181 research outputs found

    Spotted hyena optimizer algorithm for capacitor allocation in radial distribution system with distributed generation and microgrid operation considering different load types

    Get PDF
    In this paper, the optimal allocation of constant and switchable capacitors is presented simultaneously in two operation modes, grid-connected and islanded, for a microgrid. Different load levels are considered by employing non-dispatchable distributed generations. The objective function includes minimising the energy losses cost, the cost of peak power losses, and the cost of the capacitor. The optimization problem is solved using the spotted hyena optimizer (SHO) algorithm to determine the optimal size and location of capacitors, considering different loading levels and the two operation modes. In this study, a three-level load and various types of loads, including constant power, constant current, and constant impedance are considered. The proposed method is implemented on a 24-bus radial distribution network. To evaluate the performance of the SHO, the results are compared with GWO and the genetic algorithm (GA). The simulation results demonstrate the superior performance of the SHO in reducing the cost of losses and improving the voltage profile during injection and non-injection of reactive power by distributed generations in two operation modes. The total cost and net saving values for DGs only with the capability of active power injection is achieved 105,780 and100,560.54 and 100,560.54 , respectively and for DGs with the capability of active and reactive power injection is obtained 89,568 and76,850.46 and 76,850.46 , respectively using the SHO. The proposed method has achieved more annual net savings due to the lower cost of losses than other optimization methods

    Optimal sizing and placement of capacitors in the isolated microgrid throughout the day considering the demand response program

    Get PDF
    Reactive power compensation (RPC) is a big problem during power system operation. Parenthetically, capacitor allocation and sizing may be the only convenient solution for RPC of power systems. The loss sensitivity factor (LSF) is applied here for finding the optimum capacitor position. This paper presents quasi-oppositional fast convergence evolutionary programming (QOFCEP), fast convergence evolutionary programming (FCEP), and evolutionary programming (EP) for the optimum location and sizing of shunt capacitors in the isolated microgrid (MG) for minimizing total real power loss throughout the day with and without the demand response program (DRP). The 33-node, 69-node, and 118-node isolated MGs have been studied to authenticate the efficacy of the suggested approach. Each MG includes small hydro power plants (SHPPs), solar PV plants (SPVPs), wind turbine generators (WTGs), diesel generators (DGs), and plug-in electric vehicles (PEVs)

    Active and Reactive Power loss Minimization Along with Voltage profile Improvement for Distribution Reconfiguration

    Get PDF
    Optimal distribution network reconfiguration (DNR), distributed generations location and sizing (DGs-LS), tap changer adjustment (TCA), and capacitors bank location and sizing (CAs-SL) are different methodologies used to reduce loss and enhance the voltage profile of distribution systems. DNR is the process of changing the network topography by changing both sectionalized and tie switch states. The optimal location looks to find the optimal setting of the DG and CA within the distribution network. Optimal size seeks to find the optimal output generation of both DG and CA. The TCA looks to find the optimal position for TC. These methods are challenging optimization problems and resort to meta-heuristic techniques to find a globally optimal solution. This paper presents a new methodology with which to simultaneously solve the problem of DNR, DGs-LS, TCA, and CAs-SL in distribution networks. This work aims to minimize active and reactive power losses, including voltage profile improvement using a multi-objective decision approach. The firefly algorithm (FA) and analytic hierarchy process (AHP) are used to optimize the fitness function and determine the function weight factors through the use of MATLAB software. Several scenarios were considered on the IEEE 69-bus network. In terms of active power and reactive losses, reductions in the test system of 96.16% and 92.7%, respectively, were achieved, evidencing the positive impact of the proposed methodology on distribution networks

    Impact of demand side management approaches for the enhancement of voltage stability loadability and customer satisfaction index

    Get PDF
    DATA AVAILABILITY : Data will be made available on request.This research work presents the tri-level optimization framework for the optimal scheduling of grid-connected and autonomous microgrids to diminish power losses and maximize loadability. Since the network's voltage profile depends on the loading level, the flexible load shaping-based demand-side management strategy is incorporated to investigate its impact on microgrid loadability. With the consideration of uncertain parameters related to renewable power generation, load demand, and power loss, voltage limit constraints, the resultant problem is formulated as a stochastic mixed-integer non-linear problem to enhance microgrid loadability and optimize daily operating costs. The interdependency of demand side management program and microgrid loadability is investigated. The seasonal load profiles covering the weekend and weekday loads in winter, summer, and spring/fall seasons are examined in this research work. The enhanced versions of the distribution networks IEEE-33 and IEEE-69 based microgrid test systems are chosen to evaluate the proposed framework in both off-grid and autonomous modes of operation. Simultaneously, the overall customer satisfaction index is evaluated and improved according to the seasonal load profiles winter weekday, winter-weekend, summer-weekday, summer-weekend, spring-weekday, and spring-weekend by 8.68%, 7.97%, 16.7%, 19.62%, 17.14%, 20.50% respectively. The recently reported Whale Optimization Algorithm is adopted to solve the proposed optimization problem, and the obtained simulation results are validated by comparing them with popular metaheuristic algorithms. The computational burden on the utility is reduced for optimal scheduling of grid-integrated microgrid to extract maximum power by maintaining network voltage profile.The National Key R&D Program of China.https://www.elsevier.com/locate/apenergyhj2024Electrical, Electronic and Computer EngineeringSDG-07:Affordable and clean energ

    Critical Review of Different Methods for Siting and Sizing Distributed-generators

    Get PDF
    Due to several benefits attached to distributed generators such as reduction in line losses, improved voltage profile, reliable system etc., the study on how to optimally site and size distributed generators has been on the increase for more than two decades. This has propelled several researchers to explore various scientific and engineering powerful simulation tools, valid and reliable scientific methods like analytical, meta-heuristic and hybrid methods to optimally place and size distributed generator(s) for optimal benefits. This study gives a critical review of different methods used in siting and sizing distributed generators alongside their results, test systems and gaps in literature

    A Review of Active Management for Distribution Networks: Current Status and Future Development Trends

    Get PDF
    Driven by smart distribution technologies, by the widespread use of distributed generation sources, and by the injection of new loads, such as electric vehicles, distribution networks are evolving from passive to active. The integration of distributed generation, including renewable distributed generation changes the power flow of a distribution network from unidirectional to bi-directional. The adoption of electric vehicles makes the management of distribution networks even more challenging. As such, an active network management has to be fulfilled by taking advantage of the emerging techniques of control, monitoring, protection, and communication to assist distribution network operators in an optimal manner. This article presents a short review of recent advancements and identifies emerging technologies and future development trends to support active management of distribution networks

    Improvement of active distribution systems with high penetration capacities of shunt reactive compensators and distributed generators using Bald Eagle Search

    Get PDF
    This work proposes an intelligent allocation of distributed generation (DG) units and shunt reactive compensators (SRC) with high penetration capacities into distribution systems for power loss mitigation using the Bald Eagle Search (BES) optimization algorithm. The intelligent allocation causes a reduction in voltage variations and enhances the voltage stability of the systems. The SRC units include shunt capacitors (SC), Static Var Compensators (SVC), and Distribution Static Compensators (DSTATCOM), which are determined according to their capacities. The optimization study includes the 33-bus and the 118-bus distribution systems as medium to large systems. Performance parameters, including the reactive power loss, Total Voltage Deviation (TVD), and Stability Index (SI), besides the power loss, are recorded for each optimization case study. When the BES algorithm optimizes 1, 2, and 3 DG units operating at optimal power factor (OPF) into the 33-bus systems, percentage reductions of power loss reach 67.84%, 86.49%, and 94.44%, respectively. Reductions of 28.26%, 34.47%, 35.24%, and 35.44% are achieved in power loss while optimizing 1, 3, 5, and 7 SRC units. With a combination of DG/SRC units, the power loss reductions achieve 72.30%, 93.89%, and 97.49%, optimizing 1, 3, and 5 pairs of them. Similar reductions are achieved for the rest of the performance parameters. With high penetration of compensators into the 118-bus system, the percentage reductions of power loss are 29.14%, 73.27%, 83.72%, 90.14%, and 93.41% for optimal allocations of 1, 3, 5, 7, and 9 DG units operating at OPF. The reduction reaches 11.15%, 39.08% with 1 and 21 devices when optimizing the SRC. When DG SRC units are optimized together, power loss turns out to be 32.83%, 73.31%, 83.32%, 88.52%, and 91.29% with 1, 3, 5, 7, and 9 pairs of them. The approach leads to an enhanced voltage profile near an acceptable range of bus voltages, reduces the voltage fluctuation substantially, and enhances the system stability. The study also ensures the BES algorithm’s capability to solve these nonlinear optimization problems with high decision-variable numbers

    Efficient and Risk-Aware Control of Electricity Distribution Grids

    Get PDF
    This article presents an economic model predictive control (EMPC) algorithm for reducing losses and increasing the resilience of medium-voltage electricity distribution grids characterized by high penetration of renewable energy sources and possibly subject to natural or malicious adverse events. The proposed control system optimizes grid operations through network reconfiguration, control of distributed energy storage systems (ESSs), and on-load tap changers. The core of the EMPC algorithm is a nonconvex optimization problem integrating the ESSs dynamics, the topological and power technical constraints of the grid, and the modeling of the cascading effects of potential adverse events. An equivalent (i.e., having the same optimal solution) proxy of the nonconvex problem is proposed to make the solution more tractable. Simulations performed on a 16-bus test distribution network validate the proposed control strategy

    Impact of distributed generation on protection and voltage regulation of distribution systems : a review

    Get PDF
    During recent decades with the power system restructuring process, centralized energy sources are being replaced with decentralized ones. This phenomenon has resulted in a novel concept in electric power systems, particularly in distribution systems, known as Distributed Generation (DG). On one hand, utilizing DG is important for secure power generation and reducing power losses. On the other hand, widespread use of such technologies introduces new challenges to power systems such as their optimal location, protection devices' settings, voltage regulation, and Power Quality (PQ) issues. Another key point which needs to be considered relates to specific DG technologies based on Renewable Energy Sources (RESs), such as wind and solar, due to their uncertain power generation. In this regard, this paper provides a comprehensive review of different types of DG and investigates the newly emerging challenges arising in the presence of DG in electrical grids.fi=vertaisarvioitu|en=peerReviewed
    corecore