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Abstract

This thesis presents non-adaptive radar waveform and receiver designs to improve radar target

identification performance. The designs are based on the theory of Fisher discriminants anal-

ysis and Fisher separability functions. Introducing Fisher discriminants analysis in waveform

design for target maximisation is the first contribution of this thesis. By using the concepts of

Fisher analysis both for 2-class or multiclass scenarios, a separability rational function can be

derived for practical extended targets classification. The separability functions are formulated

to maximise the distance between the means of data classes while minimising their variance.

Fisher separability is used as an objective function for the optimisation problem to find the

optimal waveform that maximises it under constant energy constraints. The classifiers are de-

rived and inspired by Fisher minimum distance classifiers. The second contribution of the the-

sis is deriving low-energy low-covariance (LELC) closed-form solutions for the optimisation

problem under additive white Gaussian noise (AWGN) conditions. These solutions perform

well especially when the signal-to-noise ratio is low. Further, a closed-form solution for the

optimisation problem is derived for the 2-class scenario. The solution achieves classification

performance comparable to solutions obtained using general optimisation solvers. The pro-

posed waveform and receiver design methods are tested using synthetic and real target data

and is shown to achieve better performance than the wideband chirp and other non-adaptive

waveform design methods reported in the literature.



Lay Summary

Radars are electronic systems that operate similarly to how bats use sound echoes to see in the

dark. Bats use the echo of their screeches (sound waves) to locate and detect objects around

them whenever seeing is not possible. The difference is that radars sends a mix of electricity

and magnetic waves instead of sound waves. Radar electromagnetic waves can travel faster

than sound waves and cover more distance enabling the radar to detect and locate remote

objects.

In the early days of radars, it is common to have a predefined restricted shape of radar waves.

The shape of radar waves is commonly known as “the radar waveform”. The radar would

have a radar waveform that is used for all its operation. Modern radars have more advanced

hardware that allows them to use more variety of radar waveforms with much less restrictions.

Research shows that different objects, that reflect radar waves back to the radar, can have

different effects on the shape of radar echoes. This means that by recording these different

effects and using them as reference, the radar can recognise the objects that reflected their

waves. These effects also depends on orientation of object, its shape and its movements.

The research also shows that it is possible to design the radar waveform to make recognising

objects and their effects on radar echoes better. This makes the radar more efficient and more

often correct when recognising targets. This can be very important in many scenarios. For

example, the radar need to be very accurate in recognising if a remote object on the ground

in an enemy tank or a civilian ambulance.

In this thesis, we propose methods to design radar waveforms mathematically that should

improve the odds of the radar being correct in recognising remote objects. Our design makes

objects effect on echoes mathematically more separable and more different. This makes

recognising the effects and the object better in radars. Our design methods are set so that the

waveform can be calculated outside the radar hardware once and then used in radars. Usu-

ally calculating waveforms using our method might require a lot of calculations and need to
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Lay Summary

be done with computer. However, in this thesis we also define situations where the number

of calculations can be reduced significantly. In these situations, an equation can define the

waveform directly. The proposed methods also are designed to recognise the target using

single echo with no need to change the waveform between echoes. We call this type of meth-

ods “non-adaptive” design methods. By using computer simulation and some real recorded

objects effects, we can study and see how good our design methods in comparison to other

methods proposed by other researchers. The comparison is based on the estimated odds of

the radar correctly recognising an object. The results show that our methods achieve higher

performance than other non-adaptive methods.
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Chapter 1
Introduction

Signal processing plays a key role in shaping the performance of radar sensing systems. For

example, two radar systems equipped with identical hardware can have substantial difference

in performance depending on which waveform they transmit and how they process returns.

As radars have various applications and different related performance metrics, many of the

signal processing techniques are application-based and designed for specific performance

objectives. In this thesis, we investigate maximising target identification and classification

performance using both radar waveform and receiver design.

1.1 Motivation for the work

A great body of the literature recognises the importance of radar pulse/waveform design in

determining the performance of active remote sensing systems. The probing signal of the

radar is an important part of how the radar can contribute to the return signal quality and

the sensing performance. Note that a significant part of the performance gain achieved with

signal processing is obtained in the receiver. Techniques such as pulse compression, space-

time adaptive processing (STAP), Doppler estimation and pulse integration are examples of

techniques that enhances the performance without special transmitter design. However, with

radar waveform design, the contribution of the radar to the return signal can be shaped to

obtain the desired results.

Many of the radar signal processing techniques are application- and performance-based in-

cluding waveform, transmitter and receiver design. As radars are diverse in functionality

and application, the performance metrics and objectives are expected to be different and di-

verse. For example, while maximising signal-to-noise ratio (SNR) of radar return signals

is expected to improve the performance in general by improving signal quality, it does not

maximise information gain [1, 2].
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Over the last decade, a great body of research has explored radar detection performance and

how the different methods of radar waveform and receiver design can improve that perfor-

mance in various scenarios and under different practical constraints [3–9].

Typical practical constraints are that the waveforms have constant envelop in the time-domain

or have low peak-to-average-power ratio (PAPR). These are to ensure efficient transmission

of radar power and that the power amplifier is operating in the region where the power is

amplified efficiently [2]. However, the recent advances in linear power amplifier design al-

low for sophisticated pulse shaping and waveform designs where these constraints could be

relaxed without distorting the radar signal [10, 11]. Conversely, in the literature, designing

waveforms to improve target identification performance generally does not cover the eval-

uation of detection performance. Therefore, aspects relating to constant modulus or PAPR

are not included here. However, our design process does offer the flexibility to include such

constraints and future work may consider them.

In remote sensing applications, classification can be as important as detection and often the

former follows the latter. Both objectives have many applications related to security and

emergency services. For example, in a scenario where a remote target could be either a

tank or a civilian vehicle, classification is of high importance along with detection. For both

objectives, control of the transmitted waveform provides an additional degree of freedom to

maximize the performance.

For classification, two strategies have emerged: adaptive and non-adaptive waveform de-

sign. Adaptive waveform design procedures operate by continuously updating the transmit

waveform design by using the information acquired from received signals. For example, an

adaptive procedure can start by transmitting an arbitrary waveform (e.g. a chirp) and then

wait for the return signal and use its content to design the next waveform to be transmitted.

Then, it waits for the return from the new waveform and design the next waveform using

all the signals received so far. Non-adaptive waveform design, on the other hand, is done

without feedback from radar returns after deployment. This means that adaptive waveform

designs need to be implemented and automated in the radar system to systematically design

radar waveforms after deployment. Non-adaptive waveform design can be done offline before

radar deployment as no radar return is required in the design process.
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In this thesis, it is helpful to explore the different approaches where target identification per-

formance is enhanced using waveform and receiver design. By evaluating the requirements

and performance gain of every approach, the difference between the approaches becomes

vivid and a new approach that is optimal in all criteria becomes feasible. Also, the investi-

gation of the signal models and the assumptions about the target and radar surroundings is

an essential part of this thesis. This will allow for a clear vision of what methods are more

practical and which performs better for specific systems.

The thesis investigates the introduction of Fisher discriminant analysis to target identification

optimisation using waveform design. To the best of the author’s knowledge, Fisher discrim-

inant analysis were never applied to radar waveform design problems especially for target

identification applications.

In addition to the operational requirements for the target identification methods, the wave-

form and receiver design also demands additional computations. The waveform and receiver

design usually demands more computations than the target identification processes found in

the literature. Also, while most studies assumes a signal model based on the time-domain, a

great body of target data are frequency-based data (especially data collected with a synthetic

aperture radar (SAR)). Additionally, frequency-based data also provides computational ad-

vantages that are yet to be exploited. In this thesis, deriving an optimal waveform strategy in

terms of design computational requirements is one of the main aims of this thesis.

1.2 Thesis contribution

The thesis proposes new non-adaptive waveform design procedures for optimal classification,

one is inspired by 2-class Fisher discriminant analysis and the other in inspired by the mul-

ticlass analysis. The waveform, in both procedures, is designed to maximise either 2-class

or multiclass multivariate Fisher separability function under constant waveform energy con-

straint. The general solutions can be obtained using general optimisation solvers. Also, two

closed-form solutions (one for each scenario) to the waveform design optimisation problems

are derived under low SNR/energy and low covariance (LELC) assumption. The results show

that the proposed classification schemes and waveform designs outperform the non-adaptive
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methods proposed in [12–15] in most scenarios and especially in high SNR regions. These

contributions are presented in chapter 3.

Chapter 4 expands on chapter 3 with three main contributions. 1) Introduction of signal-

dependent interference and clutter to the signal model for the two cases: i) when the target

classes share the same covariance matrix ii) when they have different matrices 2) formulation

of the waveform design problem based on the new signal model for both cases 3) derivation of

a frequency-based closed-form solution for radar waveform design problem. The thesis tests

the closed-form solution against flat spectrum wideband waveform, optimised waveforms

obtained from the optimisation algorithms and extreme energy waveforms such as low and

high energy waveforms.

1.3 Thesis organisation

The thesis is organised as follows:

In chapter 2, a background of the thesis-related theories and concepts is presented. The

chapter starts by summarising the basics of radars, its applications, waveform design and a

brief summary of classification, linear and Fisher discriminant analysis. Also, an overview

of the literature of waveform design for target identification applications is presented. The

overview covers the main trends in the field of interest and the notable advances in the areas

of research related to the thesis.

Chapter 3 presents the first non-adaptive waveform design procedures and scenarios. The

signal model, waveform and classifier design for the clutter-free 2-class and multiclass sce-

narios are introduced. The waveform is designed to maximise Fisher’s separability between

target classes. The full derivation of the multiclass waveform design is presented in this

chapter while details on the derivation of the 2-class scenario are given in the appendix. By

using Fisher’s separability as the objective function for the optimisation problem, the optimal

waveform can be obtained using a general optimisation solver software. The chapter also

summaries the simulation setup and present the results showing the performance of the wave-

form and receiver derived and compare its results against other waveforms in the literature.
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This material form the basis of journal paper in [16].

Chapter 4 expands on 2-class scenario by 1) introducing signal-independent interference to

the signal model used in the derivation 2) updating design procedures and results with the

new signal model 3) deriving frequency-based closed-form solution for the waveform de-

sign problem using Lagrangian multipliers. The results presented in this chapter compare the

closed-form solution performance to the optimal waveform obtained by solving the optimi-

sation problem using the solver software. The contributions were primarily presented and

published in ICASSP [17] and the results presented in this chapter will form the basis of a

journal submission.

Chapter 5 concludes the thesis and summaries it in addition to hinting on the possible future

work.

1.4 Publications

• S. Z. Alshirah and B. Mulgrew, ”Improved 2-class target classification performance us-
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tional Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton,

United Kingdom, 2019, pp. 4450-4453.

• S. Z. Alshirah, S. Gishkori and B. Mulgrew, ”Frequency-Based Optimal Radar Wave-

form Design for Classification Performance Maximization Using Multiclass Fisher

Analysis,” in IEEE Transactions on Geoscience and Remote Sensing, 2020,

doi: 10.1109/TGRS.2020.3008562.

• S. Z. Alshirah, S. Gishkori, and B. Mulgrew, “Optimal Target Classification Using

Frequency-Based Radar Waveform Design ,” IEEE Transactions on Geoscience and

Remote Sensing, 2020, undergoing review.
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Chapter 2
Background and Literature Review

In this chapter, we review the basic concepts and theories in radar waveform design and

target identification that are related to this thesis. Also, we present the relevant literature and

research findings that are essential to waveform design and target identification performance

maximisation. Additionally, we cover the concepts that are necessary for understanding the

relevant literature and its results.

This thesis presents methods and design strategy to improve target identification performance

using radar waveform and classifier design. The methods are inspired by Fisher discriminant

analysis and Fisher’s separability functions. Thus, this chapter will briefly cover 1) radar ba-

sics 2) radar waveform design and its literature 3) linear classification and Fisher discriminant

analysis.

The methods presented in this thesis are focused on non-adaptive waveform design tech-

niques. This is sometimes referred to as single illumination design methods [18]. In non-

adaptive waveform design method, the waveform is designed, deployed and the identification

decision is made from single illumination return without changing the waveform design. Dif-

ferences between adaptive and non-adaptive designs are presented in this chapter.

Waveform design can also be used to improve other performance metrics and objective in

modern radar systems. For example, designing radar waveforms to maximise target detection

performance is the focus of a majority of the research in the field of radar waveform design

[2–9]. However, the focus in this thesis is on target identification optimisation and how it can

be improved using waveform design and Fisher discriminant analysis.

The chapter is divided as follows. The first section is an overview of radar basics and the

concepts that are essential for understanding the relevant literature and thesis contributions.

The second section is focused on radar waveforms, their literature and the materials related
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Figure 2.1: Simplified diagram of a primary radar

to the derivations and signal models. The third section presents a summary of the linear

classification concepts and Fisher discriminant analysis.

2.1 Radar

Radar is an active sensing device that utilise radio waves to detect and range remote targets.

Target detection and ranging is achieved using electromagnetic (EM) pulses transmitted from

the radar usually at radio frequency (RF) (The RF range is from around 20 kHz to around 300

GHz). The radar pulse travels maximally at the speed of light, depending on the medium,

allowing the radar system to sense the surrounding environment and remote targets by re-

ceiving and processing radar pulse returns. A simplified diagram of a primary radar is shown

in Figure 2.1.

The radar returns can be used to obtain information about remote targets. For example, the

returns can be processed to extract target delay, range, speed, angle or arrival, its physical

extent and the complexity of its structure. This can be used to detect the target, track its

movement, predict its path and identify its class to help radar operators in making the correct

decision on how to react to its presence [19].

Radar returns can be used also to capture the environmental surroundings of the radar in its

line of sight where the radar forms a synthetic aperture of points the radar passes through in

space while focussing on the area of interest in the ground. This results in high-resolution

imaging of the area of interest that cannot be blocked by cloud or mist. This is known as

synthetic aperture radar (SAR) imaging [20, 21].
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Radars can also use returns not generated by their hardware. Instead radars can use the signals

propagating around them to sense targets. This type of radars is known as passive radars. On

the other hand, a radar that sense targets by pulses generated by its hardware is called an

active radar.

The radar system mainly consists of:

• a transmitter that transmits the radar waveform. Some transmitters are designed to

transmit continuously and the others are designed to transmit periodically. For example,

gun radars transmit continuously when triggered to measure vehicle speed.

• a receiver that receives the return from the EM pulses and converts them into process-

able data delivered to the radar processor.

• a processor that extracts the useful information from the received data and make them

available for manual or automatic decision making. The radar can also be used for

timing and control of the transmitter and receiver.

2.1.1 Radar Applications and Basic Functionality

Radars are used for many application related to remote sensing. Some radars can be used for

multiple applications where the radar is able to change its functionality in what we call radar

mode. The main radar functions are as follows:

• target detection: where the radar make use of its probing EM waves and electromag-

netic properties of the conductive properties of the body of the target to range and detect

the presence of targets and extract their information.

• Target tracking: where the radar keep track of the target, its speed, and its path.

• target identification: where the target is assigned to a class of targets with common

features of interest to the radar operator

• Imaging: where the radar forms images of the terrain and targets seen in a given interval
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Figure 2.2: A simplified representation of radar return vs range in two scenarios where (a)
the distance between two targets is larger than range resolution and (b) where
the distance is lower than the range resolution

2.1.2 Range Resolution

Ranging remote targets is one of the basic applications of radar systems. In practical scenar-

ios, two or more targets can be on the same line-of-sight where the radar is pointing and in

close distance from each other. Range resolution is defined as the minimum distance between

targets in which the radar can see them as separate targets in the range axis. When radars used

to send high power impulses as their waveform, the best range resolution achieved is limited

by the impulse width which theoretically is zero but practically is not. However, techniques

like pulse compression allows the radar to have finer and better range resolution that is deter-

mined by the bandwidth of the radar waveform [21].

Fig 2.2 shows two scenarios where the radar has a range resolution of around 2 km (i.e.

∆r = 2 km). In the first scenario in the plot (a) in Fig 2.2, the distance between the targets

∆d equals ∆r and hence the radar can see them as two individual targets at the receiver. In
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the plot (b) from the same figure, the targets are closer to each other and the distance ∆d is

less than ∆r which means the radar can only see them as one target at that moment.

2.1.3 Point Target Model vs Extended Target Model

Accurate target modelling is a requirement for a good approximation of the practical aspects

of the radar operation. This requirement becomes more important when the main task of the

modelling is to study target identification performance.

A great body of research models remote targets as single-point reflectors which only attenuate

the radar pulse and delay it with a delay determined by the range of the target. This model is

known as point target model [2]. The model is usually assumed in a wide range of research

where it is accurate enough to be used practically in many detection or tracking scenarios.

When the system bandwidth of the radar is narrow such that target extent is smaller than the

radar range resolution, the point target model can approximate the realistic target behaviour

observed in practice. However, if 1) the target physical extent is larger than the range reso-

lution or 2) if the radar was equipped with hardware allowing for wideband operation, then

the range resolution can become comparable or smaller than the target extent. The extended

target model, in this case, will be more accurate than the point target model. Consequently,

the point target model should not be used in representing target response [2].

Figure 2.3 shows an example of the difference between what the radar sees a target with

large physical extent in a system (a) with ∆r = 10 m and another (b) with ∆r = 1 m.

Extended target model captures the target behaviour in an impulse response generated from

the reflection of the different reflectors on the target which can attenuate the radar pulse

differently and can delay it according to its position on the target.

The target impulse response (TIR) can be used as a distinct feature for every class of targets.

The uniqueness of a TIR of a class of targets can be exploited to improve classification per-

formance. This is also was shown to be useful in improving target detection and other radar

applications [2]. Alternatively, the frequency transform of the TIR can be used to distin-

guish targets. Many of datasets, especially data collected with SAR imaging, consist of target
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Figure 2.3: A simplified representation of radar return vs range for (a) narrow band radar
system where the target is seen like a point reflector (b) wideband radar where
the target has a detailed extended impulse/frequency response

frequency responses (TFRs) taken at different target orientations like MSTAR CVS data [22].

Many man-made vehicles and especially military targets are not symmetric on every illumi-

nation angle. Therefore, these targets are expected to behave differently if illuminated from

various angles and orientations. This difference is not expected to be clear when targets are

modelled using point target model. Assuming the radar can observe the TIR, the various de-

lays from the target illuminated surface at different angles will result in different TIRs. An

illustration is shown in Figure 2.4 where an airborne radar observe a civilian vehicle from dif-

ferent angles resulting in dissimilar observed extended responses. Targets with radar cross-

sections (RCSs) and TIRs that are rapidly changing with angle are known as high-fidelity

targets. RCS fluctuation can also be caused by the change in target range.
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Figure 2.4: Radars observe different TIRs if the target is viewed from different radar-target
orientations
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2.1.4 Radar Types

There are many categories that can be used to distinguish radars from each other. In this

section, the types of radar that are related to this thesis are presented here to distinguish them

from the ones that are not of interest.

2.1.4.1 Radar Types Based On Transmission Strategy

Pulsed Radars

Pulsed radar is one of the earliest types of radars where the radar actively transmits a probing

pulse to sense remote objects using pulse returns [21]. Radar pulses are transmitted period-

ically then a listening period, where the radar only receive pulse returns, follows each pulse

transmitted. The interval of time between radar pulses is known as pulse repetition inter-

val (PRI). The multiplicative inverse of the PRI is the pulse repetition frequency (PRF) (i.e.

PRF = 1
PRI

) which is more widely used than the PRI value.

Pulse-Doppler Radars

Pulse-Doppler radars are pulsed radar that also can measure the speed of targets by observing

the Doppler frequency in radar returns due to Doppler effect [21]. Doppler information can

be used in tracking and clutter suppression and also classification.

Pulse Doppler radars can have: i) low PRF waveforms with typical values of PRF between

0.3–2 kHz; ii) high PRF waveforms (100–300kHz) or iii) medium PRF waveforms with PRF

between 5–30 kHz in an X-band airborne pulse-Doppler radar [23].

Differentiating between these types of PRFs is dependent on the maximum unambiguous

radar range and the speed it can measure unambiguously.

Continuous-Wave (CW) Radars

CW radar transmits and receives radar signals continuously unlike pulsed radars. CW radars

are usually used for speed measurement (e.g. speed gun radars). However, by using frequency-
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modulated waveforms that are periodically swept between two frequencies, the radar can

range and detect targets in addition to observing the speed of the target by Doppler measure-

ment. This type of radar are known as FMCW radar where the FM is short for frequency

modulated [21].

2.1.4.2 Radar Types Based On Transmitter and Receiver Locations

Monostatic Radars

Radars with common RF system for the transmitter and the receiver are known as monostatic

radar. In order for monostatic radars to utilise common RF channel for both transmission and

reception of radar signal, a duplexer is used. However, the isolation of the transmitted pulse

from leaking and interfering with the received signal is a challenging problem that can result

in blocking the vision of some target due to the high power of the leakage.

Bistatic Radars

Radar transmitter and receiver do not have to share the same RF system or be colocated for

the radar to operate correctly. Bistatic radars are radars where the transmitter and receiver

are not colocated and are separated by an appropriate distance. Naturally, it is expected

that bistatic radars would cost more than monostatic radars as they require two RF systems

for it to operate in addition to a way for the transmitter and receiver to communicate and

be controlled and synced if necessary. The costs of bistatic radars are also influenced by

whether the transmitter is from a third party or not which can also influence the lightness

and compactness of the receiver and the communication channel between the transmitter

and receiver if needed. Bistatic radars provide advantages such as enhanced target RCS

perception, improved aspect angle diversity and tracking accuracy [24].

Multistatic Radars

Multistatic radars have similar configuration to that of bistatic radar where the transmitter

and receiver are separated. However, more than one transmitter or more than one receiver
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can be employed. For example, a multistatic radar could have one transmitter and two or

more receivers distributed in different locations. Also, a multistatic radar could have two or

more transmitters and one receiver. Multistatic radars could also have multiple transmitter

and receivers at in the system and can also be separated spatially.

2.2 Radar Waveforms and Radar Waveform Design

Advances in radar hardware enabled huge improvement to the capabilities of modern radars.

For example, radar processors became faster, lighter, more compact and reliable. This allows

for more sophisticated and complicated computations executed by the radar processor while

the radar is deployed. Also, linear power amplifiers became more reliable and more capable

of amplifying arbitrary radar probing signals without significant distortion to its amplitude

or phase. Power amplifiers can be divided into two different categories, namely, linear and

nonlinear power amplifiers. Linear power amplifiers maintain the amplification gain across

all input signal amplitudes. In contrary, the amplification gain in nonlinear power amplifiers

depends on the amplitude of the input signal. As a result, a radar signal with non-constant en-

velope is distorted when it is amplified by a nonlinear amplifier. On the other hand, the linear

power amplifier does not distort signals with varying envelops. Nonlinear power amplifiers

cost less and are more efficient than linear amplifiers [25].

With advanced linear amplifiers in addition to having a radar processor capable of arbitrary

radar waveform design, modern radar systems can exploit significant number of degrees of

freedom with radar waveform and receiver design to achieve new levels of efficiency and

performance [11]. The term arbitrary waveform is used for waveforms with no assumed

parametric structure. The waveform will still be constrained by the radar hardware restric-

tions.

2.2.0.1 Waveform Design Methodology-based Taxonomy

Waveform design can be divided based on the design methodology which can be used in

adaptive or non-adaptive design procedures. We list the types of design methodologies from
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the one with least degrees of freedom to the most as presented in [11]:

• Waveform selection: where the radar can only choose a waveform from a finite library

of pre-defined waveforms to select from.

• Parameter Selection: where the waveform is defined with pre-determined parameters

with limited number of values to select.

• Parameter Design: where the waveform has a structure based on a set of parameters

and the number of possible values of the parameters can be virtually infinite.

• Suboptimal Arbitrary Waveform Design: where the waveform is designed achieves

suboptimal performance despite having almost no constraints on its structure.

• Constrained Optimal Waveform Design: The waveform is designed to achieve optimal

performance while satisfying one or multiple constraints.

• Unconstrained Optimal Waveform Design: The waveform is designed to achieve opti-

mal performance under no constraints.

2.2.1 Radar Waveform Design for Target Identification

Radar waveform design is a major area of interest in the field of radar signal processing

[26]. Although waveform design in radars is a long time interest, the new trends in designing

an application-based waveforms can be dated back to the publication of [2]. The author

agreed with P. M. Woodward and I. L. Davies [1], that maximising output signal-to-noise

ratio (SNR) at the radar receiver does not necessarily maximises information gain. Therefore,

when the radar performance is dependent on information gain, maximising system SNR using

waveform design does not necessarily lead to maximising the performance.

In [2], the author showed how prior knowledge about the target can be used to improve radar

performance. The prior knowledge was in the form of known properties about the extended

target response and its statistics which has been shown to be exploitable and lead to closed-

form solutions to the waveform design problem. The two main scenarios presented are:
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• the scenario where an extended target with known deterministic TIR is to be detected

and an optimal detection waveform is to be designed

• a TIR estimating scenario where the target has probabilistic TIR characterised by known

spectral variance and the problem is to design an optimal waveform for maximum in-

formation gain

The first problem was solved by designing a waveform that maximises the SNR at the receiver

by exploiting the prior knowledge about the target TIR (which in this scenario assumed deter-

ministic) in addition to knowledge about noise spectrum. The optimal detection waveform is

then found to be the eigenfunction that maximises an integration expressed using the available

prior knowledge.

The estimation waveform is designed by using the mutual information (MI) between the

target ensemble and the received signal as the objective function and find the waveform that

maximises it. The optimal estimation waveform was found to be a water filling solution where

waveform energy is allocated to frequency bands where the target spectral variance is higher

than that of the noise. In terms of classification, however, the author shows that maximising

MI is expected to improve the probability of correct classification (Pcc). This, however, does

not guarantee that maximum Pcc is attained at maximum MI [2].

The author also expected that these solutions to be impractical as radar systems of that era

required constant envelope/modulus waveform so it can be used in saturated transmitters am-

plifiers [2]. Constant envelop does not require the waveform to have fixed amplitude but to

have a constant outline of extreme waveforms amplitudes. The chirp and sinusoidal signals

are examples of constant envelop waveforms. This ensures that the radar amplifier is operat-

ing in the region where the signal is not distorted. This is also to ensure efficient transmission

of power. The other constraints include low peak-to-average-power ratio, impulse-like auto-

correlation function and continuous phase.

In this section, we highlight the various approaches to classification maximisation in radar

systems using waveform design. The section is divided into two main subsections: Adaptive

and non-adaptive waveform design. We start with the later as it was developed before the

earlier.
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2.2.2 Non-Adaptive Waveform Design

The literature refers to designs that do not require to be updated after deployment as non-

adaptive designs or single illumination waveform designs [18]. This means that the radar

waveform and receiver can be designed off-line without involving the radar processor in the

design process. Also, a decision is usually made on what class to assign the target to from

single illumination. Prior knowledge about the operational conditions and the classes of target

to be classified is often a requirement for this type of design. The design in both adaptive and

non-adaptive technique involves designing the optimal classifier and receiver for the resulted

waveforms. We start here with non-adaptive waveform design to follow the chronological

order in which these techniques were developed.

2.2.2.1 Classification Of Targets With Deterministic TIRs Under No Angular Uncer-

tainty

In [13], the general problem of classifying a target with a deterministic known TIR was

formulated in its continuous. The radar is to classify the target detected into one of two classes

(no specific classes were considered) using its continuous TIR. The target is to be classified

in the presence of signal-independent AWGN. The authors explored if it is possible to jointly

design radar waveform and receiver in order to maximise target identification performance.

The proposed solution was to maximise the classification performance where to two targets

with deterministic known TIRs in AWGN noise and later for coloured noise [12].

The objective function chosen for classification performance maximisation is based on the

L2 norm between signals corresponding to different targets. An extension to the two targets

problem into the more general case where more than two targets are to be classified, was also

presented in [12] and was described as relatively straightforward. The extension to multi-

class [12] is accomplished with average (or weighted average) separation objective function

which on average improves the overall Pcc. This extension helps provide a good solution for

the impracticality of assuming targets TIRs known and deterministic as many unequal TIRs

can belong to the same class of targets but from different viewing angle.

In [14], the same problem is vectorised and signal-dependent interference is also considered

18



Background and Literature Review

in addition to coloured noise. The objective function was changed to be the Mahalanobis

distance between the target responses. The waveform design solutions depends on whether

a signal-dependent interference (clutter) is present or not. If no clutter is present, the solu-

tion is what later was coined as the eigensolution or the eigenwaveform where waveform is

expressed by the eigenvector (the eigenfunction in the continuous scenario) of a matrix that

correspond to its maximum eigenvalue. In this paper the matrix is named the target differ-

ence auto-correlation matrix and is dependent on the difference between targets TIRs and the

auto-correlation matrix of interference. If the clutter is present however, the iterative proce-

dure presented before in [13] is used with some adjustment to find the optimal waveform.

Later in [27] the author included Full-polarisation design of the waveform for full-polarisation

data. Finally, in [28, 29] the author developed a waveform design procedure for SIMO radars

where banks of receiver can be designed for optimal performance. Although [29], explores

the idea for the design procedure for a MIMO radar system, there is no actual design of

multiple orthogonal transmitted waveforms that accomplish the benefits of MIMO radars.

2.2.2.2 Classification Of Targets With Deterministic TIRs Under Angular Uncertainty

Practical targets with sophisticated man-made structures are not expected to have the same

fixed TIR if viewed from different angles. When angular uncertainty in accounted for is

radar design, modelling the target with deterministic known TIR results in significant drop in

performance in practice. Although the extension to multi-class problem to account for angu-

lar uncertainty is a viable option that could improve classification performance, the number

of possible different TIRs can skyrocket easily with the complexity of the target physical

structure. In [15], the angular/aspect uncertainty problem addressed. When radar-target ori-

entation is known to be within certain interval of angles, to assume target TIR is deterministic

should lead to degradation in the performance due to the mismatch between the expected TIR

and the actual TIR. The targets considered in [15] are the “T-72 and M1 main battle tanks”.

They modelled TIRs changing with possible azimuth angles as a Gaussian density with mean

and variance.

When no signal-dependent interference (clutter) is present, the author suggest finding the
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aspect-averaged autocorrelation kernel (aspect-averaged autocorrelation matrix in the vec-

torised scenario). By including the aspect-averaged autocorrelation matrix Ω̄ in the Ma-

halanobis distance maximisation procedure, the waveform is optimised to improve Pcc on

average as well. The results in [15] presented an enhanced performance compared to chirped

pulse in terms the Mahalanobis distance. The performance in terms of Pcc was not displayed

but it is assumed that Pcc is monotonically increasing with the Mahalanobis distance. The

simulations also showed that the aspect-uncertainty variance is dependent on the carrier fre-

quency of the radar transmitter. Radars with X-band frequencies, for example, perform poorly

with degraded improvement over a variance of 0.5◦ in compare to VHF-band. VHF system

were still robust at a variance of 10◦.

We refer to the approach developed in [12–15, 27–29] as the Average Mahalanobis Distance

(AMD) approach. AMD design is, to the best of our knowledge, the latest and most advanced

off-line non-adaptive radar waveform and receiver design procedure that maximises target

identification performance without utilising previous received data or adaptively designing

the waveform online on-the-fly.

2.2.3 Adaptive Waveform Design

Radars with adaptive transmitter and receiver are known by the name “Cognitive Radars”

[19, 30]. Not to be confused with “Adaptive Radars”, which is equipped with an adaptive

receiver that can utilise received data to improve radar performance. Cognitive radars have an

established link between the receiver and the transmitter that allows for the joint design of the

transmitted waveform and receiver using previous radar returns [30]. Radars designed with

radar modes can still choose from a set of modes with pre-defined transmitter and receiver

configurations depending on the best mode for the radar task.

In [19], the author states three main “ingredients” for any cognitive radar, it is mainly:

• a system that keeps and preserve useful information acquired from previous returns

• a feedback link from the receiver to the transmitter enabling the utilisation of available

knowledge in controlling the transmitter and designing waveforms
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• an intelligent signal processing, which allows for the use of prior knowledge, acquired

in operation, in improving radar performance

and the last ingredient is the most important here as it is where most joint receiver and wave-

form design happens.

The concept of cognitive radars inspired a lot of adaptive waveform design literature directly

and indirectly. However, the early adaptive waveform design research was inspired with the

work of [31] where sequential hypothesis testing and sequential probability ratio tests were

popularised.

2.2.3.1 SISO Adaptive Waveform Design

Adaptive waveform designs are enabled by the ability to make use of radar returns received

previously in designing the next waveform. The waveform is usually redesigned on pulse-

by-pulse basis until a certain condition is met and a decision is made. The goal is usually to

arrive at a decision with given probability of classification in mind using the lowest possible

number of transmissions.

The iterative scheme proposed in [18] uses the sequential multi-hypotheses testing procedure

introduced in [2] and [14] to design the next optimal waveform. At every iteration, the next

waveform is designed until the desired classification performance is achieved (the desired

fixed probability of misclassification) in the lowest possible number of iterations. No signal-

dependent interference is present. The noise is assumed to be AWGN and the waveform is

adapted and designed from pulse-to-pulse.

In order to minimise the number of iterations, maximum information gain is required and

hence the best waveform to be designed in this scenario is the waterfilling waveform which

maximises the mutual information between target ensemble in AWGN and the received radar

signal. At each iteration,

• the likelihood for every hypothesis is calculated using know targets information and all

received signals from every previous iteration
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• the likelihoods are used to update the prior probability of every hypothesis

• the likelihood ratios of all pairs of hypothesis are calculated

• all likelihood ratios are compared to thresholds determined by the desired Pcc

• the spectral variance of the target ensemble is calculated and used in waterfilling design

• MI maximisation waveform (waterfilling waveform) is designed and used as the next

waveform to be transmitted. A waterfilling waveform is a waveform designed with

most of its energy is allocated in frequency bands where the receive signal is expected

to have SNR greater than 0 dB [32].

if likelihood ratios exceed the thresholds in favour of one of the hypothesis, the iterative

process terminates and a decision is made to declare the target assigned to the output class

from the process.

Note that to design the MI maximisation waveform, a spectral variance for the target ensemble

is required to be computed at each iteration. The spectral variance at any iteration is computed

using known target spectral variances and prior probabilities. This spectral variance is refer

to as probability weighted spectral variance.

On the other hand, the authors updated the eigenwaveforms introduced in [12–15, 27–29] by

introducing some form of adaptivity in their definition where the weighted average Maha-

lanobis distance is redefined so that its weights are the product of the probabilities of every

pair of classes.

The results shows that the iterative scheme with waterfilling waveforms fails to outperform

the eigenwaveform when the number of target classes is limited to two. However, in the

multi-class scenario, the waterfilling waveforms outperform eigenwaveforms in both error

rate and the average number of iterations.

In [33, 34], the authors build on their previous work and explicitly mention the importance

of this work to closed-loops in cognitive radars. Classes of targets while characterised by

TIRs, also have known spectral variances. Later in [35], they also talk about the framework
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developed in University of Arizona where they show that spatial adaptation of the waveforms

is also possible.

The extension to the scenario where clutter is present was presented in [36, 37] where signal-

dependent interference is added to signal model and the derivations.

One of the common constraints in most waveform design problems is to constraint the wave-

form energy to be constant for any waveform designed. However, as mentioned in [2], the

practicality of waveforms have been always linked to its modulus being constant. While

modern radar system are becoming less demanding for this constraint [11], it is still desirable

for radar waveforms to have constant envelop. In [38], the author apply constant modulus

constraint on adaptive waterfilling waveform design problem instead of the constant energy

to study how this can affect the performance. Two approaches were investigated: constant

modulus and maximum modulus normalization. The results show that maximum modulus

normalization result in high error rate while the constant modulus waveform performs slightly

less the waveforms design without constraining their modulus [38].

2.2.3.2 MIMO Adaptive Waveform Design

All the adaptive design presented above are based on single-input single-output (SISO) radar

configuration where the radar is equipped single transmitter and receiver that can be colocated

or separated.SISO is the standard radar configuration where single transmitter and receiver

in the same radar are used. This configuration is optimal in terms of simplicity, cost, and

size. SISO can be monostatic or bistatic depending on the separation of the transmitter and

receiver. The other main configurations are SIMO, MISO and MIMO.

SIMO is the configuration where multiple receivers capture the radar signal transmitted by

a single transmitter. In communication systems, SIMO provide an advantage in combating

fading but in terms of detection and classification in radar system, SIMO provides diverse

receiving channels with banks of filters allowing for different features of the target to be

processed simultaneously like polarisations for example. Although the receivers in SIMO

radars do not have to be co-located, they have to be linked in order to achieve performance

gain.
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MISO radar are radars equipped with multiple transmitters and one receiver. The advantage

of employing MISO configuration is improved angular resolution in addition to RCS diversity

where the radar will observe the target from different perspectives [39].

Diversifying the number of outputs/transmitters and input/receivers of radar systems can

bring several advantages to their performance. MIMO radars provide improved spatial reso-

lution and enhanced target range and speed measurement [40]. With radar returns observing

the target from multiple illumination angles, widely-distributed MIMO configuration can also

provide diverse RCS measurements with improved SNR and SINR. MIMO radars can have

the advantages of SIMO and MISO radar where transmitters and receivers diversity is com-

bined. Improved spatial/angular and Doppler resolution are some of the advantages of MIMO

radars. There are two types of MIMO radars: colocated MIMO radars and widely separated

MIMO radars. Colocated MIMO radars have the transmitters and receivers in close distance

from each other on the same platform. On the other hand, widely separated MIMO position

the transmitters and receiver away from each other to allow for spatial diversity in transmis-

sion and observing targets RCS.

In order to gain the advantages of having multiple transmitters in MIMO radars, MIMO

waveforms must be designed so that they are mutually orthogonal. This allows for simultane-

ous reception of the radar returns with multiple delays and attenuations without causing and

inter-pulse interference between the returns. For example, waveforms with non-overlapping

spectra are often used in MIMO as their orthogonality can be achieved with guard bands and

non overlapping spectra.

While most of the research we presented so far are SISO-based, it is possible to extend the

adaptive waveform design in cognitive radar systems from SISO to mulit-input multi-output

(MIMO) configuration as presented in [41].

The MIMO waveform is designed to maximise MI. The solution resulted from the derivation

was shown to be also a waterfilling waveform design. The waveform formulation was chosen

to be in the frequency-domain. This allows for an orthogonal design of MIMO waveforms to

achieve the full potential gain of MIMO radar configuration. Two types of energy constraints

were tested : 1) to give every transmitter equal constant waveform energy 2) to set the total
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waveform energy for all transmitters combined to be constant.

These models are not, however, necessarily good for representing high fidelity targets. These

target have very high variability of TIRs with angles in comparison to low fidelity targets.

As for the target classes, they model targets mainly using two different models:

• with deterministic hypothesis from a scattering centre model (deterministic TIR at each

angle computed from a scattering centre model)

• with random target model defined by a set of power spectral densities (PSD)

The different waveform designs tested are as follows:

i. MIMO waterfilling waveforms with constant total waveform energy

ii. MIMO waterfilling waveforms with independent transmitters (waveform energy per

transmitter are constant and identical)

iii. MIMO Gaussian approximation

iv. Gaussian approximation (SIMO)

v. Non-adaptive

where the Gaussian approximation waveforms are designed by approximating the target as a

Gaussian process.

When the deterministic target model is assumed, all waveforms achieved the best perfor-

mance in terms of average number of iterations to make decision except for the non-adaptive

waveform and the SIMO waveform. All waveforms that achieved the best performance

among all the waveforms are all MIMO waveforms. However, the results also showed that

when the random target model was considered, all the waveforms except the non-adaptive

waveform achieved similar performance. This can be interpreted that in practice, MIMO

radars may not attend better performance than SIMO radars if the design procedures in [41]
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were used. The results also shows that in terms of the classification error rate, the MIMO

waveform with Gaussian approximation performs better than all waveforms.

In [42, 43], the problem of MIMO waveform design for classification performance max-

imisation was extended from co-located scenario to a scenario where the radar transmitters

and receiver are spatially separated (widely separated MIMO radar). The paper studied the

two-transmitters-two-receivers MIMO radar scenario. Because waveforms orthogonality is

mandatory condition for MIMO waveform design and because constant modulus can cause

spectral leakage, adaptive MIMO waveforms must be managed to insure an acceptable levels

of orthogonality between the waveforms while also maintaining a constant modulus in the

time domain. Luckily, waterfilling waveforms, resulting from MI maximisation, tend to have

sparse spectra which allows for better waveform orthogonality and reduced interference [42].

In [42, 43], instead of the scattering centres and PSD based models, they used XFdtd software

to generate TIRs for the widely separated MIMO scenario where the two receiver should ob-

serve the same target from different angles. Because the targets generated from the software

should be more close to practical targets, the targets are expected to be high fidelity targets.

Thus, limiting the viewing angle of the target was essential to achieve good performance gain

[44]. This is why they limited the viewing angle of the target to 2◦ where every 1◦ is as-

sumed to be one hypothesis. There are only four hypotheses to choose from in this scenario.

The results showed clear advantage for the MIMO waveform over flat-spectrum wideband

waveform.

2.2.4 Probability Weighted Energy Waveforms

It is common for waveform design techniques to be matched to a single target and its features

[45]. Therefore, for extended target detection, using these techniques is straightforward. This

is achieved by only using that target deterministic or stochastic response, depending on the

techniques and its assumptions, to design optimal detection waveform. However, when the

objective is target identification, every target is assumed to have different response and all of

them are to be considered when designing optimal waveforms.

The proposed solution for this problem is to create a weighted sum of target ensembles where
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the weights can be, for example, the prior probabilities of the every target. In [36], the authors

presented an MI-based waveform design strategy where single spectral variance of one target

is used to design the optimal waveform in presence of signal-dependent interference. In order

to apply that design procedure for multiple target identification problem, they suggested what

they coined as probability-weighted spectral variance (PWSV) where the spectral variance

of all target classes are weighted-summed using their prior probabilities which is updated at

every design iteration assuming Bayesian representation of the channel and using an update

rule.

PWSV estimation requires both calculation of an effective PSD and a costly search algorithm

to generate a transmit waveform for each iteration [45]. After updating the prior probabilities,

the PWSV is calculated using the estimated prior probabilities, which have to sum up to one

if it is not [45], and using every spectral variance of target classes. Prior probabilities are

estimated from the likelihood function of every hypothesis individually and then used to

estimate the prior probability of every hypothesis. PWSV is then used as the single spectral

variance which is required for obtaining optimal waveforms. After every transmission, the

prior probabilities are updated and a new PWSV is expected calculated and used in designing

the next adapted waveform.

The Probability-weighted energy (PWE) method on the other hand, computes the optimal

waveform energy spectral density (ESD) function for each target ensemble and weight-sum

the waveforms. The ESD of the optimal waveform at each iteration is the weighted sum of

all energy density functions. This allows for every class ESD to be calculated in advance.

Also, PWSV calculations require significantly more computations than ESD calculation as

no mean ensemble is computed or subtracted from every class ensemble [37].

The new approach can also be applied to SNR-maximisation approach which in this case

can be used to improve classification performance. In this approach (SNR-PWE), eigen-

waveforms are designed based on every target ensemble and the optimal eigenwaveform at

each iteration is the weighed sum of all eigenwaveforms of all classes. While eigenwave-

forms are originally developed for maximising detection performance, the SNR-PWE (as the

this approach is called) was shown to achieve better classification performance than all other

techniques in high waveform energy regions[45].
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In [46], the author used high fidelity target CAD models in the EM modelling software CST

to generate practical target signatures and extended TFRs. The responses were used to test

PWE techniques and its performance under angular uncertainty or without it against the per-

formance of wideband waveform (WI). The PWE performance was shown to vary from pass-

ably to significantly better performance than WI waveform. The performance also varied

with angle while PWE techniques performing better than WI in general. The results also

showed that SNR-PWE sometime outperform MI-PWE and vice-versa. Finally, it was shown

than PWSV performs better than PWE in some scenarios while requiring considerably more

delay, between transmissions, for waveform design and updating probabilities in comparison

to PWE.

The SNR-PWE in addition to MI-PWE were also shown to be useful in jammer nulling wave-

form design for high fidelity aircraft RCS responses. In [47], the author studied the sweep

and base jammers and how PWE technique can be used to improve the target recognition

performance in their presence. The results showed that jammer nulling PWE waveforms

outperforms the other waveforms that does not null jamming interference while also outper-

forming WI. They also showed that the improvement varies and depend on properties of the

jamming signal like its relative magnitude and the magnitude of the frequency response of

the jammer. [47].

In [48], the authors applied the PWE in an automotive cognitive radar in a closed-loop adap-

tive framework. The application is for ground target identification in a forward-looking radar

to identify vehicles autonomously. Two main cases were considered: i) to recognise target

with deterministic TIR ii) to identify target class when angular uncertainty is present. PWE

techniques were shown to outperform WI in the first case. Under angular uncertainty, how-

ever, the authors suggested an improved PWE techniques where the probability distribution

of angular uncertainty are exploited for improved performance. TIRs, generated by CST (the

computational electromagnetic tool) from high fidelity target CAD models, were also used

here to validate results at two main frequency bands: 24-25 and 76-77 GHz. PWE in general

performed better than WI in both main scenarios. The newly introduced waveform that ex-

ploit the knowledge about angular uncertainty were shown to vary in performance from being

moderately to considerably better than WI [48].
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2.2.4.1 Waveform Energy

Constraining the radar waveform energy to be constant is a common practice in a majority of

the papers mentioned here or in the literature. It is also the main constraint used in this thesis.

In signals and systems theory, energy signals are signals with finite time and finite energy.

The energy is given by:

εx =

∫ ∞
−∞
|x(t)|2 · dt (2.1)

for the continuous-time signal x(t) and by:

εx =
∞∑

n=−∞

|x[n]|2 (2.2)

if x[n] is a discrete-time signal.

If the discrete-time signal x[n] is frequency transformed by discrete Fourier transform (DFT),

then according to Parseval’s theorem:

m−1∑
n=0

|x[n]|2 =
1

m

l−1∑
k=0

|X[k]|2 (2.3)

where m is the number of length of the vector x containing the elements of x[n], X[k] is the

DFT of x and l is the length of the DFT.

From (2.3), the energy of the vector X equals m× εx.

2.3 Linear and Fisher’s Discriminant Analysis

In this section we outline some of the basic concepts of classification relevant to target iden-

tification in radars and the contributions presented in this thesis. target identification is about

identifying the features that cluster targets into classes and then assign any target detected by

the radar into the correct class of targets.
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In the context of radars, discrimination is about identifying the level of interest of the target

while classification is focused on threat category while identification is more specific in what

the target is such as being a tank or an aircraft with specific model for example [49].

2.3.1 Linear Discriminant Analysis

Linear discriminant Analysis (LDA) is used when linear combinations of the data features

can be used to separate two or more classes. By using TIRs and TFRs as the features of the

target to be classified, we can:

• use LDA to design a linear classifier that assigns the target, based on its response, into

the correct class

• study the classification performance for the proposed radar waveforms

• synthesize a design procedure to design the optimal waveform

LDA is perfect for classifying a data point into one of two Gaussian distributions with differ-

ent mean vectors but with identical covariance matrices [17, 50]. In [17], we showed how the

probability of misclassification can be expressed and directly minimised using LDA when the

the two classes of targets share the same covariance matrix.

2.3.2 2-class Fisher Discriminant Analysis

When the mean vectors of two multivariate Gaussian distributions, of two classes of targets,

are not identical especially when the covariance matrices are unequal, Fisher discriminant

analysis is used to find the optimal projection for maximum classes mean separation and

minimum class variance.

Fisher defined a classification separability function that captures how much separation be-

tween two multivariate Gaussian populations/distributions can be achieved and how classes

variances can be decreased using the linear projection vector w. The data is projected by w

to a subspace where the classes have maximum Fisher separability.
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Fisher formulated an optimisation problem to find the optimal linear projection vector wopt

that maximises the separability function while is well known and is dependent on the statisti-

cal properties of the two Gaussian distributions [50].

Maximising Fisher’s separability should improve the classification performance as misclas-

sification events is expected to become less probable as Fisher’s separability increase. How-

ever, maximising Fisher’s separability function does not guarantee minimum probability of

misclassification. It can however, achieve higher classification performance than LDA in the

different covariance matrices scenario.

Given two classes H1 and H2, two important covariance matrices are to be computed. SW

and SB are the within-class and between-class scatter matrices respectively and are defined

as follows:

SW =

2∑
k=1

∑
z∈Hk

(z−mk)(z−mk)
H (2.4)

SB =(m1 −m2)(m1 −m2)H (2.5)

where:

mk =
1

nk

∑
z∈Hk

z (2.6)

Fisher’s separability is then given by:

wHSBw

wHSWw
(2.7)

The optimal w that maximises Fisher’s separability is given by:

w = (SW )−1(m1 −m2) (2.8)

The new input ynew is then assigned to the class with the mean closest to ynew [50].
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2.3.3 Multiclass Fisher Discriminant Analysis

When more than two classes with multivariate Gaussian distributions (with different mean

vectors) are considered, projection the data into one dimensional subspace is not guaranteed

to achieve the same performance as projecting the data in a multidimensional subspace [50].

In this scenario, an extended definition of Fisher separability is needed and the projection

needs to be a projection to a subspace with dimensions at least greater than one. Thus, the

projection vector is replaced with a projection matrix W. The data is projected by W into

a subspace where Fisher’s separability is maximised. The dimensions of the subspace is

determined by the prior knowledge about classes distributions and the number of subspaces

is maximally less than the number of classes by one [50].

Classes separability can be estimated and by increasing the separability, the classification

performance can be improved. Fisher separability, which inspired our objective function,

utilises distances between means in addition to the confinement of every class’s variance as

the basis of its separability measure [50].

We denote each class by Hk where k = 1, 2, ..., c and c is the number of classes. To define

Fisher’s function, two important matrices SW and SB should be defined first. Following the

naming in [50], SW and SB are the within-class and between-class scatter matrices respec-

tively and are defined as follows:

SW =

c∑
k=1

∑
z∈Hk

(z−mk)(z−mk)
H (2.9)

SB =

c∑
k=1

nk(mki −m)(mki −m)H (2.10)

where z is a data samples,

mk =
1

nk

∑
z∈Hk

z (2.11)
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m =
1

c

c∑
k=1

mk (2.12)

where mk is the sample mean vector ofHk, m is the total sample mean vector of all classes,

nk is the number of data points from the class Hk while ntotal is the total number of data

samples.

Fisher’s separability is then defined as follows:

|WH SBW|
|WHSWW|

(2.13)

where W is a transformation matrix which is designed to maximise the separability function

The transformation matrix projects the random vector into a space where the means and

covariances are different. For maximum separability, W is designed to project to a space

where distances between all means are as large as possible and the covariances the lowest

possible at the same time.

The matrix W is dependent on SB and SW , both of which are dependent on the radar wave-

form in ΩX . W is also dependent on the statistical properties of the target classes and sub-

classes which are known a priori.

Fisher’s separability function is also extended to maximise the determinant of the projected

between-class scatter matrix and minimise the determinant of the projected within-class scat-

ter matrix. Scatter matrices can be replaced with the covariance matrices if known. Scatter

matrices are an estimate of covariance matrices which are calculated form the data whenever

covariance matrices are not available. Otherwise, scatter matrices can be calculated from

data points. The projection matrix W is also a function of the between-class and within-class

scatter matrices.

2.4 Signal model

Consider a scenario where a pulsed radar must assign a target, that has already been detected

and hence its range and speed are known, into one of two classes based on its extended
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response [2] using single pulse with an arbitrary radar waveform.

If the radar waveform is captured in the vector x, the target extended impulse response is r,

the additive noise in the receiver is n while c is the clutter response signal; then the received

complex signal y is given by:

y = x ∗ r + x ∗ c + n (2.14)

where the length of x and r ism, the length of n is 2m−1 and ∗ denotes the one-dimensional

linear convolution operator.

By assuming the frequency snapshot model where we deal with all variables in the frequency

domain [17, 32, 51], (2.14) will be given by:

Y = ΩXR + ΩXC +N +N (2.15)

where R is the extended frequency response of the target; N is the frequency transformed

noise vector; C is the frequency transformed clutter vector and ΩX = diag(X) is the diagonal

matrix with the frequency transform of the radar waveform on its diagonal while Y,X,R,C

and N are all nf × 1 vectors. nf is the length of the frequency domain vectors.

Note, a frequency domain based processing is adopted here because from the point of view

of mathematical derivations, it is easier to deal with diagonal matrices (especially for non-

adaptive design scenarios), as in (2.15), than to deal with convolution matrices [14], e.g., in

order to obtain closed-form expressions.

2.5 Summary

The chapter presented a review of radars and radar waveform design basics in addition to the

literature of optimal radar waveform design for target identification and the relevant research.

The chapter also reviewed relevant classification concepts like LDA and (Fisher discriminant

analysis) FDA.

From this chapter, we concluded that the two main trends in the literature are to either design
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waveforms adaptively or non-adaptively for optimal target identification. The chapter pre-

sented the differences between the two trends and the literature of both. We also concluded

that angular uncertainty can cause significant drop in the classification performance and that

waveform design methods should account for angular uncertainty. Finally, we presented the

signal model adopted in the rest of the thesis.

The aim was to supplement the reader with the necessary background for clear understanding

of the following chapters. The following technical chapters are focused on optimal non-

adaptive frequency-based waveform design for target identification using Fisher discriminant

analysis where angular uncertainty is present.
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Chapter 3

Target Identification Using Optimised
Waveform design in Noisy Environment

In this chapter, we consider the scenario where the radar system is designed to maximise

target identification performance in the presence of noise and with no signal-dependent in-

terference nor clutter present. We study the two main cases where the target class is to be

identified from two or multiple classes. The chapter covers the non-adaptive radar waveform

and receiver design for optimal target classification under angular uncertainty using extended

target responses and the theory of Fisher discriminant analysis.

In this chapter, we propose new waveform design procedures and classification schemes to

improve target identification performance non-adaptively in radar systems. The new designs

and schemes are all inspired by 2-class and multiclass Fisher discriminant analysis. The

2-class scenario provide a simpler design procedure than the multiclass scenario especially

when the number of classes is exactly two and accurate knowledge about target orientation is

available.

The proposed system does not require as much computational capability as adaptive wave-

form design systems while also overcoming 1) angular uncertainty in classifying high fidelity

targets and 2) drops in performance experienced by non-adaptive systems when classifica-

tion is extended to more than two targets. The waveform design procedure is based on an

optimization problem to find the waveform that maximises the objective function inspired by

Fisher analysis under constant energy constraint. We also derive two closed-form solutions

for the optimization problems under certain conditions for the 2-class and multiclass cases.

All the methods are tested using synthetic and real data to show the performance of the

proposed methods against the average Mahalanobis distance (AMD) non-adaptive waveform

design and classifier. The results shown in this chapter were published in [16].
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The chapter is divided as follows. In the first section, we define the frequency-based signal

model and define and derive the expected statistical distributions of radar returns based on the

signal model. In the second section, 1) we cover dividing target classes into angle-dependent

subclasses for scenarios with large angular uncertainty 2) we derive the optimisation problem

for radar waveform in the multiclass and 2-class scenarios using Fisher discriminant analy-

sis 3) we derive optimal classifier for both scenarios 4) we derive closed-form solutions for

extreme waveform energy scenario where expressing a closed-form solution for the optimisa-

tion problem is possible. Results and discussions are presented in the fourth section. Finally,

in the last section, we summaries the chapter and conclude its contributions.

3.0.1 Statistical properties of Y

AssumingR ∼ CN (Mk,Σk) andN ∼ CN (MN ,ΣN) and then: Y ∼ CN (MYk ,ΣYk) where:

MYk = E{Yk} = ΩXE{Rk}+ E{N} = ΩXMk +MN (3.1)

ΣYk = E{(Yk − E{Yk})(Yk − E{Yk})H}

= E{(ΩX(R−Mk) + (N −MN))(ΩX(R−Mk) + (N −MN))H}

= E{ΩX(R−Mk)(R−Mk)
HΩH

X + (N −MN)(R−Mk)
HΩH

X

+ ΩX(R−Mk)(N −MN)H + (N −MN)(N −MN)H}

(3.2)

assuming R and N are uncorrelated, (3.2) becomes:

ΣYk =ΩXE{(R−Mk)(R−Mk)
H}ΩH

X

+ E{(N −MN)(N −MN)H}

=ΩXΣkΩ
H
X + ΣN

(3.3)

where E{·} is the expectation operator.
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Figure 3.1: Illustration of the total viewing angle range ρθ and subsectors width ∆θ of a
target (a car)

3.1 Classes and Sub-Classes of Target Signatures

We assume each class consists of angle-dependent unique subclasses with stationary statisti-

cal properties and can be modelled as a complex Gaussian random vector. We then proceed

to formulate the optimisation objective function for a multi-class problem. The objective

function is then used to find the radar waveform that improves the classification performance

while satisfying the energy constraint.

Assuming each class Hk is made up of subclasses Hki with k = 1, 2, ..., c and i = 1, 2, ..., l

where i is the subclass number respectively. Every unique angular sector of a class is assigned

to a subclass. Each sector is ∆θ in width while the width of the combined sectors of a target

is ρθ. see Fig. 3.1 for illustration. The total number of subclasses of all classes is c× l.

Classes separability can be estimated and by increasing the separability, the classification

performance can be improved. Fisher separability, which inspired our objective function,

utilises distances between means in addition to the confinement of every class’s variance as

the basis of its separability measure [50].

To define Fisher’s function, two important matrices SW and SB should be defined first. Fol-

lowing the naming in [50], SW and SB are the within-class and between-class scatter matrices
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respectively and are defined as follows:

SW =

c∑
k=1

l∑
i=1

∑
z∈Hki

(z−mki)(z−mki)
H (3.4)

SB =

c∑
k=1

l∑
i=1

nki(mki −m)(mki −m)H (3.5)

where z is a data samples,

mki =
1

nki

∑
z∈H1i

z (3.6)

m =
1

c× l

c∑
k=1

l∑
i=1

mki (3.7)

where nki is the number of data points from the subclass Hki while ntotal is the total number

of data samples.

The objective function is then defined as follows:

f(W) =
|WH SBW|
|WHSWW|

(3.8)

where W is a transformation matrix which is designed to maximise the objective function

f(W). The transformation matrix projects the random vector into a space where the means

and covariances are different. For maximum separability, W is designed to project to a space

where distances between all means are as large as possible and the covariances the lowest

possible at the same time.

The matrix W is dependent on SB and SW , both of which are dependent on the radar wave-

form in ΩX . W is also dependent on the statistical properties of the target classes and sub-

classes which are known a priori.
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3.1.1 Derivation of The Objective Function for Multiple Classes (c >=

2) Problem

3.1.1.1 General solution

The within-class scatter matrix SW is the sum of scatter matrices of all subclasses for all

classes. For the objective function, we replace the scatter matrices with the covariance matrix

of each subclass to get:

SW =

c∑
k=1

l∑
i=1

(
ΩXΣHkiΩ

H
X + ΣN

)

=ΩX

( c∑
k=1

l∑
i=1

(
ΣHki

))
ΩH
X + (cl)ΣN

(3.9)

The between-class scatter matrix SB is dependent only on the waveform and the means of all

subclasses. The mean of Yki, assuming the noise mean MN equals the zero vector, is MYki

and is given by:

MYki = ΩXMki (3.10)

If we assume all subclasses are equiprobable, then:

SB =

c∑
k=1

l∑
i=1

(MYki −MA)(MYki −MA)H

=

c∑
k=1

l∑
i=1

ΩX(Mki −MA)(Mki −MA)HΩH
X

=ΩXBΩH
X

(3.11)

where:

B =

c∑
k=1

l∑
i=1

(Mki −MA)(Mki −MA)H (3.12)
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and

MA = ΩXM =
1

ntotal

c∑
k=1

l∑
i=1

MYki (3.13)

In order to formulate the objective function to be variable only in ΩX , we need to find the

optimal W that maximises the objective function in (3.8) which is also variable only in ΩX .

The optimal W is found first by finding generalised eigenvectors vi corresponding to the

non-zero eigenvalues of:

SWvi = λiSBvi (3.14)

for i = 0, 1, ..., nλ − 1 where nλ is the number of the non-zero eigenvalues. The optimal W

is then formed by arranging all the generalised eigenvectors as the columns of W as follows:

W = [ v0 v1 · · · vnλ−1 ]

nf × nλ nf × 1 nf × 1 nf × 1
(3.15)

the size of the rectangular optimal projection matrix W is then given by nf × nλ as shown

in (3.15) while the size of SW and SB is nf × nf and nf is the length of every data point.

Note that if the matrix SW is not singular, then the eigenvectors are conventional eigenvectors

of the matrix S−1
W SB and nλ = rank{SB} [50]. All eigenvectors are orthogonal with unity

energy (i.e. orthonormal)

The objective function f(W) can then be expressed in terms of waveform matrix ΩX (and

other matrices that are constant) to become g(ΩX) where:

g(ΩX) = f(W)|W=Wopt(ΩX) (3.16)

The constant energy constraint on the time-domain waveform is the optimisation constraints

of choice. Its tractability is the main reason of choosing it.

The optimisation problem is then:

arg max
ΩX

g(ΩX)

s.t. tr(ΩXΩH
X) = mεx

(3.17)
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The waveform then can be designed by solving the optimisation problem. The solution is

obtained using general optimisation solvers. In this thesis, the optimisation solver of choice

is Mathwork’s MATLAB global optimisation toolbox.

Algorithm 1 shows how to calculate g(ΩX) from ΩX and ΣN . It is clear that the object

function is dependent on many input that can affect the difficulty of the optimisation problem

and the best optimisation algorithm to solve it. In this chapter, the optimisation software of

choice is MathWorks’s MATLAB using its Global Optimisation Toolbox and the algorithm

of choice is Simulated Annealing. This will be discussed in details in section 3.2.

Algorithm 1 Calculate g(ΩX) in multiclass scenario
Require: ΩX and ΣN in addition to all classes mean vectors, covariance matrices

Calculate SW using equation (3.9)
Calculate SB using equation (3.11)
nλ ⇐ rank{SB}
if SW is singular then

v0,v1, ...,vnλ ⇐ the generalised eigenvectors vi corresponding to the non-zero eigen-
values of equation (3.14)

else
v0,v1, ...,vnλ ⇐ the eigenvectors of the matrix expressed by S−1

W SB corresponding to
its non-zero eigenvalues.

end if
W⇐ a matrix with v0,v1, ...,vnλ as its columns.

g(ΩX)⇐ |W
H SBW|

|WHSWW|

3.1.1.2 Low SNR/Energy and Low Covariance (LELC) Solution Under AWGN

The general solution has a structure that implies that the optimisation problem is nonconvex.

Also, the numerator and denominator of g(ΩX) may both approach zero (in some scenarios)

resulting in discontinuities in g(ΩX) where the value of the objective function will be unde-

fined. This necessitates the need for iterative methods to find the solution to the optimisation

problem as no closed-form solution is expected. However, the objective function also im-

plies that relation between ΩX(
∑c

k=1

∑l
i=1 ΣHki)Ω

H
X and (cl)ΣN influences the shape and

behaviour of the multidimensional surface of g(ΩX).
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The low SNR/energy and low covariance (LELC) solution is derived for the case where the

magnitude of every element in the signal term matrix ΩX(
∑c

k=1

∑l
i=1 ΣHki)Ω

H
X is very low

compared to the corresponding element in the noise term matrix (cl)ΣN . This is expected in

three cases:

• Waveform energy is low

• Target covariance is low compared to noise variance

• All of the above

In other words, the LELC solution is expected to hold when:

SW ≈ (cl)ΣN (3.18)

and under AWGN, the equation becomes:

SW ≈ σ2
n(cl)Im (3.19)

where σ2
n is the spectral noise variance.

Under LELC and AWGN assumptions, the optimal transformation matrix W will be depen-

dent only on the eigenvectors corresponding to the largest non-zero eigenvalues of SB as the

matrix S−1
W SB will become just a scaled version of SB because of the result in (3.19). This

means that the columns of the optimal W are the eigenvector of the non-zero eigenvalues of

SB. Then, vi for i = 0, .., nλ − 1 are, in this scenario, the eigenvectors of SB.

From eigenvalues and eigenvectors theory [52], SB can be expressed using its eigenvectors

as: SB =
∑nλ−1

i=0 λiviv
H
i where λi is ith eigenvalue of SB. From matrix theory [52], every

element αij in the matrix WHSBW can be expressed as: αij = vHi (
∑nλ−1

i=0 λiviv
H
i )vj .

Given that the eigenvectors are orthonormal, then:

αij =

λi i = j

0 i 6= j
(3.20)
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It is clear that the matrix WHSBW (i.e. the matrix in the numerator of g(ΩX) the objective

function) is a diagonal matrix with the eigenvalues of SB as its diagonal elements. SB as

shown from (3.11) and (3.12) equals ΩXBΩH
X .

From matrix theory, the diagonal elements of a diagonal matrix are also its eigenvalues and

the determinant of any square matrix equals the product of all its eigenvalues. This mean

that maximising the determinant of SB will maximise the product of its eigenvalues and will

results in maximising the g(ΩX) which is the objective function.

Using |ΩXBΩH
X | = |ΩX ||B||ΩH

X | [52], we can see that maximising g(ΩX) is independent of

B and only dependent on maximising |ΩH
XΩX | which is achieved by assigning all elements

of X values with equal magnitudes regardless of phase. These conditions, of course, are

ideally satisfied in the case of LFM or chirp signal.

Finally, the solution should be scaled by
√
m× εx/

√
‖X‖2 to match the energy constraint

using:

Xscaled =
√
m× εx

X√
‖X‖2

(3.21)

3.1.1.3 The Derivation of the Classifier

The classifiers in Fisher discriminant analysis, especially in multiclass problems, are based

on minimum distance classifiers.

In the scenario of multiclass, the classifier should have subclasses’ means and covariance

matrices already transformed using the Wopt as follows:

M̃Yki = WH
optMYki = WH

optΩXMki (3.22)

Σ̃Yki = WH
optΣYkiWopt

= WH
opt(ΩXΣkiΩ

H
X + ΣN)Wopt

(3.23)

where M̃Yki and Σ̃Yki are the transformed subclass means and covariance matrices respec-

tively.

Every received signal Y is transformed with WH
opt into Ỹ and used to calculate the Maha-
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lanobis distance for all classes. The Mahalanobis distance of the subclass i from class k from

the received signal Y is then given by:

dki =
√

(M̃Yki − Ỹ )HΣ̃−1
Yki

(M̃Yki − Ỹ ) (3.24)

The subclass with the minimum distance to the received signal is then assigned. The corre-

sponding class is the output decision of the classifier. Algorithm 2 shows in step-by-step

how the classifier assign a target to a class from the received signal Y .

Algorithm 2 Identify target class from received signal Y in multiclass scenario
Require: Y , ΩX and ΣN in addition to all classes mean vectors, covariance matrices

Calculate SW using equation (3.9)
Calculate SB using equation (3.11)
nλ ⇐ rank{SB}
if SW is singular then

v0,v1, ...,vnλ ⇐ the generalised eigenvectors vi corresponding to the non-zero eigen-
values of equation (3.14)

else
v0,v1, ...,vnλ ⇐ the eigenvectors of the matrix expressed by S−1

W SB corresponding to
its non-zero eigenvalues.

end if
Wopt ⇐ a matrix with v0,v1, ...,vnλ as its columns.
Ỹ ⇐WH

optΩXY
for k = 1 to c do

for i = 1 to l do
M̃Yki ⇐WH

optΩXMki

Σ̃Yki ⇐WH
opt(ΩXΣkiΩ

H
X + ΣN)Wopt

dki ⇐
√

(M̃Yki − Ỹ )HΣ̃−1
Yki

(M̃Yki − Ỹ )

end for
end for
Assign target to the class k corresponding to the minimum dki

3.1.2 The Derivation of The Objective Function for Two Classes (c = 2)

with one subclass (i.e. ρθ = ∆θ) design problem

In the special case of applying the same principles to a 2-class problem where knowledge of

the radar-target orientation is available (i.e. only one subclass per class), a different formula-
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tion which leads to a simpler objective function can be implemented.

When the number of classes is only two, the projection matrix W is replaced with a projection

vector w. The optimal w is given by:

wopt = (SW )−1ΩX∆M (3.25)

and the objective function is given by:

g(ΩX) =

∆MHΩH
X

(
ΩX(Σc1 + Σc2)Ω

H
X + 2ΣN

)−1
ΩX∆M

(3.26)

Note, the complete derivation in addition to the derivation of the LELC solution and the

classifier design are included in the appendix.

3.2 Results and Discussion

In this section, we present and discuss the simulation results, procedures and parameters used

for all scenarios of interest.

3.2.1 The Two Classes Scenario (c = 2 and l = 1):

For this case, we assume that the knowledge of the radar-target orientation is perfectly avail-

able, and classes’ means and covariances are known a priori. The waveform and classifier

design of the special case of two classes is shown in the appendix.

The means and covariances were generated synthetically while the noise is assumed zero-

mean AWGN with unity spectral variance. We used sixty-four frequency bins (i.e. m =

64) as the size of all vectors for targets responses and noise realisations. The target mean-

vectors are generated arbitrarily. The covariance matrices of the target classes are chosen

with eigenvalues ratio (EVR) less than one (i.e. non-isotropic or non-spherical covariance
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Figure 3.2: Probability of correct classification vs SNR for Chirp/Wide-Band, low-SNR and
optimal waveforms for 2-class scenario using synthetic data with 64 frequency
bins target Frequency responses
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matrix) where:

EVR(A) = min(eig(A))/max(eig(A)) (3.27)

where eig(A) is a vector of the eigenvalues of the matrix A. The noise covariance matrix of

an AWGN has unity EVR. The performance is obtained using Monte Carlo simulation where

at every SNR level, 10000 runs are performed. The SNR of radar returns is measured at the

receiver.

The optimisation software of choice is MathWorks’s MATLAB using its Global Optimisa-

tion Toolbox and the algorithm of choice is Simulated Annealing. This algorithm showed

fast convergence through multiple trials. The objective function g(ΩX) may contain mul-

tiple local maxima and may have points where it is undefined (e.g. when its numerator and

denominator become zero). This makes it difficult for local optimisation algorithms to find

the global maxima where the energy constraint is satisfied as well. Therefore, global optimi-

sation algorithms are required to solve this optimisation problem.

Fig. 3.2 shows the classification performance where the minimum distance classifier is used,

and the distance of choice is the Mahalanobis distance. The performance in Fig. 3.2 is for

three waveforms vs signal-to-noise ratio (SNR). The waveforms are as follows:

• Proposed waveform obtained from solving the optimisation problem

• Chirp waveform representing wideband flat-spectrum waveforms which is the popular

choice

• LELC waveform as derived in the Appendix

The plot shows that for an SNR below certain value (in this case 0 dB) the LELC wave-

form outperforms the chirp waveform. After that, the performance of LELC waveform satu-

rates while the chirp’s performance keeps improving. The figure also shows that the optimal

waveform matches the performance of the LELC solution in the LELC region and then it

outperforms the performance of the chirp until both waveforms reach perfect classification.

This means that at LELC region, it is always better to design the waveform using the LELC

solution as it attains the same performance as the optimal waveform with significantly less

computational requirements. The LELC solution does not require an optimisation solver.
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Figure 3.3: CV domes vehicles [53]

3.2.2 Multiple Classes Scenarios (c > 2):

For the next simulation, we move to the scenarios where more than two subclasses are to be

classified. These scenarios include the two possible design problems where: 1) two targets

are to be classified but each target is divided into more than one subclasses or 2) when more

than two targets (classes) are to be classified. The waveform design and the classifier used in

this scenario are based on the derivation in Section 3.1.1.

In this section, the synthetic data is replaced with the MSTAR CSV (civilian vehicles data

dome) dataset. The dataset was collected by the Sensors Data Management System of the US

Air Force [22]. The dataset contains X-band fully polarised far-field monostatic scattering

data as complex TFRs at different azimuth and elevation angles for a total of ten civilian cars.

The azimuth angular resolution of the data is setup to have 64 target frequency responses

within 4◦. The angular difference between target responses equals 0.0625◦. The scattering

data are frequency-domain based with 512 frequency samples from 6.9226 GHz to 12.2774

GHz. An image of all vehicles models are shown in Fig 3.3 from [53].

Note, the derivations made in this thesis are based on the assumption that TIRs/TFRs can be

modelled as complex Gaussian random vectors. When real data such as MSTAR’s dataset are

used, we can expect some inconsistency to surface between the value of the objective function

(classes’ Fisher separability) and the corresponding estimated classification performance Pcc.

This will become apparent in some of the scenarios in this section. In some scenarios, the
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objective function of proposed waveforms will be higher than that of the chirp waveform

whilst the latter waveform is outperforming the former in terms of Pcc.

We compare the solutions, derived in this chapter, to the non-adaptive waveform design and

classifier proposed in [12–15, 27]. Throughout this thesis, the waveform suggested in these

studies shall be referred to as average Mahalanobis distance (AMD) waveform. The reason

behind this naming is because the waveform is designed to maximise the average Maha-

lanobis distance between classes when more than two classes are considered. The AMD

waveform and classifier design provides the best classification performance over the other

non-adaptive waveform design techniques found in the literature. It is only outperformed by

the adaptive waveform design procedures especially when the number of classes is more than

two or when angular uncertainty is assumed [18].

The main deferences between the AMD design and the proposed design are as follows:

• The processing is done in the time domain for the AMD design. The processing in the

proposed method is done in the frequency domain

• Under angular uncertainty, AMD averages over all TIRs over multiple angles and de-

signs the waveform as if the TIR is deterministic and its value is the mean vector of all

TIRs. The proposed method assumes that the TIR is a realisation from a random vector

with known mean vector and covariance matrix

• The proposed method classifier has a dimensionality reduction stage where the projec-

tion matrix W projects the received signal vector into a lower dimension subspace. No

dimensionality reduction is done in the AMD classifier design

• The AMD waveform is designed to maximise the average Mahalanobis distance be-

tween classes. The proposed method maximises Fisher separability function which

maximises the distance between classes while also minimises the within-class variance

Three waveform and receiver designs are to be compared in this section:

• The proposed waveform designed by solving the optimisation problem and the classi-

fier design shown in section 3.1.1
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• A chirp waveform while using the same classifier design for the proposed waveform.

The chirp is a linear frequency modulated waveform that spans the same bandwidth as

the other two waveforms.

• The AMD waveform and classifier design [12–15, 27]

The common simulation parameters and setup are shown in table 3.1.

Parameter Value
Waveform energy 1

Number of frequency bins m 512
Noise Complex AWGN with variance adjusted based on SNR
Clutter No clutter

Number of Monte Carlo runs 1000

Table 3.1: Table of common simulation parameters and setup

3.2.2.1 Three targets with ρθ = 4◦ and ∆θ = 1◦ at an elevation angle θel = 30◦

In this scenario we consider three targets from the civilian cars in the dataset. Namely, a

Toyota Tacoma, a Mazda MPV and a 1999 Jeep. We limit the visible viewing angles of all

targets to a 4◦ divided into 4 subsectors with an angular width of ∆θ = 1◦. Because of target

symmetry, this is equivalent to viewing 8◦ of each target. In this case, the total number of

subclasses ltotal = c× l = 3× 4 = 12. Targets are viewed at an elevation angle of θel = 30◦.

Fig. 3.4 shows the classification performance in terms of the probability of correct classi-

fication Pcc vs SNR for the three waveforms; the chirp wideband signal (which is also the

LELC solution as concluded in Section 3.1.1.2), the proposed waveform in this chapter and

the AMD waveform.

In this scenario, we notice none of the waveforms achieves unity Pcc. This is because at

θel = 30◦, the targets are at their highest possible fidelity in the available data. The proposed

waveform while achieving higher objective function values as seen in table ??, does not out-

perform that of the chirp waveform while both utilise the similar classifier design. However,

the two waveforms appear to perform closely in this scenario unlike some other scenarios to
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Figure 3.4: Probability of correct classification Pcc vs SNR for three waveforms: The pro-
posed waveform obtained from the optimisation problem in (3.17) in blue, the
LFM/Chirp waveform in red, and the AMD waveform in black; for classifying a
Toyota Tacoma, a Mazda MPV and a 1999 Jeep with ρθ = 4◦ and ∆θ = 1◦ at an
elevation angle θel = 30◦

52



Target Identification Using Optimised Waveform design in Noisy Environment

come. We also notice that, the AMD waveform outperforms the other two waveforms in the

lower SNRs region.

In order to understand why AMD performs generally better at lower SNRs, the difference

between the classifier required by the AMD strategy and the proposed classifier derived in

section III-A3 should be discussed. Both classifiers are minimum distance classifiers. How-

ever, the proposed classifier has a dimensionality reduction stage while the AMD classifier

does not. The proposed classifier transforms the received signal into a lower-dimensional

subspace using Wopt. The number of the dimensions (which is also the length of the trans-

formed vectors) is dependent on the rank of the matrix SB. It is well known that the rank of

SB maximally equals the number of total subclasses minus one (i.e. rank{SB} ≤ ltotal − 1).

In the current scenario (with ltotal = 12), we expect the rank of SB to be less or equal to 11.

This also implies that Ỹ and M̃Yki vectors would be of length 11 or less. Also, Σ̃Yki would be

a square matrix with size 11 or less. As the number of degrees of freedom of 11 is low com-

pared to 512 degrees of freedom (time samples) utilised in AMD classification, we expect the

maximum performance of the proposed waveform to fall faster than AMD waveform in low

SNR regions.

3.2.2.2 Three targets with ρθ = 4◦ and ∆θ = 1◦ at an elevation angle θel = 60◦

This scenario is similar to the previous scenario with the difference in the elevation angle

changed to θel = 60◦. This allows for a new view of the targets and more coherent responses

as more persistent parts of the targets are almost always visible within the azimuth viewing

angels.

In Fig. 3.5, Pcc vs SNRs of this scenario is shown for the three waveforms. We observe

that, unlike the previous scenario, the performance of the proposed and the chirp waveform

improved and reached perfect classification at SNRs equal or greater than 10dB. We attribute

this improvement to targets realisations within ∆θ becoming more coherent as you increase

the elevation angle between the target and the radar system θel. The performance of the

AMD waveform on the other hand saturates around Pcc = 0.95 with slight improvement in

comparison to the previous scenario.
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Figure 3.5: Pcc vs SNR for three waveforms: The proposed waveform obtained from the
optimisation problem in (3.17) in blue, the LFM/Chirp waveform in red, and
the AMD waveform in black; for classifying a Toyota Tacoma, a Mazda MPV
and a 1999 Jeep with ρθ = 4◦ and ∆θ = 1◦ at an elevation angle θel = 60◦
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3.2.2.3 Three targets with ρθ = 8◦ and ∆θ = 1◦ at an elevation angle θel = 30◦

In this scenario, we keep the choice of the targets and ∆θ the same while increasing the

viewing angle ρθ to 8◦ at θel = 30◦. This allows us to observe the benefits of widening ρθ

as well as increasing the number of subclasses. The total number of subclasses ltotal in this

scenario will be 24 subclasses.

Fig. 3.6 shows the performance of the three waveforms in this scenario in terms of Pcc vs

SNRs. We notice that the performance of the AMD is slightly worse as the number of classes

increase. On the other hand, the proposed waveform and the chirp performance improved.

In this scenario, we also observe that the chirp waveform performs slightly better than the

proposed waveform.

3.2.2.4 Three targets with ρθ = 8◦ and ∆θ = 1◦ at an elevation angle θel = 60◦

We change θel in this scenario to 60◦ expecting performances to improve as realisations be-

comes more coherent.

In Fig 3.7, a slight improvement can be noticed in the performance of AMD waveform but

not as noticeable as that of the two other waveforms. In this case, we can see the optimised

waveform outperforms the chirp.

3.2.2.5 Three targets with ρθ = 16◦ and ∆θ = 4◦ at an elevation angle θel = 30◦

In this scenario, we set ρθ = 16◦ and divide the view into 4 subclasses with ∆θ = 4◦. In this

scenario with results shown in Fig. 3.8, we noticed a huge drop in the performance of the

AMD waveform as the modelling each subclass with its mean becomes less accurate. We can

see that both the chirp and the proposed waveform perform closely to each other and achieve

perfect classification at high SNRs.
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Figure 3.6: Pcc vs SNR for three waveforms: The proposed waveform obtained from the
optimisation problem in (3.17) in blue, the LFM/Chirp waveform in red, and
the AMD waveform in black; for classifying a Toyota Tacoma, a Mazda MPV
and a 1999 Jeep with ρθ = 8◦ and ∆θ = 1◦ at an elevation angle θel = 30◦
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Figure 3.7: Pcc vs SNR for three waveforms: The proposed waveform obtained from the
optimisation problem in (3.17) in blue, the LFM/Chirp waveform in red, and
the AMD waveform in black; for classifying a Toyota Tacoma, a Mazda MPV
and a 1999 Jeep with ρθ = 8◦ and ∆θ = 1◦ at an elevation angle θel = 60◦
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Figure 3.8: Pcc vs SNR for three waveforms: The proposed waveform obtained from the
optimisation problem in (3.17) in blue, the LFM/Chirp waveform in red, and
the AMD waveform in black; for classifying a Toyota Tacoma, a Mazda MPV
and a 1999 Jeep with ρθ = 16◦ and ∆θ = 4◦ at an elevation angle θel = 30◦
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3.2.2.6 Three targets with ρθ = 16◦ and ∆θ = 4◦ at an elevation angle θel = 60◦

Fig. 3.9 shows the performance in this scenario where θel is 60◦. Again, an insignificant

improvement to the AMD performance is observed while it is performing poorly as is the case

in the previous scenario. On the other hand, the chirp signal performs closely to the optimised

waveform for a majority of SNRs and then fall behind and saturates around Pcc = 0.9 at high

SNR values.

3.2.2.7 Different three targets with ρθ = 4◦ and ∆θ = 1◦ at an elevation angle θel = 30◦

In this scenario, we go with similar simulation setup as the first scenario where ρθ = 4◦,

∆θ = 1◦ and θel = 30◦ but for different targets. The target classes in this case are: a Toyota

Avalon, a Sentra and a Mitsubishi. Fig. 3.10 shows the simulation results for this scenario.

The results show how different the results can be than those before, but the trends are almost

the same. The AMD waveform and its classifier are underperforming in compare to the

previous results. The proposed waveform is shown to perform better achieving Pcc = 1 but

the chirp waveform seems to perform almost the same.

3.2.2.8 Varying ∆θ while ρθ = 4◦ at an elevation angle θel = 60◦ with same targets

In this scenario, we repeat the same previous scenario but with θel = 60◦ while varying ∆θ

(sector’s angular width) to 1◦, 2◦ and 4◦ to observe how ∆θ affects the performance of the

optimal waveform and AMD waveform.

Fig. 3.11 shows the performance of the proposed and AMD waveform vs SNR at three dif-

ferent values of ∆θ while ρθ = 4◦. The line width of each line in the figure corresponds

to the values of ∆θ which are 1◦, 2◦ and 4◦. We notice that the performance of the optimal

waveform improves as ∆θ is increased. This can be due to the improvement in estimating the

distribution of the TFR in each sector as the number of data points increases. On the other

hand, while not very large, we notice a degradation in the performance of AMD waveform

as ∆θ is increased. As AMD waveform and classifier rely on averaging responses under an-

gular uncertainty, increasing ∆θ is expected to make TFRs and TIRs within each sector more
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random leading to the assumption that a simple mean is not enough to capture its statistics.

3.3 Conclusions

The chapter have proposed non-adaptive waveform designs and classification schemes to

improve radar’s target identification performance. The new designs and classifiers are in-

spired by 2-class and multiclass Fisher discriminant analysis. Fisher’s separability function

in both analysis is used to formulate the optimisation problem. The optimal waveform is then

designed using the optimisation problem. The optimisation problems can be solved using

general optimisation software but also, the chapter introduces derived closed-form solutions

under LELC conditions. The methods were tested against the non-adaptive waveform AMD

design from [13–15] and its classifier. The simulation was conducted using the MSTAR CV

dataset in different scenarios and assumptions. We observe that, the new designs and schemes

performs better than the AMD waveform especially in high SNR regions. The effect of us-

ing real data in simulations appeared as inconsistencies between the relative performance of

the waveforms and the values of their objective functions. We conclude that, the proposed

designs improve target identification performance under angular uncertainty. The designs are

also offline where all the calculations and computations can be done a priori while achieving

improved performance. The closed-form solutions in LELC region also shown to achieve

comparable performance to optimised designs which lowers the computational requirements.

The chapter have covered the new design procedures in a clutter-free environment. In the next

chapter, clutter is introduced in the signal model and closed-form solution for more general

scenarios is derived.
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Figure 3.9: Pcc vs SNR for three waveforms: The proposed waveform obtained from the
optimisation problem in (3.17) in blue, the LFM/Chirp waveform in red, and
the AMD waveform in black; for classifying a Toyota Tacoma, a Mazda MPV
and a 1999 Jeep with ρθ = 4◦ and ∆θ = 1◦ at an elevation angle θel = 60◦
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Figure 3.10: Pcc vs SNR for three waveforms: The proposed waveform obtained from the
optimisation problem in (3.17) in blue, the LFM/Chirp waveform in red, and
the AMD waveform in black; for classifying a Toyota Avalon, a Sentra and a
Mitsubishi with ρθ = 4◦ and ∆θ = 1◦ at an elevation angle θel = 30◦
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Figure 3.11: Pcc vs SNR for two waveforms: The proposed waveform obtained from the
optimisation problem in (3.17) in blue and the AMD waveform in black for
∆θ = 1◦, 2◦ and 4◦; for classifying a Toyota Avalon, a Sentra and a Mitsubishi
with ρθ = 4◦ at an elevation angle θel = 30◦. Note that the line width corre-
sponds to the value of ∆θ
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Chapter 4
Target Identification Using Closed-form
Radar Waveform Design in Presence of

Signal-dependent Interference

In this chapter, we consider another scenario where the waveform is designed to optimise

target identification in the presence of both signal-dependent and signal-independent inter-

ferences. The chapter focuses on waveform design for optimal classification of targets with

extended responses in two main scenarios: 1) when classes share the same covariance matrix;

2) when the matrices are different. The design methods presented in the previous chapter re-

sult in optimisation problems with no closed-form solutions unless the problem is designed in

the LELC regions. These design problems require using numerical optimisation algorithms

to solve. In this chapter, we cover the derivation of a closed-form solution for the two main

scenario that is valid in all waveform energy levels.

In this chapter, we introduce a closed-form frequency-based solution to the problem of radar

waveform design to maximise binary target identification. The proposed solution achieves

performance levels comparable to the most optimal waveform in the literature while incur-

ring low computational complexity in comparison to the optimal waveform. The proposed

solution is applicable for the two main classification scenarios where the extended target fre-

quency responses (TFRs) are complex, random and normally distributed with unequal mean

vectors but their covariance matrices are either 1) identical or 2) different. We expand on

these two main scenarios by introducing clutter (signal-dependent interference) in the signal

model and studying possible closed-form designs in extreme waveform energy levels. We test

the closed-form solution against the available optimal waveforms. The proposed closed-form

solution is shown to attain very close performance as that of the optimal waveform without

requiring the same computational time and complexity. Simulations are conducted using data

synthetically generated in addition to the Civilian Vehicle Data from MSTAR dataset. Initial
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results from this chapter were published in [17]. The complete account of the results in this

chapter will formed the basis of the second journal submission.

The chapter is divided into four main sections. The first section introduces the new signal

model and the updated statistical properties of radar returns. The second section focuses on

1) deriving the objective function and optimisation problems for the two main scenarios 2) ex-

pressing the optimal classifier design 3) deriving the waveform design problems based on the

optimisation problems in extreme waveform energy levels in addition to deriving the closed-

form solution for both main scenarios. The third section is about presenting and discussing

the results. The last section is summary.

4.1 Signal Model

4.1.1 Signal Model and Statistical Properties

In this chapter, clutter is not neglected and the signal model defined in chapter 2 is assumed.

We assume that the target frequency response, the clutter and the noise are all random with

known statistical properties. The vectors Ri, C and N are realisations from complex-valued

Gaussian random fields with known means and covariance matrices where Ri is the target

frequency response from the class indexed with i for i = 1, 2.

Given that the vectors are distributed as follows:

Ri ∼ CN (MRi ,ΣRi) for i = 1, 2 (4.1)

C ∼ CN (M0,ΣC) (4.2)

N ∼ CN (M0,ΣN) (4.3)

where M0 is an all-zero vector and assuming that Ri, C and N are all uncorrelated, then, the

statistical distribution of Y for the ith class is given by:

Yi ∼ CN (MYi ,ΣYi) (4.4)
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where:

MYi = ΩXMRi (4.5)

and

ΣYi = ΩX(ΣRi + ΣC)ΩH
X + ΣN (4.6)

4.2 The Proposed Method

4.2.1 The Objective Function

Given the statistical distributions of Y , the classifier is to be designed to assign the radar

return Yi (aka the data point) to one of two classes with different mean vectors and identical

or non-identical covariance matrices. The classifier design depends on the objective function

and whether the covariance matrices, ΣR1 and ΣR2 , are identical or not.

4.2.1.1 Target Classes with Different Means and Identical Covariance Matrices

In this scenario where two class’s distributions share the same covariance matrix with differ-

ent mean vectors, it is possible to derive a closed-form direct measure of the classification

performance, i.e. the probability of misclassification. This allows us to calculate the theo-

retical performance of the waveform if we are employing the same classifier defined in the

derivation. It also allows for comparing the theoretical performance of a waveform against

the measured performance obtained using Monte-Carlo simulations. Two targets can have

identical covariance matrices if viewed from an angle where they are very similar or share

the same source of fluctuation. In this scenario, it is possible to express the probability of

misclassification in closed-form.

The classification problem is defined as follows:

• An already detected target with extended impulse/frequency response is to be classified

into one of two classes (Binary classification problem)

• i is the class identifier for i = 1, 2
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• ωi is the state of nature of the target [50]

• All statistical properties of all classes are known a priori

• MY1 = ΩXMR1 6= MY2

• ΣY1 = ΩX(ΣR1 + ΣC)ΩH
X + ΣN = ΣY2

= ΩX(ΣR2 + ΣC)ΩH
X + ΣN = ΣY

We can write the minimum-error-rate discriminant function gi(Y ) suited for this scenario as

[50]:
gi(Y ) =ln p(Y |ωi) + ln P (ωi)

=− (Y −MYi)
HΣ−1

Y (Y −MYi)

−mlnπ − ln|ΣY |+ ln P (ωi)

(4.7)

where p(Y |ωi) is the likelihood function of Y given ωi and P (ωi) is the prior probability. If

the prior probabilities for all classes are identical (i.e. P (ω1) = P (ω2) = 0.5), it is straight-

forward to derive the minimum-error-rate classifier and the best hyperplane for classification

by rearranging the linear function: g1(Y ) = g2(Y ) which results in the following equation:

<{WHY + w0} = g1(Y )− g2(Y )

<{(MY1 −MY2)
HΣ−1

Y Y +
MH

Y2
Σ−1
Y MY2 −MH

Y1
Σ−1
Y MY1

2
}

= 0

(4.8)

where the weight vector W = Σ−1
Y (MY1 −MY2) and the scalar bias w0 is given by w0 =

(MH
Y2

Σ−1
Y MY2 −MH

Y1
Σ−1
Y MY1)/2.

The probability of misclassification can be calculated given the distribution of the classifier

function in (4.8) which is defined as:

f(Y ) = (MY1 −MY2)
HΣ−1

Y Y +
MH

Y2
Σ−1
Y MY2 −MH

Y1
Σ−1
Y MY1

2
(4.9)

using the equation:

Pmc = p(<f(Y ) ≤ 0|ω1)P (ω1) + p(<f(Y ) > 0|ω2)P (ω2) (4.10)
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where: f(Y ) ∼ CN (µfi, σ
2
f ) for i = 1, 2. The mean µfi can be derived as follows:

µfi = E{f(Y )|ωi}

= (MY1 −MY2)
HΣ−1

Y MYi +
MH

Y2
Σ−1
Y MY2 −MH

Y1
Σ−1
Y MY1

2

(4.11)

and similarly, the variance σ2
f :

σ2
f = E{(f(Y )− E{f(Y )})(f(Y )− E{f(Y )})H}

= (MY1 −MY2)
HΣ−1

Y (MY1 −MY2)
(4.12)

Also, it can be shown that <µf1 = +σ2
f/2 and <µf2 = −σ2

f/2. Then,

p(<f(Y ) ≤ 0|ω1) =

0∫
−∞

∞∫
−∞

ξ(<f(Y ))ξ(=f(Y )) · d=f(Y ) · d<f(Y )
(4.13)

and,

p(<f(Y ) > 0|ω2) =

∞∫
0

∞∫
−∞

ξ(<f(Y ))ξ(=f(Y )) · d=f(Y ) · d<f(Y )
(4.14)

where: ξ(x) =
1√
πσ2

x

exp{−(x−mx)
H(x−mx)

σ2
x

}.

By solving the integration by substitution in addition to employing the definition of the Q-

function,

p(<f(Y ) ≤ 0}|ω1) = Q(+
√

2<µf1/σf ) (4.15)

p(<f(Y ) > 0}|ω2) = Q(−
√

2<µf2/σf ) (4.16)

it can be shown that

Pmc = Q
(√

(MY1 −MY2)
HΣ−1

Y (MY1 −MY2)/2
)

(4.17)

While Pmc can be used as the objective function that should be minimised to maximise the
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classification performance, we can also make use of the properties of the Q-function and the

square root function to further reduce the optimisation problem objective to only maximise

the term inside the square-root in (4.17) which is (MY1 −MY2)
HΣ−1

Y (MY1 −MY2).

The optimisation problem is then:

arg max
ΩX

g1(ΩX) = (MY1 −MY2)
HΣ−1

Y (MY1 −MY2)

s.t. trace(ΩXΩH
X) = mεx

(4.18)

where εx is the energy of the time-domain waveform in x.

4.2.1.2 Target Classes with Different Means and Different Covariance Matrices

In this scenario, the two distribution have different mean vectors and covariance matrices

which makes the derivation of the probability of misclassification a challenging problem.

In this scenario,

• An already detected target with extended impulse/frequency response is to be classified

into one of two classes (Binary classification problem)

• i is the class identifier for i = 1, 2

• All statistical properties of all classes are known a priori

• MY1 = ΩXMR1 6= MY2

• ΣY1 = ΩX(ΣR1 + ΣC)ΩH
X + ΣN

6= ΣY2 = ΩX(ΣR2 + ΣC)ΩH
X + ΣN

for this kind of classification problems, the performance can be enhanced by employing the

concepts of Fisher discriminant analysis [50].

Basically, the analysis aims at finding the projection vector w that maximises the distance

between classes’ means while minimising the variance of each class [50]. This is achieved by
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maximising the classes’ separation which is defined by Fisher separation function as follows:

f(w) =
wH(MY1 −MY2)(MY1 −MY2)

Hw

wH(ΣY1 + ΣY2)w
(4.19)

The optimal projection vector wopt that maximises Fisher’s separation function f(w) is well

defined and is given by:

wopt = α(ΣY1 + ΣY2)
−1(MY1 −MY2) (4.20)

where α is a constant [50].

By substituting (4.5), (4.6) and (4.20) in (4.19), the objective function becomes variable only

in ΩX which is dependent on X (the Fourier transform of the radar probing signal x).

Let g2(ΩX) be the objective function resulting from the substitutions, then (4.19) can be

written as:
g2(ΩX) =

∆MH
R ΩH

XS−1ΩX∆MR(∆MH
R ΩH

XS−1ΩX∆MR)

(∆MH
R ΩH

XS−1ΩX∆MR)

= ∆MH
R ΩH

X (ΩX(Ψ)ΩH
X + 2ΣN)−1 ΩX∆MR (4.21)

where S = ΩX(Ψ)ΩH
X + 2ΣN , Ψ = ΣR1 + ΣR2 + 2ΣC and ∆MR = MR1 −MR2 .

The new objective function g2(ΩX) then becomes dependent only on the radar waveform X

which can be designed so that the classification is set where the maximum Fisher’s separation

can be achieved. We use a constant energy constraint to limit the energy of the waveform

to the constant value εx. The energy constraint is used here because it is tractable. The

optimisation problem is then can be written as follows:

arg max
ΩX

g2(ΩX)

s.t. trace(ΩXΩH
X) = mεx

(4.22)
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4.2.2 Classifier Design

Here, as in [16], the classifier assigns the target to the class closest to the target return Y in

terms of the Mahalanobis distance after projecting all the received data and the means by w.

The projection vector w, depending on the scenario, is given by:

• w = (ΣY )−1(MY1 −MY2) when the covariance matrices are identical

• w = (ΣY1 + ΣY2)
−1(MY1 −MY2) when they are not identical

the Mahalanobis distance for the ith class is then given by:

di =

√
|wH(Y −MYi)|2

wHΣYiw
(4.23)

the target is assigned to the classes with the minimum di.

4.2.3 Waveform Design

The waveform design section is divided into three subsections. The first two sections present

optimal waveform design methods for the two main scenarios where the covariance matrices

for classes distributions are 1) identical 2) different. The third section covers the closed-form

solution for the waveform design problems which is can be used for the two main scenarios

without major changes.

4.2.3.1 Optimal Waveform Design for Two Classes with Identical Covariance Matrices

Maximising the classification performance is directly influenced by reducing classification

errors which translates into minimising the probability of misclassification. Minimising Pmc

can be achieved, as derived in Section 4.2.1.1, by maximising (MY1 − MY2)
HΣ−1

Y (MY1 −
MY2). By expanding this term and substituting the expressions of ΣY , MY1 and MY2 , we can

express g1(ΩX) that is variable only in ΩX as follows:

g1(ΩX) = ∆MH
R ΩH

X(ΩX(ΣR + ΣC)ΩH
X + ΣN)−1ΩX∆MR (4.24)
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where ∆MR = MR1 −MR2 .

The design of the optimal radar waveform is then achieved by solving the optimisation prob-

lem in (4.18). Solving (4.18) to find a closed-form solution is a challenging problem. How-

ever, a numerical solution for the optimisation problem in (4.18) can be computed using

MATLAB optimisation toolbox for example [17].

In some special situations, it is possible to derive a closed-form solution to the optimisation

problems. Designing the optimal waveform in these situations will require significantly less

computations. The two main special situations explored here are dependent on the relation-

ship of the two terms in (4.24):

i. The signal and clutter term: ΩX(ΣR + ΣC)ΩH
X

ii. The noise term: ΣN

The first situation is defined when the waveform energy is very high such that the following

approximation is accurate:

(ΩX(ΣR + ΣC)ΩH
X + ΣN)−1 ≈ (ΩH

X)−1(ΣR + ΣC)−1(ΩX)−1

The approximation becomes more accurate as the magnitude of each element in the signal

and clutter term becomes much higher than the magnitude of the corresponding element in

the noise term such that the noise term becomes negligible in (4.24).

In this situation, we can see that the waveform design no longer matters as (4.24) becomes

independent of ΩX . This means that, as long as no element in X equals zero (see (4.17)), the

probability of misclassification will always be given by:

Pmc = Q
(√

∆MH
R (ΣR + ΣC)−1∆MR/2

)
(4.25)

The second situation is the opposite situation where the waveform energy is too low such that
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the approximation below is valid:

(ΩX(ΣR + ΣC)ΩH
X + ΣN)−1 ≈ (ΣN)−1

This means (4.24), in this situation, can be expressed as

g1(ΩX) = XHΩH
M(ΣN)−1ΩMX (4.26)

where ΩM = diag(∆M).

The values of X that maximises the new objective function is obtained using the eigenvector

Υλmax of the matrix ΩH
M(ΣN)−1ΩM which corresponds to its maximum eigenvalue λmax.

Finally, the optimal X equals Υλmax scaled by
√
mεx/

√
ΥHλmaxΥλmax to satisfy the energy

constraint.

The probability of misclassification in this situation can be calculated using:

Pmc = Q
(√

mεxλmax/2
)

(4.27)

The probability of correct classification Pcc is then given by :

Pcc = 1− Pmc (4.28)

4.2.3.2 Optimal Waveform Design for Two Classes with Different Covariance Matrices

A similar waveform design strategy can be adopted for the scenario where target classes have

different means and difference covariance matrices. In this scenario, minimising Pmc is re-

placed with maximising Fisher separation and the optimisation problem in (4.18) is replaced

with (4.22). This is because deriving Pmc for classes with different means vectors and dif-

ferent covariance matrices is very challenging problem. Fisher discriminant analysis on the

other hand are used regardless of whither the matrices are identical or not.
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4.2.3.3 Closed-form Waveform Design

The problem in (4.18) and (4.22) can be solved using optimisation toolbox of MATLAB. The

solution to the optimisation problem is used to design the optimal X and ultimately obtain

the optimal radar waveform x(t) that maximises the performance of target identification.

However, in the following section, we propose a closed-form solution to the problem, which

is derived using Lagrange multipliers given that ΣR1 , ΣR2 , ΣC and ΣN can be approximated

to be diagonal matrices (off-diagonal elements are negligible) as established in [54]. This

solution can be used also when the covariance matrices are not identical. The only difference

is that the solution will maximise Fisher’s separation function and not minimise Pmc directly

[16].

Let Ψ = ΣR1 + ΣR2 + 2ΣC = diag(P ) and ΣN = diag(Ξ) where P = [p2
1, p

2
2, · · · , p2

m]T

and Ξ = [σ2
1, σ

2
2, · · · , σ2

m]T and ∆MR = [∆µ1,∆µ2, · · · ,∆µm]T , then g2(ΩX) in (4.2.1.2)

can be expressed as:

g2(ΩX) =∆MH
R ΩH

X (ΩX(Ψ)ΩH
X + 2ΣN)−1 ΩX∆MR

=
m∑
i=1

( |∆µi|2|xi|2
|xi|2(p2

i ) + 2σ2
i

)

=
m∑
i=1

|∆µi|2

(p2
i )
|xi|2

|xi|2 +
2σ2

i

(p2
i )

=
m∑
i=1

αi|xi|2

|xi|2 + βi

(4.29)

assuming p2
i 6= 0 ∀i

The optimisation problem becomes:

arg max
|xi|

m∑
i=1

αi|xi|2

|xi|2 + βi
s.t.

m∑
i=1

|xi|2 = mεx (4.30)

where αi =
|∆µi|2

(p2
i )

and βi =
2σ2

i

(p2
i )

.

To solve this problem, we use a Lagrange multipliers approach. It is important to note that

using Lagrange multipliers does not necessary finds the global maxima of the optimisation
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problem if the strong duality does not hold and the duality gap is not zero. T‘his means there

is always the possibility that there is a better waveform than the diagonal waveform which

can be found by other methods. We define the Lagrangian of our primal problem L(X, γ) as

follows:

L(X, γ) =
m∑
i=1

αi|xi|2

|xi|2 + βi
− γ
( m∑

i=1

|xi|2 −mεx
)

(4.31)

we define the dual function LD(γ) = max
|xi|
L(X, γ).

Then, maximising L(X, γ) w.r.t absolute of each element of X amounts to:

∂L(X, γ)

∂|xi|
=

2αiβi|xi|
(|xi|2 + βi)2

− 2γ|xi| = 0⇒

[−2γ(|xi|2)2 − 4γβi|xi|2 + (2αiβi − 2γβ2
i )]|xi| = 0

(4.32)

we neglect the first solution

|xi| = 0 (4.33)

which corresponds to a saddle point where the objective function is at a global minimum and

hence not wanted. This can be concluded by observing the objective function.

The other four possible solutions come from:

|xi|2 =
4γβi ±

√
(−4γβi)2 − 4(−2γ)(2αiβi − 2γβ2

i )

−4γ

=
γβi ±

√
γαiβi

−γ

=− βi ∓
√
αiβi√
γ

(4.34)

Please note that γ is not restricted by a sign because the multipliers of equality constraints

are not restricted to be positive or negative but can be either.
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Now, substituting (4.34) in (4.32), we can write:

LD(γ) =

m∑
i=1

αi
γβi ±

√
γαiβi

−γ
γβi ±

√
γαiβi

−γ
+ βi

− γ
( m∑

i=1

γβi ±
√
γαiβi

−γ
−mεx

)

=
m∑
i=1

αiγβi ± αi
√
γαiβi

γβi ±
√
γαiβi − γβi

+
m∑
i=1

(
γβi ±

√
γαiβi

)
+ γmεx

=
m∑
i=1

αiγβi ± αi
√
γαiβi

±
√
γαiβi

+
m∑
i=1

(
γβi ±

√
γαiβi

)
+ γmεx

=
m∑
i=1

(
±
√
γαiβi + αi

)
+

m∑
i=1

(
γβi ±

√
γαiβi

)
+ γmεx

=±
m∑
i=1

√
γαiβi +

m∑
i=1

αi +
m∑
i=1

γβi ±
m∑
i=1

√
γαiβi + γmεx

=

(
mεx +

m∑
i=1

βi

)
(
√
γ)2 ± 2

m∑
i=1

√
αiβi(

√
γ) +

m∑
i=1

αi

(4.35)

which is quadratic in (
√
γ) and convex.

In order to minimise the dual function LD(γ), now that we know it is convex and quadratic,

we just need to derive
√
γ which satisfies

∂LD(γ)

∂
√
γ

= 0.

∂LD(γ)

∂
√
γ

=2

(
mεx +

m∑
i=1

βi

)
√
γ ± 2

m∑
i=1

√
αiβi = 0⇒

√
γ = ∓

∑m
i=1

√
αiβi

mεx +
∑m

i=1 βi

(4.36)
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We then substitute the value of γ to obtain the optimal value of |xi| as follows:

|xi|2 =
4γβi ±

√
(−4γβi)2 − 4(−2γ)(2αiβi − 2γβ2

i )

−4γ

=− βi ∓
√
αiβi√
γ

=− βi ∓
√
αiβi

∓
∑m

l=1

√
αlβl

mεx +
∑m

l=1 βl

=− βi ∓

∓
√
αiβi∑m

l=1

√
αlβl

mεx +
∑m

l=1 βl


=

(mεx +
∑m

l=1 βl)
√
αiβi∑m

l=1

√
αlβl

− βi

=

(mεx +
∑m

l=1

2σ2
l

(p2
l )

)

√
|∆µi|2

(p2
i )

2σ2
i

(p2
i )∑m

l=1

√
|∆µl|2

(p2
l )

2σ2
l

(p2
l )

− 2σ2
i

(p2
i )

(4.37)

Because |xi| in (4.37) has to be positive, we concludes that the amplitude of each element of

the solution waveform Xsolution is given by:

|xi| =


√
|xi|2 if |xi|2 ≥ 0

0 otherwise
(4.38)

and the phase can be arbitrary. Finally, xi can be scaled to satisfy the energy constraint.

4.3 Results and Discussion

In this section, we present the simulation results generated using synthetic and real targets

data to study the performance of the closed-form solution derived in Section 4.2.3.3 (from

here on referred to as “the diagonal solution” and the waveform as “the diagonal waveform”)
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Figure 4.1: Measured Pcc vs waveform energy εx for different waveform design methods for
the scenario where the two classes have identical covariance matrices and no
clutter is present
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Figure 4.2: Theoretical Pcc vs waveform energy εx for different waveform design methods
for the scenario where the two classes have identical covariance matrices and
no clutter is present
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against other radar waveforms found in the literature [16]. Note that in this chapter we are

not comparing the results against the AMD waveform as it is not designed for presence of

clutter and angular uncertainty simultaneously [12–15, 27–29].

4.3.1 Results Generated Using Synthetic Data

The common simulation setup is shown in table 4.1.

Parameter Value
Number of frequency bins m 64

Noise Complex AWGN with with of 1
Clutter Complex AWGN with of 0.5

Number of Monte Carlo runs n 10,000
Mean vectors and covariance matrices generated arbitrarily at

for all target classes the start of the simulation
Optimisation algorithm Simulated annealing

Simulated annealing max number of iterations 200
Simulated annealing other parameters default

The realisations of the Target response R, different at each run (i.e. generated
noise vector N and clutter vector C from pulse-to-pulse)

Table 4.1: Table of common simulation parameters and setup

4.3.1.1 The theoretical performance vs the measured performance when the covari-

ance matrices of the classes are identical (i.e. ΣR1 = ΣR2) and clutter is negli-

gible (σ2
c = 0)

We start first by studying the scenario where no significant clutter response is received in the

radar system (e.g. radar looking above ground) and the two classes of targets share the same

covariance matrix. The standard measure of the classification performance that we will be

using from here on is the probability of correct classification Pcc which is the complement

probability of Pmc (i.e. Pcc = 1− Pmc.).

In this scenario, we study the performance of the diagonal solution and three other waveforms

(defined below) while also showing the difference between the classification performance

obtained from running Monte-Carlo simulation and the performance calculated directly from
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the theoretical probability of misclassification as derived and expressed in (4.17).

The four main waveform design methods to be studied in this scenario are as follows:

• The diagonal waveform: the waveform generated from computing the optimal wave-

form using the diagonal solution proposed in this chapter in (4.38)

• The chirp waveform: a wideband flat spectrum linearly frequency-modulated wave-

form

• The SA optimal waveform: obtained using MATLAB optimisation toolbox to solve

(4.18) or (4.22) where the algorithm “Simulated Annealing” is used seeded by the

chirp waveform.

• The PS optimal waveform: obtained using MATLAB optimisation toolbox to solve

(4.18) or (4.22) where the algorithm “Particle Swarm” is used.

Figures 4.1 and 4.2 show the measured and theoretical performance of the four aforemen-

tioned waveforms in terms of the probability of correct classification Pcc vs the time-domain

waveform energy εx respectively. As the noise variance is unchanged in the two figures, we

expect every point on the x-axis to correspond to different signal-to-noise ratio (SNR) which

is also expected to be monotonically increasing with εx.

The two figures show an almost non-existent difference between the measured performance

and the theoretical one which was calculated using (4.17).

Also, we notice that in this case the particle swarm algorithm was able to perform better

than simulated annealing and all other waveform design methods. This can be due to the

optimisation problem providing favourable conditions for one algorithm over another. This

shows the importance of employing multiple global optimisation algorithms and choosing the

one that performs better. We notice that the diagonal solution also attained better performance

than simulated annealing without requiring the same computations.

On the other hand, the optimal waveform designed using particle swarm algorithm is shown

to outperform all other waveforms with slight advantage over the diagonal solution. This,
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of course, comes at the expense of more computational complexity required to obtain the

optimal waveform in comparison to the diagonal solution [55].

4.3.1.2 The performance when the covariance matrices are identical (i.e. ΣR1 = ΣR2)

and clutter is present (σ2
c = 0.5)

In this second scenario, we study the performance of the same four waveform design methods

when the two classes also share the same covariance matrix but in the presence of clutter and

noise. The clutter and noise vector as mentioned before are both assumed white with spectral

variance of 0.5 and 1 respectively.

Fig. 4.3 shows the measured performance of the four waveforms in terms of Pcc vs εx. The

figure shows no difference in the relative performances of the four waveforms between this

scenario and the previous one. However, the overall performance of all waveforms has clearly

degraded due to the presence of the clutter where, for example, the PS optimal and the diag-

onal waveform can only attain around Pcc = 0.95 at εx = 10 dB while it attained higher than

that, at the same energy level, in the previous scenario where no clutter is present.

4.3.1.3 The performance when the covariance matrices are identical (i.e. ΣR1 = ΣR2)

and clutter is negligible (σ2
c = 0) against very low εx and very high εx waveforms

In this scenario, we study the performance of the extreme εx waveforms derived in Section

4.2.3.1 vs the other waveforms we studied so far. This is to validate the results obtained

in (4.25) and (4.26) where the performance of the extreme εx waveforms was derived. The

clutter in this scenario is negligible.

The measured Pcc vs εx for this scenario is shown in Fig. 4.4. The high εx performance limit

is calculated using (4.25). We can see that the performance of no waveform can surpass that

of the high εx limit and the waveforms with best performance start saturating as it get closer

to the high εx limit value. The figure also shows the performance of the low εx waveform

which performs worse in comparison to other waveforms in the current energy levels where

εx is not very low.
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Figure 4.3: Measured Pcc vs waveform energy εx for different waveform design methods for
the scenario where the two classes have identical covariance matrices and clutter
is present
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Figure 4.4: Measured Pcc vs waveform energy εx for different waveform design methods for
the scenario where the two classes have identical covariance matrices and no
clutter is present along with the Pcc limit when the εx is very high

When we rerun this scenario at a much lower waveform energy levels, we get the classifi-

cation performance shown in Fig. 4.5. It is very clear from the figure that the energy level

where the low εx assumption becomes accurate. We can see the low εx waveform almost

outperforming all other waveforms at energy levels below εx = −25 dB. We call the interval

of εx values below εx = −25 dB the low εx region. However, we can also see that it is still

possible to find an optimal waveform using particle swarm algorithm that will slightly surpass

the low εx waveform around the start of the low εx region.
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Figure 4.5: The performance of low waveform energy waveform in Measured Pcc vs wave-
form energy εx against different waveforms for the scenario where the two classes
have identical covariance matrices and no clutter is present
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Figure 4.6: Measured Pcc vs waveform energy εx for different waveform design methods for
the scenario where the two classes have different covariance matrices and no
clutter is present

4.3.1.4 The performance when the covariance matrices are different (i.e. ΣR1 6= ΣR2)

and clutter is negligible (σ2
c = 0)

Next we study the more general scenario where the two classes have different mean vectors

and covariance matrices. Also, the clutter is assumed negligible in this scenario.

Figure 4.6 shows Pcc vs εx for the four main waveforms. The figure shows a noticeable

degradation in the overall performance of all waveforms where the maximum expected Pcc

at εx = 10 dB is around Pcc = 0.85 . We can see that in this scenario, the gap between the

PS optimal waveform and the diagonal waveform has broadened. We also notice that the SA

optimal waveform is now outperforming the diagonal solution while also being outperformed

by the PS optimal waveform.
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Figure 4.7: Measured Pcc vs waveform energy εx for different waveform design methods for
the scenario where the two classes have different covariance matrices and clutter
is present

4.3.1.5 The performance when the covariance matrices are different (i.e. ΣR1 6= ΣR2)

and clutter is present (σ2
c = 0.5)

The performance of the four waveforms and their objective function values are shown in Fig.

4.7. As expected, the performance of the waveforms looks like the previous scenario except it

is now lower due to clutter. The maximum Pcc at εx = 10 dB is now Pcc = 0.76 in comparison

to around Pcc = 0.85 attained in the clutter-less scenario.

4.3.2 Results Generated Using Real Dataset

In this section, the synthetic target data is replaced with real data from the MSTAR dataset

[22]. The dataset is made up of extended complex target Frequency responses (TFRs) of
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ten civilian vehicles. The TFRs are captured at four different elevation angles θel and 5760

azimuth angles covering the 360◦ of the target. The statistical properties of the classes of

targets are estimated from the data and the rest of the data is used in results generation.

Clutter and noise vectors are generated synthetically from white complex Gaussian random

fields. We assume that the set of TFRs in a sector from the 360◦ of the target, consist of

realisations from the same given distribution that can be estimated from the responses in the

sector. We use ρθ to refer to the sector width in degrees.

The three main waveforms to be studied in this scenario are as follows:

• The diagonal waveform: the waveform generated from computing the optimal wave-

form using the diagonal solution proposed in this chapter

• The chirp waveform: a wideband flat spectrum linearly frequency-modulated wave-

form

• The optimal waveform: obtained using MATLAB optimisation toolbox to solve (4.22)

where the algorithm “Particle Swarm” is used.

Note that, we no longer need to test the SA optimal waveform here as the PS optimal showed

superiority in all previous scenarios.

4.3.2.1 The performance of classifying the target into ‘Toyota Tacoma’ or ‘Toyota

Avalon’ with θel = 60◦, ρθ = 4◦ and no clutter is present σ2
c = 0

In this scenario, we study the classification performance of the diagonal solution against the

PS optimal waveform and the chirp waveform. The radar is to classify an already detected

target into either a ‘Toyota Tacoma’ or ‘Toyota Avalon’ using its extended TFR [22]. The

radar-target orientation is assumed unknown but it is given that it is within the first 4 degrees

of the target (in the CVS dataset θaz = 0◦ is at the front of the vehicle) in azimuth (ρθ = 4◦) at

θel = 60◦. The only type of interference present, in this scenario, is noise which is generated

synthetically to be white with unity spectral variance σ2
n.
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Figure 4.8: The probability of correct classification Pcc vs waveform energy εx for different
waveform design methods for the scenario where the radar to classify the target
into ‘Toyota Tacoma’ or ‘Toyota Avalon’ where θel = 60◦, ρθ = 4◦ and no clutter
is present σ2

c = 0 where the optimal waveform is designed using Particle Swarm

The classification performance in terms of Pcc vs εx for the three waveforms considered here

is shown in Fig. 4.8. The figure shows that on average, the PS optimal and diagonal waveform

perform better than the chirp waveform. It also shows how the diagonal waveform attains a

performance close to the PS optimal waveform.

4.3.2.2 The performance of classifying the target into ‘Toyota Tacoma’ or ‘Toyota

Avalon’ with θel = 60◦, ρθ = 4◦ and clutter is present σ2
c = 0.5

When the same scenario as Section 4.3.2.1 is considered but clutter is present, the resulting

classification performance is as shown in Fig. 4.9. In general, we see an expected degradation

due to the presence of clutter but the relative difference between the waveforms is almost the
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Figure 4.9: The probability of correct classification Pcc vs waveform energy εx for different
waveform design methods for the scenario where the radar to classify the target
into ‘Toyota Tacoma’ or ‘Toyota Avalon’ where θel = 60◦, ρθ = 4◦ and clutter is
present σ2

c = 0.5 where the optimal waveform is designed using Particle Swarm

same as the previous scenario of Section 4.3.2.1

4.4 Conclusions

This chapter proposed a closed-form solution for the two main optimisation problems to

maximise classification performance in two main scenarios were the TFRs are complex and

normally distributed with different mean vectors, but their covariance matrices are either

identical or non-identical. The chapter expanded on these two scenarios with introduction

of clutter (signal-dependent interference) and studied other possible designs in extreme εx

levels. The derivations of the extreme εx solutions shows the best performance that the spe-
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cial closed-form solutions achieves at these extreme levels. The closed-form solutions were

tested against optimal waveforms solved using optimisation software as derived in the lit-

erature (with different optimisation algorithms) and showed that the proposed closed-form

solution (diagonal solution) attains close if not similar performance as that of the best op-

timal waveform the optimisation software can design without all the computation time and

complexity needed to design the optimal waveform. Some simulations were conducted using

data synthetically generated and the other utilised the Civilian Vehicle Data from MSTAR

dataset. In both scenarios the gap between the optimal solution and the proposed solution

was almost negligible.
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Chapter 5
Conclusions

The thesis has studied and presented new waveform and receiver design procedures that op-

timise the performance of target identification in radar. The importance of signal processing

in radar were discussed especially waveform design and its role in shaping the radar perfor-

mance. Also, the background and the relevant literature to radar waveform design in optimis-

ing target identification performance were presented.

The thesis was motivated by the following:

• waveform design plays an important role, that is recognised by the literature, in im-

proving target performance.

• although target identification can be as important as detection, optimising target identi-

fication using waveform design is not as much researched as optimal design for target

detection.

• a great body of the research in target identification optimisation is focused on adaptive

waveform design which requires more computations and more advanced hardware than

that required in non-adaptive waveform design.

• many of the relevant literature does not consider angular uncertainty or practical targets

responses which can cause significant drop in the performance.

The solutions presented in this thesis for these motivation are as follows:

• The thesis proposed two non-adaptive waveform design procedures inspired by 2-class

and multiclass Fisher discriminant analysis in a clutter-free noisy environment. The

procedures provided general solutions obtainable using general optimisation solvers.
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Also, two closed-form solutions (one for each scenario) to the waveform design op-

timisation problems were derived under low-energy/low-covariance (LELC) assump-

tion. The results showed that the proposed classification schemes and waveform de-

signs outperform the non-adaptive methods found in the literature especially in high

SNR regions.

• The thesis proposed two other non-adaptive design procedures where signal-dependent

interference/clutter is present. In presence of signal-dependent interference, the thesis

provided the following: 1) Introduction of signal-dependent interference and clutter to

the signal model for the two cases: i) when the target classes share the same covariance

matrix ii) when they have different matrices 2) formulation of the waveform design

problem based on the new signal model for both cases 3) derivation of a frequency-

based closed-form solution for radar waveform design problem. The thesis tested the

closed-form solution against 1) flat spectrum wideband waveform, 2) optimised wave-

forms obtained from the optimisation algorithms and 3) extreme energy waveforms

when the waveform energy is either extremely low or high.

5.1 Future Work

The thesis presented optimal non-adaptive waveform design methods based on Fisher dis-

criminant analysis to improve target identification. The non-adaptive waveform design allows

for pre-design of the waveform and the receiver based on previously obtained knowledge

about target classes, noise, clutter and environment. This may limit the design to perform

well in conditions matched to the assumptions. Any mismatch may result in significant drop

in the performance. For future work, Fisher discriminants analysis can be introduced to more

advanced systems where this mismatch will have less impact on the radar performance after

deployment. An adaptive waveform design technique based on Fisher analysis, for example,

may provide the system with updated prior knowledge preventing performance drops.

In chapter 4, clutter was introduced to the signal model and the waveform design problem

where a closed-form solution was derived for designing the waveform and the optimal re-

ceiver. Accurate knowledge about clutter is not always available especially for airborne
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radars. For future work, the presented methods can be adjusted to update clutter statistical

properties on-the-fly and the closed-form solution can be updated for enhanced performance.

Additional constraints can be added like constraining the time-domain waveform to have

constant modulus, for example, and low peak-to-average-power ratio (PAPR). This can result

in degradation in the classification performance but it can result in designing waveform more

practical for old radar systems with non-linear power amplifiers.

Also, variety of more analysis tools can be used for more comprehensive understanding of the

performance and the proposed designs properties can be used like confusion matrices where

the types of errors and sources of errors can be studied. Also, studying computational com-

plexities and times can provide explicit measure of the computational differences between

proposed designs here in this thesis and in the literature.

94



Appendix A

Derivation for Two Classes (c = 2)
Problem in Noisy Environment

General Solution for Two Classes (c = 2) Problem

With only two classes to classify, the transformation matrix W reduces to a vector. The

within-class scatter matrix is as follows:

SW =ΩXΣ1Ω
H
X + ΣN + ΩXΣ2Ω

H
X + ΣN

=ΩX

(
Σ1 + Σ2

)
ΩH
X + 2ΣN

(A.1)

while between-class scatter matrix is

SB = ΩX(M1 −M2)(M1 −M2)HΩH
X (A.2)

The objective function is defined as the ratio f(w):

f(w) =
wHSBw

wHSWw
(A.3)

The optimal w for which f(w) can be maximised is as follows:

wopt = (SW )−1ΩX∆M (A.4)

where ∆M = (M1 −M2).

Finally, we define the objective function g(ΩX) which is a function of the radar waveform in
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ΩX as follows:

g(ΩX) = f(w)|wopt=[ΩX(Σ1+Σ2)ΩH
X+2ΣN ]−1ΩX∆M

=
∆MHΩH

X(SW )−1ΩX∆M∆MHΩH
X(SW )−1ΩX∆M

∆MHΩH
X(SW )−1SW (SW )−1ΩX∆M

=∆MHΩH
X(SW )−1ΩX∆M

=∆MHΩH
X

(
ΩX(Σ1 + Σ2)ΩH

X + 2ΣN

)−1
ΩX∆M

g(ΩX) =

∆MHΩH
X

(
ΩX(Σ1 + Σ2)ΩH

X + 2ΣN

)−1
ΩX∆M

(A.5)

The optimisation problem is then the same as (3.17) with different definition for g(ΩX).

LELC Solution Under AWGN for Two Classes (c = 2) Problem

In this scenario, we derive the closed-form solution at LELC’s SNR/energy level where the

approximation SW ≈ 2ΣN is valid.

With ΩX

(
Σ1 + Σ2

)
ΩH
X no longer affecting g(ΩX), the objective function becomes identi-

cal to that in [17] under similar assumptions about the SNR and energy level. The optimal

solution in this case is the waveform consisting of the largest eigenvector of the maximum

eigenvalue of the matrix C which is defined as:

C = diag(M1 −M2)H(ΣN)−1diag(M1 −M2) (A.6)

The waveform is then normalised by
√
‖X‖2 and multiplied with

√
mεx to match the energy

constraint of the optimisation problem.

The Derivation of The Classifier

The classifier in this case is not very different than that in multiclass case. The difference now

is that the transformation matrix Wopt is just a vector wopt. This means that it will transform
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all the vectors into complex scalars.

The scalars will be given by:

ỹ = wH
optY (A.7)

m̃Yki = wH
optMYki = wH

optΩXMki (A.8)

σ̃2
Yki

= wH
optΣYkiwopt

= wH
opt(ΩXΣkiΩ

H
X + ΣN)wopt

(A.9)

and the Mahalanobis distance of the subclass i of class k from the received signal Y is then

given by:

dki =

√
|m̃Yki − ỹ|2

σ̃2
Yki

(A.10)

Algorithm 3 shows in step-by-step how the classifier assign a target to a class from the re-

ceived signal Y .

Algorithm 3 Identify target class from received signal Y in 2-class scenario
Require: Y , ΩX ,M1,M2, Σ1, Σ2 and ΣN

SW ⇐ ΩX

(
Σ1 + Σ2

)
ΩH
X + 2ΣN

wopt = (SW )−1(M1 −M2)
ỹ ⇐ wH

optY
for k = 1 to 2 do
m̃Yk ⇐ wH

optΩXMk

Σ̃Yk ⇐ wH
opt(ΩXΣkΩ

H
X + ΣN)wopt

dk ⇐
√
|m̃Yk − ỹ|2

σ̃2
Yk

end for
if d1 < d2 then

Assign target to the class 1
else

Assign target to the class 2
end if
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