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Abstract

In this thesis, we consider the problem of designing real-time traffic routing systems
in urban areas. Optimal dynamic routing for multiple passengers is known to be
computationally hard due to its combinatorial nature. To overcome this difficulty,
we propose a novel mechanism called User-Centric Dynamic Pricing (UCDP) based
on recent advances in algorithmic mechanism design. The mechanism allows for
congestion-free traffic in general road networks with heterogeneous users, while satis-
fying each user's travel preference. The mechanism first informs whether a passenger
should use public transportation or the road network. In the latter case, a passenger
reports his maximum accepted travel time with a lower bound announced publicly by
the road authority. The mechanism then assigns the passenger a path that matches
with his preference given the current traffic condition in the network. The proposed
mechanism introduces a fairness constrained shortest path (FCSP) problem with a
special structure, thus enabling polynomial time computation of path allocation that
maximizes the sequential social surplus and guarantees fairness among passengers.
The tolls of paths are then computed according to marginal cost payments. We show
that reporting true preference is a weakly dominant strategy. The performance of
the proposed mechanism is demonstrated on several simulated routing experiments
in comparison to user equilibrium and system optimum.
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Chapter 1

Introduction

Road traffic congestion is a serious problem in contemporary metropolitan areas. Ac-

cording to U.S. Department of Transportation (DOT), traffic congestion costs the

United States $200 billion annually in wasted fuel and lost time [1]. Remarkably,

DOT estimates that drivers in metropolitan areas spend one-quarter of total annual

travel time in congested roads [1]. In the effort of reducing this significant amount

of unpleasant and inefficient travel time, transportation researchers have developed

many instruments and strategies aiming to evenly distribute vehicles on the net-

works. In this thesis, we focus on designing real-time traffic routing systems that

use congestion pricing as an efficient method to alleviate travel delays in urban ar-

eas. Since transportation networks are complex large-scale systems, researchers are

often concerned with thecomputational complexity of the problem [2]. In addition,

the unpredictable behavior of drivers make it extremely difficult to require them to

follow the routing systems. The efficiency of the systems as well as fairness among

passengers also pose great challenges to researchers [3,4]. Therefore, in this work, we

provide a novel game-theoretic approach to construct a dynamic congestion pricing

mechanism that aims to address the above challenges.
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1.1 Motivations

Intelligent and scalable traffic routing for large cities has been an active research area

in recent years. Many route guidance systems have been used to assist drivers in

path-choice decision making by simply computing the shortest path from a source

to a destination, regardless of the changing conditions of roadways [5]. More ad-

vanced systems are proposed to recommend routes to users after performing some

computations from a macroscopic point of view [6]. In these systems, the authors

consider static flows of multiple homogeneous users on the networks and attempt

to compute an a priori distribution of the users on the road networks. This static

traffic assignment (STA) problem can be solved by using the Wardrop principle [7]

or Karush-Kuhn-Tucker conditions to achieve a user equilibrium (UE) solution or

a social optimal (SO) solution, respectively. At the UE state, each user selects his

fastest route, while at the SO state, the total travel time of all drivers is minimized.

Although SO is more preferable for road authorities, it encounters an unfairness is-

sue as some users are assigned longer paths to allow for the efficiency of the entire

system. In addition, STA models assume that traffic demand is constant over time,

thus they are unable to represent the variation of traffic flows during short specific

periods of a day such as peak hours [8]. This limitation along with the unfairness

issue have raised a question of STA tractability in real-world deployments. To tackle

this, Dynamic Traffic Assignment (DTA) models have been developed by many re-

searchers to capture the peaked nature of travel demand and the time-varying traffic

flows [9-13]. Approaches to DTA problems can be classified into two main groups:

analytical approaches (mathematical programming, optimal control, variational in-

equality) and simulation-based approaches [2]. Although current DTA models can

describe the reality more accurately than the static models, these DTA models are

either mathematically intractable or heavily dependent on simulation, thus computa-

tionally inefficient when dealing with large-scale traffic networks. More importantly,

they are still unable to manage the system optimality and the above unfairness prob-

lem simultaneously.
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Thus, in [4] and [3], the authors propose the constrained system optimum (CSO)

to capture the above two aspects. In their CSO models, they consider a traffic assign-

ment pattern for homogeneous users that minimizes the total travel time subject to a

fairness constraint via a single tolerance factor. However, this pre-specified tolerance

factor does not truly reflect fairness for individual traveler whose preference and pur-

pose are unrevealed. In addition, congestion can occur when the tolerance factor is

not properly chosen even if the road network is capable of supporting congestion-free

traffic at the SO state. Furthermore, the authors do not consider dynamic traffic flows

and the selfish behavior of rational passengers. More precisely, a rational passenger

would not use the routing system and follow its recommendation if such compliance

does not provide him with a tangible gain. Apparently, these limitations have pre-

vented a direct application of the model in real-world situations.

In fact, to partially restrain the selfish behavior of travelers that can lead to traffic

congestion during rush hours, tolling systems such as Electronic Road Pricing (ERP)

in Singapore have been deployed [14]. The positive effects of the ERP system on

spreading peak-hour travel demand are verified in [15] and [16]. At the time of this

writing, pre-computed time-varying tolls within a day are used to affect passengers'

behavior. However, this time-varying tolling scheme does not enable congestion-free

traffic flows because urban traffic also varies from day to day. A similar variable price

scheme based on the evolutionary approach is proposed in [17] to enable congestion-

free traffic when travel demand is static. In this scheme, passengers will decide to

travel or stay at home permanently after a long adjustment process in response to

variable tolls set by a road authority. Not only is the convergence process slow when

the demand is static, but the traffic flow is also unstable when the demand is dynamic.

As an attempt to compute flow-dependent tolls in dynamic environments, the work

presented in [18] proposes a toll design method that combines road pricing with DTA.

The authors formulate the problem as a bi-level programming problem, in which the

road pricing model represents the upper-level decision making process, and the DTA

model represents the lower-level counterpart. The resulting formulation is an NP-hard

problem [18]. One possible method to obtain a locally optimal solution suggested by

15



the author is to combine grid search for the upper-level optimization and simulation

for the DTA in an iterative procedure. However, such a method scales poorly with the

size of the network and does not provide insightful understanding of the properties

of obtained solutions for further improvement. We emphasize that all the mentioned

pricing schemes have not addressed the unfairness issue among individuals.

Therefore, in recent years, many researchers have adopted a game-theoretic ap-

proach to handle the above difficulties from the microscopic perspective [19,20]. Re-

cent advances in algorithmic mechanism design [21] provide a promising approach to

incentivize rational participants, or players, to cooperate with the system in order to

reach desirable outcomes. This approach motivates players to disclose their private

information. As usually done in market mechanism design [22], designers aim to con-

struct a mechanism that has individual rationality (IR) and incentive compatibility

(IC) properties. The former means that players do not suffer any loss when they

use the system, and the latter means revealing truthful information is in their best

interest. In algorithmic mechanism design, besides the IR and IC properties, design-

ers also concern about computational complexity when computing an allocation rule

and a payment rule for intended outcomes [23]. The key technical difficulties lie in

the combinatorial nature of the allocation rule and the interweaving relationship of

allocation rules and payment rules.

In our case, passengers can be viewed as players in a routing game created by the

interaction among passengers and the road authority. Mechanism design for routing

games have been studied extensively in computer networks [24-36] while very few

works have been done for urban transportation networks [37-39]. Although both

types of networks share some similar modeling aspects, inherent characteristics of the

two types of networks differ substantially. In particular, in computer networks, as

discussed in [40], utility functions of users are unknown to the network; and even

if the utility functions are known, there is no central authority that knows all the

link capacities and network topology. In addition, autonomous systems (AS) in the

network can run any routing algorithm that benefits them the most. Therefore, we

can hardly simulate flows for the entire computer networks such as the Internet.

16



In contrast, in transportation networks, passenger utility functions can be modeled

quite accurately based on regression analysis [41]. In addition, we can monitor real-

time traffic flows via sensor networks [42-45] or community based mobile navigation

applications such as Waze [46]. Thus, current models and results in computer network

routing cannot be applied in urban transportation network routing.

One of the most related works in mechanism design for urban transportation

routing is [38]. In their work, the authors propose a day-to-day auction mechanism

in which a road user has to bid everyday to purchase a bundle of network permits

that allow him to use his preferred path. Although this approach can reduce the

computational complexity of finding an allocation rule for a single OD pair network,

it is not clear how to determine the allocation rule for a general network with multiple

OD pairs. The day-to-day auction mechanism is also not practical to be implemented

for real-world road networks due to several reasons. The mechanism requires users

to go through a bidding process before being able to use the paths, while in reality,

road users often needs an instantaneous route choice decision. Furthermore, although

the authors show that truthfully reporting the valuation of several bundles of permits

is a dominant strategy for each user, it is difficult for users to determine their true

valuation.

To address the limitations in previous work, we explore a novel approach to over-

come the computational complexity and to satisfy game-theoretic requirements of

the transportation network routing problem. In this thesis, we propose a novel mech-

anism called User-Centric Dynamic Pricing (UCDP) based on recent advances in

algorithmic mechanism design to allocate heterogeneous classes of users with paths

that satisfy their travel preferences. Unlike other approaches that attempt to compute

the path allocation for all drivers at the same time, the UCDP mechanism considers

drivers in sequence. This idea helps to reduce the computational complexity of the

problem. The mechanism is applicable, for example, in one-way car rental systems,

or mobility-on-demand systems [47] where fleets of autonomous cars [48] are used in

future cities to pick up and deliver passengers [49]. In the mechanism, these services

are designed to work with public transportation systems.
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1.2 Problem Statement and Objectives

We consider general road networks with dynamic flows of heterogeneous users. The

UCDP mechanism is designed as follows. When a new passenger arrives at an origin

node, he receives information from a road authority on the current network condition.

The authority either suggests him to use public transportation if the network is about

to be congested or provides him with the minimum travel time required to complete

his trip. In the latter case, the passenger then reports his maximum tolerated travel

time that is not less than the minimum travel time announced by the authority.

Based on the current traffic condition in the network, the mechanism then offers the

passenger a path to his destination.

Our objective is to assign each passenger a path that matches with his travel time

constraint while maximizing sequential social surplus when this passenger joins the

network. Importantly, we want to ensure that passengers have no incentive to lie

about their preferences, and under our path assignment, congestion does not hap-

pen in the network. The UCDP mechanism takes into account the fairness concern

when allocating paths to travelers. The tolls of paths are computed according to the

marginal cost pricing principle.

1.3 Contributions

This thesis has four main contributions. The first two contributions describe impor-

tant properties of the novel UCDP mechanism. The third contribution is the impact

of the work to the transportation research community, and the last contribution

presents interesting future work for practical deployments.

First, the mechanism is user-centric in the sense that it considers both passengers'

preference and fairness among individuals. At the same time, the mechanism can

achieve maximum sequential social surplus, i.e. the mechanism is efficient. We also

prove that reporting true preference is a weakly dominant strategy of each passenger,

and the mechanism never transfers positive amount of money to passengers.
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Second, the mechanism introduces a new fairness constrained shortest path (FCSP)

problem with a special structure that enables polynomial time computation of path

allocation. Therefore, we can handle general networks having multiple OD pairs with

dynamic flows of heterogeneous users in a computationally efficient way.

Third, to the best of our knowledge, this thesis is the first in the transportation

literature that considers general road networks with dynamic flows of heterogeneous

users and addresses system efficiency, fairness among passengers as well as computa-

tional complexity issues at the same time.

Fourth, this thesis lays a foundation for future work on designing distributed mech-

anisms for optimal traffic routing. In particular, we envision a large-scale network

consisting of mobile users who not only share real-time traffic information but also

collaborate with each other to achieve social-optimal traffic flows through our future

distributed mechanisms.

1.4 Thesis Outline

This thesis is organized as follows:

Chapter 2 provides an in-depth review of related works in road traffic rout-

ing and challenges arising from real-world deployments. Due to the multi-

disciplinary nature of the problem, the review includes ideas and results from

several fields ranging from transportation, economics to algorithm design. We

first present traditional approaches such as static and dynamic traffic assign-

ment as well as congestion pricing schemes in practice. We then discuss new

game-theoretic approaches including mechanism design and algorithmic mecha-

nism design, as they promisingly overcome limitations of traditional approaches.

The discussion also highlights our motivation for adopting the algorithmic mech-

anism design approach in this thesis. Finally, we review VCG mechanism and

important shortest path algorithms as a preparation step for our problem for-

mulation and approach in the next chapters.
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" Chapter 3 develops the formal problem formulation to the optimal traffic rout-

ing problem using our game-theoretic approach. We first provide preliminary

notations, definitions and assumptions. We then formulate a model for a general

network with dynamic traffic flows of heterogeneous travelers. We then focus

on describing our User-Centric Dynamic Pricing (UCDP) Mechanism in detail.

* Chapter 4 presents our approach to design an allocation rule and a payment

rule, which are two important components in our mechanism. The allocation

rule assigns a path to each passenger and is formulated as a constrained shortest

path problem. The payment rule calculates the toll that each passenger pays

to use his assigned path. Most importantly, this chapter presents two theorems

with proofs showing that the mechanism has incentive compatibility and no-

positive transfer properties.

" Chapter 5 develops algorithms that are used to allocate paths and compute

tolls in real-time. First, we shows how to simulate a network state at each

time instant. We then present an algorithm to determine minimum travel times

announced by a road authority. Subsequently, we describe an algorithm for

computing dynamic path allocation and dynamic tolls.

* Chapter 6 demonstrates the performance of the proposed mechanism through

two simulated routing experiments. In the first experiment, we simulate the

UCDP mechanism on a parallel-link network with one OD pair. We then

compare the network performance under the UCDP mechanism with user-

equilibrium and social-optimal performance. In the second experiment, we

consider a general network with multiple OD pairs. We show how the road

authority uses the UCDP mechanism to manage traffic flows when road condi-

tions change over time.

* Chapter 7 concludes the thesis by summarizing the motivation and objectives of

this thesis, the research conducted in this thesis as well as the key contributions.

This chapter also discusses several interesting directions for future research.
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Chapter 2

Literature Review

In this section, we extend the review in Section 1.1 to provide a thorough literature

review of road traffic routing and challenges in real-world deployments. Due to the

multi-disciplinary nature of the problem, this chapter presents important results in

related fields ranging from transportation, economics to algorithm design. In particu-

lar, Section 2.1 first reviews the fundamental diagram that describes characteristics of

traffic flows at the macroscopic level. A detailed description of Greenshields model for

the fundamental diagram will also be included in this section, since it will be applied

in our UCDP mechanism. Subsequently, Section 2.2 presents static and dynamic traf-

fic assignment models, which have been widely used to understand the phenomenon

of congestion and its causes. We then introduce the idea of congestion pricing in

Section 2.3, which is based on the underlying economics of transportation systems to

alleviate congestion. We also present several congestion pricing schemes in practice

and relevant research. To further understand the selfish behavior of drivers, and the

interaction between drivers and the road authority from a game-theoretic point of

view, a brief review of game theory is then provided in Section 2.4. In particular,

this section focuses on reviewing mechanism design, a sub-field of game theory, and

its applications in previous works. In addition, a more advanced approach called

algorithmic mechanism design is presented to address computational tractability and

scalability arising from the mechanism design approach. For better understanding of
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our payment rule explained in Chapter 4, a detailed description of Vickrey-Clarke-

Groves (VCG) mechanism is also included in this section. Finally, Section 2.5 reviews

important shortest path algorithms that are the building blocks for computing the

allocation rule and payment rule in our proposed mechanism in Chapter 5. The set of

rich results presented here will be incorporated in our novel game-theoretic approach

to tackle the optimal dynamic routing problem.

2.1 The Fundamental Diagram of Traffic Flow

The fundamental diagram characterizes the relationships among three macroscopic

variables of traffic flow on a road segment including average density k, average flow q

and average speed u. The average density k reflects the number of vehicles per length

unit of the road, and average flow q represents the number of vehicles that passes a

certain point per unit of time [50]. Under static conditions such as long roads and

long time periods, the average speed u can be calculated based on the fundamental

relation of traffic flow theory as follows:

q = uk. (2.1)

The (k, q) curve that expresses the relationship between flow and traffic density is

called the fundamental diagram, since it represents all the three variables. The fun-

damental diagram can be derived by plotting field data points and finding a best fit

curve for these data points. For example, Immers et al. observed and measured flow

and mean speed on a three-lane motorway during one minute [50]. Their observation

points are illustrated in Fig. 2-1.

Research on the fundamental diagram began in 1933, when Greenshields calibrated

traffic flow, traffic density and speed by using a photographic measurement method

and then derived a mathematical model for the fundamental diagram [51, 52]. As

shown in Fig. 2-2(a), in the Greenshields model, he postulated a linear relationship

between speed and traffic density, in which speed declines linearly with traffic density,
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Figure 2-2: Greenshields model.

taking its maximum value umax when k = 0 and declining to u = 0 when k = kjam,

the jam density. Thus, the basic relationship for the Greenshields model is:

(2.2)U = Umax 1 - ).
kjam

The linear relationship between speed u and traffic density k leads to a parabolic

relation for the (k, q) diagram shown in Fig. 2-2(b). Combining Eq. 2.1 and 2.2, we

can write:

q = Umaxk 1 - k )
k3am

(2.3)

In the (k, q) diagram, the value k, for which flow q reaches its maximum qmax is called

critical density, since it marks the start of an unstable flow area where additional

input of vehicles on a road segment decreases traffic flow and eventually leads to

traffic congestion, i.e., q = 0 and k = kjam. By differentiating the right hand side of

Eq. 2.3 and setting the derivative equal to zero, we obtain:

(2.4)k_ - kjam
2

Substituting Eq. 2.4 into 2.2, we also find that the value u, associated with kc and
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q max is equal to "-ar. Replacing k with k = also provides:

qmax = Umax kjam (2.5)

Since the Greenshields model requires specifications of only two parameters ULmax and

kjam, it is especially attractive for practice use. In this thesis, we use the Greenshields

model to estimate and to predict traffic flow in our experiments for the proposed

dynamic pricing mechanism. In a real world deployment of our system, we can obtain

more accurate real-time traffic flow information via sensor networks.

2.2 Traffic Assignment Models

2.2.1 Static Traffic Assignment Models

With the rapid growth of automobiles industry at the beginning of 1 9 th century, road

congestion had soon become a serious problem in modern cities and has captured

strong interest of many researchers. To understand drivers' behavior and traffic pat-

terns that are subject to congestion, in 1952, Wardrop conducted several experiments

to figure out the relation of speed and flow on a given road segment in one direc-

tion [7]. As a result, he derived two sound principles that define the two well-known

notations of traffic equilibria. In particular, according to Wardrop's first principle,

the network is considered stable when the travel times in all used routes are equal and

less than those which would be experienced by a single driver on any unused route.

In other words, given that the travel time on every route on the network are publicly

known, each driver non-cooperatively chooses his best route and has no incentive to

switch to other routes since he can not further reduce his travel time. The traffic flows

that have this property are defined as User Equilibrium (UE) flows. Different from

the first principle, Wardrop's second principle assumes that drivers consistently make

route choice decisions cooperatively with each other to minimize total system travel

time. We can also imagine that there exists a central authority who tell users which
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routes to follow, and they fully comply with these suggestions to maximize the system

performance. Under this behavior, when the average travel time is minimized, the

second principle claims that the network reaches its equilibrium state called Social

Optimal (SO) state.

Over the last five decades, Wardrop's principles have inspired many transportation

specialists to formulate and solve mathematical models to obtain the UE and SO

flows in.urban transportation networks [6,53-59]. Their works are often classified as

static traffic assignment (STA) problem, which is described in [60] as follows. Given

the inputs: i) a graph representation of an urban transportation network, ii) the

associated link performance functions, and iii) an origin-destination matrix that shows

the trip rates between all OD pairs during the period of analysis, the STA problem

is finding the traffic flow on each link on the network. The link travel time can then

be computed by using link performance functions. The STA problem aims to help

transportation planners and road authorities to: i) estimate the distribution of traffic

flows and travel times on all links given a level of demand, ii) identify heavily congested

links, and iii) make appropriate physical changes to the road network such as adding

one or more links. The last goal is extremely important because adding more resources

to the network might deteriorate the network performance, i.e., increase delays and

congestion instead of decreasing them. This counter-intuitive phenomenon is known

as Braess paradox [61] and has been studied extensively in [62,63].

The first mathematical model to solve the above STA problem was proposed

in 1956 by Beckmann et al. [53]. This pioneering work of Beckmann has laid a

foundation for a variety of extended works in the field (see [6, 57, 58] and references

therein). Sheffi [60] shows that Beckmann's User-Equilibrium model can be expressed

as a nonlinear mathematical optimization problem:

min z(x) = ta(w) d
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subject to

k fg = q,,, Vr,s,
k

Xa k a, , 
r s k

fs ;> 0, V k, r, s,

where k is a path that connects origin r and destination s, Xa is the flow on link a,

ta is the travel time on link a, fks is the flow on path k connecting OD pair (r, s), q,,

is the trip rate between r and s. The indicator variable 6"k is equal to 1 if link a is

on path k between OD pair (r, s) and 0 otherwise.

The solution for the above formulation is the link flows x that satisfy the UE

conditions and reflect that all the trip rates qs have been distributed appropriately.

The objective function is the sum of the integrals of the link performance functions.

At the first glance, the objective function looks obscure. In fact, this is a potential

function of a routing game among drivers. We will comment on this potential game

formulation later when we review game theory and mechanism design in Section 2.4.1.

The first two constraints are flow conservation constraints, which guarantee that all

trip rates have to be assigned to the network. The last constraint is nonnegativ-

ity constraint, which is used to ensure that the obtained solution will be physically

meaningful. Beckmann showed that this mathematical programming formulation is

equivalent to the UE assignment problem. He also proved the existence and unique-

ness of the solution. In addition, it is shown that the above formulation is a convex

optimization program since the link travel time function is a monotonically increasing

function.

Beginning in the late-1960s and continuing into the mid-1980s, many researchers

had proposed different approaches to solve Beckmann's UE formulation including

heuristic and convex combination approaches. The two most common heuristic meth-

ods are capacity restraint and incremental assignment, which were originally proposed

by Mosher in 1963 [54] and Martin and Manheim in 1965 [55] respectively. Although
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these techniques are embedded in many early transportation planning computer pack-

ages [64, 65], they were criticized due to the lack of convergence properties [66,67].

The capacity restraint methods are not guaranteed to converge, and incremental as-

signment methods may converge to a nonequilibrium solution. Apparently, they can

not obtain a set of flows that satisfy UE conditions. This unsatisfactory performance

of heuristic approaches has posted a strong need for a novel numerical optimization

method. Fortunately, a novel method called convex combination algorithm proposed

by Frank and Wolfe in 1956 [68] is capable of solving quadratic programming problems

with linear constraints. Not until thirteen years later, in 1969, Bruynooghe discovered

Frank and Wolfe' work and suggested an application of convex combination method to

solve the transportation network equilibrium problem [56]. Basically, in this method,

flows are taken from more congested paths and assigned to less congested paths until

flow changes are small. The method then uses a shortest path algorithm to solve a

linear program subproblem because the algorithm is very efficient even for large net-

works. The convex combination method has been proven through numerous research

to be a simple and efficient method to the minimization of the UE program [69-72].

Although the method converges slowly, it is still popular since other faster methods

require more memory and do not use shortest path subproblem naturally.

Regarding the SO flow pattern, Beckmann's SO formulation is described in [60]

as follows:

min z(x) ZXata(Xa)
a

subject to

Z k fS =qrs V r,s,
k

Xa =>Z fs6ask, Ia
r s k

frs;> 0, V k, r, s.
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The objective function of the SO formulation is more straightforward than in the

UE formulation. It aims to minimize total travel time spent in the network subject

to the same constraints as in the UE equivalent program. However, as pointed out

in [60], the SO formulation does not generally generate an equilibrium flow pattern

since some travelers can be better off by unilaterally switch routes. Hence, the SO

flow pattern is not stable and should not be used to represent the actual behavior of

drivers and equilibrium state. It can be used to observe the best-case scenario when

all drivers cooperately make decisions. The SO formulation is also helpful when we

want to compare different static traffic assignment models [73]. In particular, we can

use a popular measure named the price of anarchy [74], which is the ratio between

the total utility at UE and SO state to see how far the UE performance is from the

best possible use of the network. The SO formulation can be solved by using the first-

order necessary conditions of the associated Lagrangian function. Section 3.4 in [60]

provides the details of the method. We note that the solution to the SO formulation

can also be found by using the convex combination method mentioned above.

Parallel to the development of algorithms to solve Beckmann's formulation, ex-

tensions of Beckmann's model have also been investigated (see [59] and references

therein). These extended models often introduce side constraints to become more

realistic than the traditional traffic assignment models. For example, the constraints

can be used to model the effects of a traffic control policy or to describe the link

capacity restrictions set by a road authority. However, these extended models have

not been fully developed and solved due to associated computational issues.

Despite of all of the hard work to craft and solve existing STA formulations,

the STA models' tractability in real-world deployments is still a major concern since

they have some fundamental issues. First, because the UE flow pattern is rooted in

drivers' selfish behavior, attaining the UE flow pattern does not help in preventing or

alleviating traffic congestion. Therefore, the SO flow pattern, which results in better

network performance, is more preferable for a central authority. However, as some

drivers suffer longer paths than others to allow for the efficiency of the entire system,

and they naturally want to change to other shorter paths, the SO flow pattern is
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unfair and unstable. Second, the STA models assume that OD flows are constant

within the considered period in order to apply steady-state analyses. To keep this

assumption accurate, the period of analysis can only be very small. However, this

requirement is not reasonable since the STA models are only meaningful when their

period of analysis is longer than the typical duration of trips at this time. Therefore,

STA models are not sufficient to describe the dynamics of traffic flows during a very

short specific period of time such as peak hours, when flows are changing rapidly and

unpredictably.

2.2.2 Dynamic Traffic Assignment Models

The limitations of STA models have motivated researchers to develop Dynamic Traffic

Assignment (DTA) models to adequately represent traffic reality and drivers' behav-

ior. Departing from STA to deal with time-varying traffic flows, DTA refers to a wide

range of problems, each depends on different sets of decision variables, system inputs,

assumptions about systems and users, and modeling purposes. According to Peeta

and Ziliaskopoulos [2], approaches to DTA can be classified into two main groups:

analytical approaches (mathematical programming, optimal control, variational in-

equality) and simulation-based approaches.

Analytical approaches:

In 1978, Merchant and Nemhauser (hereafter referred to as the M&N) proposed

the first DTA model, which is a discrete time, nonlinear and nonconvex mathematical

programming problem [9, 10]. The M&N model only considers deterministic, fixed-

demand, one destination, one commodity and SO cases. Basically, there are a link

exit function that aims to propagate traffic and a static link performance function

that computes travel cost based on link volume. The global optimum of the M&N

formulation can be obtained by solving a piecewise linear version of the model with

additional assumptions on the objective function by using a one-pass simplex algo-

rithm. Later, Ho suggested a stepwise linear version of this model and pointed out

that we can also achieve the global optimum by solving a sequence of at most N+1
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linear programs, where N is the number of periods [75]. Following Ho, Carey showed

that the M&N problem can be reformulated as a well-behaved convex nonlinear pro-

gram and solved by standard mathematical programming software [76]. Carey also

extended his models to handle multiple destinations and multiple commodities case.

Unfortunately, the resulting formulation does not satisfy many requirements of gen-

eral networks such as "first in first out" (FIFO) and no "holding back" ("holding

back" is an issue arising when traffic at certain approaches is held back to let other

traffic streams move faster to minimize system total delays, and this creates unfair

or unreasonable SO flow pattern). To address the above unsatisfaction, substantial

research on DTA using mathematical programming with different sets of assumptions

have been conducted [77-79. Nevertheless, attaining both mathematical tractability

and high fidelity of real traffic flows is still an open problem.

Another approach to DTA is known as optimal control formulation, in which the

OD trip rates and link flows are continuous functions of time. The constraints are

similar to those in mathematical programming formulation but are modified to adapt

in a continuous-time setting. The initial link-based UE and SO optimal control for-

mulations for one destination case are suggested by Friesz et al. [80]. Following Friesz,

Wie extended the UE model to capture the elastic time-varying travel demand [81].

Ran and Shimazaki then formulated a link-based SO model for general networks [82].

However, this model overlooked the FIFO issue and can only be applied for a very

small scale network. Subsequently, various optimal control theory-based DTA models

are discussed in the literature [83-85], but they are based on unrealistic assumptions

and lack of additional constraints to manage FIFO and "holding back" issues. Im-

portantly, efficient algorithms for solving these formulations are still questionable.

To circumvent the problems associated with optimal control theory-based models,

another approach called variational inequality (VI) has been researched. VI prob-

lem, as defined by Nagurney in [57], is a general problem formulation that includes a

plethora of mathematical problems such as nonlinear equations, optimization prob-

lems, complementarity problems, and fixed point problems. Therefore, VI formulation

is applicable for traffic assignment problem since it allows for a unified treatment of
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equilibrium problems and optimization problems. Originally, this approach was in-

troduced by Dafermos in 1980 for solving the STA problem [86]. A decade later, a

continuous time VI model for departure time and route choice decision making was

suggested by Friesz et al., but no proof of solution existence or uniqueness as well as

no efficient algorithm were provided [87]. Wie et al. then formulated the problem as

a discretized VI model, in which they replaced exit time functions used in Friesz's

formulation by exit flow functions [88]. They also devised a heuristic algorithm to

solve it approximately. Although the existence of a solution under some certain con-

ditions was proved in this work, the need for an efficient algorithm still remains since

this path-based formulation requires tremendous computational efforts to enumerate

complete paths. To reduce the computational burden of path-based models, several

link-based models were proposed [89-91]. While these VI models are more general and

provide greater analytical flexibility to address multiple DTA problems than other an-

alytical models, it turns out that they expose to more severe computational feasibility

issues. Furthermore, they are still unable to overcome challenges arising in realistic

networks such as FIFO and "holding back". As a result, in recent years, DTA models

have migrated toward new approaches called simulation-based approaches, discussed

hereafter.

Simulation-based approaches:

The goals of simulation-based DTA models are to use a traffic simulator to repli-

cate dynamic traffic phenomena and to search for the optimal traffic flow propaga-

tion. More crucially, researchers aims to use the simulator iteratively to forecast

the future traffic conditions. Thanks to this promisingly descriptive and predictive

power, the transportation literature have witnessed a boom in research on simulation-

based DTA models since the first well-recognized work of Van Aerde and Yagar in

1988 [92,93]. Traffic simulators have different types depending on the choice of gran-

ularity such as macroscopic, microscopic or mesoscopic. At first, several microscopic

models have been developed for small scale networks, and some are actually embedded

in commercial software such as AIMSUN2 [94] and INTEGRATION [92,93]. Later,

mesoscopic models, which are a combination of a microscopic representation of indi-
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vidual vehicles and macroscopic description of interactions among traffic flows, have

been evolved to cope with large-scale networks. Some recognized mesocopic models

are DYNASMART [95,96], and DYNAMIT [97]. Although these models circumvent

some persistent modeling issues in analytical approaches by directly addressing them

through simulation process, it is impossible to derive proofs of existence, uniqueness

and convergence of solutions due to the lack of theoretical formulations. In addition,

the computational cost associated with the use of a simulator is still too high to make

the models applicable in practice. The underlying difficulty lies in selfish behavior

of drivers. As drivers independently and constantly make route choice decisions that

are in their best interest, predicting future traffic flows requires lots of memory and

long computation time. Therefore, recently, there has been a heightened interest

in searching for deployable traffic policies to positively affect drivers' behavior, and

incorporating the policies into models to reliably represent and predict real traffic

maneuvers. The next section reviews congestion pricing as one of these policies and

its application in practice.

2.3 Congestion Pricing

As urban transportation exhibits the phenomenon of diseconomies of scale, the idea

of congestion pricing is based on the underlying economics of transportation systems.

This approach was initiated by Pigou in his famous book The Economics of Welfare

(1920) [98]. Pigou used an example of a congested road to show that travelers were not

using roads efficiently because they did not have to pay for the congestion costs they

imposed on others. A price mechanism that charges suitable fees on different roads

would motivate travelers to use the facilities more efficiently and rebalance traffic

flows. This would reduce aggregate travel time and thus increase social benefits.

Since Pigou's first work, congestion pricing has received remarkable attention in the

scientific literature for decades (refer [99] and references therein). In the following

discussion, we will review the marginal cost pricing theory and practical congestion

pricing schemes.
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2.3.1 Marginal Cost Pricing

Theoretically, research in congestion pricing has relied upon the fundamental eco-

nomic principle of marginal cost (first-best) pricing. The marginal cost pricing prin-

ciple was developed based on demand-supply curves for the standard case of a traffic

flow with homogeneous users moving inside a given network [100-102]. The idea is

that each driver should pay a cost or congestion charge that is equal to the external

congestion costs that he imposes on all other drivers. This marginal cost is the dif-

ference between the cost of road usage to an individual and the social cost of adding

one extra vehicle to the traffic stream. Formally, the marginal cost pricing principle

was summarized in [103] as follows.

Let q be the traffic flow, in terms of the number of vehicular trips per unit of

time, w be the level of service or capacity (this is commonly assumed to be fixed),

and v(q, w) be the average cost per vehicular trip or marginal private cost (MPC)

that a road user spends when operating a vehicle on road facility. Then, the total

opportunity cost of congestion is:

V(q,w) = q x v(q,w). (2.6)

The optimal road price p or marginal social cost (MSC) of an extra vehicular trip can

be derived by taking the first derivative of Eq. 2.6 with respect to q:

_V &v(q, w)
P v(q,w) + q . (2.7)

Oq Oq

Eq. 2.7 shows that the optimal road price p has two components: the marginal private

cost, plus the change in the marginal private cost from serving an additional user.

According to the marginal cost pricing principle, the optimal congestion charge T that

each driver should pay is exactly equal to the second component of Eq. 2.7:

T= q . (2.8)
Og
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The concept of marginal cost pricing is intuitively illustrated in Fig. 2-3, which

depicts the curves of the MSC function, given by OV / &q, the MPC function v(q)

(assuming that w is fixed) and a demand function. The optimal congestion charge r

imposing on each driver is equal to the difference between two points: the intersection

of the MSC curve and the demand curve, and the MPC at social optimal flow q,,

level. In other words, T closes the gap between the MPC and the optimal road price

p for facility use, shifts traffic from user equilibrium state q", to qso and creates a net

welfare benefit (patterned area). Given fixed road capacity, an increase of the travel

demand would lead to higher congestion charge and a larger net welfare benefit.

Capacity
MSC bound

'-4C

Demand

Welfare
U benefit

MPC

qSO qu qmaxTraffic flow, q

Figure 2-3: Graphical explanation of marginal cost pricing: the optimal congestion
charge imposing on each driver helps to shift the traffic from the user equilibrium
flow level q,,, to the social optimal flow level qO and yields a net welfare benefit [103].
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2.3.2 Congestion Pricing Schemes

Although the marginal cost pricing theory is appealing, this pricing scheme has not

been implemented in practice due to technological difficulties arising when computing

a payment for every traveler. The first congestion pricing scheme in practice is Area

Licensing Scheme (ALS), which was launched by Singapore in 1975 [104,105]. The

ALS system charged drivers who crossed a cordon line around the central business

district (CBD) during peak hours on week-day mornings about US$1 a day or $20

a month. Although the ALS reduced 75 percent of private vehicle travel and 50

percent of all vehicles entering the CBD, surprisingly the actual travel times per bus

or auto trip to a destination in CBD did not change due to the disruptive effects of

traffic rerouting to the free of charge peripheral roads. The high charges also yielded

under-utilization of the road network and shifted congestion to expressways and non-

restricted time. Thus, in 1995, a paper-based Road Pricing Scheme (RPS), operating

in the same way as the ASL, was introduced on an expressway (East Coast Parkway)

and later extended to other expressways to further alleviate congestion [105]. One

problem associated with both systems was limited temporal and spatial variations

in charges due to the lack of automation. In fact, paper-based schemes required

personnel to operate the system, and this led to high probability of mistakes by

operating officers. In addition, there was always a rush to enter just before or after

the restricted hours that could not be smoothed by a shoulder-peak charge. To handle

this problem, in 1998, the government introduced a new system namely Electronic

Road Pricing (ERP) to replace the current system [105]. Gantries were installed at

all the approach roads to the CBD zone and on the expressways. Different from the

ALS, the ERP scheme charges vehicles each time they pass through a gantry. The fees

are automatically deducted from CashCards, a smart card inserted in the In-vehicle

Units (lUs) of vehicles. The current ERP scheme has different charges according to

vehicle type, time of the day and gantry locations.

Following Singapore, a variety of congestion pricing schemes have been deployed

worldwide such as High Occupancy Toll (HOT) and High Occupancy Vehicle (HOV)
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lane facilities in California and the Twin Cities in the U.S., congestion charge fa-

cilities in London, Stockholm, Valletta and Milan. More examples and details can

be found in [103,104,106]. To increase the effectiveness of congestion management,

several systems vary tolls according to a predetermined schedule. For instance, on

State Route 91 (SR91), the primary link between Orange and Riverside counties

south and east of Los Angeles, as of July 2013, tolls vary between $1.40 in the early

morning hours and $9.55 during peak hours [107]. In Singapore, the ERP rates are

adjusted regularly depending on time of day, day of week (weekday vs weekend) and

season. However, these pre-computed time-varying tolling schemes do not fully pre-

vent congestion, since urban traffic also varies continuously within a day and across

days.

As an attempt to compute flow-dependent tolls in dynamic environments, Joksi-

movic proposed a toll design model that combines road pricing with DTA by using

bi-level mathematical programming [18]. In particular, a bi-level program contains

the upper level, where a road authority decides tolls on links, and the lower level,

where travelers independently respond to the tolls by changing their travel behavior.

More precisely, travelers try to maximize their utilities to reach the UE state for the

announced toll level, while the road authority aims to optimize his objective given

that the traffic flows would be at the UE state. In Joksimovic's model, the classical

DTA model is extended and modified to capture impacts of road pricing on drivers'

decision and serves as the lower level of the problem, while the road pricing model

serves as the upper level of the problem. The complexity of the problem is NP-hard, as

pointed out by the author. The author then suggested a two-stage iterative procedure

for determining the optimal tolls that the road authority should charge on links in

order to reach his objective. However, such iterative solution approach is not scalable

and does not provide insightful understanding of the properties of obtained solutions

for further improvement. For example, one cannot infer the behavior of an individual

traveler if the road authority changes the toll level slightly or the influence of travel-

ers on each other. Therefore, recently, many researchers have adopted game-theoretic

approaches to understand the problem from the microscopic perspective [108-110].
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We are going to overview this approach in the next section.

2.4 Game-theoretic Approaches

2.4.1 Game Theory and Mechanism Design

Game theory is a mathematical way to describe strategic reasoning of rational decision-

makers. Since 1950, game theory has been widely studied in several disciplines such

as economics, political science and biology to understand the competition and cooper-

ation among agents and the role of threats or punishments in long term relations. By

definition, a game must consist of multiple players, each player must make a decision,

and each player has a utility function that depends on his own decision and other

players' decisions [111]. In a game, all players independently maximize their utility

functions. As traffic routing problem involves multiple travelers as rational players,

and each player needs to make his traveling decision to optimize his utility function,

the problem can be seen as a non-cooperative or selfish routing game. Therefore,

several results from game theory can be used to analyze and characterize properties

of the problem.

Although previous works in traffic routing have not directly investigated the prob-

lem from the game-theoretic perspective, some aspects of game theory has been

touched slightly. For example, under game theory terminologies, it turns out that

Wardrop's first principle on the UE traffic flow pattern coincides with Nash equilib-

rium solution concept of a game [111]. For another example, the objective function in

Beckmann's UE formulation discussed in Section 2.2.1 is in fact a potential function

of the routing game, which is a potential game. Potential games are games that admit

a potential function as a function of all players' decisions that gives information about

each player's utility function. In particular, the maximization of a potential function

with respect to a player's decision coincides with the maximization problem of that

player [111]. Similarly, when congestion pricing is introduced for traffic flow man-

agement, the mentioned bi-level programming problem is a single leader rest follower
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Figure 2-4: Mechanism design.

problem and is known as a Stackelberg game [110].

The above induced games are formed naturally by selfish behavior of travelers

and the interaction among travelers and the road authority. We can use results

from the game theory literature to further analyze the existing games. However, it is

well-known that computing Nash equilibria is computationally hard in a general game

[112]. Therefore, a new trend in game theory is to design games with special structure

that are easy to be solved for equilibria. This sub-discipline is called mechanism design

and has been studied intensively by economists to construct market mechanisms and

auction mechanisms [113].

The mechanism design problem is to allocate resources among players in a strategic

setting, assuming that each player acts rationally to maximize his utility. The goal is

to aggregate individual preferences into a desirable outcome or a collective decision.

A mechanism is depicted in Fig. 2-4. Given that there are n players, each player

has a type Oj, which is his private information or preference. Let Oi denote the set

of possible types of player i and E = E1 x ... x 0, denote the set of all possible

types of all players. Each player then reports his type called reported type Oj to the

mechanism. Subsequently, the mechanism aggregates all players' reported types into

a desirable outcome x by applying function f : E -+ X, where X is the set of all
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possible outcomes. Finally, the mechanism allocates resources to players based on

the computed outcome x.

An important feature of the mechanism design problem is that individuals' actual

preferences are not publicly observable. Incentivizing agents to reveal their private

information would significantly simplify the problem to achieve this goal. When being

asked, an agent can lie about his true information. If a mechanism ensures that each

agent's best interest is to truthfully reveal his private information regardless of what

the others do, we say that the mechanism is incentive compatible (IC) or strategy-

proof [21]. We, however, can not force an agent to join a game created by a mechanism

which offers him less expected utility in comparison to not joining the game. Thus,

we call a mechanism is individual rational (IR) if for all agents, it does not incur

any loss to join the resulting game. Constructing a mechanism with both IC and IR

properties is desirable in mechanism design. Besides IC and IR, mechanism designers

also concern about computational complexity when computing an allocation rule for

achieving intended results and a payment rule that motivates the agents [23]. The

key technical difficulties lie in the combinatorial nature of the allocation rule and the

interweaving relationship of allocation rules and payment rules.

The simplest method to obtain agents' private information is to ask them directly.

This type of mechanisms is called direct mechanisms. Indirect mechanisms would

elicit a function of private information from agents. Without loss of generality, we can

focus on incentive-compatible direct mechanisms based on a well-known result named

Revelation Principle. This principle proves that if there exists an equilibrium with

dominant strategies in an indirect mechanism, then we can construct an equivalent

incentive-compatible direct mechanism, in which agents truthfully report their private

information and are allocated services and charged prices accordingly [21,114].

Influenced by the use of mechanism design in auction theory context, several

transportation researchers have came up with different tradable permit schemes, in

which the road space is treated as a common commodity. Teodorovic et al. proposed

an auction-based congestion pricing scheme to reduce traffic congestion in a downtown

area [37]. Under this scheme, all drivers who want to access to a cordoned downtown
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area in a specific time period must participate in an auction and submit bids to a

road authority acting as an auctioneer. The bids vary according to the duration of

drivers' visit to the downtown area. The road authority then can decide whether to

accept or reject particular bids by the drivers. Later, a similar scheme called tradable

bottleneck permits was suggested by Akamatsu [115] and then was extended in [38].

This day-to-day auction mechanism requires a traveler to bid everyday to purchase

from the road authority a bundle of network permits that allow the traveler to use his

preferred path. Although the authors show that truthfully reporting the valuation

of several bundles of permits is a dominant strategy for each user, it is difficult for

users to determine their true valuation. Since each permit is only valid for a link on a

specific time, obtaining sufficient permits for the whole path requires a large number

of transactions, especially when the network is complex. To simplify the system,

Yang et al. investigated an alternative tradable credit scheme in which travel credits

hold by drivers can be used on any link, but each link has different amount of credit

charge [39]. At the beginning, government will distribute free credits to travelers and

then travelers can buy or sell their credits in a free credit trading market without the

government's interference.

While tradable permit schemes are actually deployed in practice under Kyoto

Protocol agreement in order to limit emissions of greenhouse gases [116], they are

not practical to be implemented for real-world road networks due to several reasons.

The schemes require road users to go through a bidding or trading process before

being able to use the paths, while in reality, road users often needs an instantaneous

route choice decision. In addition, the schemes raise concerns about inequity when

the poor is deprived of accessing to the infrastructure, and the rich holds most of

the permits. Furthermore, although the tradable permit scheme approach, in some

aspects, can reduce the computational burden of finding an allocation rule for very

simple networks such as single OD pair networks, it is still not clear how to determine

the allocation rule for heterogeneous travelers in general networks.
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2.4.2 Algorithmic Mechanism Design

Since we are working on large-scale transportation networks, besides the game-theoretic

aspects, it is also important to address computational tractability and scalability. The

study of computational aspects in mechanism design has been investigated recently

in an emerging sub-discipline called algorithmic mechanism design. On the one hand,

researchers in this community address questions on how to bring computational as-

pects into economics and game theory by asking what equilibria notions are reason-

able to assume. On the other hand, they also focus on how to bring game theory

and economics into computer science and algorithmic theory by designing reasonable

algorithms that are resilient to selfish behavior of agents [21].

Computer scientists have used the algorithmic mechanism design approach to

tackle important problems in communication networks including resource allocation,

pricing and multicast cost sharing [24-31]. As the Internet is rapidly growing in scale,

the interaction between administrative domains known as Autonomous Systems and

end-users have become extremely complicated due to different goals and incentives.

In addition, since the network is shared by a large number of users, congestion may

occur when resource demands exceed the capacity (e.g. link bandwidths), leading to

packet delay and loss. Auctions have been suggested multiple times as an efficient

mechanism that incentivizes users to share network resources in an optimal manner.

For example, Lazar et al. devised a mechanism called Progressive Second Price (PSP)

auction for allocating variable-size shares of a resource among a fix set of users [24].

The mechanism was proven to be incentive compatible and efficient in the sense that

it maximizes the social welfare. Later, Maille et al. extended the PSP auction to

deal with stochastic environment where users randomly enter and leave the system

according to Poisson processes [25]. Other works on network resource allocation

based on auction theory can be found in [26-28]. Although these works consider

different possible mechanisms to resolve the incentive issues in Internet routing, the

resulting routing protocols are hard to be implemented using the current network

stack. In particular, the interdomain routing on the Internet is handled by the Border
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Gateway Protocol (BGP), and it would be desirable to have a mechanism that can

utilize this protocol. In [29], the authors propose a mechanism with a distributed

allocation algorithm that is a straightforward extension to BGP and causes only

modest increases in routing table size and convergence time. This mechanism aims

to maximize network efficiency by routing packets along the lowest-cost paths.

2.4.3 Vickrey- Clarke-Groves Mechanisms

To achieve the incentive compatibility property, all of the above mechanisms for com-

munication networks are constructed based on the arguably most important positive

result in mechanism design, i.e., the generalized Vickrey-Clarke-Groves (VCG) mech-

anism [21,117-119]. The main ideas of the VCG mechanism can be explained in the

following scenario.

We assume that that there are n players and a set of alternatives A that the

mechanism can perform to allocate resources to all players. Each player i has his true

valuation vi(a) for each alternative a C A. In addition, each player has a reported

valuation bi(a) for each alternative a C A that he reveals to the mechanism. If

alternative a* is executed, the utility of player i is equal to the difference between his

true valuation for a* and the cost that he needs to pay to the mechanism as follows:

ui = vi (a*) - pi (a*).

The goal of the mechanism is to determine the alternative a* that maximize social

welfare EZ vi(a). First, based on the reported value bi(a) of each player i for each

alternative a, the VCG mechanism find the alternative a* that maximizes EZ bi(a).

Then, the VCG mechanism charges each player i with price

pi(a*) [maxE b (a)] bj (a*). (2.9)

The first component is obtained by removing player i and recomputing the maximum

reported valuation of all other players that can be achieved with another alterna-
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tive. The second component is the sum of reported valuation of all players except i

when alternative a* is chosen. Intuitively, the VCG payment rule implies that each

player i needs to pay the externality that he imposes on others when joining the

mechanism. We emphasize that this result coincides with the marginal cost pricing

principle discussed in Section 2.3 under more general settings.

The VCG mechanism has several important properties as follows:

1. Incentive compatibility (IC) property: The mechanism is truthful in the

sense that the best strategy for each player is to reveal his true valuation for

each alternative. Let ui(vi, b-i) denote the utility of player i when he reports

his true valuation vi, and ui(bi, b-i) denote his utility when he reports bi, given

that all other players report bi. Then the IC property shows that ui(vi, b-i) >

ui(bi, b-i) for all bi. To see this property, we denote:

a argmaxa bA ± (i bj(a)I and % = arg maxaEA [vi(a) + Zji bj(a)]

as the alternatives selected by the VCG mechanism when player i reports bi

and vi respectively. We then have:

u (vi, b-i) = vi(2) - pi(a')

= v (a)- * max S b (a) - b(a*)

= vi(a) + b (a)' - max b (a)
acA

= max vi (a) + bj(a)]- max b (a)
aEA acA

> vi(a*) + Zb (a*) - max b (a)

= vi(a*) - max bj(a) - bj(a*)

= vi(a*) - pi (a*) = u (bi, b_ ).
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2. No-positive transfers property: Each player's payment pi is always non-

negative, which means that the mechanism never pays to the players. This

property can be seen clearly in Eq. 2.9.

3. Individual rationality (IR) property: If the valuation vi of each player i is

non-negative, then player i's utility ai is also non-negative for all i. This means

players do not lose anything if they participate in the mechanism. We can see

this property as follows:

ui (vi, b_[) =max vi(a) + Zb (a) - max bj (a)
acA aEA

> max b (a) - max b (a)] 0.
acA aEA

j j4i

In spite of all these useful properties, much work has shown that in complex

mechanism design problems such as combinatorial auctions, the allocation rule in

the VCG mechanism is NP-hard to compute [120-122]. The key technical difficulty is

that VCG mechanism requires an optimal solution to ensure the IC property, and this

makes the mechanism computationally intractable. Many computationally tractable

approximation algorithms or heuristics have been suggested, but they usually leads

to untruthful mechanisms [120]. Resolving computational issues in VCG mechanisms

while keeping the IC property of the mechanisms is still an active research area [121].

While the literature on algorithmic mechanism design for computer network rout-

ing is rich with a variety of research directions, applying algorithmic mechanism design

for traffic routing in urban transportation networks remains unexplored. Although

both types of networks share some similar modeling aspects, they are substantially

different from each other in their inherent characteristics. In particular, in computer

networks, utility functions of users are unknown to the network. Even if the utility

functions are known, there is no central authority that knows all the link capacities

and network topology [40]. In addition, autonomous systems (AS) in the network can

run any routing algorithm that benefits them the most. Therefore, we can hardly sim-
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ulate the flows for the entire computer networks such as the Internet. In contrast, in

transportation networks, passenger utility functions can be modeled quite accurately

based on regression analysis [41]. In addition, we can monitor real-time traffic flows

via sensor networks [42-45] or community based mobile navigation applications such

as Waze [46]. As a result, current models and results in computer network routing

cannot be used and applied in urban transportation network routing.

In this thesis, we aim to design a mechanism that works specifically for trans-

portation networks. To do this, we need to overcome several computational issues

caused by time-varying travel demands from heterogeneous road users with private

preference information on general networks. In particular, designing an allocation

rule and an associated payment rule with the IC property is challenging due to the

combinatorial nature of the problem. We, however, observe that instead of allocating

paths for a number of passengers at the same time, we can allocate a path for each

new passenger sequentially. Correspondingly, we can introduce a new appropriate

equilibrium notation called sequential social surplus. In addition, travelers' utility

function in transportation networks can be reliably derived based on results in dis-

aggregate travel demand modeling that have been studied over the past four decades

(see Chapter 2 in [104] and references therein). By utilizing these observations, we

can overcome computational issues to design a strategy-proof mechanism in a proper

sense. In particular, allocated paths are computed to match passengers' preference

and to maximize sequential social surplus, and tolls are computed to ensure incentive-

compatibility. Once all passengers are incentivized to commit to allocated paths, the

complexity of predicting future traffic flows and computing paths and tolls for in-

coming passengers will be reduced significantly. In the following discussion, we will

review important shortest path algorithms that are the building blocks of computing

the allocation rule and payment rule in our proposed mechanism.
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2.5 Shortest Path Algorithms

2.5.1 Unconstrained Shortest Path Problems

Given a network represented by graph G = (V, E) with nodes V and directed links

(also called arcs) E and the weights of all directed links are non-negative, the tradi-

tional shortest path problem is to build a shortest path tree from a single source node

ro (also called root or origin) to all other nodes in the network. More specifically, the

shortest path tree is a spanning directed tree of G, rooted at ro, which, for each node

v C V, contains a shortest path from ro to v [123]. All shortest path algorithms have

a labeling process of finding a label for each node that contains the cost from root and

the predecessor node on path from root to that node. To do this, the algorithms need

two data structures: one for finding links out of each node and one for keeping track

of candidate nodes to add to the shortest path tree, which is known as a candidate

list. There are two types of shortest path algorithms including label setting and label

correcting algorithms as described below.

The first efficient shortest path algorithm was proposed by Dijkstra in 1959 [124].

Dijkstra's algorithm is a label setting algorithm since when a link is added to the

shortest path tree, it is kept permanently in the tree. Dijkstra's algorithm first adds

the source node to the candidate list with label indicating zero cost. As the algorithm

progresses, it chooses a node with the lowest label from the candidate list to process.

When a node is taken out of the candidate list to process, the shortest path from

root to the processed node has been found, and other labels in the candidate list are

updated if it is faster to reach these nodes via the processed node. Neighboring nodes

of the processed node are also put into the candidate list if they have not been in

the list before. This procedure continues until all shortest paths have been found.

In Dijkstra's algorithm, each node is taken out of the candidate list to add to the

shortest path tree only once, and the candidate list can be implemented as a minimum

priority queue or a minimum heap.

Dijkstra's algorithm is fastest for dense networks in which the average number of
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links out of each node (or out-degree of each node) is greater than 30. For more sparse

network in which the average out-degree is less than 30, a series of algorithms known

as label correcting algorithms have been developed to reduce the computing time. In

label correcting algorithms, a node taken out of the candidate list can be revisited

later if better paths are found. The improvement of each algorithm depends on how

the candidate list is managed. In particular, in Bellman-Ford algorithm developed

in 1958, a new discovered node is always put on the back of the candidate list, and

the next node is taken from the front of the list [125-127]. In 1974, Page devised a

faster algorithm called D'Esopo-Pape by placing a new node in front of the candidate

list if it has been on the list before, otherwise putting it on the back of the list [128].

Bertsekas, in 1992, proposed an algorithm that puts new node on the front of the

candidate list if its label is smaller than current front node, otherwise puts it on the

back of the list [129]. In the same year, Hao and Kocur suggested a faster algorithm

that puts a new node on the front of the list if it has been on the list before. Otherwise,

the new node is put on the back of the list if its label is greater than the front node

label and on the front of the list if its label is smaller [130].

Theoretically, in the worst case scenario, label setting algorithms are faster than

label correcting algorithms. Label setting algorithms run in 0(a2 ) time in simple

versions and in 0(a lg n) time with a heap, where a is the number of links and n is

the number of nodes. For label correcting algorithms, the worst-case time complexity

is O(2a) (except that Bellman-Ford algorithm runs in O(na) time [125]). In practice,

however, label correcting algorithms, which run averagely in 0(a) time, usually out-

perform label setting algorithms, which run averagely in 0(a lg n) time with a heap.

This is because label correctors with an appropriate candidate list data structure in

fact make very few corrections and run fast.

2.5.2 Constrained Shortest Path Problems

The basic problem of finding a shortest path between two specific nodes in a general

network, as discussed above, can be solved in polynomial time by many efficient
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labeling algorithms. Viewed from the mathematical programming perspective, the

traditional shortest path problem can be modeled as an integer programming problem.

Since this problem possesses the unimodularity property in this case, applying linear

programming relaxation can solve the problem in polynomial time. In our mechanism,

however, we not only want to compute a shortest path for each passenger, but we also

want to make sure that the path matches with the passenger's personal preference. To

do this, we need to introduce an additional constraint to our shortest path algorithm.

In fact, the constrained shortest path problems have been addressed by a number of

researchers in the literature and can be classified into three main problems as discussed

in [131]. The first problem is the resource constrained shortest path problem, which

is the problem of a traveler with a budget of various resources who needs to find the

quickest way to reach his destination without overspending his budget. The second

is the vertex constrained shortest path problem, which is the problem of finding the

shortest path that pass through a set of specified nodes (also called vertices). The

last is the time constrained shortest path problem where the are lengths are time-

dependent and/or time windows exist for the nodes.

As our objective is to assign each passenger a path that matches with his travel

time constraint, the induced shortest path problem in our mechanism is a time

windows constrained shortest path problem. It has been showed that the shortest

path problem with time windows constraints and possible negative edge costs is NP-

hard [132, 133]. However, by leveraging the properties of transportation networks

and the novel design of our mechanism, under some mild assumptions, we can apply

the label-correcting algorithm to solve our fairness constrained shortest path (FCSP)

problem in polynomial time. We will describe this process in detail in Chapter 4 and

Chapter 5.
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Chapter 3

Problem Formulation

This chapter develops a formal problem formulation for our game-theoretic approach

to the optimal traffic routing problem. Section 3.1 provides preliminary notations and

definitions used in the rest of the thesis. Following this, we present our assumptions

in Section 3.2. Section 3.3 formulates a model for a general network with dynamic

traffic flows of heterogeneous travelers. We present our User-Centric Dynamic Pricing

(UCDP) Mechanism in detail in Section 3.4.

3.1 Preliminary Notations and Definitions

3.1.1 Graph

A graph G = (V, E) consists of a finite set V of nodes (or vertices) and a finite set E

of links (or edges, or arcs, or branches), which connect pairs of distinct nodes [134]. A

link that connects node x E V and y E V is denoted as (x, y). An origin-destination

(OD) pair is denoted as OD(r, s). When it is clear in a context, we use (r, s) instead

of OD(r, s) to refer to an OD pair.

A graph is called directed (or oriented) graph if every link in the graph has a

specified orientation (or direction). In contrast, if no link has a specifiec orientation,

the graph is undirected (or nonoriented). A directed link (x, y) has a direction from

x to y and is usually drawn with an arrowhead that indicates its direction. Examples
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Figure 3-1: Examples of graphs.

of undirected and directed graphs are illustrated in Fig. 3.1.1.

A link is incident on the two nodes that it connects. Any two nodes connected by a

link are called adjacent nodes. Similarly, two links are adjacent if they are connected

by a node. For undirected graphs, the degree of a node is the number of links incident

on it. For directed graphs, the indegree of a node is the number or links going to that

node. The outdegree of a node in this case is the number of links going out from that

node.

A path in a graph consists of a sequence of adjacent links that connect a se-

quence of adjacent nodes. A path begins at a node and ends at another node.

In a directed graph, paths are also directed. A path can be represented as se-

quences of adjacent nodes such as P = {a, b, c, ... , i, j, k} or of adjacent links such

as P {(a, b), (b, c), ..., (i, a), (j, k)}. If the starting node and ending node of a path

coincide, the path is called a cycle (or circuit). A path is simple if each link appears

only once in the sequence of links, and is elementary if each node is visited only once.

In this thesis, we only consider simple and elementary paths.

3.1.2 Poisson Process

Suppose that there is a sequence of demand arrivals (or events) such that: (i) suc-

cessive demand inter-arrival (or inter-event) times are mutually independent, and

(ii) demand inter-arrival times are all described by the same exponential probability

density function (PDF), then the number of arrivals constitutes a Poisson process.
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Figure 3-2: Illustration of Poisson arrivals in time.

Fig. 3.1.2 illustrates Poisson arrivals in time. The exponential PDF that represents

demand inter-arrival times of a Poisson process is:

f (t = Ae-, t > 0

0, t < 0

where A is arrival rate measured by the average number of arrivals per unit of time,

and is also referred to as the intensity of the arrivals of Poisson events. Let N(t)

denote the above Poisson process. Then the probability that n events occuring in the

time interval [0, t] is:

P(N(t) n) (At) ._t
n!

The mean and variance of N(t) are both At.

The Poisson process plays a central role in transportation modeling, as it can be

used to model approximately the occurrence of random events such as the arrival

of uncoordinated demands at a transportation facility, or the passage of cars by an

observation point on a highway with free-flowing traffic.

3.1.3 Mechanism

Our mechanism has the following components and notations:

* A set H = {Hn}_ 1 of all heterogeneous passengers where Hn denotes a class

of homogeneous passengers who have the same value of time 5d. If passenger i

belongs to class Hn, we know that his value of time is ai = dn.

* A set ( that represents all possible types (i.e., preferences) of all passengers.
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Each passenger i is required to report his type to the mechanism. Let 0, C E)

denote passenger i's true type and 0' C 8 denote his reported type.

" An allocation rule 7T : E x X -+ P, where P is the set of all paths that can

be allocated to the set of passengers H, and X is the set of all network states.

In particular, a state x = (k, q) E X is the state of the network at any time

instant, where k is density, measured by number of vehicles per kilometer and

q is the number of travelers on all links E of the network. The allocation rule

computes a path p for a new passenger i based on his reported type O and the

current network state x E X.

" A payment rule w : P x X -+ R. The payment rule determines the toll that

passenger i must pay to use the recommended path p E P.

3.2 Assumptions

We use the below assumptions in our UCDP mechanism.

1. Each vehicle has only one passenger.

2. Passengers are rational and risk-neutral, i.e., they always choose paths that

maximize their utilities.

3. Passengers naturally want to join the mechanism. This assumption is called

individual rationality (IR) in game theory terminology. We will discuss IR in

Section 7.2.

4. Each passenger i's value of time a, can be derived from several demographic

data such as tax and income.

5. If there exists a path p C P between an OD pair (r, s), then we assume that

there also exists public transportation such as train or light rail between nodes

r and s with infinite capacity.

54



6. Travel times on all roads in the network are positive and uniformly bounded

away from zero.

3.3 Dynamic Network Model

We consider a general traffic network represented by a graph G = (V, E) with nodes

V and directed links E. We assume that there are L demand traffic flows in the

network, denoted by {d1 }[;_1. Each demand flow d, can be represented as a Poisson

process with rate A, > 0 arriving at nodes R, where R C V. Each passenger from

these L demand flows has a request to travel from an origin r c V to a destination

s E V. Between each OD pair (r, s), there exists path p e P", where Ps is the set

of all feasible paths between r and s. We define P as the set of all Prs.

We recall that x = (k, q) E X represents the state of the network at any time

instant. In particular, we have k = (ke)eCE and q = (qe)ecE in which ke and q, denote

the density and the number of travelers on a particular link e E E at that time instant.

Each link e E E has a jam density Kje at which the traffic on the link is congested

with zero traffic flow. Based on the Greenshields model described at the beginning

of Chapter 2, Kc, = 1Kje denotes a critical density at which additional input of

vehicles on the link decreases traffic flow and eventually leads to traffic congestion.

The set of all feasible density on link e E E is Ke. We define K= HeE Ke so

that k E K. Similarly, the set of all feasible number of people on link e is Qe, and

q E Q = HecE Qe. We note that x is time-varying.

At any time instant t, assuming that the network state is x, we would like to

simulate the network state - c X after a path p c P is assigned to a new traveler

given that all current travelers in the network are following their assigned paths.

Ideally, we would like to predict X dynamically at any time instant in the future after

the path p is assigned to the new passenger. However, to simplify the notations in

the following discussion, we assume that from that time instant t, the state x of the

network will not change until the new passenger completes his trip. We can simulate

x by simply adding the new traveler on each link e E p C E as if he were traveling on
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Figure 3-3: User-Centric Dynamic Pricing mechanism.

e at time t. Thereafter, given density on link e, the space-average speed of passengers

traveling on the link can be computed by using the Greenshields model described in

Chapter 2. In particular, - = g(x,p) where g : X x P -- X. We will return to

dynamic and real-time prediction in Chapter 5.

The travel time on each link e, denoted by Tre(ke), is a strictly increasing and

convex function of density ke, where k, is extracted from X' = (k, ') =(x, p) and is

the experienced density of the driver. For a new driver who follows a path p E 7P, his

experienced travel time along this path would be:

T(X, p) Te (ke). (3.1)
eEp

3.4 User-Centric Dynamic Pricing Mechanism

We now discuss the user-centric dynamic pricing (UCDP) mechanism in detail. We

remind that H = {H,}N 1 is the set of all heterogeneous passengers where H, denotes

a class of homogeneous passengers who have the same value of time dn. If passenger i

belongs to class Hn, we know that his value of time is ai = dn. The UCDP mechanism

is illustrated in Fig. 3-3 and works as follows. At time t, a passenger i E Hn who

is the latest incoming passenger from L demand flows wants to travel from r E V
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to s E V. Passenger i will report his maximum accepted travel time 0i > Ors, to a

central system. In game-theory terminology, we define 0, as the type of passenger i.

The lower bound 0rs is the minimum time to travel from r to s and is announced

publicly by the road authority. The value of 0,1 is computed in Chapter 5. If there

is currently no path to travel from r to s due to congestion, we define 0rs = +oo,

and the passenger is advised to use public transportation. Otherwise, our mechanism

then computes a suitable path p for this passenger and a toll wi(x, p) that he has to

pay to complete his trip. The utility function of passenger i for such an assignment

is determined as follows:

ui(X, p, Oi) = OQ (Oi - r(x, p)) - Wi(X, p), (3.2)

where T(x, p) is the travel time that passenger i spends when traveling along path p

from r to s and can be computed by Eq. 3.1. We assume that passenger i is risk-

neutral and seeks to maximize his utility ui(X, p, 02) of the trip. Clearly, the first

term in Eq. 3.2 can be considered as passenger i's benefit of making the trip, and the

second term is his cost. Thus, we denote vj(X, P, 0) = aQ (Oi - T(x, p)) as passenger

i's benefit.

The road authority, on the other hand, tries to maximize the social surplus of all

current travelers in the road network. When a path p is assigned to passenger i, the

road authority's utility function is defined as follows:

V (X, P) =~ -- T'e (Eke)qe, (3.3)
ecE

where a"' is the authority's value of time for passenger i on link e, which depends

on this passenger's class, and ke, extracted from X- g(x,p), is the new density on

link e when passenger i travels along path p. In particular, if e 0 p, we have k, = k,

and if e E p, ke is the induced density due to q, + 1 travelers on link e. Equation 3.3

implies that the road authority is better off if the total travel time of current travelers

is smaller.
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As we are handling dynamic traffic network in which demands arrive as Poisson

processes, the ordinary social optimal concept is not suitable. Thus, we propose

sequential social surplus as an alternative measurement of total society's benefit.

More precisely, we define sequential social surplus as follows:

Definition 1 (Sequential Social Surplus) Sequential social surplus is the sequence

of the sum of road authority utility V(x, p) and a new traveler's benefit vi(xp, O) over

time.

Our goal is to assign each passenger i a path p that satisfies his travel time

constraint 0 while maximizing sequential social surplus when passenger i joins the

network. In addition, we want to ensure that the density on each link e E E does not

exceed its critical density KCe for all times t, i.e., the network is always congestion-

free. The exceeding demand is rerouted to public transportation. While we assume

that each passenger will follow the assigned path, there is a concern that a passenger

i could increase his utility ui(xp, O) if he lies about his true tolerated travel time

Oi. Such manipulation would negatively affect the overall network efficiency. To

avoid this situation, our approach, described in Chapters 4 and 5, computes a path

allocation rule and a payment rule that are incentive compatible (or strategy-proof),

which means passengers have no incentive to lie about their preference.
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Chapter 4

Approach

This chapter presents our approach to design an allocation rule and a payment rule,

which are two important components in our mechanism. Section 4.1 describes the

allocation rule, which assigns a path that satisfies each user's time preference while

maximizing sequential social surplus and ensuring that the network is not congested at

any time instant. The allocation rule is formulated as a fairness constrained shortest

path (FCSP) problem. The payment rule, which is described in Section 4.2, calculates

a toll that each passenger pays to use his assigned path based on the marginal cost

principle. Section 4.2 also presents important theorems, in which we prove that the

mechanism has incentive compatibility and no-positive transfer properties under the

above allocation rule and payment rule.

4.1 Allocation Rule

We recall that our first objective is to achieve a path allocation rule that matches

with each user's preference while maximizing sequential social surplus and avoiding

congestion. More precisely, given that at time t, a passenger i reports his type 04, we

aim to solve the following optimization problem for all 0':

max V(x, p) + vi(xp, 0)
pE Prs
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subject to

T(X, p) < 0', (4.1)

k, < Kce, Ve E E. (4.2)

The objective function is to maximize sequential social surplus, which is the sum of

road authority utility V(x,p) and passenger i's benefit vi(x,p, 0). The preference

constraint in Eq. 4.1 expresses an important requirement that the experienced travel

time of passenger i along his assigned path does not exceed his reported maximum

tolerated travel time. To prevent congestion, the link density constraint in Eq. 4.2

dictates that the density of link e when passenger i reaches that link must be lower

than its critical density.

The objective function can be rewritten as follows:

V(x, p) + Vi(X, p, 0$)

-a T'Te (ke)qe + ai (0' - T (X, p))

ecE

~[ S a6T(ke)±+S1:cT.e]e~0 - GiT(X p)

eeE\p eEp

- 5 a"T(k)q + ce 0$ - a 'Te (ke qe - ai Te(ke)
eEE\p eep eCp

=- l asTe(ke)qe + ai01 -ETe(ke)(a"ee+ )
ecE\p eep

E Te(kqe + i6 - T, ee - Ie(ke)] oze + Te(ke)i}
ecE eCP

where q, is the number of travelers in each link right before passenger i starts his trip.

Since we know the network state x and passenger i's reported type as well as

his value of time, the terms ZeEE 9'Te(ke)qe and ai0 are constant. Therefore, our

problem becomes a fairness constrained shortest path (FCSP) with bounded travel
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time:

miii >3 {n[Te(Ee) - Te (ke)] 0'qe + Te(ke)Ci}
eEp ee C k )

subject to

T(X, p) < 0,

ke Kce, Ve c E.

The equivalent arc-based formulation is as follows:

min Ze [Te (ke) - Te(ke) ]ac qe +e, (ke )ai}
eEE

Subject to

E z 1, Z-z
eCr+ eEs-

E - ze = 0,
eCv+ eCv-

Ze [Te(ke) < ,
ecE

ke < Kce, Ve E E,

Ze C {0, 1}, Ve C E.

-1,

Vv E V\{r, s},

The objective function in Eq. 4.6 is to minimize the sum of the increment in total

generalized travel time of current passengers on the roads and the generalized travel

time of the new passenger. Here ze is a binary variable, i.e., it is 1 if link e is on

path p assigned for passenger i, and zero otherwise. The coefficients of ze in the

objective function are called edge costs. The first two constraints in Eq. 4.7 are the

condition that passenger i needs to make a trip from r to s, where r+ is the set of

links going out from origin r and s- is the set of links coming in destination s. Eq. 4.8
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is a node balance constraint equation, where v+ represents the set of links coming in

node v c V\{r, s} and v- represents the set of links going out from v. The constraint

in Eq. 4.9 ensures that the travel time of passenger i along his assigned path should

not exceed his stated maximum accepted travel time. The coefficients of z, in this

constraint are called edge weights. The constraint in Eq. 4.10 restricts on link density

to guarantee that congestion will not happen. We note that, to further utilize the

roads, the upper bound KCe in Eq. 4.10 can be set to a higher value without changing

the two algorithms presented in Chapter 5. If the preference constraint in Eq. 4.9

and the link density constraint in Eq. 4.10 are omitted, an optimal solution to this

formulation would coincide with the social optimum in traditional traffic assignment

at this time instant.

In addition, it is worth noting that our objective function also demonstrates how

the value of time of passenger i can affect his assigned path. As the ratio of Oc to aoqe

becomes extremely large, i.e., passenger i needs to reach the destination urgently, the

road authority can deliberately neglect his value of time and can only consider to

minimize travel time on each link for this passenger. Hence, the formulation has

significant meaning in real-world routing when we need to provide a police car or an

ambulance with the fastest path to reach the accident site. Therefore, the combination

of the preference constraint and the role of passenger's value of time in the objective

function successfully model fairness requirement for individuals. To the best of our

knowledge, the proposed model is the first in the literature that considers all of the

above aspects.

Regarding computational complexity of the problem, it is well known that the

general shortest path problems with additional constraints and possible negative edge

costs are NP-hard [133]. However, by leveraging the properties of transportation

networks and the novel design of our mechanism, we can naturally handle the problem

by assuming that travel times on all roads in the network are positive and uniformly

bounded away from zero. Under these mild assumptions, our FCSP problem can

be solved in polynomial time by using the label-correcting algorithm [132,135]. The

implementation of label-correcting algorithm will be explained in detail in Chapter 5.
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4.2 Payment Rule

We now discuss how to design the payment rule such that the proposed mechanism

satisfies incentive compatibility. Given that we have solved the FCSP problem in

Eq. 4.3-4.5, with 0', we obtain an optimal solution p*(Q'), which is the path that we

will allocate to passenger i. With this optimal path, we can calculate the payment

that passenger i pays for using the path based on the marginal cost principle:

wi(x, p*(()) V(x, 0) - V(x, p* (')) (4.12)

=>3 e (ke) -Te(ke) jeq
eCP *(0$)

The first term on the right side of Eq. 4.12 is the maximum value of the authority's

utility when passenger i is not included, and the second term is the authority's utility

when passenger i travels along path p*(0'). We note that tolls for different classes of

passengers are different, depending on the authority's value of time 0e" for a particular

class. This payment rule would favor low-income groups and thus provides fairness

among individuals as discussed by [15]. Under this price, the utility of passenger i,

ui(x, p*(0'), 0i), in Eq. 3.2 becomes:

ai (Oi - T(X, p*(0')) - V(x, 0) + V(x, p* (0)). (4.13)

The pricing mechanism we propose looks similar to the celebrated Vickrey-Clarke-

Groves (VCG) mechanism that is incentive compatible (see Section 2.4.3). Neverthe-

less, our mechanism is considerably different from VCG mechanism because at each

"game", we only consider a single player, i.e., a passenger, who indirectly plays with

all current passengers in the network before actually joining the network. Moreover,

we have additional preference and capacity constraints in our allocation rule problem,

while VCG mechanism does not have. Therefore, it is necessary to prove that our

mechanism still maintains the strategy-proof property in spite of the modifications

as follows.
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Theorem 1 (Incentive compatibility property) Given the allocation rule determined

by the FCSP problem and the marginal cost payment rule as in Eq. 4.12, reporting

' = O0 is a weakly dominant strategy of passenger i, Vi C H.

Proof: Assume that truth telling is not a weakly dominant strategy for some i, i.e.

there exists some 0, and 0 such that

u (x, p*(0'), 0i) > u (x, p*(0i), 0i), (4.14)

r(X, p*(0')) < Oi, (4.15)

and the network is congestion-free under both reports 0, and 0'. Equation 4.15 means

that p*(0') is a feasible solution to the optimization problem:

max V(x, p) + vi(x, p, 02)
pG prs

subject to

T(X, p) < 02,

ke(e) < KCe, Ve E E.

We have p*(Qj) as the optimal solution to the above problem due to the allocation

rule. Thus:

V(x, p*(0 )) + vi(x, p* (0), 02) < V(x, p*(0i)) + vi(x, p*(0i), 02). (4.16)

On the other hand, substituting Eq. 4.13 into Eq. 4.14, this yields

i (Oi - T(X, p*(0')) - V(x, 0) + V(x, p*(())

> oei (0 - T(X, p*(0i)) - V(x, 0) + V(x, p*(0))
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<- V(X, p* (0')) + vi (X, p* (0'), Oi)

> V (X, p* (OM) + vi (X, p* (0i), Oi).-

Comparing the above inequality with Eq. 4.16, we reach a contradiction.

Similar to the VCG mechanism, our UCDP mechanism also has the no-positive

transfers property as shown in the following theorem.

Theorem 2 (No-positive transfer property) Given the allocation rule determined

by the FCSP problem and the marginal cost payment rule as in Eq. 4. 12, passenger

i's payment wi is always non-negative, Vi G H. This means the mechanism never

pays a positive payment to passengers.

Proof: By definition in Eq. 4.12, the payment that passenger i pays for using a path

assigned to him is

WiTX, p*(Oi)) = [Tee) - Te(ke)I aoqe.
Cp (Oil)

According to the density-speed relationship in the Greenshields model described in

Section 2.1, we can derive the travel time on link e when passenger i join that link

Te(ke) as follows:

Te (ke) vna(- _

where 4e is the physical length of link e. A more detailed description of this equation

is included in Section 5.1 in the next chapter. Given that the link length 4,, the

maximum speed vemax and the jam density Kie are constant, it is clear that the travel

time Te (ke) is a monotonically increasing function with respect to the link density ke.

As ke > ke, Te(ke) > Te(ke). In addition, the road authority's value of time z"'' and

the flow on link e q, are always non-negative. Therefore, wi(x, p*(0')) > 0.
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Chapter 5

UCDP Computation

In this chapter, we describe in detail how we allocate paths and compute tolls dynam-

ically. Section 5.1 shows how network states are simulated by applying the Green-

shields model. Section 5.2 provides an algorithm to compute minimum travel times

announced by a road authority by using Dijkstra's algorithm. Following this, an al-

gorithm for computing dynamic path allocation and dynamic tolls are presented in

Section 5.3.

5.1 Traffic Simulation

Assuming that travelers in the networks are following assigned paths, we use the

Greenshields model presented in Section 2.1 to simulate a network state at any time

instant. The density ke on each link e can be computed by counting the number of

passengers on that link. Given maximum speed v;"' and jam density Kie on each

link e E E, the space-average speed ve and travel time T (k,) on each link e at each

time instant are computed as:

e = Vmax(1 )-

and

T(ke) ee,
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where Le is the physical length of link e. The traffic flow and the maximum traffic

flow on each link e at each tine instant are

fe =ek,

and
1

F" ax - max Kje,
4

respectively.

The above computation process can also be used to predict future network states as

follows. From the current network state x, as passengers in the network are following

their assigned paths, we can simulate to obtain their positions after some duration t.

Hence, we can estimate the number of passengers on all links in the future. We now

can apply the Greenshields model as above to compute the new network state.

Therefore, we assume that there exists a procedure Greenshields(x, t) that pre-

dicts the future network state from the current network x after a period of time t. We

note that the more accurate prediction of X= g(x, p) in Chapters 3-4 can be done by

calling the procedure Greenshields before accessing an edge state (see Algorithm 1

and Algorithm 2). The computed states are real-time and dynamic.

5.2 Minimum Travel Time Computation

We compute minimum travel times using Dijkstra's algorithm on the graph with

time-varying edge costs as shown in Algorithm 1. The algorithm takes the current

network state x and the OD pair (r, s) as input and returns the minimum time to

travel from r to s.

The algorithm is implemented using a minimum priority queue to store candidate

vertices. Each vertex has a label (T, pre) where T is the time to reach that vertex

from the origin r, and pre denotes the previous vertex on the shortest path from r

to that vertex. When a vertex is taken out of the candidate list, we call the pro-

cedure Greenshields (Line 11) to update a new network state X after taking the
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shortest path from the origin r to that vertex. The predicted edge cost T- (Line 12)

for link e E E is Te(ke) where ke is computed at the time the passenger reach link

e from the new network state X. This computation is performed in the procedure

ComputeEdgeTravelTimes. In addition, in this algorithm, a link with density greater

than the upper bound in Eq. 4.10 is considered to be unavailable (see Line 14). We

update vertex labels in Lines 15-18 if it is better to reach a vertex via the currently

processed candidate vertex. We assume that simulation for obtaining predicted net-

work states can be performed in constant time. Under this assumption, the running

time of Algorithm 1 is E ln V1.

5.3 Dynamic Allocation and Pricing Algorithm

Algorithm 2 shows how assigned paths and tolls are computed dynamically from an

origin node r E V to a destination node s E V. The algorithm takes a reported

maximum travel time 0' from a passenger as well as his value of time a as inputs.

The algorithm also takes the road authority's value of time aO for this passenger on

all links as an input. We use a label-correcting algorithm to find all Pareto-optimal

paths. The details of the basic version of this label-correcting algorithm can be found

in [132, 135].

Essentially, at each vertex, we maintain a set of labels (C, T, pre), each of them

consisting of a cost component C, a travel time component T, and a pointer pre. In

particular, at vertex v E V, the cost component of a label is the cost-of-arriving from

r to v as defined in the FCSP problem (see Chapter 4) by following the path induced

by the label. Similarly, the travel time component is the total travel time from r to

v. The pointer component pre has the form (i, k) where i the previous vertex in the

induced path, and k is the label index of the previous vertex i. At a vertex i, b(i)

denotes the number of labels has been constructed and maintained by the algorithm.

The algorithm uses a minimum priority queue Q (Line 2), which is sorted by the

cost component, to store all labels. In the main loop of the algorithm, we first extract

a label (C"', T", pre7) with the minimum cost component to process (Line 7). Here,
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we have i is the processed vertex, and m is the index of the label at this vertex. Similar

to Algorithm 1, we estimate the future network state 2 (see Line 8) if the passenger

travels the path induced by the processed label to reach the processed vertex. At

Line 9, we compute the edge costs, denoted as ', and the edge travel times, denoted

as 7, from the FCSP problem in the procedure ComputeEdgeCostTravelTimeFCSP as

follows:

Te =Te(ke), ande= - e(ke) ] qe+Tea.

We then consider all neighbor vertices j of the processed vertex i such that edge

(i, j) is not congested, and time to reach vertex j does not exceed 0' from Line 11 to

Line 23. In Lines 13-15, we check if there exists a label at vertex j that outperforms

the path to reach j via i. Such label (Cjn, Tj, pren) exists if

C7K + , > C and Ti" +7, ;> Tj.

When no such label exists, we construct a new label for the vertex j in Lines 17-18. If

j is not the destination vertex s, we put the new label into the priority queue Q (see

Lines 19-20). To expediting the running time of the algorithm, we remove from the

queue those labels at vertex j that are dominated by the new label in Lines 21-23.

Finally, the path with smallest cost from r to s and the associated toll is com-

puted at Lines 24-25. When algorithm finishes processing the entire queue Q, at

the destination vertex s, we obtain all Pareto-optimal paths from r to s that satisfy

the passenger's preference. We can return a list of paths and corresponding tolls for

users to choose from. Nevertheless, based on our model, a rational user would choose

the path with smallest cost C, as currently returned in Algorithm 2 since this path

maximizes the user's utility. The procedure GetBestPath returns the best path p* by

tracing previous pointers backwards from s to r. With the return path p*, the proce-

dure MarginalPricing computes the associated toll as in Eq. 4.12. The complexity

of this algorithm is O('2 1V 2 ) where 0' is the reported maximum tolerated time and

IVI is the number of nodes [132,135].
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Algorithm 1: Dijkstra(G = (V, E), x,r, s)

// Initialization

1 (T,,prer) <- (0,0) ;

// Q: minimum priority queue sorted by T

2 Q - {(T, prer)}
3 InQ, +-- 1 ;
4 for i E V\{r} do
5

6

7

8

9

10

11

12

13

14

15

16

17

18

(Ti, prej) <- (00, 0);
InQj +- 0;

// Computing shortest path
while Q # 0 do

(T, prec) <- Pop(Q)

// If destination s is found
if i == s then

L break;
// T : shortest time to reach i from r
// Estimate network state after reaching i
x <- Greenshields(x, Ti);

// Compute time-varying edge travel times
<- ComputeEdgeTravelTimes();

// Update labels
for j E Neighbor(G, i) do

if ki, < Kc(i,) /\ T + -,j < T then
(T, prej) +-- (T + -Ti,, i);
if InQj == 0 then

Q <- Q U {(T7,pre3)};
InQj <- 1;

19 return T,
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Algorithm 2: UCDP(G = (V, E), x, r, s, 0', a, ozo)

// Initialization
1 (CJ, T, pre') <- (0, 0, 0);

// Q: minimum priority queue
2 Q <- {(Cr, T,, pre')} ;

// b(i): number of constructed
3 for i E V\{r} do

4 Lb(i) <- 0;
5 b(r) <- 1 ;

sorted by C'

labels at vertex i

// Computing assigned path

while Q $ 0 do

(C7n, T" pre") &- Pop(Q)

// Tim: time to reach i from r with mth path

// Estimate network state after reaching i using this path

x <- Greenshields(x, T);

// Compute time-varying edge costs and travel times for FCSP

(', F) <- ComputeEdgeCostTravelTimeFCSP();

for j E Neighbor(G, i) do

if Tm + i,j < 0' A ki,j < Kc(i,j) then
flag - 1;
for n =1 - b(j) do

if C7" + -,j > Cn A Tl" + 7-,,> T then

L flag +- 0 ;

if flag == 1 then
b(j) - b(j) + 1

ifj s then
j <T pre))}

for (C7, T, pre") E Q do

if C7> A T > Tb(j) then

Q <- Q\{(C,Tn, pren)};

24 p* <- GetBestPath(C, A, pre,);

// Computing toll

25 w <- MarginalPricing(x, p*);
26 return (p* w)
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Chapter 6

Experiments

This chapter demonstrates the performance of the proposed mechanism through two

simulated routing experiments. Section 6.1 presents the first experiment, in which

we simulate the UCDP mechanism on a parallel-link network with one OD pair.

We then compare the performance of the UCDP mechanism with user-equilibrium

and social-optimal performance. In the second experiment described in Section 6.2,

we consider a general network with multiple OD pairs including a bottle neck. We

demonstrate how the road authority uses the UCDP mechanism to manage traffic

flows when disruption occurs at the bottle neck.

6.1 Parallel-link Network

In the first experiment, we tested the UCDP mechanism on a parallel-link network

with one OD pair, in which links (0,3) and (3,4) are longer than the other links, as

shown in Fig. 6-1. The specifications for this network including physical length, max-

imum speed, critical density, and maximum flow for all links are shown in Table 6.1.

The total maximum traffic flow (or capacity) on the three routes from node 0 to node

4 is 1187.5 vehicles per hour (v/h). Passengers can also use public transportation

to reach the destination in one hour. The value of times for all passengers are 10

USD/h, and the value of time of the authority, a", is 100 USD/h for all links. At
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d 1 in dl out

3

Figure 6-1: Parallel-link network.

Table 6.1: Network specifications for Fig. 6-1. Capacity 1187.5 v/h

Link L(km) v"'a(km/h) Kc(veh./km) F"max(veh./h)
01, 14 2.5 60.0 15.0 450.0
02, 24 3.5 70.0 12.5 437.5
03, 34 10.0 120.0 5.0 300.0

first, the flow rate A, of the traffic demand d, is set at 970 vehicles per hour (v/h),

which is lower than the total capacity of the network. We then increase the demand

to 1500 v/h to observe the network performance when the demand exceeds the ca-

pacity. In these cases, we compare the performance of the UCDP mechanism with

user-equilibrium (UE) and social-optimal (SO) performance. Since we are dealing

with dynamic demand flows, we can not compute a priori UE and SO performance

as usually done in static traffic assignment. Therefore, UE and SO performance in

Figs. 6.1, 6-3 and 6-5 is computed sequentially for every new arriving passenger.

When the demand is 970 v/h, as shown in Fig. 6.1, under the UE setting with

no toll, the densities, link travel times, and flows and passengers' travel time for all

links quickly reach their critical values after about 2.2 hours. This is because all

passengers act selfishly to choose paths with minimum travel time at the time they

arrive at the origin. Therefore, the road reaches the congestion condition rapidly and

28% of passengers need to use public transportation to avoid this situation.

In contrast, at the same level of demand, the UCDP mechanism is able to maintain

congestion-free traffic flows on all links. As we can see in Fig. 6-2(e), the densities on

three links are always smaller than the corresponding critical densities, which means
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congestion does not happen on these links. This observation is the direct consequence

of the constraints considered in the FCSP in Chapter 4. Therefore, the link travel

times in Fig. 6-2(f) are stabilized, and the traffic flows in Fig. 6-2(g) are close to the

corresponding maximum flows. We report the travel time for each passenger under the

UCDP mechanism in Fig. 6-2(h). At equilibrium, we expect that all passengers will

report their true maximum tolerated travel time due to the strategy-proof property

of the mechanism. The plot indicates that all passengers' preferences are satisfied

because their allocated travel times are always less than their maximum tolerated

travel times. We also notice that their allocated travel times are generally different

75

o 0.8

E
H- 0.6

H0.4

0.2

450

400

350

300

250

200

150

100

50

0

a)

a)

0
IL

F



----- Link 1

16 Link 2

14--Link3

12-

10

6 -

4

2 -

0
0 0.5 1 1.5 2 2.5 3 35 4 4.5 5 5.5

Time

(e) Density (UCDP).

Link 1
Link 2
Link 3

I'- - - -

0 0.- . 2-.5 3 3.

A2
0 0.5 1 1.5 2 2.5 3 3.5 4

Time

(g) Flow (UCDP).

a)

0

E

U)
0

E

I-

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0.25

0.2

0.15

0.1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
Time

(f) Link Travel Time (UCDP).

0.05k

4.5 5 5.5 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Passenger index

(h) Passengers' Travel Time (UCDP). Public
transport usage: 0%

Figure 6-2: Performance of the UCDP mechanism when the demand is 970 v/h.

from the announced minimum times. In addition, the travel time under the UCDP

mechanism in Fig. 6-2(h) is about 0.14 hours, which is about 5.7 times faster than

the UE performance in Fig. 6-2(d). Overall, the results show that the mechanism is

able to maintain congestion-free traffic flows on all links, and thus nobody needs to

use public transportation in this case.

When the demand flow rate is increased to 1500 v/h, under UE setting, as shown

in Fig. 6-3(a), the network rapidly becomes congested and 77% of passengers need

to use public transportation. In contrast, under the UCDP mechanism, Fig. 6-3(b)
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Figure 6-4: Generalized cost and Toll.

shows that passenger travel time is maintained at good level and only 26% of people

need to shift to public transportation.

We recall that the mechanism use tolls to incentivize passengers to reveal their

true maximum tolerated travel time. The dynamic tolls, generalized costs (negation

of utilities), and benefits for passengers in case the demand is 970 v/h are shown

in Fig. 6-4. We emphasize that, at equilibrium, all passengers' generalized cost are

minimized.

To compare the performance of the UCDP mechanism with SO performance when
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Figure 6-5: Performance of UCDP mechanism in comparison with the SO perfor-
mance.

the demand is 970 v/h, we plot the ratio of the total travel time of all passengers in the

network when UCDP is used to the total travel time of all passengers when they are

coordinated in a socially optimal way in Fig. 6-5(a). The value of UCDP total travel

time and the difference between total travel time in UCDP and SO cases are depicted

in Fig. 6-5(b). The two plots indicate that UCDP performance is very close to the

SO performance in this experiment. We note that as total demand (A, 970v/h)

is less than total maximum traffic flows (1187.5 v/h) on the three routes, at SO

state, there is no congestion. Thus, we emphasize that in UCDP mechanism, we have

achieved near SO performance without congestion and at the same time satisfied all

passengers' preferences. This observation highlights the game-theoretic aspect of the

UCDP mechanism and how the mechanism allocates near SO paths at equilibrium.

6.2 General Network with a Bottleneck

In the second experiment, we demonstrate how the road authority uses the UCDP

mechanism to control the traffic flows when road conditions change over time. We

consider a general road network, in which link (2,3) is a bottleneck, as shown in

Fig. 6-6 with the specifications in Table 6.2. Passengers can go from vertex 0 to 1
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Figure 6-6: General network.

Table 6.2: Network specifications for Fig. 6-6

Link L(km) vrnax(km/h) Kc(veh./km) F"max(veh./h)
01, 45 7 60.0 25.0 750.0
23 2 120.0 [20.0] 10.0 600.0 [100.0]
others 1.5 30.0 35.0 525.0

or vertex 4 to 5 directly or through the bottleneck, which is shorter. From the table,

link (2,3) has the normal maximum speed 120 km/h, but when the link is disrupted,

the maximum speed is 20 km/h. There are two demand flows from vertex 0 to vertex

1 and from vertex 4 to vertex 5, each with rate 400 passengers per hour. We assume

that value of time for passengers is 10 USD/h. In normal operation, value of time

of the road authority is 100 USD/h, but when the link (2,3) is disrupted, the road

authority's value of time for link (2,3) is 400 USD/h.

In Fig. 6-7(a)-6-7(c), we show the road network condition over time when the

disruption period is from time instant 2.4 to time instant 5.1. As we can see from

the density and traffic flow plots, when the disruption occurs, passengers are rerouted

to links (0,1) and (4,5). When the link (2,3) is recovered, traffic flows are quickly

restored to the normal operation under the UCDP mechanism. Finally, we show the

how tolls vary through this disruption in Fig. 6-7(d). As we can see, a majority of

passengers is assigned longer paths with lower tolls, and a small fraction of passengers

use link (2,3) in their allocated paths with higher tolls. This result reflects the effect

of the authority's value of time for link (2,3) under disruption on the distribution of

passengers in the road network.

79



0 1 2 3 4 5 6 7 8
Time

(a) Density.

0- Link 23
Link 01

0 - Link 45

0 -

0 -

0
10

0
0 1 2 3 4 5 6 7 8

Time

0.35

0.3

0
0.25

E

1 0.25

C

*j0.1

0.05

U)

0-

(c) Flow.

Link 23
- Link 01 -

- Link 45

K--

Time

(b) Link Travel Time.

10
- Tolls on 1-link paths
- Tolls on paths containing link 2

8-

7

6-

5-

4

3-

00 1000 2000 3000 4000 5000 6000

Passenger index

(d) Tolls.
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his value of time to affect the traffic distribution and tolls.
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Chapter 7

Conclusion

In this chapter, we summarize the motivation and objectives of this thesis, the research

conducted in this thesis, and the key contributions. We also present several directions

for future research.

7.1 Summary

The optimal dynamic traffic routing problem for urban transportation network is con-

sidered computationally hard due to its combinatorial nature and its game-theoretic

aspects. As transportation networks are complex large-scale systems, designing a

real-time traffic routing system that can assign suitable paths to a large number

of passengers poses a great challenge to researchers. In addition, selfish and un-

predictable travel behavior of drivers make it extremely difficult to enforce them to

follow the routing system as well as to foresee potential congested roads. Furthermore,

researchers also have concerns about the efficiency of the system as well as the fair-

ness issues arising from heterogeneous classes of passengers. Traditional approaches

such as static and dynamic traffic assignment as well as heuristic congestion pricing

schemes in real-world deployment do not fully address the above challenges. As a

result, we are motivated to explore a novel approach to overcome the computational

complexity and satisfy game-theoretic requirements of the problem.
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This thesis proposes a novel mechanism called User-Centric Dynamic Pricing

(UCDP) based on recent advances in algorithmic mechanism design. The mechanism

is applicable, for example, in one-way car rental systems, or mobility-on-demand sys-

tems consisting of autonomous cars in future cities. In the mechanism, these services

are designed to work with public transportation systems. The mechanism provides

a simple protocol for each passenger to interact directly with a road authority and

indirectly with other passengers when the passenger wants to join the traffic. The

passenger first requests to travel from an origin to a destination. Based on the cur-

rent network condition, the UCDP mechanism can either suggest him to use public

transportation or the road network. In the latter case, the passenger reports his

maximum tolerated travel time within the lower bound announced publicly by the

road authority. The mechanism then assigns him a path that satisfies his travel time

preference while maximizing sequential social surplus and ensuring that congestion

does not happen. The mechanism also computes a toll that the passenger should

pay to use his assigned path. Unlike other approaches that attempt to compute

the path allocation for all drivers at the same time, the UCDP mechanism consid-

ers drivers in sequence to reduce the computational complexity of the problem. We

have carefully designed algorithms to compute the allocation rule and payment rule

so that the mechanism addresses both computational tractability and game-theoretic

requirements of the optimal traffic routing problem.

This thesis has the following key contributions. First, the proposed UCDP mech-

anism is efficient, because it achieves maximum sequential social surplus and prevents

congestion. At the same time, the mechanism is user-centric in the sense that it ex-

plicitly focuses on each passenger's travel preference and fairness among individuals.

Therefore, the resulting routing system is pleasant and easy to use from passengers'

perspective. More importantly, the mechanism is proved to be incentive compatible,

i.e. passengers are always better off to report their true traveling time tolerance.

Second, the mechanism can be applied for general networks having multiple OD pairs

with dynamic flows of heterogeneous users in a computationally efficient way. The

enabling technical idea lies in the new fairness constrained shortest path (FCSP)
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problem with a special structure that enables polynomial time computation of path

allocation. Third, to the best of our knowledge, this thesis is the first in the literature

of transportation that considers general road networks with dynamic flows of hetero-

geneous users and addresses system efficiency, fairness among passengers as well as

computational complexity issues at the same time. These properties of the UCDP

mechanism are justified through our analysis and experimental results. Furthermore,

viewed from a broader perspective, this novel mechanism equips governments with

instruments to achieve sustainable transportation systems by alleviating urban con-

gestion and addressing related social and environmental impacts.

7.2 Future Directions

The extension of this thesis is broad. Several directions for future work are presented

here based on our insights gained from this research. More specifically, we would like

to investigate the individual rationality aspect of the mechanism, consider multiple

travel preferences and design distributed versions of the UCDP mechanism to deal

with scalability issues.

First, we want to incorporate individual rationality (IR) in our work so that

passengers will naturally join our system. This direction will remove our assumption

on IR in this work. Our intended method is based on the following observation. As

we have mentioned in the review of VCG mechanism in Section 2.4.3, if the utility of

passengers are always non-negative, they do not suffer any loss to join the mechanism.

Thus, passengers are willing to join the mechanism. To enable such a scenario, we

can offer reward points for passengers who choose to participate in our system. Using

results in the theory of repeated games, we aim to show that joining the UCDP

mechanism is sustainable with reward points. At the policy making level, passengers'

cumulative reward points can be exchanged for tangible benefits such as tax deduction

or can be used to establish reputation.

Second, we aim to provide more travel options for passengers to choose from.

For examples, besides travel time preference, a passenger can also indicate his max-
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imum tolerated toll and specify his route preference. These problems can be formu-

lated as other constrained shortest path problems such as vertex constrained shortest

path problems with additional constraints. Although these problems have been well-

studied in the literature, designing allocation and payment algorithms for these pref-

erences as well as investigation their complexity is an interesting research direction

for future study.

Third, this thesis lays a foundation for future works on designing distributed mech-

anisms for optimal traffic routing to deal with scalability. In particular, we envision

a large-scale network consisting of mobile users who not only share real-time traf-

fic information but also collaborate with each other to achieve social-optimal traffic

flows through our future distributed mechanism. Our algorithms to allocate paths

and compute tolls in this work is highly suitable for distributed implementation. Fur-

thermore, we observe that most travel requests can be processed by using information

in the vicinity of OD pairs. Thus, dividing computation on several computers would

significantly reduce computation time for each request. We can further use approxi-

mation in these computations to obtain suitable solutions in shorter computing time.

Maintaining game-theoretic properties such as incentive compatibility and individual

rationality under this approximation is an open problem for future research. Lastly,

we would like to extend our mechanism so that it is applicable for road networks gov-

erned by not only the public sector but also the private sector. Designing distributed

versions of the UCDP mechanism with the participation of the private sector, whose

objective is to maximize revenue, poses great challenges for future research.
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