8,505 research outputs found

    H2020 REALVALUE Deliverable D6.5:European Approach Report

    Get PDF

    Peer-to-peer energy trading between wind power producer and demand response aggregators for scheduling joint energy and reserve

    Get PDF
    In this article, a stochastic decision-making framework is presented in which a wind power producer (WPP) provides some required reserve capacity from demand response aggregators (DRAs) in a peer-to-peer (P2P) structure. In this structure, each DRA is able to choose the most competitive WPP, and purchase energy and sell reserve capacity to that WPP under a bilateral contract-based P2P electricity trading mechanism. Based on this structure, the WPP can determine the optimal buying reserve from DRAs to offset part of wind power deviation. The proposed framework is formulated as a bilevel stochastic model in which the upper level maximizes the WPP's profit based on the optimal bidding in the day-ahead and balancing markets, whereas the lower level minimizes DRAs' costs. In order to incorporate the risk associated with the WPP's decisions and to assess the effect of scheduling reserves on the profit variability, conditional value at risk is employed.©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Improving the Market for Flexibility in the Electricity Sector. Report of a CEPS Task Force. CEPS Task Force Report

    Get PDF
    Electricity will play a greater role in the transport and building sectors and all decarbonisation scenarios point to the increasing electrification of the energy system. To reach EU climate change targets, however, electricity will need to come increasingly from low carbon sources, especially (but not only) from variable renewable energy sources. Both trends − the electrification of sectors and the need to integrate electricity from variable renewables − mean that the electricity sector should become more flexible. This report reflects the discussions held in the CEPS Energy Climate House Task Force on Creating a Market Design for Flexibility in EU Electricity Markets, which met between April and September 2017. The Task Force formulated a number of recommendations in the areas of short-term and balancing markets; grid reinforcement and cross-zonal capacity allocation; aggregation; priority dispatch; DSOs (distribution system operators); and sectoral integration

    Demand-side management via optimal production scheduling in power-intensive industries: The case of metal casting process

    Full text link
    The increasing challenges to the grid stability posed by the penetration of renewable energy resources urge a more active role for demand response programs as viable alternatives to a further expansion of peak power generators. This work presents a methodology to exploit the demand flexibility of energy-intensive industries under Demand-Side Management programs in the energy and reserve markets. To this end, we propose a novel scheduling model for a multi-stage multi-line process, which incorporates both the critical manufacturing constraints and the technical requirements imposed by the market. Using mixed integer programming approach, two optimization problems are formulated to sequentially minimize the cost in a day-ahead energy market and maximize the reserve provision when participating in the ancillary market. The effectiveness of day-ahead scheduling model has been verified for the case of a real metal casting plant in the Nordic market, where a significant reduction of energy cost is obtained. Furthermore, the reserve provision is shown to be a potential tool for capitalizing on the reserve market as a secondary revenue stream

    Non-traditional business models for city-scale energy storage: evidence from UK case studies

    Get PDF
    This paper investigates emerging non-traditional business models for decentralised energy systems with a focus on the role of city-scale storage technologies. We discuss the key characteristics of the different business models which have been identified in the literature and we discuss case studies across the United Kingdom in order to illustrate the key factors which influence their adoption and implementation. On the basis of evidence from recent UK case studies we investigate the market and regulatory barriers, contractual and transactional issues which may prevent key actors from exploiting the full market potential of their assets. We find that emerging business models rely on a range of different revenue sources with some limitations due to complex contractual relations, regulatory barriers and limited access to markets for ancillary services. The evidence we provide can be used by companies and organisations intending to operate in this fast developing market and inform policymakers aiming to promote the expansion and improvement of emerging business models

    Modeling a cooperation environment for flexibility enhancement in smart multi-energy industrial systems

    Get PDF
    Environmental aspects have been highlighted in architecting future energy systems where sustainable development plays a key role. Sustainable development in the energy sector has been defined as a potential solution for enhancing the energy system to meet the future energy requirements without interfering with the environment and energy provision. In this regard, studying the cross-impact of various energy vectors and releasing their inherent operational flexibility is main topic. Thecoordinationofvariousenergyvectorsundertheconceptofmulti-energysystem (MES)hasintroducednewsourcesofoperationalflexibilitytothesystemmanagers. MES considers both interactions among the energy carriers and the decision makers in an interdependent environment to increase the total efficiency of the system and reveal the hidden synergy among energy carriers. This thesis addresses a framework for modeling multi-energy players (MEP) that are coupled based on price signal in multi-energy system (MES) in a competitive environment. MEP is defined as an energy player who can consume or deliver more than one type of energy carriers. At first, the course of evolution for the energy system from today independent energy systems to a fully integrated MES is presented and the fractal structure is described for of MES architecture. Moreover, the operational behavior of plug-in electric vehicles’ parking lots and multi-energy demands’ external dependency are modeled in MES framework to enhance the operational flexibility of local energy systems (LES). In the fractal environment, there exist conflicts among MEPs’ decision making in a same layer and other layers. Realizing the inherent flexibility of MES is the main key for modeling the conflicts in this multi-layer structure. The conflict between two layers of players is modeled based on a bi-level approach. In this problem, the first level is the MEP level where the player maximizes its profit while satisfying LES energy exchange. The LES’s exchange energy price is the output of this level. In the lower level, the LESs schedule their energy balance, based on the upper level input price signal. The problem is transformed into a mathematical program with equilibrium constraint (MPEC) through duality theory. In the next step, high penetration of multi-energy players in the electricity market is modeled and their impacts on electricity market equilibrium are investigated. In such a model, MEP participates in the local energy and wholesale electricity markets simultaneously. MEP and the other players’ objectives in these two markets conflict with each other. Each of these conflicts is modeled based on bi-level programming. The bi-level problems are transformed into a single level mixed-integer linear problem by applying duality theory
    corecore