7 research outputs found

    Dynamic Traffic Network Model and Time-Dependent Braess’ Paradox

    Get PDF
    We propose a dynamic traffic network model and give the equilibrium condition and the equivalent variational inequality of the network. In this model, instead of the influence of inflow rate and output rate on the link congestion, the influence of the adjacent links at the same paths is considered; in this case, the equivalence between the equilibrium condition and the variational inequality is proved. Then we take an example about the paradox using the variational inequality and find that the probability and the severity that Braess’ paradox occurs change with the influence of other links changing. Subsequently, we discuss the influence of other links on whether the adding link works under the dynamic system optimal. At last, we give the relationship between the total congestion under dynamic user equilibrium and that under dynamic system optimal. The results imply that we should take some methods and adjust the interaction between links rationally with the dynamic change of traffic situations

    TRAFFIC IMPACT ANALYSIS OF SEVERAL DYNAMIC LANE MANAGEMENT STRATEGIES FOR CONGESTION MITIGATION BASED ON DTA MODEL

    Get PDF
    Persistent daily congestion has been increasing in recent years, particularly along major corridors during selected periods in the mornings and evenings. On certain segments, these roadways are often at or near capacity. However, a conventional Predefined control strategy did not fit the demands that changed over time, making it necessary to implement the various dynamical lane management strategies discussed in this thesis. Those strategies include hard shoulder running, reversible HOV lanes, dynamic tolls and variable speed limit. A mesoscopic agent-based DTA model is used to simulate different strategies and scenarios. From the analyses, all strategies aim to mitigate congestion in terms of the average speed and average density. The largest improvement can be found in hard shoulder running and reversible HOV lanes while the other two provide more stable traffic. In terms of average speed and travel time, hard shoulder running is the most congested strategy for I-270 to help relieve the traffic pressure

    Dynamic traffic congestion pricing mechanism with user-centric considerations

    Get PDF
    Thesis: S.M. in Transportation, Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 85-95).In this thesis, we consider the problem of designing real-time traffic routing systems in urban areas. Optimal dynamic routing for multiple passengers is known to be computationally hard due to its combinatorial nature. To overcome this difficulty, we propose a novel mechanism called User-Centric Dynamic Pricing (UCDP) based on recent advances in algorithmic mechanism design. The mechanism allows for congestion-free traffic in general road networks with heterogeneous users, while satisfying each user's travel preference. The mechanism first informs whether a passenger should use public transportation or the road network. In the latter case, a passenger reports his maximum accepted travel time with a lower bound announced publicly by the road authority. The mechanism then assigns the passenger a path that matches with his preference given the current traffic condition in the network. The proposed mechanism introduces a fairness constrained shortest path (FCSP) problem with a special structure, thus enabling polynomial time computation of path allocation that maximizes the sequential social surplus and guarantees fairness among passengers. The tolls of paths are then computed according to marginal cost payments. We show that reporting true preference is a weakly dominant strategy. The performance of the proposed mechanism is demonstrated on several simulated routing experiments in comparison to user equilibrium and system optimum.by Kim Thien Bui.S.M. in Transportatio

    Integration of Real-time Traffic State Estimation and Dynamic Traffic Assignment with Applications to Advanced Traveller Information Systems

    Get PDF
    Accurate depiction of existing traffic states is essential to devise effective real-time traffic management strategies using Intelligent Transportation Systems (ITS). Existing applications of Dynamic Traffic Assignment (DTA) methods are mainly based on either the prediction from macroscopic traffic flow models or measurements from the sensors and do not take advantage of traffic state estimation techniques, which produce estimate of the traffic states with less uncertainty than the prediction or measurement alone. On the other hand, research studies highlighting estimation of real-time traffic state are focused only on traffic state estimation and have not utilized the estimated traffic state for DTA applications. This research introduces a framework which integrates real-time traffic state estimate with applications of DTA to optimize network performance during uncertain traffic conditions through traveller information system. The estimate of real-time traffic states is obtained by combining the prediction of traffic density using Cell Transmission Model (CTM) and the measurements from the traffic sensors in Extended Kalman Filter (EKF) recursive algorithm. The estimated traffic state is used for predicting travel times on available routes in a traffic network and the predicted travel times are communicated to the commuters by a variable message sign (VMS). In numerical experiments, the proposed estimation and information framework is applied to optimize network performance during traffic incident on a two route network. The proposed framework significantly improved the network performance and commuters’ travel time when compared with no-information scenario during the incident. The application of the formulated methodology is extended to model day-to-day dynamics of traffic flow and route choice with time-varying traffic demand. The day-to-day network performance is improved by providing accurate and reliable traveller information. The implementation of the proposed framework through numerical experiments shows a significant improvement in daily travel times and stability in day-to-day performance of the network when compared with no-information scenario. The use of model based real-time traffic state estimation in DTA models allows modelling and estimating behaviour parameters in DTA models which improves the accuracy of the modelling process. In this research, a framework is proposed to model commuters’ level of trust in the information provided which defines the weight given to the information by commuters while they update their perception about expected travel time. A methodology is formulated to model and estimate logit parameter for perception variation among commuters for expected travel time based on measurements from traffic sensors and estimated traffic state. The application of the proposed framework to a test network shows that the model accurately estimated the value of logit parameter when started with a different initial value of the parameter

    Analisi sperimentale dell'effetto di informazioni preventive sulla dinamica day-to-day delle scelte di percorso in una rete congestionata

    Get PDF
    La tesi presenta i risultati di uno studio sperimentale sulla dinamica day-to-day di scelta di percorso in una semplice rete di trasporto, con particolare riguardo all’effetto delle informazioni preventive. Lo studio di questa dinamica è fondamentale per migliorare i modelli di assegnazione e la progettazione/gestione dei sistemi ITS. Ad un riassunto sui principali contributi sul tema in letteratura seguono le analisi descrittive (aggregate e disaggregate) e statistiche dei dati ottenutiopenEmbargo per motivi di segretezza e/o di proprietà dei risultati e/o informazioni sensibil

    Analysis of dynamic traffic control and management strategies

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore