2,008 research outputs found

    Energy management of virtual power plant considering distributed generation sizing and pricing

    Get PDF
    UID/EMS/00667/2019The energy management of virtual power plants faces some fundamental challenges that make it complicated compared to conventional power plants, such as uncertainty in production, consumption, energy price, and availability of network components. Continuous monitoring and scaling of network gain status, using smart grids provides valuable instantaneous information about network conditions such as production, consumption, power lines, and network availability. Therefore, by creating a bidirectional communication between the energy management system and the grid users such as producers or energy applicants, it will afford a suitable platform to develop more efficient vector of the virtual power plant. The paper is treated with optimal sizing of DG units and the price of their electricity sales to achieve security issues and other technical considerations in the system. The ultimate goal in this study to determine the active demand power required to increase system loading capability and to withstand disturbances. The effect of different types of DG units in simulations is considered and then the efficiency of each equipment such as converters, wind turbines, electrolyzers, etc., is achieved to minimize the total operation cost and losses, improve voltage profiles, and address other security issues and reliability. The simulations are done in three cases and compared with HOMER software to validate the ability of proposed model.publishersversionpublishe

    Enhancement of microgrid operation by considering the cascaded impact of communication delay on system stability and power management

    Get PDF
    Power management, system stability and communication structure are three key aspects of microgrids (MGs) that have been explored in many research studies. However, the cascaded effect of communication structure on system stability followed by the impact of stability on the power management has not been fully explored in the literature yet and needs more attention. This paper not only explores this cascaded impact, but also provides a comprehensive platform to optimally consider three layers of MG design and operation from this perspective. For generation cost minimization and stability assessment, the proposed platform uses an adaptive particle swarm optimization (PSO) while a new class of data exchange scheme based on IEC 61850 protocol is proposed to reduce the communication time delays among the inverters of distributed generations and the MG control center. This paper also considers the system stability using small-signal model of a MG in a real-time manner as an embedded function in the PSO. In this context investigations have been conducted by modeling an isolated MG with solar farm, fuel cell generator and micro-turbine in MATLAB Simulink. Detailed simulation results indicate the proposed power and stability management method effectively reduces the MG generation cost through maximizing the utilization of the available renewable generations while considering system stability. © 2020 Elsevier Lt

    Forecasting Recharging Demand to Integrate Electric Vehicle Fleets in Smart Grids

    Get PDF
    Electric vehicle fleets and smart grids are two growing technologies. These technologies provided new possibilities to reduce pollution and increase energy efficiency. In this sense, electric vehicles are used as mobile loads in the power grid. A distributed charging prioritization methodology is proposed in this paper. The solution is based on the concept of virtual power plants and the usage of evolutionary computation algorithms. Additionally, the comparison of several evolutionary algorithms, genetic algorithm, genetic algorithm with evolution control, particle swarm optimization, and hybrid solution are shown in order to evaluate the proposed architecture. The proposed solution is presented to prevent the overload of the power grid

    Short term complex hydro thermal scheduling using integrated PSO-IBF algorithm

    Get PDF
    In this article, an integrated evolutionary technique such as particle swarm optimization (PSO) algorithm and improved bacterial foraging algorithm (IBFA) have been developed to provide an optimum solution to the scheduling problem with complex thermal and hydro generating stations. PSO algorithm is framed based on the intelligent behavior of the fish school and a flock of birds and the optimal solution in the multidimensional search region is achieved by assigning a random velocity to each potential solution (called the particle). BFA is designed by following the prey-seeking (chemotactic) nature of E. coli bacteria. This technique is followed in an improved manner to get the convergence rate in dynamic for a hyperspace problem by implementing a chemotactic step in a linearly decreased way instead of the static one. The effectiveness of this integrated algorithm is evaluated by using it in a complex thermal and hydro generating system. In this testing system, multiple numbers of cascaded reservoirs in hydro plants have a time coupling effect and thermal power units have a valve point loading effect. The simulation results indicate its merits by comparing it with other meta-heuristic techniques related to the fuel cost required to generate the thermal power.

    Multi-agent control and operation of electric power distribution systems

    Get PDF
    This dissertation presents operation and control strategies for electric power distribution systems containing distributed generators. First, models of microturbines and fuel cells are developed. These dynamic models are incorporated in a power system analysis package. Second, operation of these generators in a distribution system is addressed and load following schemes are designed. The penetration of distributed generators (DGs) into the power distribution system stability becomes an issue and so the control of those DGs becomes necessary. A decentralized control structure based on conventional controllers is designed for distributed generators using a new developed optimization technique called Guided Particle Swarm Optimization. However, the limitations of the conventional controllers do not satisfy the stability requirement of a power distribution system that has a high DG penetration level, which imposes the necessity of developing a new control structure able to overcome the limitations imposed by the fixed structure conventional controllers and limit the penetration of DGs in the overall transient stability of the distribution system. Third, a novel multi-agent based control architecture is proposed for transient stability enhancement for distribution systems with microturbines. The proposed control architecture is hierarchical with one supervisory global control agent and a distributed number of local control agents in the lower layer. Specifically, a central control center supervises and optimizes the overall process, while each microturbine is equipped with its own local control agent.;The control of naval shipboard electric power system is another application of distributed control with multi-agent based structure. In this proposal, the focus is to introduce the concept of multi-agent based control architecture to improve the stability of the shipboard power system during faulty conditions. The effectiveness of the proposed methods is illustrated using a 37-bus IEEE benchmark system and an all-electric naval ship

    Routing algorithm for the ground team in transmission line inspection using unmanned aerial vehicle

    Get PDF
    With the rapid development of robotics technology, robots are increasingly used to conduct various tasks by utility companies. An unmanned aerial vehicle (UAV) is an efficient robot that can be used to inspect high-voltage transmission lines. UAVs need to stay within a data transmission range from the ground station and periodically land to replace the battery in order to ensure that the power system can support its operation. A routing algorithm must be used in order to guide the motion and deployment of the ground station while using UAV in transmission line inspection. Most existing routing algorithms are dedicated to pathfinding for a single object that needs to travel from a given start point to end point and cannot be directly used for guiding the ground station deployment and motion since multiple objects (i.e., the UAV and the ground team) whose motions and locations need to be coordinated are involved. In this thesis, we intend to explore the routing algorithm that can be used by utility companies to effectively utilize UAVs in transmission line inspection. Both heuristic and analytical algorithms are proposed to guide the deployment of the ground station and the landing point for UAV power system change. A case study was conducted to validate the effectiveness of the proposed routing algorithm and examine the performance and cost-effectiveness --Abstract, page iii

    Applications of Computational Intelligence to Power Systems

    Get PDF
    In power system operation and control, the basic goal is to provide users with quality electricity power in an economically rational degree for power systems, and to ensure their stability and reliability. However, the increased interconnection and loading of the power system along with deregulation and environmental concerns has brought new challenges for electric power system operation, control, and automation. In the liberalised electricity market, the operation and control of a power system has become a complex process because of the complexity in modelling and uncertainties. Computational intelligence (CI) is a family of modern tools for solving complex problems that are difficult to solve using conventional techniques, as these methods are based on several requirements that may not be true all of the time. Developing solutions with these “learning-based” tools offers the following two major advantages: the development time is much shorter than when using more traditional approaches, and the systems are very robust, being relatively insensitive to noisy and/or missing data/information, known as uncertainty

    Optimal Allocation Of Distributed Renewable Energy Sources In Power Distribution Networks

    Get PDF
    In this dissertation study, various methods for optimum allocation of renewable distributed generators (DGs) in both balanced and unbalanced distribution networks have been proposed, developed, and tested. These methods were developed with an objective of maximizing several advantages of DG integration into the current distribution system infrastructure. The first method addressed the optimal sitting and sizing of DGs for minimum distribution power losses and maximum voltage profile improvement of distribution feeders. The proposed method was validated by comparing the results of a balanced distribution system with those reported in the literature. This method was then implemented in a co-simulation environment with Electric Power Research Institute\u27s (EPRI) OpenDSS program to solve a three phase optimal power flow (TOPF) problem for optimal location and sizing of multiple DGs in an unbalanced IEEE-123 node distribution network. The results from this work showed that the better loss reduction can be achieved in less computational time compared to the repeated load flow method. The second and third methods were developed with the goal of maximizing the reliability of distribution networks by optimally sitting and sizing DGs and reclosers in a distribution network. The second method focused on optimal allocation of DGs and reclosers with an objective of improving reliability indices while the third method demonstrated the cost based reliability evaluation. These methods were first verified by comparing the results obtained in a balanced network with those reported in literature and then implemented on a multi-phase unbalanced network. Results indicated that optimizing reclosers and DGs based on the reliability indices increases the total cost incurred by utilities. Likewise, when reclosers and DG were allocated to reduce the total cost, the reliability of the distribution system decreased. The fourth method was developed to reduce the total cost incurred by utilities while integrating DGs in a distribution network. Various significant issues like capital cost, operation and maintenance cost, customer service interruption cost, cost of the power purchased from fossil fuel based power plants, savings due to the reduction in distribution power losses, and savings on pollutant emissions were included in this method. Results indicated that integrating DGs to meet the projected growth in demand provides the maximum return on the investment. Additionally, during this project work an equivalent circuit model of a 1.2 kW PEM fuel cell was also developed and verified using electro impedance spectroscopy. The proposed model behaved similar to the actual fuel cell performance under similar loading conditions. Furthermore, an electrical interface between the geothermal power plant and an electric gird was also developed and simulated. The developed model successfully eliminated major issues that might cause instability in the power grid. Furthermore, a case study on the evaluation of geothermal potential has been presented

    A Review of Considered Factors to Penetrate Renewable Energy Resources in Electrical Power System

    Get PDF
    As an increasing of load demand, scarcity of fossil fuel and penetration of greenhouse gasses (GHG) effect, utilization of renewable energy resources (RER) such as wind, solar, biomass and tidal are rising drastically. Distributed generation (DG) is a technology giving opportunity to integrate RER into power system network. These integrations are needed optimal long term planning. Those planning, hopefully, can increase reliability of electrical power system network while saving environment from GHG with minimum infestation, operation and maintenance cost. The aim of this paper is reviewing factors should be consider when preparing, operating and evaluating electrical power system with integration of RER. By this planning, it is expected that its integration is effective and efficient in a lifetime of project. Finally, this review can help government, researcher, engineer and private sector to make policies to preparing hybrid power system-DGs.   Keywords: Penetration of renewable energy resources, electrical power system, long term planning, distributed generation, policies &nbsp
    corecore