55 research outputs found

    Joint Route Optimization and Multidimensional Resource Management Scheme for Airborne Radar Network in Target Tracking Application

    Get PDF
    In this article, we investigate the problem of joint route optimization and multidimensional resource management (JRO-MDRM) for an airborne radar network in target tracking application. The mechanism of the proposed JRO-MDRM scheme is to adopt the optimization technique to collaboratively design the flight route, transmit power, dwell time, waveform bandwidth, and pulselength of each airborne radar node subject to the system kinematic limitations and several resource budgets, with the aim of simultaneously enhancing the target tracking accuracy and low probability of intercept (LPI) performance of the overall system. The predicted Bayesian Cramér–Rao lower bound and the probability of intercept are calculated and employed as the metrics to gauge the target tracking performance and LPI performance, respectively. It is shown that the resulting optimization problem is nonlinear and nonconvex, and the corresponding working parameters are coupled in both objective functions, which is generally intractable. By incorporating the particle swarm optimization and cyclic minimization approaches, an efficient four-step solution algorithm is proposed to deal with the above problem. Extensive numerical results are provided to demonstrate the correctness and advantages of our developed scheme compared with other existing benchmarks

    Joint Transmit Resource Management and Waveform Selection Strategy for Target Tracking in Distributed Phased Array Radar Network

    Get PDF
    In this paper, a joint transmit resource management and waveform selection (JTRMWS) strategy is put forward for target tracking in distributed phased array radar network. We establish the problem of joint transmit resource and waveform optimization as a dual-objective optimization model. The key idea of the proposed JTRMWS scheme is to utilize the optimization technique to collaboratively coordinate the transmit power, dwell time, waveform bandwidth, and pulse length of each radar node in order to improve the target tracking accuracy and low probability of intercept (LPI) performance of distributed phased array radar network, subject to the illumination resource budgets and waveform library limitation. The analytical expressions for the predicted Bayesian Cram\'{e}r-Rao lower bound (BCRLB) and the probability of intercept are calculated and subsequently adopted as the metric functions to evaluate the target tracking accuracy and LPI performance, respectively. It is shown that the JTRMWS problem is a non-linear and non-convex optimization problem, where the above four adaptable parameters are all coupled in the objective functions and constraints. Combined with the particle swarm optimization (PSO) algorithm, an efficient and fast three-stage-based solution technique is developed to deal with the resulting problem. Simulation results are provided to verify the effectiveness and superiority of the proposed JTRMWS algorithm compared with other state-of-the-art benchmarks

    Multistatic radar optimization for radar sensor network applications

    Get PDF
    The design of radar sensor networks (RSN) has undergone great advancements in recent years. In fact, this kind of system is characterized by a high degree of design flexibility due to the multiplicity of radar nodes and data fusion approaches. This thesis focuses on the development and analysis of RSN architectures to optimize target detection and positioning performances. A special focus is placed upon distributed (statistical) multiple-input multipleoutput (MIMO) RSN systems, where spatial diversity could be leveraged to enhance radar target detection capabilities. In the first part of this thesis, the spatial diversity is leveraged in conjunction with cognitive waveform selection and design techniques to quickly adapt to target scene variations in real time. In the second part, we investigate the impact of RSN geometry, particularly the placement of multistatic radar receivers, on target positioning accuracy. We develop a framework based on cognitive waveform selection in conjunction with adaptive receiver placement strategy to cope with time-varying target scattering characteristics and clutter distribution parameters in the dynamic radar scene. The proposed approach yields better target detection performance and positioning accuracy as compared with conventional methods based on static transmission or stationary multistatic radar topology. The third part of this thesis examines joint radar and communication systems coexistence and operation via two possible architectures. In the first one, several communication nodes in a network operate separately in frequency. Each node leverages the multi-look diversity of the distributed system by activating radar processing on multiple received bistatic streams at each node level in addition to the pre-existing monostatic processing. This architecture is based on the fact that the communication signal, such as the Orthogonal Frequency Division Multiplexing (OFDM) waveform, could be well-suited for radar tasks if the proper waveform parameters are chosen so as to simultaneously perform communication and radar tasks. The advantage of using a joint waveform for both applications is a permanent availability of radar and communication functions via a better use of the occupied spectrum inside the same joint hardware platform. We then examine the second main architecture, which is more complex and deals with separate radar and communication entities with a partial or total spectrum sharing constraint. We investigate the optimum placement of radar receivers for better target positioning accuracy while reducing the radar measurement errors by minimizing the interference caused by simultaneous operation of the communication system. Better performance in terms of communication interference handling and suppression at the radar level, were obtained with the proposed placement approach of radar receivers compared to the geometric dilution of precision (GDOP)-only minimization metric

    Frequency-based radar waveform design for target classification performance optimisation using Fisher analysis

    Get PDF
    This thesis presents non-adaptive radar waveform and receiver designs to improve radar target identification performance. The designs are based on the theory of Fisher discriminants analysis and Fisher separability functions. Introducing Fisher discriminants analysis in waveform design for target maximisation is the first contribution of this thesis. By using the concepts of Fisher analysis both for 2-class or multiclass scenarios, a separability rational function can be derived for practical extended targets classification. The separability functions are formulated to maximise the distance between the means of data classes while minimising their variance. Fisher separability is used as an objective function for the optimisation problem to find the optimal waveform that maximises it under constant energy constraints. The classifiers are derived and inspired by Fisher minimum distance classifiers. The second contribution of the thesis is deriving low-energy low-covariance (LELC) closed-form solutions for the optimisation problem under additive white Gaussian noise (AWGN) conditions. These solutions perform well especially when the signal-to-noise ratio is low. Further, a closed-form solution for the optimisation problem is derived for the 2-class scenario. The solution achieves classification performance comparable to solutions obtained using general optimisation solvers. The proposed waveform and receiver design methods are tested using synthetic and real target data and is shown to achieve better performance than the wideband chirp and other non-adaptive waveform design methods reported in the literature

    A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence

    Full text link
    Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.Comment: Accepted by IEEE JSA

    Collaborative Trajectory Planning and Resource Allocation for Multi-Target Tracking in Airborne Radar Networks under Spectral Coexistence

    Get PDF
    This paper develops a collaborative trajectory planning and resource allocation (CTPRA) strategy for multi-target tracking (MTT) in a spectral coexistence environment utilizing airborne radar networks. The key mechanism of the proposed strategy is to jointly design the flight trajectory and optimize the radar assignment, transmit power, dwell time, and signal effective bandwidth allocation of multiple airborne radars, aiming to enhance the MTT performance under the constraints of the tolerable threshold of interference energy, platform kinematic limitations, and given illumination resource budgets. The closed-form expression for the Bayesian Cramér–Rao lower bound (BCRLB) under the consideration of spectral coexistence is calculated and adopted as the optimization criterion of the CTPRA strategy. It is shown that the formulated CTPRA problem is a mixed-integer programming, non-linear, non-convex optimization model owing to its highly coupled Boolean and continuous parameters. By incorporating semi-definite programming (SDP), particle swarm optimization (PSO), and the cyclic minimization technique, an iterative four-stage solution methodology is proposed to tackle the formulated optimization problem efficiently. The numerical results validate the effectiveness and the MTT performance improvement of the proposed CTPRA strategy in comparison with other benchmarks

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    Ultra-wideband antennas

    Get PDF
    The focus of UWB antenna research activity has matured in recent years and currently mainly concentrates on applications such as biomedicine and security. Early UWB antenna designs were driven by the FCC allocation of spectrum in 2002 and focussed on obtaining wide impedance bandwidths with reasonable group delay characteristics. Many of these were simple planar monopoles antennas with canonical geometries. The emergence of new applications channelled the emphasis towards miniaturisation and integration into devices. This required optimisation of the antenna geometries to ensure that good system performance is achieved from the integrated antenna. Many optimisation techniques are available including the spline technique to generate the outline of the antenna element and ground plane. Simple methods based on genetic algorithms are employed and evolutionary algorithms which are capable of optimising for multiple goals are beneficial when multiple antenna parameters are simultaneously investigated. These techniques have proven advantageous especially when time-domain performance is critical and provide solutions for both single-ended and differential feed arrangements. The main applications using UWB channels in the 3.1 GHz −10.6 GHz spectrum are localization and tracking applications, mainly employing impulse radio UWB imaging, and generally using linear polarization. However circularly-polarized UWB antennas have been developed, both directional and omnidirectional and are being investigated across various systems

    Swarm Robotics

    Get PDF
    Collectively working robot teams can solve a problem more efficiently than a single robot, while also providing robustness and flexibility to the group. Swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. The robots in the swarm should have some basic functions, such as sensing, communicating, and monitoring, and satisfy the following properties
    • …
    corecore