obtained values are stored and the mean-field term is
updated according to Eq. (4.16). At the end of this stage, the optimal strategy is obtained.
This strategy is the values by which the system converges to a Nash equilibrium (NE). The

4.5. THEORETICAL GAME APPROACH SOLUTION 77

placement stage (line 6 and 7) takes place after learning the NE where the VNFs are placed
accordingly by choosing the requested ones with optimal strategies, then instantiating
the adequate VNFs’ containers. Finally, the routing stage (line 8-10) consists in getting
information about the placement of the other VNFs of the requested SFC on the other
MEC nodes. Therefore, each VNF forwards the processed packets to the next VNF on
the SFC.

Equilibrium analysis

Let us first introduce the best response correspondence problem (BRC) for each player
(VNF in our case) when we have a fixed number of players. BRC is presented as follows;
given the set of all possible strategies of all players but j, a−j = {a1, . . . , aj−1, aj+1, . . .},
find the maximum of their payoff functions, i.e. find aj as:

aj ∈ argmax
aj′

{rj(aj′ , a−j)} (4.23)

where aj in this problem represents the best response of player j when another player asks
for the same type of resources. BRC have a solution if we obtain a negative second-order
derivative of the payoff r∗v(aj,m(v,−j)); ∂2

aj
r∗v(aj,m(v,−j)) < 0 (see appendix 6.4 for the

Algorithm 3: IMLA: Ishikawa-Mann Learning Algorithm.
Input: λ, A, β, ρj,k
Learning stage ;

1 for t = 0, t < iterations do
2 Choose random action aj ∈ A;
3 Compute BRC(aj) from Eq. (4.33);
4 Update the mean term in Eq. (4.16)
5 end

Placement stage ;
6 Choose VNFs with optimal actions according to Eq. (4.23);
7 Instantiate the VNFs containers;

Routing stage ;
8 Get other nodes VNFs placement;
9 Select next VNFs for the requested SFC;

10 Solve the problem of Eq. (4.21) to forward processed packets;

78
CHAPTER 4. SERVICE FUNCTION CHAINING IN MEC: A MEAN-FIELD GAME

AND REINFORCEMENT LEARNING APPROACH

proof), therefore, a Nash equilibrium exists and is given by:⌜⃓⃓⃓
⃓⃓⃓⎷aβ−1

j

⎛⎜⎜⎜⎝ βρi
vγ(i,j)

1

v

∑︂
j,j′∈Fi

j ̸=j′

aβj′

⎞⎟⎟⎟⎠−
aβj
v

− 1

v

∑︂
j,j′∈Fi

j ̸=j′

aβj′ = 0 (4.24)

We notice that the actions space and the payoff function are identical and invariant respec-
tively, which means that this game is symmetric[110]. Therefore, NE is given as follows:√︄

aβ−1
j

(︃
βρi
vγ(i,j)

v − 1

v
aβj′

)︃
−

aβj
v

− v − 1

v
aβj′ = 0 (4.25)

By developing the term of Eq. (4.25), we obtain the NE value for the BRC:

a∗j =
βρi (v − 1)

v2γ(i,j)
(4.26)

In addition, whenever a equilibrium exists, all players have symmetric strategies, and, the
NE payoff is given as,

r∗v(a
∗
j) = ajγ(i,j)

[︄
aβj +M

βM
− 1

]︄
(4.27)

with M is given as,

M =
1

v

∑︂
j′∈Fi

j ̸=j′

aβj′ (4.28)

For values of β ∈ [0, 1], we have r∗v ≥ 0, otherwise, if β > 1, then the strategies of the
players using the resources depends on others that does not use the resources and the
number of VNFs executing tasks is satisfying:

β

β − 1
≥ v (4.29)

Under these conditions, the solution of BRC is equal to 0. The resources are not wasted
(i.e., efficient usage) when the delay is equal to,

γ(i,j) = β × v − 1

v
(4.30)

4.5. THEORETICAL GAME APPROACH SOLUTION 79

For γ(i,j) < β, the requested amount of resources and the available resources are equal at
the equilibrium, hence, the efficient ratio is written as

ν = v × a∗NE

ρi
(4.31)

The equilibrium increases with β and the amount of requested resources and decreases
with the delay γ(i,j).

Reinforcement Learning based solution

In this paper, we propose an iterative learning algorithm that converges to a NE. This
algorithm is executed by the SDN controller to compute the adequate placement and
chaining of the VNFs in the SFCs. The benefit of using an iterative algorithm is the
low computational complexity required for reaching equilibrium. We use the following
formulation based on Ishikawa-Mann iteration [111],

a(t+1) = λBRC(at) + at(1− λ) (4.32)

where λ is the learning rate, and BRC is the solution function to the problem in Eq.
(4.23), given as follows,

BRC(aj) = max

{︄
v

√︄
βαi

vγi

(︂
m − a

v

)︂
−
(︂
m − a

v

)︂
, 0

}︄
(4.33)

Eq. (4.33) is obtained through solving the equation BRC(a∗j) = a∗j .

Regarding the infinite regime (i.e., cases with a huge number of VNFs competing over the
EN resources), we stick with the same solution approach based on the BRC, with a small
change regarding the mean-field term. In the case of a huge number of users, the mean-
field term is also updated accordingly with the evolution of the BRC stages as follows,

a(i,t+1) ∈ argmax
a′j

{︂
r̄(a

′

j,mt)
}︂

(4.34)

and the main objective is to maximize the payoff at the next stage, given as,

mt+1 = λ.BRC(mt) +mt(1− λ) (4.35)

The complexity of the proposed Ishikawa-Mann algorithm (Algorithm 3) depends on the
complexity of the BRC function. However, considering that the values of the learning

80
CHAPTER 4. SERVICE FUNCTION CHAINING IN MEC: A MEAN-FIELD GAME

AND REINFORCEMENT LEARNING APPROACH

rate are smaller and fixed, the BRC converges to a fixed point ι in near-proximity of
the equilibrium value a∗j , which makes the convergence time log(1

ι
) [110]. Therefore, we

conclude that the proposed approach converges in a logarithmic time O(log(v)).

4.5.2 The VNF scheduling subproblem
To illustrate the subproblem, Fig. 4.2 provides an example of SFC scheduling. The
scheduling time is essentially the sum of the processing time for each VNF in the SFCs,
the transmission, and the queuing delay. By processing, we mean the processing of the
request by a given VNF, which could include the computational and the storage. The
transmission time is considered to take part in the queuing part.

Many-To-One Matching Game

Considering the constraints on resource provisioning and the execution order of VNFs from
the previous section, the SDN controller, as a supervising entity of the network, needs to
find an adequate schedule to execute the VNFs of the SFCs on the different nodes of
the system. The reasons behind formulating the problem of VNFs scheduling as a many-
to-one matching game because multiple VNFs can be matched to one MEC node. The
VNFs-resources assignment at each moment of the network operations is considered as the
output of a many-to-one matching game. The players are the VNFs showing their interest
to be matched to the resources of an EN and we define the requirements for a matching
game, namely, the stability, blocking pairs, and preferences lists of each set of players as

Figure 4.2 Scheduling time example for an SFC.

4.5. THEORETICAL GAME APPROACH SOLUTION 81

follows. For simplicity, the VNFs-resources assignment will be denoted as the VFNs-ENs
assignment.

The preference is defined as binary relationship defined between the elements of the play-
ers sets. The relationship is complete, reflexive, and transitive. Let us denote ≻i the
preferences list of the ENs and ≻f(i,j) the preference list of the VNFs. ei ≻f(i,j) ei′ means
that the VNF f(i,j) prefers the EN i over the EN ei′ . Using the same notation, we define
the preferences of ENs over VNFs by ≻i.

Definition 4.5.1 (Many-to-One matching game) A many-to-one matching game is
a two-sided assignment problem between two disjoint sets of players where the players on
the first set express their interest to be matched to a player of the other set based on a
preference. Let µ be a many-to-one mapping from the set of VNFs to the set of ENs.
µ : Fi ↦→ E satisfying the following conditions:

– ∀f(i,j) ∈ Fi we have µ(f(i,j)) ∈ E

– ∀ei we have µ(ei) ∈ Fi

– µ(f(i,j)) = ei exits, only if ei ∈ Fi

We consider that the VNFs-ENs assignment takes into account a minimum and maximum
number of VNFs to be matched to an EN to operate. These quantities are called quotas
(minimal and maximal) and ensure a good resource consumption and fairness. Let qmax

i

and qmin
i be the maximum and minimum quota, respectively, of the EN i. µ is feasible

if and only if qmin
i ≤ qi ≤ qmax

i with, qi = |µ(f(i,j))| and |µ(f(i,j))| = {0, 1}. A stable
matching is defined as follows:

Definition 4.5.2 (Stable matching) A matching µ is said to be stable if there is no
intention from any pair (f(i,j), ei) to deviate from µ. In other words there is no blocking
pair.

A blocking pair is defined as follows,

Definition 4.5.3 (Blocking pair) (f(i,j), ei) is said to be a blocking pair if it satisfies
the following conditions:

– ei ≻f(i,j) ei′ , for ei′ ∈ µ(f(i,j))

– f(i,j) ≻i f
′
(i,j)

Under the previous two definitions, µ is stable and guarantee stability and fairness. a -
The VNFs preference List
As for the preferences of the VNFs, they always prefer an EN that will process/forward

82
CHAPTER 4. SERVICE FUNCTION CHAINING IN MEC: A MEAN-FIELD GAME

AND REINFORCEMENT LEARNING APPROACH

Algorithm 4: eMSDA: enhanced Multi-Staged Deferred Acceptance Algorithm.
Input: ≻f(i,j) , Fp, ≻i, Fk, E, qmin

i , qmax
i

Output: µ(f(i,j))

Initialization: q0,min
i = qmin

i , q0,max
i = qmax

i , ∀i ∈ E
1 while Fp ̸= ∅ do
2 Qθ =

∑︂
i∈E

qθ,min
i ;

3 Rθ = {fv, . . .} with
∑︁

i∈E αi(t) ≤ Q;
4 UM = Rθ−1\Rθ;
5 if UM ̸= ∅ then
6 Apply classic DAA on unmatched VNFs in UM with qθ,max

i ;
7 else
8 Apply classic DAA on unmatched VNFs in UM with qθ,min

i ;
9 end

10 if (4.22c)-(4.22e) are met then
11 Add matched VNFs to µ;
12 Remove matched VNFs from Fp;
13 Update the quotas according to Eqs. (4.38a) and (4.38b);
14 end
15 end
16 return µ

them in the shortest delay, hence, with available resources (based on the results of the
VNFs placement and chaining) at the current time slot. The preference list of VNFs is
given as follows,

τf(i,j)(aj) = t (4.36)

b - The EN Preference List
The edge nodes, however, are more interested in executing/forwarding VFNs with smaller
processing requirements.

τai(f(i,j)) = inf
j∈Fi

[ρj] (4.37)

Considering the quota constraints, the classic DAA [112] will not satisfy the feasibility
of the matching (see appendix 6.4). We consider a staged deferred acceptance algorithm
that supports the constraints of minimum and maximum quota. Our algorithm is called
enhanced multi-stage deferred acceptance algorithm (eMSDA) and detailed in Algorithm
4. In addition, Nash equilibrium exists whenever a stable matching exists [113].

4.6. SIMULATION RESULTS 83

Enhanced Multistage Deferred Acceptance Algorithm

eMSDA is developed in Algorithm 4 inspired from the work in [114], which is based on a
DAA algorithm performed in several stages. eMSDA works under the assumption that all
the ENs share the same preference list ranking all the VNFs following their requirements
in terms of resources. In addition, since the network is controlled by the SDN controller,
this ensures that that the process of making the preferences list is easy. In this algorithm,
Qθ represents the sum of the minimum quotas of all the MEC nodes. Rθ and Rθ−1 are
the set of unmatched VNFs in the current stage, and the previous stage respectively. We
denote by Fp the list of preferences, and ≻Fp the shared preference relationship. Initially,
we temporarily reserve a subgroup of VNFs and perform the DAA on the remaining
subgroup. The assignments at a given stage θ (line 10-15) for a subset of EN and VNFs
are considered final, which means that those VNFs are not destroyed until they complete
their tasks. Then, accordingly, we reduce the minimum and maximum quotas as [114],

qθ,min
i = max

⎧⎨⎩qθ−1,min
i

∑︂
i∈E

αi(t), 0

⎫⎬⎭ (4.38a)

qθ,max
i = qθ,max

i −
∑︂
i∈E

αi(t) (4.38b)

At every stage θ, VNFs are ranked from the most preferred and the least preferred. The
number of the least preferred VNFs is the sum of the minimum quota of all the ENs.
Depending on the number of preferred and non-preferred, we run the DAA with the
maximum quota. Moreover, VNFs cannot be matched unless the previous VNF is finished
(line 5-9). eMSDA is assumed to be online, where requests arrive in an online fashion.
In the admission process of the requests, once the VNFs are placed and chained they
can join the scheduling process without re-computing the scheduling. The complexity of
this algorithm depends on the number V of VNFs to be matched, the number N of MEC
nodes, and the number K of rounds required to match all the VNFs O(N x V x K). In
the proposed solution, the number of MEC nodes is not considered in the problem, hence,
M=1. This leaves us with a complexity of O(V x K). In the worst case, the proposed
algorithm converges to a stable matching in a number of rounds less than the number of
VNFs to be matched. Therefore, the complexity of O(KN).

4.6 Simulation Results
In this section, we present the evaluation and the performance of the proposed IMLA
for the placement and chaining problem, and eMSDA for VNF scheduling problems. We

84
CHAPTER 4. SERVICE FUNCTION CHAINING IN MEC: A MEAN-FIELD GAME

AND REINFORCEMENT LEARNING APPROACH

0 25 50 75 100 125 150 175 200

Iterat ions

8.04

8.06

8.08

8.10

8.12

8.14

8.16

8.18

A
c
ti

o
n

s

Rand act ion 1

Rand act ion 2

Equilibrium

10 20 50

8.1675

8.1725

8.1825

Figure 4.3 MFG Stability for finite number of VNFs. λ = 0.05, v = 10.

0 25 50 75 100 125 150 175 200
Iterations

14.0

14.2

14.4

14.6

14.8

15.0

15.2

Ac
tio

ns

Rand action 1
Rand action 2
Equilibrium

Figure 4.4 MFG Stability for infinite number of VNFs. λ = 0.05, v = 1000.

compare the performance of the algorithm in terms of execution delay and resource con-
sumption to the performance of a genetic algorithm based solution and an integer linear
programming based solution.

4.6. SIMULATION RESULTS 85

4.6.1 Games stability and convergence
To prove the existence of the equilibrium for the VNF placement and chaining problem,
we simulated the BRC solution and compared it to the NE. We performed exhaustive
simulations on both finite and infinite regimes. Results are illustrated in Fig. 4.3 and Fig.
4.4. For both scenarios, the actions sets were generated randomly as, aj ∈ A and A =

R+. Fig. 4.3 illustrates the evolution of the chosen action when performing the IMLA
algorithm. It is shown that both generated actions sets converges to a NE, and reached it
after approximately after 35% of learning time.

IMLA algorithm converges to a NE whenever the learning rate is sufficiently small and
constant. In fact, the function of Eq. (4.33) converges to a fixed point (i.e. equilibrium)
with small values of λ, precisely when λ ∈]0, 1[[110]. In our case, we consider a small
value of λ = 0.05.

4.6.2 System Evaluation
In this section, we present the simulation results to illustrate the performance of the pro-
posed IMLA for the VNF placement and chaining subproblem and the proposed eMSDA
for the VNFs scheduling subproblem. The simulations were performed using Python pro-
gramming language and running on a i7 10th generation processor with 16Gb of RAM and
a NVidia 2070 (8Gb) graphic card. We modeled the different system entities as classes
having parameters related to the number of processors and their frequency, the RAM ca-
pacity, and the network capabilities. Each class has methods to perform the tasks and
return different simulation parameters such as the resource consumption and the latency.
A VNF is a function having a set of instructions and each instruction has a size that is
assumed to be constant. Since we are interested in reducing the latency in this work, we
simply considered the time to process a task, which is the fraction of the task size by the
processing capacity of the MEC node. We compared the performance of the proposed
algorithms in terms of execution delay and resource consumption to the performance of a
genetic algorithm-based solution and an integer linear programming algorithm. Table 4.2
summarizes the significant simulation parameters.

Fig. 4.5 and Fig. 4.6 illustrate the performance of the proposed approach in terms of
execution delay in function of the number of the VNFs in play. It is shown that the
proposed algorithms outperforms both of other approaches. In fact, both of the proposed
algorithms (i.e., IMLA and MSDA) have, first, a lower complexity compared to other
algorithms in terms of their implementations. Second, for instance the IMLA execution
time depends on the convergence of the BCR solution, which is very low compared to the
benchmark algorithms (i.e., O(log(v)) vs O(Mv2), with M is the number of generations

86
CHAPTER 4. SERVICE FUNCTION CHAINING IN MEC: A MEAN-FIELD GAME

AND REINFORCEMENT LEARNING APPROACH

Table 4.2 Summary of the simulation parameters
Parameters Values
MEC nodes [3− 15]
VNFs [1− 1000]
Learning rate λ 0.05
Learning iterations 200
Packets size [100− 10000]Kb
Processing capacities [1.0− 2.5]Ghz
Finite scenario number of users 10
Infinite scenario number of users 1000
Actions set A R+ randomly chosen

10 200 400 600 800 1000

Num ber of VNFs

5

100

200

300

400

500

600

700

800

P
la

c
e

m
e

n
t+

C
h

a
in

in
g

 d
e

la
y

 (
m

s
)

ILP

GA

IMLA

Figure 4.5 Placement and chaining delay in function of the packet size.

after which the GA converges to a solution). As for the scheduling, the GA approach show
a constant behavior compared to the proposed approach and to the ILP-based approach.
Although a stable behavior when it comes to a huge number of VNFs, it is not beneficial in
case the number of VNFs to schedule is small. Fig. 4.5 and Fig. 4.6 show that the proposed
approach based on the game theory model consumes less time for the operational delay,
nearly 40% less than the GA and 25% compared to ILP in the case where the number of
VNFs to manage is sufficiently big (i.e., 1000 in this case).

Fig. 4.7 shows the evolution of the delay in function of the packet’s size for both the
eMSDA and the IMLA. In this scenario, we considered the average delay obtained from
the different setups of the random scenarios through varying the number of ENs, SFCs,

4.6. SIMULATION RESULTS 87

10 200 400 600 800 1000

Num ber of VNFs

5

50

100

150

200

250

300

350

400

S
c
h

e
d

u
li
n

g
 d

e
la

y
 (

m
s
)

ILP

GA

eMSDA

Figure 4.6 Scheduling delay in function of the number of VNFs.

and the number of VNFs per SFC and also varying the size of the packets processed by
the SFCs. In most of the cases, the proposed approach shows an enhacement in terms
of execution delay of the SFCs. The proposed approach offers a reduced delay (around
45%) compared to other approaches when it comes to processing different configurations
of packets in terms of packet’s size. Such result is justified by, first, the reduced time that
both proposed algorithms are showing in terms of placing and chaining, and second, by the
enhanced scheduling provided by the eMSDA, that not only provides a stable matching
for the VNFs and ENs resources but also provides a low delay in terms of execution time.

Fig. 4.8 and Fig. 4.9 illustrate the resource consumption of the proposed algorithm com-
pared to the GA and ILP approaches. It is shown that the proposed approach gives better
results in terms of resource consumption (i.e., CPU and memory). The GA approach
shows a constant behavior also in terms of memory consumption, which can explain more
the results obtained in Fig. 4.6. As for ILP, the consumption of the CPU and the memory,
still higher than the proposed approach and the GA. We can conclude from Fig. 4.8 and
Fig. 4.9 that the proposed approach offers enhanced results compared the benchmarked
approaches. The theoretical game based approach shows around 40% lower than the ILP
approach and 25% better than GA in some cases.

88
CHAPTER 4. SERVICE FUNCTION CHAINING IN MEC: A MEAN-FIELD GAME

AND REINFORCEMENT LEARNING APPROACH

100 2000 4000 6000 8000

Packet size (kb)

10

50

100

150

200

250

300

350

E
x

e
c
u

ti
o

n
 d

e
la

y
 (

m
s
)

ILP

GA

eMSDA+ IMLA

Figure 4.7 Processing time in function of the packet size.

10 200 400 600 800

Num ber of VNFs

1

20

40

60

80

100

C
P

U
 c

o
n

s
u

m
p

ti
o

n

ILP

GA

eMSDA

Figure 4.8 CPU consumption evolution in function of the number of VNFs.

4.7 Conclusion
In this paper, we studied VNF resource provisioning for SFC in a MEC context with the
goal of reducing latency. We addressed the full problem of resource provisioning through
addressing the VNF placement, the VNF routing and the VNF scheduling. As for the
VNF placement and routing problem, we formulated it as a mean field game where VNFs

4.8. RELATED WORKS 89

10 200 400 600 800

Num ber of VNFs

30

40

50

60

70

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

ILP

GA

eMSDA

Figure 4.9 Memory consumption evolution in function of the number of VNFs.

are the players that are competing for MEC resources with the goal of reducing the re-
source consumption of MEC nodes and decreasing latency for end users. We exploited the
Ishikawa-Mann iterated learning algorithm to place and chain the VNFs. We formulated
the VNFs scheduling problem as a many-to-one matching to match multiple VFNs to MEC
node resources, and we proposed a modified version of the classical deferred acceptance
algorithm. We performed extensive simulations to prove the effectiveness of our proposed
approaches, which were found to outperform the benchmark approaches in the studied sce-
narios. In future work, we will investigate the possibility of testing the proposed approach
on a real testbed to compare the theoretical results with the experimental results.

4.8 Related Works
The literature review we performed on VNF/SFC resource allocation approaches led us
to categories the proposed approaches under three main categories. Theoretical games-
based approaches [7], linear programming variant approaches [45, 57, 54], the machine
learning approaches [52, 56, 54] and the heuristic based approaches [46, 58]. The proposed
approaches are proposed in the following subsections.

Work in [7] highlighted the importance of the VNF scheduling, and proposed a matching-
based algorithm, namely, the one-to-one matching to cope with the scheduling problem
which is NP-hard. The proposed approach guarantees the stability of the scheduling
process. However, the authors in this work consider only the scheduling of one VNF at

90
CHAPTER 4. SERVICE FUNCTION CHAINING IN MEC: A MEAN-FIELD GAME

AND REINFORCEMENT LEARNING APPROACH

the time, and even in the transmission phase, the whole channel is allocated to one and
only one VNF. Compared to our work, we considered a many-to-one matching game to
schedule multiple VNFs at the time. Regarding the channel allocation, we got inspired
from the slicing techniques to allocate the channel for multiple VNFs at the time. Work
in [45] proposed an online provisioning for NFV considering both unicast and multicast
services with two types of VNFs, mandatory and best-effort instances. In addition, the
work considered only the computational and transmission resources. Yet, it did not make
any assumption about the resource state at the edge nodes and consider only two types
of resources. The same work also supposed that the requests arrives in batches having
the same requirements of resources which may not cover all the use cases of SFC resource
provisioning while placing, chaining the VNFs. The authors also did not consider the
scheduling problem and only investigated the routing and placement of the VNFs. Work
in [57] addressed the problem of reliability, delay, and resource allocation for SFC in
softwarized 5G networks. The work suggested an SFC sub chaining method to cope with
the reliability and an Integer Linear Programming based solution for the problem of SFC
placement through a matching algorithm that provides a new-optimal polynomial solution.
However, in this work, the authors did not provide much detail about the format of the
request, types of resources, nor the dynamic of request arrival. In addition, the proposed
matching algorithm might not be efficient when the nodes do not consider its maximum
capacities. From a machine learning approach, the authors in [52] investigated the problem
of VNFs scheduling with the aim to minimize the overall completion time of the services
under delay constraints. Authors proposed a RL based solution to learn the best scheduling
scheme. In fact, the problem of scheduling is formulated as a mixed integer linear program
relaxed as an Markov decision process solved using RL. However, the request arrival rate
in this work is not considered stochastic and the RL is based on Q-Learning algorithm,
which acts only on a set of specific fixed instance of the problem. Work in [56] models the
SFC scheduling problem as a flexible job-shop scheduling problem with the objective to
minimize the scheduling latency. Authors proposed a deep RL based on Q-Learning that
gives the environment the advantage of performing adaptive scheduling.

Within a heuristic context, work in [59] investigated the problem of resource scheduling
with the aim to enhance the usage of network resources as well as the minimization of
the experienced end-to-end delay for the network services. Authors proposed an approach
based the genetic algorithm through improving the crossover and mutation operations.
Although genetic algorithms are good in supporting multi-objective optimization, the
cost of computation in terms of time is very high. Within the same context, authors in
[58] proposed a configurable service allocation scheme for VNF embedding and routing.

4.8. RELATED WORKS 91

Due to NP-Hardness of the investigated problem, the work is considered as an integer
non-linear programming model and solved it through heuristic methods, specifically a
greedy algorithm. The proposed solution leveraged the properties of the different entities
of the system and balance the resources consumption. Work in [46] proposed a VNF
placement scheme for MEC environment and formulated of VNF placement problem under
minimizing access latency and maximizing service availability constraints. To reduce the
problem complexity, the authors proposed a Genetic Algorithm and compared the obtained
results with a CPLEX implementation of the same problem. However, the proposed model
makes a lot of assumptions mainly related to the dynamicity of the model.

In our work, we first, consider four types of resources, namely, computation, transmission,
storage, and memory. Secondly, we consider a stochastic request arrival model which mimic
as real as possible a real SFC deployment. Finally, we consider that the VNFs might
have different resource requirement and we tackled the problem of resource allocation
considering all the SFC phases (i.e. placement, chaining, and scheduling).

92
CHAPTER 4. SERVICE FUNCTION CHAINING IN MEC: A MEAN-FIELD GAME

AND REINFORCEMENT LEARNING APPROACH

CHAPTER 5

A Deep Reinforcement Learning Service Mi-
gration in Slice-enabled Internet of Vehicles

Date de parution: Octobre 2021
Conférence: IEEE LCN
Titre français: Migration des services d’apprentissage par renforcement profond dans
l’Internet des véhicules à base de tranches.

Resumé français: L’informatique périphérique multi-accès est un outil essentiel pour
réduire la latence des réseaux de véhicules. En raison de la mobilité des véhicules, les ser-
vices qu’ils demandent (par exemple, les services d’info-divertissement) doivent fréquem-
ment être transférés sur différents serveurs MEC pour garantir leurs exigences strictes en
matière de qualité de service. Dans cet article, nous étudions le problème de la migration
des services dans un réseau véhiculaire MEC afin de minimiser la latence totale des services
et le coût de la migration. Ce problème est formulé comme un programme non linéaire
que nous avons linéarisé afin de faciliter l’obtention de la solution optimale à l’aide de
solveurs standard. Ensuite, pour obtenir une solution efficace, ce problème est modélisé
comme un processus de décision de Markov multi-agents (MMDP) que nous avons résolu
en utilisant l’algorithme d’apprentissage profond (DQN). Le schéma DQN proposé effectue
une migration proactive des services tout en assurant leur continuité sous des contraintes
de mobilité élevées. Enfin, les résultats des simulations montrent que le schéma DQN
proposé atteint une performance proche de l’optimal.

5.1 Abstract
MEC is a key enabler to reduce the latency of the vehicular network. Due to the mobility
of the vehicle, their requested services (e.g., infotainment services) should frequently be
migrated across different MEC servers to guarantee their stringent quality of service re-
quirements. In this paper, we study the problem of service migration in a MEC-enabled
vehicular network in order to minimize the total service latency and migration cost. This
problem is formulated as a nonlinear integer program and is linearized to help obtain
the optimal solution using off-the-shelf solvers. Then, to obtain an efficient solution, it

93

94
CHAPTER 5. A DEEP REINFORCEMENT LEARNING SERVICE MIGRATION IN

SLICE-ENABLED INTERNET OF VEHICLES

is modeled as a multi-agent Markov decision process and solved by leveraging the DQL
algorithm. The proposed DQL scheme performs a proactive services migration while en-
suring their continuity under high mobility constraints. Finally, simulations results show
that the proposed DQL scheme achieves close-to-optimal performance.

5.2 Introduction
Intelligent transportation systems represent a critical component of the IoT and future
smart cities. ITS will potentially provide a more secure transportation environment
through effective vehicle coordination and efficient resource management [46]. In addition
to safety, the ITS ecosystem will provide entertainment services such as video streaming
and gaming, which can be extended to in-vehicle augmented reality [115, 116, 102]. To
achieve these promising features, vehicles must be able to communicate, exchange infor-
mation, and access is given services with low latency. Therefore, vehicles must operate in
an environment that meets these requirements.

MEC is envisioned as a key component for 5G uRLLC services, alongside SDN [43] tech-
nology. On the one hand, MEC can be leveraged as an emerging computational paradigm
that provides efficient computational capabilities to vehicles deployed in close proximity
to MEC servers while ensuring low latency. On the other hand, SDN technology enables
seamless, transparent, and efficient control through the separation of the data plane and
the control plane, which simplifies network operation and management [95, 117]. There-
fore, a MEC-enabled vehicular network can benefit from SDN to provide efficient resource
management and uRLLC vehicular services [118, 51, 119]. Nevertheless, due to the limited
resources of MECs and the high mobility of vehicles, there are many challenges. In par-
ticular, the requested vehicular services must be located and migrated to different MEC
servers to guarantee their continuity [120, 61]. To address these challenges, we investigate
the service placement and migration problem in a MEC-enabled vehicular network. We
leverage SDN technologies to have efficient control of the MEC server’s operations, with
the objective of reducing the average service latency of the vehicles. We first, formulate
the problem of service placement and migration as a nonlinear integer program that we
linearize to obtain the optimal solution using off-the-shelf solvers. Second, we modeled
the problem as a multi-agent Markov decision process (MMDP), in order to solve it effi-
ciently using deep reinforcement learning (DRL) techniques, specifically, DQN. The pro-
posed DRL-based placement and migration scheme ensures service continuity under high
mobility constraints and offers a reduced total service latency as well as the additional
operational costs associated with the migration. The proposed scheme performs proactive

5.3. SYSTEM MODEL 95

placement of the requested services while considering the mobility of vehicles, the required
amounts of computational and communication resources, and the overall migration costs.

To summarize, the main contributions of this paper are synthesized as follows:

– We formulate the service placement and migration problem as a non-linear program
to minimize the total service latency (including the computing latency and the com-
munication latency) and the cross-edge operational costs.

– We propose an MMDP framework that helps solving the problem in a distributed
and scalable manner.

– We leverage DRL techniques to provide efficient solution to the MMDP model.
Specifically, we propose a DQL-based solution that uses double Q network and replay
buffer to improve the learning outcome.

– We evaluate the performance of the proposed DRL-based scheme and compare it to
the optimal solution obtained by the CPLEX solver and we show that the proposed
solution achieves close-to-optimal performance.

The remainder of this paper is structured as follows. In Section II, we present the system
model and the problem formulation of the service placement and migration problem. In
Section III, we present the proposed multi-agent DQL-based solution. The performance
of the proposed solution is evaluated in Section IV. Last but not least, the related works
are discussed in Section V. Finally, the paper is concluded in Section VI.

5.3 System Model
We consider an SDN-enabled MEC architecture covered with a set of gNodeBs (gNBs),
each is equipped with a MEC server n ∈ N := {1, 2, . . . , N} that is connected to one gNB
via high speed local-area network as illustrated in Fig. 5.1. There are K mobile users (or
interchangeably called vehicles) demanding services from the MEC servers and are denoted
by the set K := {1, 2, . . . , K}. Each vehicle k requests some service to fulfill its require-
ments. Without loss of generality, we assume that all vehicles request the same vehicular
service 1 (e.g., an infotainment-related service). Similar to previous works [61, 121, 122],
we consider a MEC-based device-oriented service model contrary to the traditional cloud-
based application-oriented service model. In other words, a dedicated container or virtual
machine is assigned the vehicular service as well as the applications’ environment, which
are executed on each vehicle rather than on each application. An SDN controller is as-
sumed to be placed on the cloud layer where it acts as a central controller for information

1. The case of multiple services will be considered in our future work where network slicing will be
integrated into our system model.

96
CHAPTER 5. A DEEP REINFORCEMENT LEARNING SERVICE MIGRATION IN

SLICE-ENABLED INTERNET OF VEHICLES

exchange between vehicles. Time is discrete and is divided into a set of T time-slots de-
noted by the set T = {1, 2, . . . , T}. At each time-slot t ∈ T , each vehicle k ∈ K requests
the vehicular service from the MEC node n ∈ N .

Figure 5.1 Illustration of the system model

The objective of this work is to guarantee the minimum quality of service (QoS) re-
quirements of the vehicles while considering their erratic mobility and the computing and
communication resources of MEC servers. To do so, the requested vehicular service should
be placed and migrated across different MEC servers depending on the vehicles mobility
patterns. In this work, we consider an hybrid centralized-distributed architecture where (i)
each MEC server plays the role of an agent that makes its service placement and migration
decisions independently of other MEC servers, and (ii) once each MEC agent makes its
decision, it communicates it to the SDN controller that plays the role of a central agent
to coordinate the decisions of all MEC servers.

The considered QoS is represented by the vehicular service latency that includes (i) the
communication delay that is incurred by the transmission between a vehicle and a MEC
server, and (ii) the computing delay that depends on the processing capability of the MEC
server as well as the size of the vehicle’s request.

5.3. SYSTEM MODEL 97

Communication Delay

When a vehicle k requests from a MEC server n the vehicular service, the transmission
between k and n depends mainly on the wireless environment and on the size of the
requested service. The channel power gain between vehicle k and MEC server n at time-
slot t is denoted by gtkn, which includes the small-scale fading as well as the large-scale
fading. To simplify the analysis, we assume that the total available bandwidth is divided
equally between the MEC servers and each MEC server allocates its bandwidth to the
vehicles in an orthogonal manner. Accordingly, the received signal to noise ratio between
MEC server n and vehicle k at time-slot t is given by

γt
kn :=

png
t
kn

σ2
, (5.1)

where pn is the transmit power of MEC server n and σ2 is the power of the noise. The
achieved data rate can be given as follows

Γt
kn := wn lg

(︁
1 + γt

kn

)︁
, [in bits/sec] (5.2)

where wn is the allocated bandwidth of MEC server n. Consequently, the communication
delay between MEC server n and vehicle k at time-slot t is given by:

dtkn :=
sk
Γt
kn

, [in sec] (5.3)

where sk is the size of the requested service of vehicle k.

Computing Delay

The computing delay depends on the processing capacity of each MEC server n, on the
total vehicles sharing MEC server n, and on the requested computing capacity of the
vehicular service of vehicle k at time-slot t. More precisely, the computing delay between
MEC server n and vehicle k at time-slot t is given as follows [61]:

ctkn := ctkN
t
n/Fn, [in sec] (5.4)

where ctk denotes the amount of computing capacity [in CPU cycles] required by the
requested vehicular service of vehicle k at time-slot t. The computing capacity of MEC
server n [in CPU cycles/sec] is given by Fn and the number of vehicles placed on MEC
server n at time-slot t is given by N t

n.

Besides the QoS requirements, placing and migrating the vehicular service across multiple
MEC servers incur additional operational costs related, for example, to the energy con-

98
CHAPTER 5. A DEEP REINFORCEMENT LEARNING SERVICE MIGRATION IN

SLICE-ENABLED INTERNET OF VEHICLES

sumption and the bandwidth usage. For this reason, we consider the migration cost as an
important factor into the design of our service migration solution.

Migration Cost

Due to the cross-edge migration, additional operational costs are incurred by the service
migration. These costs include energy consumption, expensive wide-area network band-
width usage, etc. [61]. To make the operational cost model general, we use mkt

n′n to denote
the cost of migrating the vehicular service of vehicle k from MEC server n′ to MEC node
n at time-slot t. Obviously, we assume that mkt

n′n = 0, for all n′ = n and for all k, t.

5.4 Problem Formulation
To guarantee the required QoS (communication and computing delays) and the migration
cost, the optimization problem is formulated as a multi-objective optimization problem
where the aim is to optimize the communication delay, the computing delay as well as the
migration costs. To simplify the resolution of this multi-objective problem, we transform
the multi-objective problem into a single objective one by introducing the weights λi for
i ∈ {1, 2, 3}. The formulated problem is written as a nonlinear integer program (NLP) as
follows.

minimize
x

λ1C(x) + λ2D(x) + λ3M(x) (P1a)

subject to xt
kn ∈ {0, 1}, ∀k, n, t, (P1b)
N∑︂

n=1

xt
kn = 1, ∀k, t, (P1c)

where the variables xt
kn = 1 if and only if the vehicular service requested by vehicle k is

placed at MEC server n at time-slot t. We denote by x the multidimensional notation of
the variables xt

kn, i.e., x = [xt
kn]. The objective function in (P2a) is a linear combination of

the communication delay, the computing delay, and the migration cost. Constraints (P2b)
guarantee that the variables xt

kn are binary. Constraints (P2c) guarantee that the vehicular
service requested by vehicle k at time-slot t is placed at one and only one MEC server.

The total computing delay C(x) is defined as follows:

C(x) :=
N∑︂

n=1

K∑︂
k=1

T∑︂
t=1

xt
knN

t
nc

t
k/Fn, (5.5)

5.4. PROBLEM FORMULATION 99

where ctk denotes the required amount of computing capacity [in CPU cycles] of the vehic-
ular service requested by vehicle k at time-slot t and Fn denotes the maximum computing
capacity of MEC server n [in CPU cycles/sec]. The term N t

n denotes the number of services
placed at MEC server n, i.e.,

N t
n :=

K∑︂
k=1

xt
kn. (5.6)

The total communication delay D(x) is defined as follows:

D(x) :=
N∑︂

n=1

K∑︂
k=1

T∑︂
t=1

xt
knd

t
kn, (5.7)

where dtkn denotes the computing delay between MEC server n and the vehicle k at time-
slot t (see (5.3)).

Finally, the total migration cost M(x) is defined as follows:

M(x) :=
N∑︂

n=1

N∑︂
n′=1

K∑︂
k=1

T∑︂
t=1

xt−1
kn′ x

t
knm

kt
n′n, (5.8)

where the migration cost mkt
n′n is used to denote the cost of migrating the service k from

MEC server n′ to MEC server n at time-slot t. It is clear that the cost is counted inside
the summation only if both xt−1

kn′ and xt
kn are equal to one, i.e., xt−1

kn′ = xt
kn = 1, which

means that the requested service of vehicle k is placed at MEC server n′ at time-slot t− 1

and is placed at MEC server n at time-slot t. This costs includes bandwidth costs incurred
by cross-edge migration (e.g., wide-area network bandwidth usage costs) as well as energy
costs caused by increased energy consumption of network devices such as routers. To make
the model general, we use a general cost term mkt

n′n as done in [61].

In order to make the problem more tractable, we linearize the objective function given
in (P2a). The non-linearity of (P2) comes from the functions C(x) and M(x) due to the
multiplication of binary variables. To linearize M(x), we introduce a new binary variable
called zktn′n = xt−1

kn′ xt
kn. It is clear that this new z-variable is positive if and only if each term

of the product of the x-variables is positive. In other words, zktn′n = 1 ⇐⇒ xt−1
kn′ = xt

kn = 1.
This means that we must add the following two constraints to force the z-variable to be

100
CHAPTER 5. A DEEP REINFORCEMENT LEARNING SERVICE MIGRATION IN

SLICE-ENABLED INTERNET OF VEHICLES

zero whenever xt−1
kn′ or xt

kn is zero:

zktn′n ≤ xt−1
kn′ ,∀k, n, n′, t > 1, (5.9)

and

zktn′n ≤ xt
kn,∀k, n, n′, t. (5.10)

It remains to enforce the constraints that if both xt−1
kn′ and xt

kn are equal to one, then the
z-variable is one. This can be written as follows:

zktn′n ≥ xt−1
kn′ + xt

kn − 1, ∀k, n, n′, t > 1. (5.11)

Thus, the total migration cost can be rewritten as follows:

M(z) =
N∑︂

n=1

N∑︂
n′=1

K∑︂
k=1

T∑︂
t=1

zktn′nm
kt
n′n, (5.12)

where z denotes the multidimensional notation of the variables zktn′n, i.e., z = [zktn′n].

Now, to linearize C(x), we let ytk denote the quantity
∑︁N

n=1 x
t
knN

t
nc

t
k/Fn, i.e.,

ytk :=
N∑︂

n=1

xt
knN

t
nc

t
k/Fn,∀k, t. (5.13)

Thus, the total computing delay C(y) can be rewritten as follows:

C(y) =
K∑︂
k=1

T∑︂
t=1

ytk, (5.14)

where y denotes the multidimensional notation of the variables ytk, i.e., y = [ytk]. Now, we
have to enforce that the following constraints:

xt
kn = 1 ⇒ ytk = N t

nc
t
k/Fn. (5.15)

These are indicator constraints that can be easily implemented in the off-the-shelf solvers
such as CPLEX or Gurobi. Nonetheless, they can be easily transformed to linear con-
straints using the big-M method [123].

5.5. PROBLEM FORMULATION 101

5.5 Problem Formulation
The problem is a multi-objective optimization problem where the aim is to optimize the
communication delay, the computing delay as well as the migration costs. We transform
the multi-objective problem into a single objective one by introducing the weights λi for
i ∈ {1, 2, 3}. The formulated problem is written as a nonlinear integer program (NLP) as
follows.

minimize
x

λ1C(x) + λ2D(x) + λ3M(x) (P2a)

subject to xk
i (t) ∈ {0, 1}, ∀i, k, t, (P2b)
N∑︂
i=1

xk
i (t) = 1, ∀k, t, (P2c)

The computing delay C(x) is defined as follows:

C(x) :=
N∑︂
i=1

K∑︂
k=1

T∑︂
t=1

xk
i (t)ni(t)

ck(t)

fi
, (5.16)

where ck(t) denotes the required amount of computing capacity in CPU cycles of service
k at time-slot t and fi denotes the maximum computing capacity of MEC node i (in CPU
cycles per second). The term ni(t) denotes the number of services placed at MEC node i,
i.e.,

ni(t) :=
K∑︂
k=1

xk
i (t). (5.17)

The communication delay D(x) is defined as follows:

D(x) :=
N∑︂
i=1

K∑︂
k=1

T∑︂
t=1

xk
i (t)d

k
i (t), (5.18)

where dki (t) characterizes the general communication delay between MEC node i and a
user when its corresponding service k is placed on MEC node i at time-slot t. It mainly
depends on the link bandwidth between the MEC node and the user and the amount of
data transferred to the user. We use a general temr dki (t) to make our problem generic
and independent to a specific transmission model.

102
CHAPTER 5. A DEEP REINFORCEMENT LEARNING SERVICE MIGRATION IN

SLICE-ENABLED INTERNET OF VEHICLES

Finally, the migration cost M(x) is defined as follows:

M(x) :=
N∑︂
i=1

N∑︂
i′=1

K∑︂
k=1

T∑︂
t=1

xk
i′(t− 1)xk

i (t)m
k
i′i(t), (5.19)

where the migration cost mk
i′i(t) is used to denote the cost of migrating the service k from

MEC node i′ to MEC node i. This costs includes bandwidth costs incurred by cross-edge
migration (e.g., wide-area network bandwidth costs) as well as energy costs caused by
increased energy consumption of network devices such as routers. To make the model
general, we use the general term mk

i′i(t) as done in...

In order to make the problem more tractable, we linearize the objective function given
in (P2a). The non-linearity of (P2) comes from the functions C(x) and M(x) due to
the multiplication of binary variables. To linearize M(x), we introduce a new binary
variable called zki′i(t) = xk

i′(t − 1)xk
i (t). It is clear that this new z-variable is positive

if and only if each term of the product of the x-variables is positive. In other words,
zki′i(t) = 1 ⇐⇒ xk

i′(t − 1) = xk
i (t) = 1. This means that we must add the following two

constraints to force the z-variable to be zero whenever xk
i′(t− 1) or xk

i (t) is zero:

zki′i(t) ≤ xk
i′(t− 1),∀i, i′, k, t > 1, (5.20)

and

zki′i(t) ≤ xk
i (t),∀i, i′, k, t. (5.21)

It remains to enforce the constraints that if both xk
i′(t − 1) and xk

i (t) are equal to one,
then the z-variable is one. This can be written as follows:

zki′i(t) ≥ xk
i′(t− 1) + xk

i (t)− 1,∀i, i′, k, t > 1. (5.22)

Thus, the migration cost can be rewritten as follows:

M(z) =
N∑︂
i=1

N∑︂
i′=1

K∑︂
k=1

T∑︂
t=1

zki′i(t)m
k
i′i(t), (5.23)

5.6. PROPOSED SOLUTION 103

Now, to linearize C(x), we let yk(t) denotes the quantity
∑︁N

i=1 x
k
i (t)ni(t)

ck(t)
fi

, i.e.,

yk(t) :=
N∑︂
i=1

xk
i (t)ni(t)

ck(t)

fi
,∀k, t. (5.24)

Thus, the computing delay C(y) can be rewritten as follows:

C(y) =
K∑︂
k=1

T∑︂
t=1

yk(t). (5.25)

Now, we have to enforce that the following constraints:

xk
i (t) = 1 ⇒ yk(t) = ni(t)

ck(t)

fi
. (5.26)

These are indicator constraints that can be easily implemented in the off-the-shelf solvers
such as CPLEX or Gurobi. They can be easily transformed to linear constraints using the
big-M method.

5.6 Proposed Solution

In this section, we propose a deep reinforcement learning (DRL) based approach to obtain
an efficient solution to the service placement and migration problem defined in (P2). The
proposed approach places the vehicular service requested by the vehicles in the appropriate
MEC servers to ensure the continuity of services under the mobility constraint of vehicles
while reducing the communication latency, the computing latency as well as the migration
costs of the requested service.

We use deep Q-learning (DQL) [124]—one of the most popular DRL algorithm—to effi-
ciently solve the service placement problem in the MEC-enabled vehicular network. DQL
combines Q-learning with deep neural network (DNN). It takes as input the observed state
of the environment and returns as output the Q-value of all possible actions. DQL has two
main phases, namely the training phase and the inference phase. In the training phase, the
agent trains a DNN, called deep Q-network (DQN), in an offline manner. In the inference
phase, the agent takes actions in an online manner based on the trained DQN. Before
describing each phase of the proposed DQL algorithm, we model, first, the problem as a
Markov decision process (MDP).

104
CHAPTER 5. A DEEP REINFORCEMENT LEARNING SERVICE MIGRATION IN

SLICE-ENABLED INTERNET OF VEHICLES

5.6.1 The MDP Formulation
We consider a multi-agent MDP where each MEC server n acts as an independent agent,
called herein after MEC agent n. At time-slot t, each MEC agent n can decide either to
place and instantiate the vehicular service requested by vehicle k or not. The key elements
of the multi-agent MDP are defined as follows:

The State Space

At time-slot t, the observed state by the MEC agent n, denoted by St
n, mainly depends on

the current vehicular environment. It includes the current positions of the vehicles, their
velocities, their directions, and their service requirements (including the wireless channel
gains and the distances between MEC agent n and the vehicles). Note that there are
as many states as there are time-slots, i.e., every time-slot corresponds to a state. In
addition, a transition from one state to the next happens according to the mobility model
of the vehicles.

The Action Space

The action set of each MEC agent n at time-slot t is given by the set At
n := {0, 1}K . Indeed,

an action at
n ∈ At

n is given by the row vector [at1n, a
t
2n, . . . , a

t
Kn], where each element atkn

corresponds to the decision to place the service k ∈ K at MEC server n, all happening at
time-slot t. Note that the variable atkn and xt

kn defined in (P2) means essentially the same
thing but to remove any possible confusion between the optimization variable xt

kn and the
MDP action atkn we use two different notations. Each MEC agent n communicates its
chosen action to the SDN controller to form a global action at := [at

1,a
t
2, . . . ,a

t
N]. Then,

the SDN controller verifies if the individual actions of the MEC agents are feasible or
not according to the constraints of (P2), i.e., the individual action at

n of MEC agent n is
considered feasible if it meets the constraints of (P2).

The Reward Function

A MEC agent n chooses an action at
n ∈ At

n at time-slot t and receives a reward Rt
n. Since

we seek to minimize the overall vehicular service latency requested by the vehicles, the
objective of MEC agent n must be related to the sum-latency of the services it hosts. In
other words, we define the reward Rt

n of MEC agent n at time-slot t in relation with how
the placement of requested service at n affects the latency of the system. Therefore, the
SDN controller calculates the individual reward of MEC agent n as follows:

Rt
n :=

⎧⎨⎩λ1C
t
n + λ2D

t
n + λ3M

t
n, if at

n is feasible

−1, if at
n is not feasible,

(5.27)

5.6. PROPOSED SOLUTION 105

where Ct
n =

∑︁K
k=1 a

t
knN

t
nc

t
k/Fn is the computation delay, Dt

n =
∑︁K

k=1 a
t
knd

t
kn is the com-

munication delay, and M t
n =

∑︁N
n′=1
n′ ̸=n

∑︁K
k=1 a

t−1
kn′ atknm

kt
n′n is the migration cost of MEC agent

n at time-slot t. If the action chosen by MEC agent n at time-slot t is not feasible, this
MEC agent should be penalized with a negative reward Rt

n = −1 to prompt it to not
choose this action in future steps.

5.6.2 The Training Phase of DQL
In general, DQN approximates the Q-values Q(s, a, θ) of each state-action pair (s, a) using
a DNN, where θ represents the parameters of the Q-network. Since we propose a multi-
agent MDP, the proposed DQL algorithm will be a multi-agent algorithm in which each
MEC agent will have its own DQN to be approximated and trained. When there is no
confusion, we omit the index n from the DQN of MEC agent n. In addition, the training
process of the DNN uses the experience replay memory mechanism. This mechanism
helps in creating a dataset to train the DNN once in a while by storing each MEC agent
experience into a replay buffer. This experience essentially includes the current state,
the next transition state, the chosen action and the received reward. Then, each MEC
agent randomly chooses a set of samples from its replay buffer to perform the learning
process. The experience replay memory mechanism not only allows the MEC agent to learn
from the past experiences, but also to provide uncorrelated data as inputs which breaks
undesirable temporal correlations. However, DQN is known to overestimate the Q-values
of stat-action pairs under certain conditions, which harms the performances. To overcome
this issue, double DQN (DDQN) [125] is proposed which reduces the overestimation and
makes the training process faster and more reliable. Indeed, DDQN uses two DNNs, called
the main Q-network and the target Q-network. The former is used to compute the Q-
values Q(s, a, θ) while the latter is used to provide the target Q-values Q(s, a, θ−) to train
the parameters θ of the main Q-network. The training phase of our proposed multi-agent
DQL algorithm is presented in Algorithm 5, where each MEC agent n ∈ N trains its own
DDQN.

The training phase of the DQL algorithm requires as input the vehicular environment
which includes the vehicles, the requested services, the MEC servers, the computing ca-
pacity of MEC servers. It returns the trained DDQN of each MEC agent as output. The
DDQNs are trained simultaneously. The training begins by generating the vehicles pa-
rameters and the network parameters. The vehicles parameters include the position, the
velocity and the requested service of each vehicle. The network parameters include the
computing capacity of each MEC server. Then, the DQL algorithm initializes the DDQN
parameters of each MEC agent. Next, it iterates the episodes. For each episode, the en-

106
CHAPTER 5. A DEEP REINFORCEMENT LEARNING SERVICE MIGRATION IN

SLICE-ENABLED INTERNET OF VEHICLES

Algorithm 5: The Training Phase of DQL
Input: Agents and environment

1 Output: Trained DDQNs
Initialization: Generate vehicles and network parameters;

Initialize the DDQN of each agent n;
2 for Episode e do
3 Reset and build the agents’ environment;
4 for Time-slot t do
5 for each MEC n do
6 Observe the environment ;
7 Choose an action atn using ϵ-greedy;
8 end
9 The SDN controller obtains the global action ;

10 The SDN controller calculates the individual reward of each agent;
11 for each MEC n do
12 Receive the individual reward from the SDN controller;
13 Observe the next state of the environment ;
14 Store the experience Exptn in the replay buffer Mn;
15 if batch size then
16 Sample a mini-batch from Mn;
17 Do a mini-batch training;
18 end
19 if target step then
20 Update the target network parameters θ−n ;
21 end
22 end
23 end
24 end

vironment of each MEC agent is built by updating the position of the vehicles according
to the mobility model and generating other network parameters. For each episode, the
training continues for a period of time-slots (or steps). In each step t, each MEC agent n
observes the current state of its environment and chooses an action from its action space
At

n. To select an action, the MEC agent uses the ϵ-greedy policy. With this policy, an
action is chosen randomly with probability ϵ. Once all MEC agents select their actions,
each of them communicates its action to the SDN controller to construct the global action
at. The SDN controller uses the constructed global action to verify its feasibility and
calculate the individual reward of each MEC agent. Then, each MEC agent n receives its
individual reward Rt

n from the SDN controller and moves to the next state. The obtained
experience, denoted by Expn, is stored by the MEC agent n in its replay buffer Mn.
When the replay buffer contains enough experiences, i.e., a certain batch size is respected,

5.7. SIMULATION RESULTS 107

each MEC agent randomly samples a mini-batch to create a training dataset. The latter
is used by the MEC agent to perform the training process. In the training process, each
MEC agent seeks to minimize a loss function, given by:

Lt
n(θn) = E[(yn −Q(St

n,a
t
n; θn))

2], (5.28)

where Q(St
n,a

t
n; θn) is the Q-value of action at

n given the state St
n which is calculated using

the main Q-network with parameters θn; yn is the target Q-value, which calculated using
the target Q-network with parameters θ−n and it is given as follows:

yn = Rt
n + γQ(St

n,max
at
n

{Q(St
n,a

t
n; θn)}; θ−n), (5.29)

where 0 ≤ γ ≤ 1 is the discount factor.

To update the parameters θn of the main Q-network, MEC agent n performs a gradient
descent step. Finally, each MEC agent updates the parameters θ−n of its target Q-network
at a fixed target step by copying the parameters of the main Q-network.

5.6.3 The Inference Phase of DQL
The inference phase of DQL is presented in Algorithm 6. Once the trained DDQNs are
obtained, each MEC agent uses its optimal DDQN parameters to find an appropriate
placement of the requested service by the vehicles. In detail, at the beginning of each
episode the environment of each MEC agent is built. Then, for each step t, each MEC
agent observes the current state of its environment and selects an action that maximizes
its Q-value according to its trained DDQN. Based on the selected actions of all MEC
agents, the SDN controller finds the overall communication delay, computing delay and
migration costs and thus we obtain a solution to problem (P2).

5.7 Simulation Results
We consider a MEC-enabled vehicular network where three gNBs that are attached to
three MEC servers are deployed over a highway as shown in Fig. 1. The gNBs are located
randomly along the highway. We assume that the three MEC servers are deployed along
the highway in a triangular fashion as depicted in Fig. 1, where the distance between MEC
1 and MEC 2 and the distance between MEC 2 and MEC 3 is equal to 2000 m and the
distance between MEC 1 and MEC 3 is equal to 4000 m. The vehicles are drawn randomly
in the highway that is modelled as a rectangle of length 5000 m and width 18 m with two
forward lanes and two backward lanes. The vehicles move with a randomly-chosen fixed
speed from the range of [60, 110] km/h and once a vehicle reaches the boundary of the

108
CHAPTER 5. A DEEP REINFORCEMENT LEARNING SERVICE MIGRATION IN

SLICE-ENABLED INTERNET OF VEHICLES

Algorithm 6: The Inference Phase of DQL
Input: The trained DDQNs

1 Output: Placement of the vehicular service of each vehicle
Initialization: Load the DDQN of each agent n;

2 for Episode e do
3 Reset and build the environment;
4 for Step t do
5 for each MEC n do
6 Observe the environment ;
7 Choose an action atn that maximize the Q-value of the tained DDQN of n;
8 end
9 The SDN controller obtains the global action;

10 end
11 The SDN controller calculates the objective function as in (P2a);
12 end

highway, it reappears in the opposite side. For simplicity, all vehicles keep moving with
constant speeds with acceleration, i.e., once the random speed of a vehicle is chosen, the
latter keeps moving with that speed during the entire simulation period.

The proposed multi-agent DQL algorithm is trained on an computer with an Intel Core i7-
10750H CPU, 16GB RAM and an nVidia GeForce GTX 2070 Super graphic card. The im-
plementation is performed using Python and PyTorch. After performing hyper-parameters
tuning, the following optimized parameters are set. Each DDQN consists of fully connected
hidden neural network with two hidden layers of 256 neurons each. The discount factor
is γ = 0.99. The other DDQN and vehicular network para metes are presented in Table
1. To avoid the overestimation problem of the Q-value, the parameters of each DDQN
network are copied into the parameters of the corresponding target DDQN every 1000
steps.

Fig. 5.2 illustrates the average reward per episode of one MEC agent. It is clear that the
reward improves with the training episodes as it increases when the number of episodes
increases. This shows the effectiveness of the proposed DQL algorithm. We notice that the
DQL algorithm converges at approximately 1000 episodes. In other words, the correspond-
ing MEC agent converges to a good learning outcome, which implies that it will explore
better actions. We can notice though that the reward converges while incurring large
fluctuations which is mainly due to the high mobility scenario of the vehicular network.

Fig. 5.3 and Fig. 5.4 illustrate the average cost represented by the objective function (P2a)
which measures the total service latency (the computing and communication latency) as

5.7. SIMULATION RESULTS 109

Table 5.1 Simulation parameters

Parameter Value

Number of MEC servers 3

Transmit power of each gNB 30 dBm

Migration cost uniform(0.2, 0.3)

Number of vehicles 4

Request size uniform(50, 300) Kbits

Noise variance −174 dBm/Hz

Bandwidth 10 MHz

Learning rate 3e− 4

Number of episodes 3000

Discount factor 0.99

Replay memory size 100000

Mini-batch size 1024

Target update interval 1000

Loss function Minimum square error

Optimizer Adam

Activation function ReLU

well as the migration costs under two different configurations. The first configuration is the
computational power configuration and it consists of varying the number of cores for the
three MEC servers. We considered three MEC servers with 4 cores each, or 8 cores each,
or 16 cores each, or 32 cores each, or 64 cores each, with a fixed clock frequency of 2.5 GHz.
The second configuration is the request size configuration and it consists of varying the
vehicles’ request sizes, which we generate uniformly at random within a fixed interval as
follows uniform(50, 100), uniform(100, 150), uniform(150, 200), uniform(200, 250),
uniform(250, 300) Kbits.

Fig. 5.3 shows the objective function while considering the computational power configu-
ration. We can notice that with increasing the computational power, the average service
latency as well as the migration costs are decreasing. Regardless of different number of
cores, the proposed DQL approach performs close-to-the-optimal performance. Fig. 5.4
presents the objective function while considering the request size configuration. The pro-
posed approach is shown to approximate well the optimal solution in different scenarios of

110
CHAPTER 5. A DEEP REINFORCEMENT LEARNING SERVICE MIGRATION IN

SLICE-ENABLED INTERNET OF VEHICLES

Figure 5.2 The training rewards for MEC server.

the request size configuration. The smaller the request size is, the smaller the total delay
and the migration costs are. This is because (i) the DQL approach learns efficiently the
appropriate placement of each vehicle’s service, which helps in reducing the service latency
and (ii) a small number of bits can be fulfilled easily by one MEC server without requiring
to migrate to another MEC server, which helps in reducing the total migration costs. We
notice that as the request sizes increase, the average service delay and the migration costs
increase as well.

5.8 Related Works
The authors in [60] propose a QoE-aware scheme to ensure service continuity for the mo-
bile cloud computing environment. The scheme relies on the buffer-occupancy threshold
policy that classifies the new arriving request from the mobile users. The proposed scheme
protects the migrated service from traffic fluctuation. In addition, the cloud server can
change the buffer threshold dynamically for different categories of requests. In [61], the
authors proposed a Follow-Me Chain algorithm to solve the problem of SFC. In particular,
the work studied the problem of inter-MEC handoffs to offer a higher satisfaction for users
in mobility scenarios. Such a problem is NP-hard, and the authors proposed an integer
programming formulation that is solved by the Follow-Me Chain algorithm. The work in
[63] investigated the relocation problem of VNF within a cloud infrastructure under mobil-
ity and resource heterogeneity constraints. The authors studied in particular the impact
of the relocation operation on the service delay and the number of VNF relocations (i.e.,

5.8. RELATED WORKS 111

Figure 5.3 The objective function vs. the computational power of the MEC
servers.

the number of times that a single VNF is being moved from a cloud to another). The
problem of relocation was formulated as a mixed-integer linear programming problem and
solved through a meta-heuristic approach, namely, the ant colony optimization technique.
Within the same context, the authors in [64] proposed an evaluation of three container-
based schemes for VNF migration as a mechanism to guarantee service continuity. In
particular, the schemes consider two cases of mobility patterns, respectively, known a pri-
ori and unknown mobility patterns. For the known, a priori pattern, temporary file system,
and disk-less-based migration are discussed, but the main focus was on the unknown mo-
bility pattern, where authors proposed a solution that consists in storing the container’s file
system within the system images in a shared pool. The work in [126] considered two main
logical slices created over the same infrastructure, namely, an autonomous driving slice
for safety messages, and an infotainment slice. The authors proposed a clustering method
to partition vehicles to allocate slice leaders on each cluster. A slice leader is a serving
entity using vehicle-to-vehicle (V2V) links to forward safety messages, subsequently, the
roadside units (RSU) forward the infotainment service using the vehicle-to-infrastructure
(V2I) links. In [127], the authors proposed an offline RL-based RAN slicing solution and
a low-complexity heuristic algorithm, to satisfy communication resources requirements of
different slices to maximize the resource utilization. The proposed approach ensures the
resource availability to meet the different requirements of the slice’s traffic. The authors
assume that V2V communications are either in cellular (through gNBs) or inside link

112
CHAPTER 5. A DEEP REINFORCEMENT LEARNING SERVICE MIGRATION IN

SLICE-ENABLED INTERNET OF VEHICLES

Figure 5.4 The objective function vs. the request sizes of the vehicles.

mode (through PC5 communication). In addition, in the side link mode, each vehicle can
multicast to multiple vehicles within the same cluster. Finally, the proposed RL approach
is executed separately for each communication mode (i.e., uplink and downlink), which
means that the RL is being executed twice.

Most of the literature studied hereabove, focus on the resource provisioning at the MEC
sides independently with no consideration to the services migration problem in the vehicu-
lar network, where factors such as the mobility patterns, the services migration costs, and
the requirements of the services need to be considered for a more efficient service placement
schemes. Further, previous works consider only heuristic or meta-heuristic methods that
focus on solving the placement problem to minimize only the latency without studying the
cost of migration. The works that considered the service latency, as well as the migration
costs, leverage simple algorithmic solutions without considering advanced machine learn-
ing approaches such as the one proposed in this paper. In this paper, we fill these gaps
and we propose a service migration scheme based on DRL techniques in a MEC-enabled
vehicular network aiming to minimize the total service latency and migration cost.

5.9 Conclusion
In this paper, we proposed a DRL-based approach to solving the problem of vehicular ser-
vice placement and migration in a MEC-enabled vehicular network. First, we formulated
the problem as a nonlinear integer optimization problem where the objective is to mini-

5.9. CONCLUSION 113

mize the total vehicular service latency plus migration costs. The service latency modeled
the quality of service of the vehicles which includes (i) the communication delay, and (ii)
the computing delay. The migration cost, on the other hand, models the cost of migrat-
ing services across different MEC servers and is related to the energy consumption and
bandwidth usage. To solve the optimization problem optimally using off-the-shelf solvers
such as CPLEX, we linearize it and transform it to an integer linear optimization prob-
lem. Next, to obtain an efficient and non-complex solution, we modeled the problem as a
multi-agent Markov decision process and we developed a DRL-based method by leveraging
the DQL algorithm. The DQL algorithm used double DQN and replay memory strategies
to increase the training accuracy and solve the Q-value overestimation problem. Finally,
we demonstrated, through extensive simulations, that the proposed DQL algorithm has
close-to-optimal performance compared to the CPLEX solution.

114
CHAPTER 5. A DEEP REINFORCEMENT LEARNING SERVICE MIGRATION IN

SLICE-ENABLED INTERNET OF VEHICLES

CHAPTER 6

Conclusions and Future Works

The main objective of this thesis was to create innovative and efficient schemes for resource
allocation at the network edge. To achieve this goal, we proposed several new schemes
that address the challenges of network edge resource provisioning. In this chapter, we
provide conclusions for each proposed approach and suggest some perspectives for future
work.

6.1 Conclusion
In Chapter III, we proposed a resource provisioning scheme for EC under latency and
resource consumption requirements. To successfully reduce the latency, we have studied
the incurred delays at the different tiers of the architecture. In particular, we studied the
queuing dynamics at the edge node level through a Lyapunov optimization model. In order
to achieve efficient resource provisioning, we have proposed a resource representation for
edge devices. This resource representation allows the exposure of information concerning
the edge devices’ resources at any moment through the ETSI standard for edge computing
applications. Edge node supervisors use the gathered information concerning the resource
availability of the supervised edge devices to set the optimal resource provisioning scheme
using the drift plus penalty of the Lyapunov optimization model. We also investigated the
reallocation frequency of resources and composed an algorithm based on the workload at
each edge device of the edge node to minimize the number of times a resource allocation
operation is performed. Through the performed theoretical and experimental simulations,
the proposed approaches have been shown to be effective, and the results showed that the
proposed approach outperformed the benchmark approaches.

In Chapter IV, we investigated SFC resource provisioning within an MEC environment
with the objective of lowering the request response time. We have addressed the en-
tire resource provisioning problem, including placement, routing, and scheduling on the
distributed MEC nodes, and we proposed a joint game theory and machine learning ap-
proach to the problem. We leveraged mean-field games to formulate the VNF placement
and chaining problem, with the aim of reducing the overall resource consumption while
decreasing both the request response time and the placement and routing operation time.
We used the Ishikawa-Mann iterative learning algorithm to solve the game and thus to

115

116 CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

properly place and chain the VNFs. Concerning the VNF scheduling problem, we lever-
aged the matching games framework, specifically, many-to-one matching, to match the
VNFs to MEC node resources. We proposed a modified version of the classic deferred ac-
ceptance algorithm called the enhanced multi-stage deferred acceptance algorithm, which
takes into account the specific constraints of the problem. Through the extensive sim-
ulations performed, it is shown that the proposed approaches perform better than the
benchmarked approaches under the studied scenarios.

Finally, in Chapter V, we proposed a DRL-based scheme to address the placement and
migration of vehicular services in an MEC-based vehicular network. First of all, we have
formulated the problem as a nonlinear integer optimization problem that aims to mini-
mize the total response time (i.e., communication and computation delays) as well as the
migration costs in terms of the power consumption and bandwidth utilization. To solve
the optimization problem, we used standard solvers, specifically, those from CPLEX, and
linearized it to transform it into an integer linear optimization problem. Then, we formu-
lated the problem as a multi-agent Markov decision process and developed a DRL-based
method by leveraging the DQL algorithm to obtain an efficient and non-complex solution.
The DQL algorithm utilizes dual DQN and replays memory strategies to augment the
learning accuracy and solve the Q-value overestimation problem. Finally, we have demon-
strated through comprehensive simulations that the proposed DQL algorithm achieves a
near-optimal performance in comparison to the CPLEX solution.

6.2 Future Works
In this section, we suggest some propositions for future studies with the aim of enhancing
the previous contributions:

– The network edge architecture is essentially built on distributed heterogeneous de-
vices located outside the operators’ premises, which means that the links and network
structure are exposed to changes during execution. As a result, the network edge is
exposed to failures. In future work, we propose to study the problem of fault toler-
ance at the network edge under the constraints of high reliability. Such a perspective
would improve the results of the resource provisioning scheme studied in Chapter
III.

– To improve the performance of the resource provisioning scheme for services pro-
posed in Chapter IV, we propose to study in a future work its integration into the
testbed proposed in Chapter III. Indeed, it will be interesting to compare the ob-

6.2. FUTURE WORKS 117

tained theoretical results with the results of the testbed in terms of the resource
consumption and response time.

– Concerning the service migration problem in Chapter V, we propose integrating
network slicing into our system model, as well as migrating multiple services across
the vehicular networks.

118 CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

Conclusions et Travaux Futurs

L’objectif principal de cette thèse était de créer des schémas innovants et efficaces pour
l’allocation des ressources à la périphérie du réseau. Pour atteindre cet objectif, nous avons
proposé plusieurs nouveaux schémas qui répondent aux défis de l’allocation des ressources
à la périphérie du réseau. Dans ce chapitre, nous fournissons des conclusions pour chaque
approche proposée et suggérons quelques perspectives pour les travaux futurs.

6.3 Conclusion
Dans le chapitre III, nous avons proposé un schéma d’approvisionnement en ressources
pour l’EC sous des exigences de latence et de consommation de ressources. Pour réus-
sir à réduire la latence, nous avons étudié les délais encourus aux différents niveaux de
l’architecture. En particulier, nous avons étudié la dynamique de la mise en file d’attente
au niveau du nœud de périphérie par le biais d’un modèle d’optimisation de Lyapunov.
Afin de parvenir à un approvisionnement efficace en ressources, nous avons proposé une
représentation des ressources pour les équipements de périphérie. Cette représentation des
ressources permet d’exposer les informations concernant les ressources des dispositifs de
périphérie à tout moment par le biais de la norme ETSI pour les applications informatiques
de périphérie. Les superviseurs des nœuds de périphérie utilisent les informations recueil-
lies concernant la disponibilité des ressources des dispositifs de périphérie supervisés pour
définir le schéma optimal d’approvisionnement en ressources en utilisant la dérive plus la
pénalité du modèle d’optimisation de Lyapunov. Nous avons également étudié la fréquence
de réaffectation des ressources et composé un algorithme basé sur la charge de travail de
chaque dispositif périphérique du nœud périphérique afin de minimiser le nombre de fois où
une opération d’affectation des ressources est effectuée. Grâce aux simulations théoriques
et expérimentales réalisées, les approches proposées se sont avérées efficaces et les résultats
ont montré que l’approche proposée surpasse les approches de référence.

Dans le chapitre IV, nous avons étudié l’approvisionnement en ressources pour les fonc-
tions des services chainées dans la périphérie afin de réduire le temps de réponse aux
requêtes. Nous avons abordé le problème de l’approvisionnement en ressources pour les
services, du placement à l’ordonnancement en passant par le routage sur les nœuds de
périphérie distribués. Ensuite, nous avons proposé une étude conjointe de la théorie des
jeux et de l’apprentissage automatique pour résoudre ce problème. Nous avons utilisé les
jeux à champ moyen pour formuler le problème de placement et de chaînage des fonc-

119

120 CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

tions réseau en vue de réduire la consommation globale des ressources tout en diminuant
à la fois le temps de réponse aux requêtes des utilisateurs. Nous avons développé un al-
gorithme d’apprentissage itératif à base de l’algorithme d’Ishikawa-Mann pour résoudre
le jeu, et ainsi, placer et enchaîner correctement les fonctions réseau. En ce qui con-
cerne le problème d’ordonnancement des fonctions réseau, nous avons utilisé les jeux de
correspondance, et plus particulièrement la correspondance de plusieurs-à-un pour faire
correspondre les fonctions réseau aux ressources des nœuds de périphérie. Nous avons
proposé une version modifiée de l’algorithme classique d’acceptation différée qui prend
en compte les contraintes spécifiques du problème. Les simulations approfondies mon-
trent que les approches proposées sont meilleures que les approches de référence dans les
scénarios étudiés.

Enfin, dans le chapitre V, nous avons proposé un schéma basé sur l’apprentissage automa-
tique profond pour traiter le placement et la migration des services véhiculaires dans un
réseau véhiculaire en périphérie. Tout d’abord, nous avons formulé le problème comme
un problème d’optimisation non-linéaire en nombres entiers qui vise à minimiser le temps
de réponse total (c’est-à-dire les délais de communication et de calcul) ainsi que les coûts
de migration en termes de consommation d’énergie et d’utilisation de la bande passante.
Pour résoudre le problème d’optimisation, nous avons utilisé des solveurs standard, no-
tamment CPLEX. Ensuite, nous avons formulé le problème sous la forme d’un processus
de décision de Markov multi-agents et développé une méthode basée sur l’apprentissage
automatique profond en exploitant l’algorithme DQL pour obtenir une solution efficace
et non complexe. L’algorithme DQL utilise des stratégies de mémoire double DQN et
de répétition pour augmenter la précision de l’apprentissage et résoudre le problème de la
surestimation de la valeur Q. Enfin, nous avons démontré par des simulations approfondies
que l’algorithme DQL proposé atteint des performances quasi-optimales par rapport à la
solution CPLEX.

6.4 Travaux Futurs

– L’architecture de périphérie du réseau est essentiellement construite à base des dis-
positifs hétérogènes distribués situés en dehors des prémisses des opérateurs, ce qui
rend les liens et la structure du réseau exposés aux changements pendant l’exécution.
Par conséquent, la périphérie du réseau est exposée aux pannes. Dans le cadre de
travaux futurs, nous proposons d’étudier le problème de la tolérance aux pannes à
la périphérie du réseau sous les contraintes de haute fiabilité. Une telle perspective

6.4. TRAVAUX FUTURS 121

permettrait d’améliorer les résultats du schéma d’approvisionnement en ressources
étudié au chapitre III.

– Pour avoir une meilleure performance du schéma d’approvisionnement en ressources
pour les services, proposé au chapitre IV, nous proposons d’étudier dans un travail
futur son intégration dans le banc d’essai proposé au chapitre III. Il sera en effet
intéressant de comparer les résultats théoriques obtenus aux résultats du banc d’essai
du point de vue de la consommation des ressources et du temps de réponse.

– Concernant le problème de la migration des services du chapitre V, nous proposons
pour un travail futur l’intégration du découpage du réseau dans notre modèle de
système, ainsi que la migration de services multiples dans les réseaux de véhicules.

122 CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

List of publications

– A. Abouaomar, Z. Mlika, A. Filali, S. Cherkaoui, and A. Kobbane. A Deep Re-
inforcement Learning Approach for Service Migration in MEC-enabled Vehicular
Networks. (Accepted) IEEE LCN, 1-8, 2021.

– A. Abouaomar, Z. Mlika, S. Cherkaoui, and A. Kobbane. Mean-Field Game and
Reinforcement Learning MEC Resource Provisioning for SFC. (Accepted) IEEE
GLOBECOM, 1-6, 2021.

– A. Abouaomar, S. Cherkaoui, Z. Mlika, and A. Kobbane. Service Function Chaining
in MEC: A Mean-Field Game and Reinforcement Learning Approach. arXiv preprint
arXiv:2105.04701, 2021.

– A. Abouaomar, S. Cherkaoui, Z. Mlika, and A. Kobbane. Resource provisioning in
edge computing for latency sensitive applications.IEEE Internet of Things Journal,
Issue 4, Vol 8, 2021.

– A. Filali, A. Abouaomar, S. Cherkaoui, A. Kobbane and M. Guizani, "Multi-Access
Edge Computing: A Survey," in IEEE Access, vol. 8, pp. 197017-197046, 2020.

– A. Abouaomar, S. Cherkaoui, A. Kobbane, and O. A. Dambri. A resources repre-
sentation for resource allocation in fog computing networks. In IEEE Global Com-
munications Conference (GLOBECOM), pages 1–6.IEEE, 2019.

– A. Abouaomar, A. Kobbane, and S. Cherkaoui. Matching-game for user-fog assign-
ment. In IEEE GLOBECOM Conference, pages 1–6, 2018.

123

124 CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

Appendices
A. Proof of BRC second-order derivative.
Here we prove the existence of NE by proving that the second-order derivative of the BRC
is negative.

∂air
∗
v(aj,m(v,−j)) =

αi

v

⎛⎝βajβ−1m
β
v − aβj

(︂
β
v
aβ−1
j

)︂
m2β

v

⎞⎠− δ(i,j)

= βaβ−1
j × αi

v

⎛⎝mβ
v −

aβj
v

m2β
v

⎞⎠− δ(i,j)

(1)

from (4.16), we can write:

mβ
v −

aβj
v

=
∑︂
j′∈Fi

j ̸=j′

aβj′ (2)

since aj′ is independent of aj, we can develop the second derivative of the payoff function
r∗v
(︁
aj,m(v,−j)

)︁
as follows:

∂2
aj
r∗v
(︁
aj,m(v,−j)

)︁
=

αi

v

⎛⎝β
(︂
mβ

v − aβj

)︂ [︂
(β − 1) a

(β−2)
j m2β

v − a
2(β−1)
j mβ

v

(︁
2β
v

)︁]︂
m4β

v

⎞⎠
=

αi

v

(︄
mβ

v −
aβj
v

)︄
×

a
(β−2)
j

m3β
v−

×
(︃
(β − 1)mβ

v −
2β

v
aβj

)︃ (3)

For given values of β ∈ [0, 1], the second derivative ∂2
aj
r∗v
(︁
aj,m(v,−j)

)︁
is negative.

B. Minimum and Maximum Quota constraints
Let us consider the following scenario with the set of VNFs Fi = {f1, f2, f3} and the
set of ENs E = {e1, e2, e3}. And let us assume that the maximum quota for all the ENs,
qmax
i = 2 and the minimum quota, qmin

i = 1. If we consider that all the ENs share the same
preference list ≻f , and if we consider that e1 ≻f e2 ≻f e3 and f1 ≻fi f2 ≻fi f3, applying
the classical DAA gives that (1) µ(f1) = {e1, e2}; (2) µ(f2) = {e3}; (3) µ(f3) = ∅. This
breaks the minimum quota rules.

LIST OF REFERENCES

[1] J. Halpern, C. Pignataro, et al., “Service function chaining (sfc) architecture,” in
RFC 7665, 2015.

[2] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary, “Piec-
ing together the nfv provisioning puzzle: Efficient placement and chaining of virtual
network functions,” in 2015 IFIP/IEEE International Symposium on Integrated Net-
work Management (IM), pp. 98–106, IEEE, 2015.

[3] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based
cloudlets in mobile computing,” IEEE pervasive Computing, vol. 8, no. 4, pp. 14–23,
2009.

[4] A. Filali, A. Abouaomar, S. Cherkaoui, A. Kobbane, and M. Guizani, “Multi-access
edge computing: A survey,” IEEE Access, vol. 8, pp. 197017–197046, 2020.

[5] I. Alam, K. Sharif, F. Li, Z. Latif, M. M. Karim, S. Biswas, B. Nour, and Y. Wang,
“A survey of network virtualization techniques for internet of things using sdn and
nfv,” ACM Computing Surveys (CSUR), vol. 53, no. 2, pp. 1–40, 2020.

[6] J. G. Herrera and J. F. Botero, “Resource allocation in nfv: A comprehensive survey,”
IEEE Transactions on Network and Service Management, vol. 13, no. 3, pp. 518–532,
2016.

[7] C. Pham, N. H. Tran, and C. S. Hong, “Virtual network function scheduling: A
matching game approach,” IEEE Communications Letters, vol. 22, no. 1, pp. 69–72,
2017.

[8] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50, no. 1,
pp. 30–39, 2017.

[9] V. Bahl, “Emergence of micro datacenter (cloudlets/edges) for mobile computing,”
Microsoft Devices & Networking Summit 2015, vol. 5, 2015.

[10] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts, applications and
issues,” in Proceedings of the 2015 workshop on mobile big data, pp. 37–42, 2015.

[11] I. Sittón-Candanedo, R. S. Alonso, J. M. Corchado, S. Rodríguez-González, and
R. Casado-Vara, “A review of edge computing reference architectures and a new
global edge proposal,” Future Generation Computer Systems, vol. 99, pp. 278–294,
2019.

[12] ETSI, “Mec in 5g networks,” white paper, ETSI, June 2018.

[13] ETSI, “ETSI GR MEC 027 Multi-access Edge Computing (MEC); Study on MEC
support for alternative virtualization technologies,” white paper, ETSI, Nov. 2019.

[14] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu, “Edge comput-
ing in industrial internet of things: Architecture, advances and challenges,” IEEE
Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2462–2488, 2020.

[15] CISCO, “What is edge computing?,” Mar 2021.

125

126 LIST OF REFERENCES

[16] J. Zhang, B. Chen, Y. Zhao, X. Cheng, and F. Hu, “Data security and privacy-
preserving in edge computing paradigm: Survey and open issues,” IEEE Access,
vol. 6, pp. 18209–18237, 2018.

[17] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and chal-
lenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, 2016.

[18] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi,
M. Barcellos, P. Felber, and E. Riviere, “Edge-centric computing: Vision and chal-
lenges,” 2015.

[19] D. Liu, B. Chen, C. Yang, and A. F. Molisch, “Caching at the wireless edge: design
aspects, challenges, and future directions,” IEEE Communications Magazine, vol. 54,
no. 9, pp. 22–28, 2016.

[20] A. S. Gomes, B. Sousa, D. Palma, V. Fonseca, Z. Zhao, E. Monteiro, T. Braun,
P. Simoes, and L. Cordeiro, “Edge caching with mobility prediction in virtualized
lte mobile networks,” Future Generation Computer Systems, vol. 70, pp. 148–162,
2017.

[21] C. Fricker, F. Guillemin, P. Robert, and G. Thompson, “Analysis of an offloading
scheme for data centers in the framework of fog computing,” ACM Transactions on
Modeling and Performance Evaluation of Computing Systems (TOMPECS), vol. 1,
no. 4, pp. 1–18, 2016.

[22] J. Plachy, Z. Becvar, and E. C. Strinati, “Dynamic resource allocation exploiting
mobility prediction in mobile edge computing,” in 2016 IEEE 27th Annual In-
ternational Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), pp. 1–6, IEEE, 2016.

[23] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar,
“Mobility-aware application scheduling in fog computing,” IEEE Cloud Computing,
vol. 4, no. 2, pp. 26–35, 2017.

[24] J. Wang, J. Pan, and F. Esposito, “Elastic urban video surveillance system using edge
computing,” in Proceedings of the Workshop on Smart Internet of Things, pp. 1–6,
2017.

[25] A. Singh, N. Auluck, O. Rana, A. Jones, and S. Nepal, “Rt-sane: Real time secu-
rity aware scheduling on the network edge,” in Proceedings of the10th International
Conference on Utility and Cloud Computing, pp. 131–140, 2017.

[26] M. Aazam, M. St-Hilaire, C.-H. Lung, and I. Lambadaris, “Pre-fog: Iot trace based
probabilistic resource estimation at fog,” in 2016 13th IEEE Annual Consumer Com-
munications & Networking Conference (CCNC), pp. 12–17, IEEE, 2016.

[27] M. Aazam and E.-N. Huh, “Fog computing micro datacenter based dynamic resource
estimation and pricing model for iot,” in 2015 IEEE 29th International Conference
on Advanced Information Networking and Applications, pp. 687–694, IEEE, 2015.

[28] T. Penner, A. Johnson, B. Van Slyke, M. Guirguis, and Q. Gu, “Transient clouds:
Assignment and collaborative execution of tasks on mobile devices,” in 2014 IEEE
Global Communications Conference, pp. 2801–2806, IEEE, 2014.

LIST OF REFERENCES 127

[29] H. Sun, H. Yu, G. Fan, and L. Chen, “Energy and time efficient task offloading and
resource allocation on the generic iot-fog-cloud architecture,” Peer-to-Peer Network-
ing and Applications, vol. 13, no. 2, pp. 548–563, 2020.

[30] X. Deng, J. Li, L. Shi, Z. Wei, X. Zhou, and J. Yuan, “Wireless powered mobile
edge computing: Dynamic resource allocation and throughput maximization,” IEEE
Transactions on Mobile Computing, pp. 1–1, 2020.

[31] T. Taleb and A. Ksentini, “Follow me cloud: interworking federated clouds and
distributed mobile networks,” IEEE Network, vol. 27, no. 5, pp. 12–19, 2013.

[32] H. Liao, Z. Zhou, X. Zhao, L. Zhang, S. Mumtaz, A. Jolfaei, S. H. Ahmed, and
A. K. Bashir, “Learning-based context-aware resource allocation for edge-computing-
empowered industrial iot,” IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4260–
4277, 2019.

[33] Y. Liu, M. J. Lee, and Y. Zheng, “Adaptive multi-resource allocation for cloudlet-
based mobile cloud computing system,” IEEE Transactions on Mobile Computing,
vol. 15, no. 10, pp. 2398–2410, 2015.

[34] K. Wang, K. Yang, X. Wang, and C. S. Magurawalage, “Cost-effective resource
allocation in c-ran with mobile cloud,” in 2016 IEEE International Conference on
Communications (ICC), pp. 1–6, IEEE, 2016.

[35] T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato, “Hybrid method for minimiz-
ing service delay in edge cloud computing through vm migration and transmission
power control,” IEEE Transactions on Computers, vol. 66, no. 5, pp. 810–819, 2016.

[36] A. R. Zamani, M. Zou, J. Diaz-Montes, I. Petri, O. Rana, A. Anjum, and
M. Parashar, “Deadline constrained video analysis via in-transit computational en-
vironments,” IEEE Transactions on Services Computing, vol. 13, no. 1, pp. 59–72,
2017.

[37] W. Tärneberg, A. Mehta, E. Wadbro, J. Tordsson, J. Eker, M. Kihl, and E. Elmroth,
“Dynamic application placement in the mobile cloud network,” Future Generation
Computer Systems, vol. 70, pp. 163–177, 2017.

[38] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea: Latency-aware video
analytics on edge computing platform,” in Proceedings of the Second ACM/IEEE
Symposium on Edge Computing, pp. 1–13, 2017.

[39] Q. Zhang, L. Gui, F. Hou, J. Chen, S. Zhu, and F. Tian, “Dynamic task offload-
ing and resource allocation for mobile-edge computing in dense cloud ran,” IEEE
Internet of Things Journal, vol. 7, no. 4, pp. 3282–3299, 2020.

[40] C.-F. Liu, M. Bennis, M. Debbah, and H. V. Poor, “Dynamic task offloading and re-
source allocation for ultra-reliable low-latency edge computing,” IEEE Transactions
on Communications, vol. 67, no. 6, pp. 4132–4150, 2019.

[41] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic, latency-optimal vnf
placement at the network edge,” in Ieee infocom 2018-ieee conference on computer
communications, pp. 693–701, IEEE, 2018.

[42] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey on service function
chaining,” Journal of Network and Computer Applications, vol. 75, pp. 138–155,
2016.

128 LIST OF REFERENCES

[43] A. Abouaomar, S. Cherkaoui, Z. Mlika, and A. Kobbane, “Resource provisioning in
edge computing for latency-sensitive applications,” IEEE Internet of Things Journal,
vol. 8, no. 14, pp. 11088–11099, 2021. Early Access.

[44] A. Abouaomar, S. Cherkaoui, A. Kobbane, and O. A. Dambri, “A resources repre-
sentation for resource allocation in fog computing networks,” in 2019 IEEE Global
Communications Conference (GLOBECOM), pp. 1–6, IEEE, 2019.

[45] O. Alhussein and W. Zhuang, “Robust online composition, routing and nf place-
ment for nfv-enabled services,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 6, pp. 1089–1101, 2020.

[46] L. Yala, P. A. Frangoudis, and A. Ksentini, “Latency and availability driven vnf
placement in a mec-nfv environment,” in 2018 IEEE Global Communications Con-
ference (GLOBECOM), pp. 1–7, IEEE, 2018.

[47] S. Agarwal, F. Malandrino, C.-F. Chiasserini, and S. De, “Joint vnf placement and
cpu allocation in 5g,” in IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications, pp. 1943–1951, 2018.

[48] L. Liu, S. Guo, G. Liu, and Y. Yang, “Joint dynamical vnf placement and sfc rout-
ing in nfv-enabled sdns,” IEEE Transactions on Network and Service Management,
pp. 1–1, 2021.

[49] N. Toumi, O. Bernier, D.-E. Meddour, and A. Ksentini, “On using physical program-
ming for multi-domain sfc placement with limited visibility,” IEEE Transactions on
Cloud Computing, 2020.

[50] H.-W. Tseng, T.-T. Yang, and F.-T. Hsu, “An mec-based vnf placement and schedul-
ing scheme for ar application topology,” in 2021 IEEE Wireless Communications and
Networking Conference (WCNC), pp. 1–6, IEEE, 2021.

[51] A. Abouaomar, S. Cherkaoui, Z. Mlika, and A. Kobbane, “Service Function Chaining
in MEC: A Mean-Field Game and Reinforcement Learning Approach,” 2021.

[52] J. Li, W. Shi, N. Zhang, and X. Shen, “Delay-aware vnf scheduling: A reinforce-
ment learning approach with variable action set,” IEEE Transactions on Cognitive
Communications and Networking, vol. 7, no. 1, pp. 304–318, 2021.

[53] J. Li, W. Shi, N. Zhang, and X. S. Shen, “Reinforcement learning based vnf schedul-
ing with end-to-end delay guarantee,” in 2019 IEEE/CIC International Conference
on Communications in China (ICCC), pp. 572–577, 2019.

[54] J. Li, W. Shi, P. Yang, and X. Shen, “On dynamic mapping and scheduling of service
function chains in sdn/nfv-enabled networks,” in 2019 IEEE Global Communications
Conference (GLOBECOM), pp. 1–6, 2019.

[55] I. Sarrigiannis, K. Ramantas, E. Kartsakli, P.-V. Mekikis, A. Antonopoulos, and
C. Verikoukis, “Online vnf lifecycle management in an mec-enabled 5g iot architec-
ture,” IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4183–4194, 2020.

[56] T. Wang, J. Zu, G. Hu, and D. Peng, “Adaptive service function chain scheduling
in mobile edge computing via deep reinforcement learning,” IEEE Access, vol. 8,
pp. 164922–164935, 2020.

LIST OF REFERENCES 129

[57] P. Kaliyammal Thiruvasagam, V. J. Kotagi, and S. R. Murthy, “A reliability-aware,
delay guaranteed, and resource efficient placement of service function chains in soft-
warized 5g networks,” IEEE Transactions on Cloud Computing, pp. 1–1, 2020.

[58] G. Wang, S. Zhou, S. Zhang, Z. Niu, and X. Shen, “Sfc-based service provisioning
for reconfigurable space-air-ground integrated networks,” IEEE Journal on Selected
Areas in Communications, vol. 38, no. 7, pp. 1478–1489, 2020.

[59] Q. Li, X. Wang, T. Zhao, Y. Wang, Z. Li, and L. Rui, “An improved genetic algorithm
for the scheduling of virtual network functions,” in 2019 20th Asia-Pacific Network
Operations and Management Symposium (APNOMS), pp. 1–4, 2019.

[60] Y.-R. Haung, “A qoe-aware strategy for supporting service continuity in an mcc
environment,” Wireless Personal Communications, vol. 116, no. 1, pp. 629–654,
2021.

[61] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-aware dynamic
service placement for mobile edge computing,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 10, pp. 2333–2345, 2018.

[62] Y.-T. Chen and W. Liao, “Mobility-aware service function chaining in 5g wireless
networks with mobile edge computing,” in ICC 2019-2019 IEEE International Con-
ference on Communications (ICC), pp. 1–6, IEEE, 2019.

[63] P. Roy, A. Tahsin, S. Sarker, T. Adhikary, M. A. Razzaque, and M. M. Hassan, “User
mobility and quality-of-experience aware placement of virtual network functions in
5g,” Computer Communications, vol. 150, pp. 367–377, 2020.

[64] R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, and H. Flinck, “Towards a fast
service migration in 5g,” in 2018 IEEE Conference on Standards for Communications
and Networking (CSCN), pp. 1–6, IEEE, 2018.

[65] R. A. Addad, T. Taleb, M. Bagaa, D. L. C. Dutra, and H. Flinck, “Towards mod-
eling cross-domain network slices for 5g,” in 2018 IEEE Global Communications
Conference (GLOBECOM), pp. 1–7, IEEE, 2018.

[66] R. A. Addad, T. Taleb, H. Flinck, M. Bagaa, and D. Dutra, “Network slice mobility in
next generation mobile systems: Challenges and potential solutions,” IEEE Network,
vol. 34, no. 1, pp. 84–93, 2020.

[67] M. Abu Sharkh, A. Shami, and M. Kalil, The Era of the Personal Cloud: What
Does It Mean for Cloud Providers?: From Hype to Reality, pp. 1–15. 01 2019.

[68] K. Toczé and S. Nadjm-Tehrani, “A taxonomy for management and optimization
of multiple resources in edge computing,” Wireless Communications and Mobile
Computing, vol. 2018, 2018.

[69] ETSI, “Multi-access edge computing (MEC) MEC management ETSI GS MEC 010-
2, part 2: Application lifecycle, rules and requirements management,” white paper,
ETSI, Nov. 2019.

[70] ETSI, “Multi-access edge computing (MEC) ETSI GS MEC 011: Edge platform
application enablement,” white paper, ETSI, Nov. 2019.

[71] ETSI, “Multi-access edge computing (MEC) ETSI GS MEC 021: Application mo-
bility service API,” white paper, ETSI, Jan. 2020.

130 LIST OF REFERENCES

[72] Q. Zhang, L. Gui, F. Hou, J. Chen, S. Zhu, and F. Tian, “Dynamic task offload-
ing and resource allocation for mobile-edge computing in dense cloud ran,” IEEE
Internet of Things Journal, vol. 7, no. 4, pp. 3282–3299, 2020.

[73] M. Merluzzi, P. D. Lorenzo, and S. Barbarossa, “Dynamic joint resource allocation
and user assignment in multi-access edge computing,” in ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 4759–4763, 2019.

[74] S. Guo, X. Hu, G. Dong, W. Li, and X. Qiu, “Mobile edge computing resource
allocation: A joint stackelberg game and matching strategy,” International Journal
of Distributed Sensor Networks, vol. 15, no. 7, p. 1550147719861556, 2019.

[75] Y. Du, J. Li, L. Shi, T. Liu, F. Shu, and Z. Han, “Two-tier matching game in small cell
networks for mobile edge computing,” IEEE Transactions on Services Computing,
pp. 1–1, 2019.

[76] Z. Zhou, P. Liu, J. Feng, Y. Zhang, S. Mumtaz, and J. Rodriguez, “Computation
resource allocation and task assignment optimization in vehicular fog computing: A
contract-matching approach,” IEEE Transactions on Vehicular Technology, vol. 68,
no. 4, pp. 3113–3125, 2019.

[77] B. Gu and Z. Zhou, “Task offloading in vehicular mobile edge computing: A
matching-theoretic framework,” IEEE Vehicular Technology Magazine, vol. 14, no. 3,
pp. 100–106, 2019.

[78] H. R. Arkian, A. Diyanat, and A. Pourkhalili, “Mist: Fog-based data analytics
scheme with cost-efficient resource provisioning for iot crowdsensing applications,”
Journal of Network and Computer Applications, vol. 82, pp. 152–165, 2017.

[79] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards qos-aware fog service
placement,” in 2017 IEEE 1st international conference on Fog and Edge Computing
(ICFEC), pp. 89–96, IEEE, 2017.

[80] F. Z. Yousaf and T. Taleb, “Fine-grained resource-aware virtual network function
management for 5g carrier cloud,” IEEE Network, vol. 30, no. 2, pp. 110–115, 2016.

[81] B. P. Rimal, M. Maier, and M. Satyanarayanan, “Experimental testbed for edge com-
puting in fiber-wireless broadband access networks,” IEEE Communications Maga-
zine, vol. 56, no. 8, pp. 160–167, 2018.

[82] A. Abouaomar, A. Kobbane, and S. Cherkaoui, “Matching-game for user-fog assign-
ment,” in 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6,
IEEE, 2018.

[83] D. Merkel, “Docker: lightweight linux containers for consistent development and
deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

[84] D. R.-J. G.-J. Rydning, “The digitization of the world from edge to core,” Framing-
ham: International Data Corporation, 2018.

[85] J. Xu, K. Ota, and M. Dong, “Saving energy on the edge: In-memory caching for
multi-tier heterogeneous networks,” IEEE Communications Magazine, vol. 56, no. 5,
pp. 102–107, 2018.

LIST OF REFERENCES 131

[86] J. Zhang, X. Hu, Z. Ning, E. C. . Ngai, L. Zhou, J. Wei, J. Cheng, B. Hu, and
V. C. M. Leung, “Joint resource allocation for latency-sensitive services over mobile
edge computing networks with caching,” IEEE Internet of Things Journal, vol. 6,
no. 3, pp. 4283–4294, 2019.

[87] M. J. Neely, “Stability and probability 1 convergence for queueing networks via
lyapunov optimization,” Journal of Applied Mathematics, vol. 2012, 2012.

[88] W. Lin, J. Z. Wang, C. Liang, and D. Qi, “A threshold-based dynamic resource
allocation scheme for cloud computing,” Procedia Engineering, vol. 23, pp. 695–703,
2011.

[89] A. Kaehler and G. Bradski, Learning OpenCV 3: computer vision in C++ with the
OpenCV library. " O’Reilly Media, Inc.", 2016.

[90] N. Muslim and S. Islam, “Face recognition in the edge cloud,” in Proceedings of
the International Conference on Imaging, Signal Processing and Communication,
pp. 5–9, 2017.

[91] C.-F. Liu, S. Samarakoon, M. Bennis, and H. V. Poor, “Fronthaul-aware software-
defined wireless networks: Resource allocation and user scheduling,” IEEE Transac-
tions on Wireless Communications, vol. 17, no. 1, pp. 533–547, 2017.

[92] J. Navarro-Ortiz, P. Romero-Diaz, S. Sendra, P. Ameigeiras, J. J. Ramos-Munoz,
and J. M. Lopez-Soler, “A survey on 5g usage scenarios and traffic models,” IEEE
Communications Surveys Tutorials, vol. 22, no. 2, pp. 905–929, 2020.

[93] A. Ksentini and P. A. Frangoudis, “Toward slicing-enabled multi-access edge com-
puting in 5g,” IEEE Network, vol. 34, no. 2, pp. 99–105, 2020.

[94] B. Nour, S. Mastorakis, and A. Mtibaa, “Compute-Less Networking: Perspectives,
Challenges, and Opportunities,” IEEE Network, vol. 34, no. 6, pp. 259–265, 2020.

[95] A. Filali, Z. Mlika, S. Cherkaoui, and A. Kobbane, “Preemptive sdn load balanc-
ing with machine learning for delay sensitive applications,” IEEE Transactions on
Vehicular Technology, pp. 1–1, 2020.

[96] J. Gil Herrera and J. F. Botero, “Resource allocation in nfv: A comprehensive
survey,” IEEE Transactions on Network and Service Management, vol. 13, no. 3,
pp. 518–532, 2016.

[97] A. Abouaomar, A. Filali, and A. Kobbane, “Caching, device-to-device and fog com-
puting in 5 th cellular networks generation: Survey,” in 2017 International Con-
ference on Wireless Networks and Mobile Communications (WINCOM), pp. 1–6,
IEEE, 2017.

[98] A. Tak and S. Cherkaoui, “Federated edge learning: Design issues and challenges,”
IEEE Network, 2020.

[99] O. Alhussein and W. Zhuang, “Robust online composition, routing and nf place-
ment for nfv-enabled services,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 6, pp. 1089–1101, 2020.

[100] L. Yala, P. A. Frangoudis, and A. Ksentini, “Latency and Availability Driven VNF
Placement in a MEC-NFV Environment,” in Proc. IEEE Global Commun. Conf.
(GLOBECOM), pp. 1–7, 2018.

132 LIST OF REFERENCES

[101] S. Lhazmir, M.-A. Koulali, A. Kobbane, and H. Elbiaze, “Performance analysis of
uav-assisted ferrying for the internet of things,” in 2019 IEEE Symposium on Com-
puters and Communications (ISCC), pp. 1–6, IEEE, 2019.

[102] M. Azizian, S. Cherkaoui, and A. S. Hafid, “Vehicle software updates distribution
with sdn and cloud computing,” IEEE Communications Magazine, vol. 55, no. 8,
pp. 74–79, 2017.

[103] R. W. Wolff, “Poisson arrivals see time averages,” Operations Research, vol. 30, no. 2,
pp. 223–231, 1982.

[104] K. Gopalan, L. Huang, G. Peng, T.-C. Chiueh, and Y.-J. Lin, “Statistical admission
control using delay distribution measurements,” ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), vol. 2, no. 4, pp. 258–281,
2006.

[105] G. A. Marin, X. Mang, E. Gelenbe, and R. O. Onvural, “Statistical call admission
control,” Apr. 2001. US Patent 6,222,824.

[106] A. Gupta, G. Guruganesh, B. Peng, and D. Wajc, “Stochastic online metric match-
ing,” arXiv preprint arXiv:1904.09284, 2019.

[107] S. Dehghani, S. Ehsani, M. Hajiaghayi, V. Liaghat, and S. Seddighin, “Stochastic
k-server: How should uber work?,” arXiv preprint arXiv:1705.05755, 2017.

[108] N. Thakral, “Matching with stochastic arrival,” in AEA Papers and Proceedings,
vol. 109, pp. 209–12, 2019.

[109] P. E. Caines, M. Huang, and R. P. Malhamé, “Mean field games.,” 2015.
[110] A. F. Hanif, H. Tembine, M. Assaad, and D. Zeghlache, “Mean-field games for re-

source sharing in cloud-based networks,” IEEE/ACM Transactions on Networking,
vol. 24, no. 1, pp. 624–637, 2015.

[111] S. Ishikawa, “Fixed points by a new iteration method,” Proceedings of the American
Mathematical Society, vol. 44, no. 1, pp. 147–150, 1974.

[112] D. Gale and L. S. Shapley, “College admissions and the stability of marriage,” The
American Mathematical Monthly, vol. 120, no. 5, pp. 386–391, 2013.

[113] Z. Han, D. Niyato, W. Saad, T. Başar, and A. Hjørungnes, Game theory in wireless
and communication networks: theory, models, and applications. Cambridge univer-
sity press, 2012.

[114] D. Fragiadakis, A. Iwasaki, P. Troyan, S. Ueda, and M. Yokoo, “Strategyproof match-
ing with minimum quotas,” ACM Transactions on Economics and Computation
(TEAC), vol. 4, no. 1, pp. 1–40, 2016.

[115] S. Wang, V. Charissis, J. Campbell, W. Chan, D. Moore, and D. Harrison, “An
Investigation Into the Use of Virtual Reality Technology for Passenger Infotain-
ment in a Vehicular Environment,” in Proc. IEEE Int. Conf. Adv. Mater. Sci. Eng.
(ICAMSE), pp. 404–407, 2016.

[116] H. Khan, S. Samarakoon, and M. Bennis, “Enhancing Video Streaming in Vehicular
Networks via Resource Slicing,” IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 3513–
3522, 2020.

LIST OF REFERENCES 133

[117] P. A. Frangoudis and A. Ksentini, “Service migration versus service replication in
multi-access edge computing,” in 2018 14th International Wireless Communications
Mobile Computing Conference (IWCMC), pp. 124–129, 2018.

[118] Z. Mlika and S. Cherkaoui, “Network Slicing with MEC and Deep Reinforcement
Learning for the Internet of Vehicles,” IEEE Network, pp. 1–7, 2021. Early Access.

[119] A. Aissioui, A. Ksentini, A. M. Gueroui, and T. Taleb, “On enabling 5g automo-
tive systems using follow me edge-cloud concept,” IEEE Transactions on Vehicular
Technology, vol. 67, no. 6, pp. 5302–5316, 2018.

[120] T. Ouyang, R. Li, X. Chen, Z. Zhou, and X. Tang, “Adaptive User-Managed Service
Placement for Mobile Edge Computing: An Online Learning Approach,” in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), pp. 1468–1476, 2019.

[121] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on Architecture and
Computation Offloading,” IEEE Commun. Surv. Tutor., vol. 19, no. 3, pp. 1628–
1656, 2017.

[122] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung, “Dynamic Ser-
vice Migration and Workload Scheduling in Edge-Clouds,” Performance Evaluation,
vol. 91, pp. 205–228, 2015.

[123] Z. Mlika, M. Goonewardena, W. Ajib, and H. Elbiaze, “User–Base-Station Associa-
tion in HetSNets: Complexity and Efficient Algorithms,” IEEE Trans. Veh. Technol.,
vol. 66, no. 2, pp. 1484–1495, 2017.

[124] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-
tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and
D. Hassabis, “Human-Level Control Through Deep Reinforcement Learning,” Na-
ture, vol. 518, no. 7540, pp. 529–533, 2015.

[125] H. Van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning with Double
Q-Learning,” in Proc. AAAI Conf. Artif. Intell., vol. 30, 2016.

[126] H. Khan, P. Luoto, S. Samarakoon, M. Bennis, and M. Latva-Aho, “Network Slicing
for Vehicular Communication,” Trans. Emerg. Telecommun. Technol., vol. 32, no. 1,
p. e3652, 2021.

[127] H. D. R. Albonda and J. Pérez-Romero, “An Efficient RAN Slicing Strategy for
a Heterogeneous Network With eMBB and V2X Services,” IEEE Access, vol. 7,
pp. 44771–44782, 2019.

134 LIST OF REFERENCES

	Introduction
	Objectives
	Contributions and Originality
	Thesis Plan

	State of the Art
	Edge Computing / Multi-Access Edge Computing
	Background

	Resource Allocation at the Edge
	Single-resource focus
	Multiple-resource focus
	Conclusion

	Service Function Chaining Resource Provisioning at the Edge
	Background
	SFC Composition
	SFC Scheduling
	Conclusion

	Service Migration at the Edge: Vehicular Network Use Case

	Resource Provisioning in Edge Computing for Latency Sensitive Applications
	Abstract
	Introduction
	System Model
	Network architecture
	Local processing
	Edge processing
	Problem Formulation

	Proposed Solution
	Solution Overview
	Proposed Solution

	Simulation Results
	Related Works
	Conclusion

	Service Function Chaining in MEC: A Mean-Field Game and Reinforcement Learning Approach
	Abstract
	Introduction
	System Model
	Physical network substrate
	Service Requests
	EN Physical Resources

	Problem Formulation
	The VFN placement and chaining subproblem
	The VNF scheduling subproblem

	Theoretical Game Approach solution
	The VNFs Placement and Chaining
	The VNF scheduling subproblem

	Simulation Results
	Games stability and convergence
	System Evaluation

	Conclusion
	Related Works

	A Deep Reinforcement Learning Service Migration in Slice-enabled Internet of Vehicles
	Abstract
	Introduction
	System Model
	Problem Formulation
	Problem Formulation
	Proposed Solution
	The MDP Formulation
	The Training Phase of DQL
	The Inference Phase of DQL

	Simulation Results
	Related Works
	Conclusion

	Conclusions and Future Works
	Conclusion
	Future Works
	Conclusion
	Travaux Futurs

	LIST OF REFERENCES

