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Francesco Delli Priscoli , Member, IEEE

Abstract—This article presents an economic model predictive
control (EMPC) algorithm for reducing losses and increasing the
resilience of medium-voltage electricity distribution grids charac-
terized by high penetration of renewable energy sources and pos-
sibly subject to natural or malicious adverse events. The proposed
control system optimizes grid operations through network recon-
figuration, control of distributed energy storage systems (ESSs),
and on-load tap changers. The core of the EMPC algorithm is a
nonconvex optimization problem integrating the ESSs dynamics,
the topological and power technical constraints of the grid, and
the modeling of the cascading effects of potential adverse events.
An equivalent (i.e., having the same optimal solution) proxy of
the nonconvex problem is proposed to make the solution more
tractable. Simulations performed on a 16-bus test distribution
network validate the proposed control strategy.

Index Terms—Energy storage systems (ESSs), model predictive
control (MPC), network reconfiguration, resilient control, smart
grids.

NOMENCLATURE

Indices and Sets

k Current time.
h Time index in the control window, h ∈ [k, k +

N − 1].
i, j Bus indices.
VESS Set of network nodes hosting ESSs.
VDG Set of network nodes hosting DGs.
VSB Set of HV/MV substations.

Parameters

A Set of network lines.
Bij Susceptance of line (i, j).
CESS

i Capacity (kWh) of the ESSs at bus i.
Gij Conductance of line (i, j).
N Length of the prediction horizon.
ri, rij Risk value associated to bus i and line (i, j).
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SOCref
i Reference state of charge of the ESS at bus i.

S,Z Auxiliary super source and super sink nodes.
T Sampling period.
V Set of network nodes.
V OLTC
ij OLTC voltage level at node i for turn ratio j.

xk Vector gathering the state feedback at time k.
Yij Line series admittance.
α, β, γ, δ, ε Weight parameters of the objective function.

Control Variables

aij(h) Connection status of line (i, j) at time h.
P ESS
i , QESS

i Active/reactive power of the ESS at bus i.
uk Vector of the control variables over the control

window.
δij Boolean variable indicating the OLTC level se-

lected at (substation) bus i.
σ Load shedding factor.

Other Variables

F Target function.
Ci Centrality of node i.
fi,j , f

c
i,j Radiality and Centrality flux in line (i, j).

Ii,j Current flowing in line (i, j).
Pi, Qi Active/reactive power injected at bus i.
Pij , Qij Active/reactive power injected into line (i, j).
PDG
i , QDG

i Active/reactive power generated by the DG at bus
i.

P load
i , Qload

i Active/reactive load at bus i.
Pij , Qij Active/reactive power flows from node i to node

j.
Rij Auxiliary variable.
SOCi State of charge of the ESS at bus i.
Tij Auxiliary variable.
ui Auxiliary variable.
Vi Voltage magnitude at bus i.
θi, θij Voltage angle at bus i, θij = θi − θj .
min,max Limit values of the corresponding variable.

Acronyms

DG Distributed generation.
EMPC Economic model predictive control.
ESS Energy storage system.
HV High voltage.
LV Low voltage.
MPC Model predictive control.
MV Medium voltage.
OLTC On-load tap changer.
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OPF Optimal power flow.
PV Photovoltaic.
RES Renewable energy sources.
SAIDI System average interruption duration index.
SAIFI System average interruption frequency index.
SCADA Supervisory control and data acquisition.
SOC State of charge.

I. INTRODUCTION

A. Background and Aim

E LECTRICITY distribution networks are cyber-physical
systems that work based on the interplay of the phys-

ical grid, characterized by its constraints and dynamics, and
dedicated information and communication technology systems
(supervisory control and data acquisition, energy management
systems, etc.). The transition toward distributed generation (DG)
and electro-mobility is making the operation of the electric-
ity network more complex [1], [2]; at the same time, digital
innovations potentially introduce new vulnerabilities and raise
concerns for cyber security [3]. This article proposes a model
predictive control (MPC) strategy for minimizing network losses
and the impact of adverse events in medium-voltage (MV) dis-
tribution grids characterized by high renewable energy sources
(RES) penetration. This is achieved by coordinating the control
of line switches (which allow to reconfigure the topology of
the grid), the on-load tap changer (OLTC) deployed at the level
of high voltage (HV) to MV substations (which enable voltage
control), and the distributed energy storage systems (ESS). Three
main use cases are discussed (see Section II): 1) power losses
minimization during normal grid operation; 2) risk-aware grid
operation, in case information about the operative level of the
different subsystems of the grid is available; and 3) resilient
grid control in case of loss of power at the HV/MV primary
substations.

B. Related Works

Although the problem of ensuring an adequate level of secu-
rity against cyber-physical attacks is relatively recent, the one
of efficiently operating the electricity distribution grid has been
largely studied in the technical literature, typically considering
the computation of optimal network configurations minimizing
the network power losses. Recent relevant papers dealing with
network reconfiguration and at the base of this work are [4]–
[13]. In [4] and [5], a network reconfiguration algorithm was
presented to minimize power losses in a scenario foreseeing
high penetration of DG. In particular, Jabr et al. [4] presented an
exact, nonconvex and nonlinear formulation of the problem and
show how, based on a load-flow technique introduced in [6], the
nonconvex formulation can be turned into an equivalent convex
one, more suitable for online applications, such as the one in this
article. A similar convexification procedure, presented in [14],
is used in [5] for the relaxation of the nonlinearities of the
power flow equations. In [7] instead, a coordinated control for
voltage regulation and network reconfiguration was proposed.
The present article extends the contributions in [4], [5], and [7]
by introducing the ESS control in combination with the net-
work reconfiguration and OLTC control, and by extending the

formulation to the multitime slot case, utilizing the MPC ap-
proach and, thus, providing predictive capabilities to the control
strategy.

In [9], Muhtazaruddin et al. jointly consider network reconfig-
uration and optimal placement and sizing of DG and capacitors,
via an artificial bee colony optimization approach. A similar
placement and sizing optimization problem is solved for ESS and
DG in [15], which proposes yearly reconfiguration to increase
the network efficiency and optimally plan upgrading interven-
tions. The minimization of operative costs and power losses is
proposed in [15], by defining a stochastic mixed integer linear
programming problem that clusters demand-generation patterns
into so-called snapshots. Another recent work that deals with
both optimal ESS placement and efficient network operation
is [10], where Bai et al. combined the problem of planning ESS
placement and sizing with an hourly network reconfiguration in
order to minimize power losses. Differentiating from the above
works, this article deals with online optimization (every 15 min)
of network operation, to increase both the efficiency and the
resiliency of the network in response to real-time forecasts of
load and generation profiles.

Another key reference for the present article is [16], which
shows that the network radiality and the connectivity of loads to
HV/MV substations—two typical requirements in the operation
of distribution grids—can be guaranteed, in passive networks, by
combining a topological constraint on the number of active lines
with the power flow equations (see Section III). This is, however,
not sufficient to guarantee radiality in active networks, hosting
energy sources, such as ESS and DG [17]. A work around in [16]
is to add fictitious loads at the DG nodes and impose their con-
nection to the substation via additional constraints. The present
article extends [16] by introducing a first set of conditions to en-
force radiality, and a second set of conditions to capture specific
topological properties of the network configuration, such as hop
distance from the substation, which allows to model aspects such
as cascading effects and interdependencies in the optimization
problem. As a result, the proposed control strategy will not give
rise to loops in the network and/or islanded configurations during
normal operation, unless explicitly allowed via the selection of
specific control parameters (see Section II-A3).

Also, heuristic methods have been proposed for network
reconfiguration. In [18], Chang et al. employed colored Petri
networks to develop a set of reconfiguration rules; in [19], a
runner-root algorithm is developed to reduce power losses and
balance the loads in the network; in [20], a genetic algorithm is
presented to solve the optimal allocation of DG and the network
reconfiguration problem.

Finally, two other relevant works related to the present article
are [12] and [13], which propose network reconfiguration to
minimize grid losses and optimize grid reliability. Specifically,
the latter is achieved via the optimization of network reliability
indicators such as the system average interruption duration index
and the system average interruption frequency index [21], based
on the knowledge of historical data. The present article extends
the approach in [12] to the real-time optimization of network
risk, by introducing the reaction to notification alerts coming
from a risk predictor system (see Section II), without relying on
heuristic solutions and while coordinating the reconfiguration
with ESS control.
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C. Main Contributions

The main contributions and the distinctive features of this
article are as follows.

1) The formulation of a joint network reconfiguration, ESS
and OLTC control problem, for secure and efficient oper-
ation of the grid.

2) The introduction of a multitime slot control horizon, which
allows us to tackle dynamic scenarios characterized by
variable power injections from RES and variable operative
levels of network components.

3) The use of the MPC concept, which enables real-time
reaction to updates of short-term RES forecasts and no-
tifications of adverse events, while taking into account
economic aspects of the network operation and keeping
the ESS operation feasible.

4) The application of the method presented in [6] for building
a conified proxy of the nonconvex optimization problem at
the basis of MPC, rising from the inclusion of the hybrid
power flow equations in the reconfiguration problem.

5) The introduction of a set of fully topological constraints to
guarantee network radiality and avoid network islanding,
in networks with DG and ESSs.

6) The integration (in addition to the “classical” power losses
minimization terms) of specific terms related to the min-
imization of the impact arising from malicious/adverse
events and/or the degraded operative level of grid com-
ponents. This establishes a real-time tradeoff between the
requirement of efficient operation and that of risk mini-
mization (the topological constraints allows us to model
cascading effects and, hence, to compute risk metrics
associated to the network configuration).

7) The support of grid islanding operation in absence of main
supply from the transmission network. The characterizing
aspect is the efficient use of the ESSs to maximize grid
survivability. This is achieved by dynamically changing
the net load sustained by the ESSs, through the proper shift
of load and DG among network trees via reconfiguration
and load shedding.

D. Article Organization

Section II presents the reference scenario, the addressed use
cases, and the logic underlying the proposed control system.
Section III details the mathematical formulation of the pro-
posed control problem. Section IV discusses simulation results.
Section V presents conclusions and future research.

II. REFERENCE SCENARIO AND CONTROL LOGIC

A. Reference Scenario and Use Cases

The reference scenario discussed in this article considers
the control of a reconfigurable MV grid equipped with stor-
age and DG units. The controlled elements include: the ESS
(to inject/adsorb power for balancing purposes), the OLTC
(with effect on voltage control), the switches (for grid topol-
ogy reconfiguration), and sheddable loads (in case of islanding
operations). The control system proposed in the following is
designed focusing particularly on the following use cases.

1) Minimization of Power Losses Against RES Fluctuations:
This is the base use case aimed at mitigating the impact of

time-varying and potentially volatile generation and consump-
tion patterns on the grid in terms of network power losses.
Day-ahead and short-term predictions of DG are supposed to
be available to the control system, which reconfigures the grid
and controls ESSs/OLTC in real time to achieve the objective.

2) Preventive Mitigation of Adverse Events in the Distribu-
tion Grid: This use case focuses on risk-aware grid operation,
in which the grid is operated taking into account current and
future estimated risk levels of its components. In details, the
current and predicted risk levels related to network nodes and
lines are assumed to be available to the controller from a risk
predictor system, which correlates heterogeneous information
(e.g., ongoing anomalies, cyber-attacks detected, and meteoro-
logical conditions) regarding the state of the infrastructure, and
computes a short-term prediction of the risk level associated
with the various system components (see [22] and [23] for
details on the functioning of the risk predictor, which has been
developed and demonstrated in the context of the European
project ATENA). Risk levels are associated to both lines and
nodes of the grid, in order to capture different kinds of adverse
events or cyber-attacks.

3) Preventive Mitigation of Adverse Events at Transmis-
sion/Distribution Interface: This use case concerns adverse
events impacting on the transmission network and propagating
to the distribution side, like cyber-attacks against large power
plants and HV/MV substations, which can lead to the discon-
nection of the distribution side from the transmission network
and give rise to islanded operation. In this case, grid loading,
voltage, and frequency control [24] are sustained by the DG and
the ESSs. The control objective is to maximize the survivability
of the distribution grid by properly operating DG resources and
the ESS, and resorting to load shedding only to increase the
survival time of the network.

B. Control Methodology and Application Logic

The block diagram of the controlled system is presented in
Fig. 1 and explained in details in this and the next section.
Dealing at the same time with efficiency and security-related
aspects, the most natural choice to address the problem is the
implementation of a predictive controller, which shall take its
control actions considering also the future effects that these
will have on the system, in order to prevent unsafe operations
and optimize efficiency in the long term. A promising solution
is represented by economic MPC (EMPC), a variant of MPC
that explicitly takes into account the optimization of system
performance and efficiency metrics (see, e.g., [25] and [26]).
In MPC [27], at the generic time k, input data (short term
load/generation forecasts and predicted risk values in the present
case) and the feedback of the state of the plant (step 1 in Fig. 1)
are retrieved, and the control signals are computed by solving a
constrained optimization problem defined over a time window
N steps in the future (step 2); the first sample of the computed
control signals is applied to the plant (step 3) and, then, the
process is reiterated at time k + 1.

The iterative repetition of the optimization procedure, referred
to in the literature as “receding horizon paradigm,” is the fun-
damental characteristic of MPC control, and represents its main
advantage over other control schemes. Taking, at every time step
k, a state feedback from the system, and consequently updating
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Fig. 1. Block diagram of the proposed control system.

the optimal control trajectory, may be seen as bringing the
intrinsic properties of robustness that characterize closed-loop
control into the optimization domain that often characterizes
open-loop controllers. Being the system considered in this arti-
cle characterized by significant uncertainties on the long-term
behavior of some of its components (e.g., photovoltaic (PV)
plants and load profiles), applying such a scheme represents
an ideal solution with respect to other optimization approaches
that assume a perfect knowledge of the system, or at least of its
stochastic behavior.

In EMPC, the objective function is selected to optimize the
performance of the system. In this article, it is used to jointly
account for economic, security, and stability requirements. The
computed control signals are the state of the switches, the ESS
charging/discharging power, and the position of the OLTCs. The
feedback acquired at k is given by the state of the controlled
switches and the state of charge (SOC) of the ESS.

III. MATHEMATICAL FORMULATION OF THE

CONTROL PROBLEM

We discuss in the following the optimization problem that is
solved at each time k by the MPC controller (step 2 in Fig. 1).
The problem is defined over the time interval [k, k +N − 1],
referred to as control horizon. In the following, a second time
index h ∈ [k, k +N − 1] is used to denote the generic time
instant within the control horizon. Regarding the main nomen-
clature used, as customary in network reconfiguration studies,
the topological aspect of the distribution network is modeled by
a graph G = {V,A}, where V is the set of network buses and
A is an adjacency matrix specifying the physical connections,
i.e., aij = aji = 1 if there exists a line between buses i and j,
zero otherwise. The Boolean control variable aij(h) captures
the status (connected/disconnected) of line (i, j) at time h (the
status can change over time only for the subset of lines that can
be switched). In the following, the standard notation adopted
in power system studies is used: Pi is the bus power injection
(positive) or withdrawal, Pij and Qij denote, respectively, the
active and reactive line flows, Vi is the bus voltage, θi is the bus

voltage angle, and θij is the difference between voltage angles at
buses i and j. Power injection and withdrawal at the different bus
types are specialized by the use of acronyms in superscript (PDG

i ,
P ESS
i , P load

i , etc.). Finally, additional specific notation is defined
in the following in the place where it is introduced (all symbols
are as well defined in the nomenclature section). The objective
function and the constraints are presented and discussed in the
following.

1) Objective Function: The objective function is designed to
jointly optimize the performance of the system and its resilience
to faults/attacks, in a multiobjective sense. It is given by five
main terms, each weighed by the coefficients α, β, γ, δ, ε

FN (k,xk,uk) =

k+N−1∑

h=k

{
α(h)

∑

i∈V
Pi(h) + β(h)

×
∑

i,j∈V,j>i

[aij(h)(1− aij(h− 1)) + aij(h− 1)(1− aij(h))]

+ γ(h)
∑

i∈V

⎡

⎣Ci(h)ri(h) +
∑

j∈V:j>i

aij(h)rij(h)

⎤

⎦

+ δ(h)
∑

i∈VESS

[
SOCi(h)− SOCref

i

]2
+ ε(h)σ(h)

}
. (1)

The subscript N in FN (k,xk,uk) is to denote that the op-
timal control problem is defined over N time intervals, and
xk denotes the state of the controlled elements at time k,
as acquired via feedback from the controlled devices. It is
given by the state of the switches and the SOC of the ESS,
i.e., xk := {aij(k), (i, j) ∈ A} ∪ {SOCi(k), i ∈ VESS}. uk is
the set of decision variables, i.e., the switching actions, the
position of the tap changers, the ESS power injections, and the
load shedding (only in the islanded case), i.e., uk := {aij(h),
(i, j) ∈ A, h ∈ [k, k +N − 1]} ∪ {P ESS

i (h), i ∈ VESS, h ∈
[k, k +N − 1]} ∪ {σ(h), h ∈ [k, k +N − 1]}. Each term of
the target function is explained in the following. The term
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F1 :=
∑

i∈V Pi(h) represents the network power losses fore-
seen at timeh (given by the sum of the power injected/withdrawn
at the grid buses). The term F2 :=

∑
i∈V

∑
j∈V:j>i[aij(h)(1−

aij(h− 1)) + aij(h− 1)(1− aij(h))] is the number of switch-
ing operations at h. Minimizing F2(k) avoids unneces-
sary switching actions. The term F3 :=

∑
i∈V [Ci(h)ri(h) +∑

j∈V:j>i aij(h)rij(h)] enables risk-aware optimization by in-
cluding the risk levels of nodes and lines (available from the risk
predictor). This is particularly relevant in scenarios in which
components’ operative levels are impacted by adverse events.
Parameters rij(h), ri(h) ∈ [0, 1] are the predicted “risk levels”
for the generic line (i, j) and for node i at h, respectively.
They can be understood as the 1-complement of the operative
level or the availability of a given subsystem, so that the higher
rij(h), ri(h), the higher is the probability that the given system
will experience a malfunctioning at time h. The role of variable
Ci(h) is to capture a centrality measure of the generic node i,
i.e., the number of nodes that would lose their connection to
the primary substation in case of failure of node i. The product
Ci(h)ri(h), hence, provides a measure that is proportional to
the expected number of nodes that will be disconnected after the
failure of node i, given the network configuration at time h. It is
worth remarking that the centrality has to be computed online
during the optimization, through the inclusion of a specific set of
constraints, detailed in the following. According to the proposed
definition,Ci(h)will be proportional to the square of the number
of descendant nodes, enhancing the controller sensitivity to
higher risk levels. The second term in F3 is included in order to
penalize the usage of links characterized by high risk levels. The
term F4 :=

∑
i∈VESS [SOCi(h)− SOCref

i ]2 is a regulation term,
which ensures that the ESS are operated near a reference SOC,
in order to maintain absorption/injection control margins. The
term F5 := σ(h) is a load shedding factor, which is considered
only in the islanded operation, when load is potentially shed
in order to further prolong the operation of the network (a
uniform shedding factor σ(h) ∈ [0, 1] is considered, so to keep
the discussion simple—more refined shedding criteria can be
easily integrated).

The weights α(h), β(h), γ(h), δ(h), ε(h) determine the
tradeoff among the various objectives. Their time dependence is
due to the fact that they may also weight differently short-term
versus long-term performances: due to the uncertainty affecting
the prediction of the exogenous signals, it may be reasonable
to give priority to objectives closer in the prediction window,
as the controller can assume a higher confidence level on the
short-term predictions. Tuning of the weights can be done based
on economic considerations: α can be chosen as the cost of
system losses, β as the cost of the single switching opera-
tion (e.g., total cost of device over the number of guaranteed
switching operations over the life time), γ based on cost of risk,
risk aversion considerations, and ε the cost of shedding power
(while δ has an inherently technical meaning). Another practical
approach to tuning is to sample the space of the coefficients of
the target function and perform simulations, in representative
scenarios, for each configuration of the parameters. Then, for
each simulation, resulting key performance indicators of interest
for the operator (like, number of switching operations, total
system losses, risk level, etc.), are reported on the same graph,
which will typically have a Pareto-like shape. This graph can be
used by the operator as a “tuning chart” to help him/her select

good configuration of the coefficients depending on the desired
optimization goals.

The other fundamental parameter that defines the overall
controller is the length of the prediction horizon, N , that should
never be longer than the confidence interval over which the
predictions provided to the control system can be assumed to
be reasonably accurate. For this reason, in our testing, we set
the window to be 3-h long.

2) Constraints: The following constraints are included, de-
fined for h ∈ [k, k +N − 1].

a) Power flow constraints: The real and reactive power flows
from node i to node j are (see, e.g., [6])

Pij(h) = aij(h)[−GijVi(h)Vj(h) cos(θij(h))

−BijVi(h)Vj(h) sin(θij(h)) +GijV
2
i (h)]

(2)

Qij(h) = aij(h)[+BijVi(h)Vj(h) cos(θij(h))

−GijVi(h)Vj(h) sin(θij(h))−BijV
2
i (h)]

(3)

where θij(h) = θi(h)− θj(h). Equations (2) and (3) are defined
for (i, j) : aij = 1. Gij and Bij are, respectively, the line series
conductance and susceptance, i.e., the real and the imaginary
parts of the (i, j) line series admittance Yij . Lines’ shunt el-
ements are neglected (a reasonable assumption in distribution
networks [28]).

b) Power balance equations: For all i ∈ V
Pi(h) = PSB

i (h) + PDG
i (h) + P ESS

i (h)− P load
i (h)

=
∑

j

Pij(h) +Gii(Vi(h))
2 (4)

Qi(h) = QSB
i (h) +QDG

i (h) +QESS
i (h)−Qload

i (h)

=
∑

j

Qij(h)−Bii(Vi(h))
2. (5)

Depending on the bus type, one or more terms might be zero.
c) Radiality constraints: In the far majority of cases, distri-

bution networks are radially operated. Both heuristic and exact
radiality constraints have been proposed in the literature, but,
as discussed, most of them work only in case of passive net-
works [11]. Lavorato et al. [16] and [17] have recently proposed
conditions to ensure radiality in active distribution grids. Based
on [16], the following constraint is included:

∑

{ij:aij=1,j>i}
aij(h) = |V| − |VSB| (6)

which states that the number of connected lines in the network
shall equal the number of nodes minus the number of HV/MV
substations. In passive networks, (6) combined with (4) and
(5) guarantees radiality [17]. In active networks with ESS,
(6) ensures radiality only if the ESS are hosted at primary
substation level (otherwise the formation of islands powered
by the ESSs is possible), as shown in [17]. In general, this
kind of constraints avoid the presence of islanded portions of
the network exploiting the unfeasibility of their power flow,
which in active networks, due to the presence of devices such
as ESS, is no longer a correct assumption. In the following,
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(6) is extended in order to guarantee radiality in the general
active networks case. An auxiliary flux is introduced to ensure
that each ESS is connected to an HV/MV substation, similarly
to what presented in [16]. This connectivity flux goes from
the transmission network into the distribution network, and is
forced to reach all the ESSs, assuring hence the connectivity
sought. To formalize this auxiliary flux, two auxiliary nodes are
added: a super source S, representing the transmission network,
connected to each HV/MV substation through outgoing edges,
and a super sink Z, connected to each ESS through incoming
edges. In addition, two auxiliary flux variables fij and fji are
associated to each link in the augmented network, representing
the link flows in the two opposite directions. The following
constraints, modeling flux conservation for nodes and capacity
limits for links, guarantee the connectivity desired for the ESSs:

fij(h) ∈ {0, 1, . . ., |VESS|} ∀i, j ∈ V ∪ {S,Z} (7)

aij(h) ≥ fij(h) + fji(h)

|VESS| ∀i, j ∈ V ∪ {S,Z} (8)

fij(h)fji(h) = 0 ∀i, j ∈ V ∪ {S,Z} (9)
∑

j∈Ni(h)

fij(h)−
∑

j∈Ni(h)

fji(h) = 0 ∀i ∈ V (10)

∑

j∈NS(h)

fSj(h) = |VESS| (11)

fjZ(h) = 1 ∀j ∈ NZ (12)

where |VESS| is the number of buses hosting ESS andNi repre-
sents the neighbors of the node i (i.e., NS are the HV/MV sub-
stations andNZ the buses hosting ESS). Constraint (9) prevents
from having flows in both directions on each link. Constraint
(11) states that the flow from the super source has to be equal
to |VESS|, while (12) forces the connection with an HV/MV
substation for all the ESS and (10) models the flux conservation.
Constraint (8) forces aij = 1 if any flux passes through branch
(i, j) in either direction. A possible interpretation of constraints
(7)–(12) is that they force the existence of a path between the
HV/MV substations and the ESSs by the mass/flux conservation
law, ensuring their connection. Since the ESSs are now always
connected to the transmission line, they cannot act as a slack
node for an independent island, whose presence could imply the
nonradiality of the network [17], and constraint (6) returns a
valid mean to impose radiality.

d) Definition of Ci(h) in (1): Variable Ci(h) should be infor-
mative of the number of nodes that are the descendants of a given
node i at time h from a topological point of view. In general, this
variable can be computed in polynomial time on a fixed network
configuration, but, in order to be included in the optimization
process, for the dynamic network reconfiguration problem, it
has to be computed by the optimization solver for each of the
topologies it evaluates. For this reason, a second auxiliary flow
is introduced in the following. This new flux is assumed to be
produced by the super source node S, and absorbed by the super
sink node Z. The idea is that each node shall feed exactly one
unit of flow to Z, meaning that the intake of flux that the node i
receives is exactly the number of its topological descendants,
increased by one. To attain this result, all the nodes in the

network are connected to the super sink through outgoing edges
with unitary capacity. S feeds the HV/MV substations with a
total quantity of flux equal to the number of buses. Let f c

ij(h)
represent the flow in the link connecting the nodes i and j:
f c
ij(h) ∈ {−|VSB|, . . ., 0, . . ., |VSB|} ∀i, j ∈ V ∪ {S,Z}. The

following constraints are then included:
∑

j∈N (S)

f c
Sj(h) = |VSB| (13)

f c
jZ(h) = 1 ∀j ∈ N (Z) (14)

aij(h) ≥
(
f c
ij(h)

|VSB |
)2

∀i, j ∈ V ∪ {S,Z} (15)

∑

j∈N (i)

f c
ij(h)−

∑

j|i∈N (j)

f c
ji(h) = 0 ∀i ∈ V (16)

Ci(h) ≥
∑

j∈N (j)

f c
i,j(h)

2 +
∑

j|i∈N (j)

f c
j,i(h)

2 ∀i ∈ V. (17)

Notice that in this case, the physical links are given an arbitrary
direction on the flow graph, as there is no equivalent constraint
to (9) and f c

ij can assume also negative values. To address this
change, (8) has been replaced with (15), and its interpretation is
that the only network edges on which the functional flux may
flow are the ones on which power is flowing (i.e., aij(h) = 1).
Constraint (17) defines the centrality when active, and its ac-
tivation is guaranteed by the minimization of F3, which, in
turn, steers the system to select configurations in which nodes
with high risk levels have low centrality, as a measure to avoid
cascading failures. The considered centrality index is, then,
proportional to the square of the number of descendant nodes
that depend on node i, as it is proportional to the square of
the amount of auxiliary flux that goes through it. Hence, F3

penalizes configurations that associate nodes subject to high risk
levels to central positions.

It is worth noting that we decided to capture the topological
centrality, as by design, we considered the number of descendant
nodes at risk to be more relevant than the amount of load. With
trivial modifications, this functional flux can be adapted to use
cases in which the priority is given to configurations that consider
the quantity of supported load as a centrality index.

e) Voltage and current limits:

V min
i ≤ Vi(h) ≤ V max

i ∀i ∈ V (18)

Iij(h) ≤ Imax
ij ∀(i, j), i ≥ j (19)

where Iij(h) is the line current magnitude, which can be written
in function of voltages as shown in [4] (see (5)–(9) therein).

f) Step-voltage regulation at primary substations: The voltage
level at the substation buses can be controlled by acting on the
transformers’ OLTC (see, e.g., [29]), which can be used to select
different voltage levels

Vi(h) =

li∑

j=1

δij(h)V
OLTC
ij ∀i ∈ VSB (20)

li∑

j=1

δij(h) = 1 ∀i ∈ VSB (21)
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where li is the number of the voltage levels V OLTC
ij that can be

selected at substation bus i. δij(h) is a Boolean control variable
used to select the voltage level. The second constraint assures
that only one voltage level is selected at time h.

g) ESS constraints and dynamics: ESS constraints are intro-
duced in order to model the ESS power rating, battery capacity,
SOC dynamics; also a terminal constraint is introduced to guar-
antee system stability

P ESS,min
i ≤ P ESS

i (h) ≤ P ESS,max
i (22)

QESS,min
i ≤ QESS

i (h) ≤ QESS,max
i (23)

SOCmin
i ≤ SOCi(h) ≤ SOCmax

i ∀i ∈ VESS (24)

SOCi(h+ 1) = SOCi(h)− TPESS
i (h)

100

CESS
i

(25)

SOCi(k +N) ≥ SOCref
i . (26)

T ∈ R is the discretization time step. In relation to (23), notice
that it is possible to act on the ESS inverter to control the reactive
power. The reader is referred to the literature (see, e.g., [30]) for
details on ESS reactive power control.

h) Initial conditions: The EMPC problem is solved at each
time k based on the following initial conditions:

SOCi(k) = SOCk
i ∀i (27)

aij(k) = akij ∀i (28)

where SOCk
i and akij are, respectively, the measured ESS SOC

level and the known network configuration at k.
The above problem is a nonconvex, mixed-integer nonlinear

programming problem.

A. Conification of the Problem Constraints

Based on the procedure in [6], the above problem can be
transformed into an equivalent, conified, quadratic programming
problem having the same optimal solution. The constraints in-
volved in this transformation are the ones related to power flow,
in particular (2) and (3), that due to their nonlinearity increase
the complexity of the problem. The transformation is outlined
in the following; full details are in [6].

The following substitutions are made through the inclusion of
the new auxiliary variables ui(h) for i ∈ V and Rij(h), Tij(h)
for (i, j) : aij = 1

ui(h)← Vi(h)
2/
√
2 (29)

Rij(h)← Vi(h)Vj(h) cos θij (30)

Tij(h)← Vi(h)Vj(h) sin θij . (31)

With these positions, the power flow equations (2) and (3)
become

Pij(h) = aij(h)[−GijRij(h) +BijTij(h) +Gij

√
2ui(h)]

(32)

Qij(h) = aij(h)[BijRij(h) +GijTij(h)−Bij

√
2ui(h)].

(33)

As explained in [4], (32) and (33) can be exactly linearized by
introducing new Boolean variables uij

i (h) for each line (i, j)

connected to the generic bus i (in particular, variables uij
i (h)

are defined for i ∈ V , j ∈ V and (i, j) : aij = 1). The following
additional auxiliary constraints are introduced to force variables
uij
i (h) to be equal to zero when the line is disconnected and

equal to ui(h) otherwise

0 ≤ uij
i (h) ≤

(V max
i )2√
2

aij(h) (34)

0 ≤ ui(h)− uij
i (h) ≤

(V max
i )2√
2

(1− aij(h))

(35)

2uij
i (h)u

ji
j (h) ≥ Rij(h)

2 + Tij(h)
2, Rij(h) ≥ 0. (36)

Then, with the above positions, it can be verified that (32) and
(33) can be written in a linear form as

Pij(h) = −GijRij(h) +BijTij(h) +Gij

√
(2)ui(h) (37)

Qij(h) = BijRij(h) +GijTij(h)−Bij

√
(2)ui(h). (38)

In fact, the reader can check that, when aij(h) = 1, (37) and
(38) coincide with (32) and (33), because uij

i (h) = ui(h) due
to (35). When aij(h) = 0, then uij

i (h) = 0 due to (34), and also
Rij(h) and Tij(h) are equal to zero, because of (36); hence, it
is recovered that Pij(h) = 0 and Qij(h) = 0, as expected.

Departing from [4] and [6], further attention is needed to man-
age variables ui and Vi for i ∈ VSB, since voltages at substation
buses are control variables that can assume only discrete values,
as modeled in (20). Considering (29) and (20)

ui(h) =

(∑li
j=1 δij(h)V

OLTC
ij

)2

√
2

. (39)

Considering that δij(h)2 = δij(h), and that δij(h)δik(h) = 0
for j 	= k, because of (21), then (39) finally becomes

ui(h) =

∑li
j=1 δij(h)(V

OLTC
ij )2√

2
. (40)

The next section summarizes the proposed control algorithm.

B. Overall Formulation

Algorithm 1 (EMPC risk-aware optimization of distribution
grid). At each time k = 1, 2, . . . do (see Fig. 1).

1) Measure xk, the current state of the controlled elements in
the grid (open/close state of each switch and SOC of each
ESS). Acquire external input values (load and generation
forecasts, predicted risk values).

2) Solveu∗k = argmin{FN (k,xk,uk)} in (1) subject to: (2)–
(40). (Find the optimal topology configuration, the optimal
position of the tap changers and the optimal ESS power
injections over the time interval [k, k +N − 1].)

3) Apply to the system the first sample of the optimal control
sequence u∗k.

4) Wait for the next sampling time and go to step 1).
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C. Problem Complexity and Scalability of the
Proposed Scheme

The resulting problem is characterized by the presence of
conic constraints and binary decision variables. Commercial
solvers typically deal with such problems with variations of
the branch and cut algorithm, meaning that the computational
time required to find the optimal solution has an exponential
dependence to the number of binary variables. Furthermore, it
is shown in [6] that the solving time for the conified power
flow problem on a fixed topology remains compatible with the
application considered even in large networks (with a network
of 88 nodes requiring less than twice the time of a 12 nodes
one), supporting the fact that the main limiting factor of the
proposed controller for scaling is related to the number of
binary variables, and consequently to the number of available
controllable switches.

In our formulation, each remote operable switch is associated
with a decision variable for each time slot in the prediction,
but in larger networks, one may assume to let the control vari-
ables aij(h) change value only a given number of times in the
prediction window, significantly reducing the number of binary
variables of the problem (e.g., one reconfiguration allowed every
hour). Furthermore, for testing purposes, we consider, in the
following, a network whose links are all equipped with a con-
trollable switch, while in real scenarios, the degree of freedom
available to the controller is expected to be smaller, as only
a portion of the network switches is remotely controllable. To
control networks with a high number of controllable switches,
a possible approach is that of computing offline the set of
admissible configurations (which, for radiality, operative, and
power-quality concerns, has a cardinality significantly lower
than total number of possible configurations) and let the EMPC
controller select a configuration only in this set. Doing so would
significantly reduce complexity, since the number of binary
variables would be significantly reduced and the constraints for
radiality assurance could be removed. This option, combined
with limiting the number of allowed switching in the prediction
window, allows the solving time to be adequate to use cases of
a larger scale than the ones considered in this article and in the
H2020 Atena project.

IV. SIMULATION RESULTS

A. Simulation Setup

The proposed algorithm has been tested on a 16-bus three-
feeder distribution network commonly employed in the literature
(see Fig. 2) network data are taken from [32]. The network was
chosen so that it presents a high number of potential configu-
rations that differ significantly, allowing a clearer interpretation
of the results.

In order to provide a proof of concept, common input data for
all the use cases are provided, as follows. MV/LV substations
placed along the feeders and serving end users are characterized
by a typical summer load pattern [33], as reported in Fig. 3, while
the MV busbars of the HV/MV substations are characterized by
a small constant consumption of 10 kW related to the auxiliary
devices; prediction and actual consumption patterns are assumed
to be the same in the following. Three large-scale PV plants
with 750 kW peak capacity are placed at nodes 4, 12, and 15;

Fig. 2. Test distribution network (figure adapted from [31]). The benchmark
configuration is the one with solid black lines.

Fig. 3. (a) Power consumption at each of the MV/LV substations and (b) power
generation at node 4 (dashed line), 12 (solid line), and 15 (dotted line). Notice the
humps in the generation profiles, which are shifted in time in order to simulate a
cloudy condition moving from the upper left portion of the network to the lower
right one.

a typical clear sky pattern is initially considered as common
day-ahead power prediction, and then perturbed in real time
to build short-term power predictions that reconstruct the three
actual generation patterns reported in Fig. 3(b). Three 2 MW/1
MVAr/2 MWh ESSs are placed at nodes 3, 7, and 9 to assess the
effect of energy storing at different distances from the HV/MV
substations; reference SOC levels have been set to 70% to give to
the controller enough operational margin while storing enough
energy to properly support the islanded operation of the system.
The power factor is 0.98 for all the load and generation nodes,
lagging or leading, respectively. The considered OLTCs possess
11 taps allowing ±5% voltage variation with respect to the
typical 20 kV nominal level (the same range is imposed to all
the nodes in the network). The problem was solved in per-unit to
avoid numerical issues (solving optimization problems in which
the variables can assume values over several different orders of
magnitude may lead to numerical precision loss).

The sampling time T and control horizon N have been set to
15 min and 3 h, respectively. The rationale behind the choice
of N is to take it large enough to provide flexibility to the
system, while maintaining the number of variables and the
complexity of the problem reasonable for a compatible solving
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time. Furthermore, a value of N too large would introduce
into the problem the high uncertainties associated with the
predictions of the solar plant profiles and the risk levels far from
the current time. Finally, the weights appearing in the target
function have been empirically selected as α(h) = 10, γ(h) =
1, β(h) = 10−4, δ(h) = 10−4, ∀h in order to guarantee a good
performance of the system in the various simulations. The
parameter α was given the highest value in order to have the
control focus more on power loss reduction, also taking care
of the activation of constraint (35) and consequently assuring
the correctness of the conification procedure. The weight γ
was given a secondary priority level. The weights relative to
the control actions, namely, β and δ, were given a lower value
in order to let the control system have a significant degree of
freedom. In operative scenarios, the operator may desire to
prevent a high number of reconfigurations, so a higher value
could be given to β or the variables aij could be allowed to
change values only at certain times (consequently lowering the
problem complexity, as explained in Section III-C). More in
general, the operator can carry out a detailed parameter selection
study in order to best tune the system behavior according to its
preferences, potentially by means of Monte Carlo simulations.

To establish a benchmark, Fig. 2 reports a configuration of
the network with an approximately equal distribution of the load
among the HV/MV substations, which reflects a typical practice
adopted by distribution system operators for configuring the grid
in absence of methods like the one here presented.

Simulations have been performed using the Julia v0.7 tech-
nical computing language, on an Intel I7, 8 GB RAM machine
running Windows 10. The optimization problem has been solved
using Gurobi [34].

B. Simulation 1: Minimization of Power Losses

This simulation is aimed at assessing how the proposed
control system manages the network losses, also taking into
account RES fluctuations, assuming null risk level for all net-
work components. Fig. 4(a) reports the comparison among the
losses in the uncontrolled case (which considers the benchmark
configuration) and according to the proposed EMPC. The losses
in the controlled case always remain below the benchmark, with
an energy saving at the end of the day of 23%. Fig. 5 shows a
significant subset of the 23 configurations taking place during
the simulation. The configuration is the same during the hours
when the generation is absent, while loads are connected as close
as possible to the sources during the generation peak. At 14:30,
the lowest point in bus 12 generation valley, the storage in bus
7 discharges feeding the largest tree, which is connected to the
first HV/MV substation.

The ESSs at buses 7 and 9 basically behave as generators over
the period in which the net load in the network has its peaks,
and recharge in the valleys; the ESS at bus 3 is not activated,
as expected, due to its placement in the HV/MV substation
[see Fig. 4(b)]. The ESSs’ SOC remains close to the reference,
showing the feasibility of the ESSs contribution in the long term
[see Fig. 4(c)]. Finally, Fig. 6 reports the voltages of the network
buses over time. It can be seen that in the controlled scenario, the
profiles remain similar to the uncontrolled one, with the voltages

Fig. 4. Simulation 1. (a) Evolution of network power losses in the uncontrolled
case (dashed line) and according to the proposed EMPC strategy (solid line),
(b), (c) power and SOC of the ESSs installed at node 3 (dashed line), 7 (solid
line), and 9 (dotted line).

Fig. 5. Simulation 1: Network configurations at different times.

Fig. 6. Simulation 1. (a) Evolution of bus voltages in the uncontrolled case.
(b) Evolution of bus voltages in the controlled case.
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TABLE I
SIMULATION 2: PREDICTED COMPONENTS RISK LEVELS

Fig. 7. Simulation 2. (a), (b) Evolution of network aggregated risk and power
losses in the uncontrolled case (dashed line) and according to the proposed
EMPC strategy (solid line). (c), (d) Power and SOC of the ESSs installed at
node 3 (dashed line), 7 (solid line), and 9 (dotted line).

remaining in a slightly more contained region and the sudden
changes in their profile caused by the reconfigurations. It can be
noted that the OLTCs select the tap guaranteeing the maximum
allowed voltage level (21 kV) in all HV/MV substations, this
allows us to minimize power losses and was possible for the
absence of significant voltage increases over the other buses, as
the power flow remained feasible for all times. Similar behavior
is observed in the remaining simulations.

The average solving time of the EMPC iterations in this
simulation was 79 s, under the condition that the solution of
the previous step was provided to the solver as an initial guess
to speed up the convergence.

C. Simulation 2: Preventive Mitigation of Adverse Events
in the Distribution Grid

In the following, it is shown how the proposed controller reacts
to the notification of updated risk levels for network components,
to simulate, e.g., attempts of attacks to switches or adverse
natural events; the risk levels notified by the risk predictor are
reported in Table I.

Fig. 7(a) and (b) reports the aggregated risk index, defined
as F3 in Section III, and the power losses computed in the
uncontrolled case and according to the proposed control. As
expected, the overall risk level is mitigated, by 93%, at the
cost of reducing the performance in terms of energy saving
(19% reduction of losses, compared to previous 23%). Note that,
according to the definition given, the risk index is not normalized

Fig. 8. Simulation 2: Network configurations at different times.

between 0 and 1, and is instead a metric to differentiate two
topologies based on the operative level, and positioning, of their
nodes and links.

Fig. 8 presents configurations of the network computed re-
spectively in instants in which the risk prediction is high on
both nodes and links (12:00), only on links (14:30), and on
neither (17:30). It can be seen that at 12:00, during the high
risk time frame, the network is configured in such a way as to
avoid the usage of both lines 10 and 20; also, the controller
selects a configuration in which the buses 9 and 13 are at the end
of the respective feeders, hence guaranteeing the power supply
to consumers connected to those buses, while also avoiding
cascading effects of a potential successful cyber-attack. Due to
the asymmetric configuration characterized by a highly loaded
tree departing from bus 1, all the generators are connected to
that tree in order to mitigate the power losses; also the ESSs
provide their additional contribution, see Fig. 7(c), basically
amplifying the same behavior seen in Fig. 4(b). At 14:30, while
still being provided with a high risk level for lines 10 and
20, the controller selects a configuration more similar to the
ones of the first simulation (see Section IV-B), since the risk
prediction for the nodes is now set to zero. Finally, after the end
of the alerting period, the configuration gradually returns the
same one computed in absence of risk in Section IV-B (see the
configuration at 17:30 in Fig. 8).

The average solving time of the EMPC iterations was 92 s,
higher compared to the previous simulation due to the presence
of the constraints related to the centrality flux.

D. Simulation 3: Preventive Mitigation of Adverse Events at
Transmission/Distribution Interface

The last simulation considers the opening of breakers in the
HV/MV substations and the consequent disconnection of the
distribution grid from the transmission network, which gives
rise to controlled islanded operation starting from 11:30, a
condition in which the balance between demand and supply
is guaranteed by the ESSs. During islanding, the prediction
window was shortened to 1 h, to allow faster response of the
system, and the network radiality was assured by constraint
(6) and the power flow, as constraints (7)–(12) were no longer
needed to guarantee the connection of the, now inactive, HV/MV
substations to the storage devices. Also, the reference level for
the SOC was lowered to 20% to encourage ESSs discharge at
the beginning of the disconnection period to sustain the network,
and consequently delay the shedding intervention. Fig. 9 shows
how the proposed strategy keeps the most loads connected when
the ESSs SOC is high, and then gradually increases the load
shedding factor to prolong the survival time of the system. After
13:00, when the connection to the transmission is re-established,
the ESSs recover their SOC at different speeds, according to their
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Fig. 9. Simulation 3. (a) Load shedding factor. (b), (c) Power and SOC of the
ESSs installed at node 3 (dashed line), 7 (solid line), and 9 (dotted line).

Fig. 10. Simulation 3. Network configurations at different sampling times
during islanded operation.

topological position, in order to keep minimizing the network
losses. Fig. 10 shows two configurations during the islanded
operation, where the controller tries to balance the discharge
of the ESSs by connecting most loads to the storage with the
highest SOC, utilizing the generators to sustain the bigger trees.
The third configuration reported shows that the same network
configurations as the one in Section IV-B (normal operation)
are recovered, after a transitory period during which the SOCs
return close to their reference of 70%. The average solving time
was 64 s.

V. CONCLUSION

This article presented a coordinated network reconfiguration
and ESS MPC strategy for the efficient and secure operation
of electricity distribution grids. The proposed approach enables
the real-time reaction to the predictions of future fluctuations of
power production from renewable and malicious/natural adverse
events, with the aim of minimizing the network losses, the
aggregated risk indicator, and allowing preventive or postattack
grid operation.

The nonconvex optimization problem at the basis of the
adopted MPC methodology incorporates the ESSs dynamics,
the hybrid network power flow equations, and ad-hoc network
topological constraints. The optimal solution of this problem is
achieved at each sampling time by solving a conified proxy of
the original problem, which has the same optimal solution. The
proposed method is shown to be effective when applied to a
16-bus test distribution grid.

Future works will regard the investigation of the theoretical
properties of the MPC algorithm, and a heuristic procedure for
the identification of optimal values for the weighting terms in

the objective function, starting from a high-level description of
the operator preferences.
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