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Abstract: This paper develops a collaborative trajectory planning and resource allocation (CTPRA)
strategy for multi-target tracking (MTT) in a spectral coexistence environment utilizing airborne
radar networks. The key mechanism of the proposed strategy is to jointly design the flight trajectory
and optimize the radar assignment, transmit power, dwell time, and signal effective bandwidth
allocation of multiple airborne radars, aiming to enhance the MTT performance under the con-
straints of the tolerable threshold of interference energy, platform kinematic limitations, and given
illumination resource budgets. The closed-form expression for the Bayesian Cramér–Rao lower
bound (BCRLB) under the consideration of spectral coexistence is calculated and adopted as the
optimization criterion of the CTPRA strategy. It is shown that the formulated CTPRA problem is a
mixed-integer programming, non-linear, non-convex optimization model owing to its highly coupled
Boolean and continuous parameters. By incorporating semi-definite programming (SDP), particle
swarm optimization (PSO), and the cyclic minimization technique, an iterative four-stage solution
methodology is proposed to tackle the formulated optimization problem efficiently. The numerical
results validate the effectiveness and the MTT performance improvement of the proposed CTPRA
strategy in comparison with other benchmarks.

Keywords: collaborative trajectory planning and resource allocation (CTPRA); multi-target tracking
(MTT); airborne radar networks; Bayesian Cramér–Rao lower bound (BCRLB); spectral coexistence

1. Introduction

For the past few years, airborne radar networks have been gaining popularity and
attention from technologists in different military and research organizations. The resulting
great advantages over traditional static radar systems, such as the enhanced degree of
freedom in geometric diversity and high flexibility and mobility of airborne platforms,
can deliver powerful capabilities and better system performances for remote sensing, area
surveillance, target detection, multi-target tracking (MTT), and parameter estimation [1,2].
To best utilize the potential of airborne radar networks, resource-aware scheduling is of
crucial importance in different missions, which has been a research hot issue thus far.

1.1. Literature Review and Motivation

In principle, the resource-aware scheduling problem is built as a mathematical prob-
lem of optimizing the objective utility function while meeting some resource constraints,
which can be divided into two typical categories according to the type of task purpose.
The first type is to maximize the system performance for various applications in the context
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of satisfying the available system conditions [3–12]. As an example, in [3], the authors pro-
pose a joint node selection and power allocation algorithm for MTT in decentralized radar
networks, which utilizes the feedback information in the tracking recursion to implement
the appropriate resource allocation, aiming to improve the worst-case tracking accuracy.
The work in [4] develops joint detection threshold optimization and the dwell time alloca-
tion scheme in order to minimize the MTT error in asynchronous radar networks, and a
three-step-based solution is adopted to deal with the underlying optimization problem.
In [5], an online joint beam and power scheduling approach is developed for distributed
multi-target tracking in networked colocated multiple-input multiple-output (MIMO) radar
systems, which controls the generated beams and the emitted power of multiple radar
nodes to fulfill MTT and reduce the communication requirements. Taking the beampattern
design into account, Sun et al. [6] investigate cooperative radar scheduling and the beampat-
tern design for MTT in a networked colocated MIMO radar system. The authors of [7] focus
on composed resource management for MTT in active and passive radar networks, the
purpose of which is to collaboratively optimize the illumination resources of active radars
and receive processing resources from passive radars to enhance the MTT performance.
The studies in [8,9] apply the idea of time and aperture allocation to the inverse synthetic
aperture radar imaging area. Other related studies can be found in [10–12].

For resource-aware applications, another requirement is to limit the total resource
consumption of the radar system while meeting the predefined performance demands
in order to maintain a low probability of interception (LPI) and prolong its lifetime [13–16].
Reference [17] presents a cooperative route design and multidimensional resource manage-
ment algorithm for airborne radar networks, which aims to reduce the predicted Bayesian
Cramér–Rao lower bound (BCRLB) for single target tracking and intercepted performance
simultaneously by jointly adjusting the flight path and probing the resources of each air-
borne radar for some system constraints. Since the direct resource minimization algorithm
might not result in a feasible solution when the available illumination resource is not
sufficient to track all the targets with the predetermined accuracies, Yuan et al. [18] put
forward a robust power allocation strategy for MTT with colocated MIMO radars, which
minimizes the resource consumption while considering the importance levels of different
tracked targets. In [19], Shi et al. combine the transmit resource management and waveform
selection sub-problems into a unified problem and develop a joint optimization algorithm
for target tracking in a decentralized phased array radar network. The resulting problem is
built as a bi-objective optimization model, and an efficient three-step solution method is
presented to tackle it efficiently. Other related work can be found in [20–24].

Although the above fruitful studies provide us some promising approaches to deal
with transmit resource scheduling problems in networked radar systems, there are still
some open issues in resource-aware management that should be highlighted and further
addressed. Due to the increasing congestion of the radio spectrum, the coexistence between
radar and communication systems has raised serious compatibility problems [25]. Numer-
ous studies in the last few years have proposed various techniques to enable spectrum
sharing for radar and communications and made seminal contributions to the field of
spectral coexistence [26–28]. Nevertheless, the works in [6–24] do not take the spectrum
sharing paradigm with communication systems into account. In such a case, the spectral
coexistence will result in harmful interference between the two systems and have a direct
and great impact on resource allocation schemes. It is inaccurate to adopt a BCRLB that has
been calculated in an ideal environment to assess the MTT task performance with spectral
coexistence. Moreover, the distributed nature of radar networks, the platform motion of
airborne nodes, and the increasing deployment of wireless communications make opti-
mal resource optimization rather difficult in a dynamic scenario. That is to say, since the
airborne radar networks coexist in the same frequency band as wireless communications,
the mathematical derivations and the computational complexity unavoidably become
much more complicated and intractable. Some recent state-of-the-art studies [29–31] inves-
tigate transmit resource scheduling for MTT in radar networks under a spectrum sharing
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environment, whereas the flight trajectory and different kinds of illumination resources
of airborne radar are not optimized as adaptable parameters. As far as the authors know,
research on collaborative trajectory planning and resource allocation (CTPRA) for MTT in
airborne radar networks in spectral coexistence environments is lacking in the literature,
and thus this article provides theoretical results to fill this gap.

1.2. Our Contributions

In light of the aforementioned problems, we develop a CTPRA strategy for MTT in
airborne radar networks in a spectral coexistence environment. In particular, the variables
of interest in terms of kinematic velocity, course angle, target-to-radar assignment, transmit
power, dwell time, and signal effective bandwidth of each airborne radar node are jointly
adjusted to minimize the criterion function for the MTT task subject to the specified tolerable
threshold of interference energy produced by multiple radars of communication systems
with platform kinematic limitations and several resource constraints. In summary, we focus
on how to optimize the flight trajectory and transmit resource allocation in order to enhance
the MTT accuracy of the overall system. It is also shown that the formulated CTPRA
problem is a mixed-integer programming, non-linear, and non-convex optimization model
due to its highly coupled binary and continuous parameters. By incorporating semi-definite
programming (SDP), particle swarm optimization (PSO), and the cyclic minimization
technique, an iterative four-stage solution technique is put forth to tackle the resulting
optimization problem. The simulation results demonstrate the effectiveness and superior
performance of the proposed CTPRA strategy compared with other existing benchmarks.

The major contributions of this article are fourfold:

• A closed-form expression for the Bayesian Cramér–Rao lower bound (BCRLB) with the con-
sideration of spectral coexistence is theoretically calculated and employed as the performance
metric to quantify the precision of target state estimates. As stated previously, it is incorrect
to adopt the traditional BCRLB in an ideal situation to evaluate MTT performance
for radar systems with spectral coexistence. In the current study, we analytically
derive the BCRLB for airborne radar networks with spectral coexistence in terms of
the kinematic velocity, course angle, radar selection, illumination power, dwell time,
and signal effective bandwidth of multiple airborne radars. In contrast to the target
tracking performance metric computed in [29–31], we extend the BCRLB from the
power domain of the static radar networks to the multi-domain of airborne radar
networks, where the computational complexity of BCRLB grows exponentially with
the number of radar nodes and available resources.

• The problem of CTPRA for MTT in airborne radar networks with the consideration of spectral
coexistence is formulated as a mathematical optimization model under the constraints of the
predetermined tolerable level of interference energy, platform kinematic limitations, and several
illumination resource budgets. Previously, most of the resource allocation studies were
based on ideal detection or clutter scenarios, whereas the resource-aware management
problem for MTT in airborne radar networks under the consideration of spectral
coexistence has not been investigated yet. In such a case, these transmit resource
allocation schemes are no longer applicable. Thus, we need to establish a suitable
resource management mechanism and coordinate appropriate working parameters to
track multiple targets with certain resource budgets in a spectral coexistence environ-
ment. To be more specific, the ultimate goal of the CTPRA strategy is to enhance the
tracking accuracies of multiple targets of the underlying system under the spectral
coexistence environment by collaboratively adapting the kinematic velocity, course
angle, radar assignment, transmit power, dwell time, and signal effective bandwidth
of each airborne radar node while satisfying the given constraint conditions.

• In order to tackle the resulting mixed-integer programming, non-linear, non-convex opti-
mization problem, we design an iterative and efficient four-stage solution algorithm, which
incorporates the SDP, PSO, and cyclic minimization algorithm. In the CTPRA problem,
the intractability originates from the following: (i) the target-to-radar assignment is a
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binary parameter, whereas the kinematic velocity, course angle, transmit power, dwell
time, and signal effective bandwidth of each airborne radar are continuous parameters,
respectively, and (ii) the six adaptable parameters are highly coupled regarding the
objective function and constraints. Hence, it is challenging and rather difficult to solve
the original problem and determine its optimal solutions in real time. To realize this,
we develop the following four-stage solution algorithm to obtain one of its feasible
solutions, which significantly lowers the computational complexity when compared
with that of the exhaustive-search-based technique.

• A resource-aware closed-loop feedback processing framework for MTT in airborne radar net-
works under spectral coexistence is established. Owing to the non-linear characteristics of
the measurement model and the convergence speed demand, the extended Kalman
filtering (EKF) approach is used to estimate the multi-target states. The multi-target
state estimates collected by all the individual airborne radars are directly sent to
the fusion center for further processing to obtain the optimal MTT accuracy. Next,
the MTT results for the next time interval are utilized to calculate the criterion function
for the MTT task. After solving the CTPRA problem, the flight trajectory and resource
optimization results are sent back to local airborne platforms to implement the MTT
operation for the next round of transmission.

1.3. Organization of the Article

The rest of this article is structured in the following way: Section 2 describes the system
model. In Section 3.1, the basis of the technique is introduced. By adopting the BCRLB
derived in Section 3.2 to gauge the MTT performance under a spectral coexistence envi-
ronment, the formulation of the CTPRA strategy and the corresponding solution method
are presented in Sections 3.3 and 3.4, respectively. Section 3.5 presents a resource-aware
closed-loop processing framework for MTT in airborne radar networks. The simulation
results and performance analyses are provided in Section 4. Finally, Section 5 concludes
this paper.

2. System Model

Consider airborne radar networks with N spatially separated airborne radar nodes
over the surveillance area in a spectral sharing environment, which guarantee synchronized
time and coexistence with M communication systems in the same frequency band. In such
a case, the interference signals generated by the airborne radars to the communication
systems, and those from communication transmitters to the radar receivers, should be
studied. For simplicity, it is assumed that each airborne radar works in a monostatic way
and can only process the target echoes from its own transmitted waveforms. The multiple
airborne radars are labelled 1, 2, · · · , N, with the position of the n-th radar node at tracking
instant k denoted as xR

n,k = (xR
n,k, yR

n,k), while the positions of the communication systems
m ∈ {1, 2, · · · , M} are denoted by xC

m = (xC
m, yC

m). There exists Q widely spread and
independent point-targets in the surveillance region, whose paths can be initialized in
advance by using various techniques [3], such as the maximum likelihood probabilistic
data association method, the multi-frame detection algorithm, and so forth. Then, the state
vector of the q-th target at instant k is defined as xq

k = [xq
k , yq

k , ẋq
k , ẏq

k]
†, where the superscript

{·}† represents the transpose operator.

2.1. Target Dynamic Model

Let us consider that the motion model of each target follows the constant velocity
model, which can be written as follows:

xq
k = Fxq

k−1 + uq
k−1, (1)
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where

F =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1

 (2)

indicates the target transition matrix, ∆T is the observation period, and uq
k−1 denotes the

process noise, which is assumed to follow a zero-mean Gaussian distribution with a known
covariance matrix

Qq
k−1 = (δqI2)⊗

[
(∆T)3

3
(∆T)2

2
(∆T)2

2 ∆T

]
, (3)

where ⊗ is the Kronecker product operator, I2 indicates the 2× 2 identity matrix, and δq

represents the intensity of process noise. It is also supposed that the process noise follows a
known Gaussian distribution.

2.2. Airborne Radar Kinematic Model

As implied in [17], it is worth pointing out that the motion of each airborne platform
can be established as a discrete time kinematic model, which contains its position, kinematic
velocity, and course angle. The conceptional diagram of the kinematic model of an airborne
radar platform is illustrated in Figure 1. Thus, the dynamic model of the n-th airborne
platform can be given by:{

xR
n,k = xR

n,k−1 +
vn,kcosθn,k+vn,k−1cosθn,k−1

2 ∆T,

yR
n,k = yR

n,k−1 +
vn,ksinθn,k+vn,k−1sinθn,k−1

2 ∆T,
(4)

where vn,k and θn,k indicate the kinematic velocity and course angle of the corresponding
airborne platform in the k-th tracking interval, respectively.

Figure 1. The kinematic model of an airborne radar platform.

2.3. Measurement Model

To reduce the complexity of mathematical calculations, a Boolean variable µ
q
n,k is

defined to describe the target-to-radar assignment, and we have

µ
q
n,k =


1, if the q-th target is observed

by airborne radar n,
0, otherwise.

(5)

It is noteworthy that airborne radar networks illuminate multiple targets at each
tracking instant and obtain the measurements corresponding to target echoes for joint
processing. In such a case, the measurement model represents the non-linear mapping of
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the target state vector xq
k in the presence of additive Gaussian noise. Then, the measurement

for the q-th target with respect to the n-th airborne radar node is of the following form:

zq
n,k =

{
hn,k(x

q
k) + uq

n,k, if µ
q
n,k = 1,

∅, if µ
q
n,k = 0,

(6)

where ∅ is the empty set and hn,k(x
q
k) indicates the non-linear measurement function:

hn,k(x
q
k) =

[
rq

n,k
ϕ

q
n,k

]

=


√
(xq

k − xR,n)2 + (yq
k − yR,n)2

arctan2
(

yq
k−yR,n

xq
k−xR,n

) , (7)

where rq
n,k and ϕ

q
n,k denote the range and bearing angle of the target q with respect to the n-th

airborne radar, respectively. The term uq
n,k represents the communication interference and

measurement noise, which follows a zero-mean Gaussian process with a covariance matrix

Ω
q
n,k = Ψ

q
n,k +

σ2
rq

n,k
0

0 σ2
ϕ

q
n,k

, (8)

where Ψ
q
n,k denotes the interference covariance matrix generated by communication systems

to the n-th airborne radar, which can be written as:

Ψ
q
n = <

[
2Pq

t,n,k(Γ
q
n,k)

H(Λn)
−1Γ

q
n,k

]−1
, (9)

where the superscript {·}H represents the conjugate transpose operator, Pq
t,n,k represents

the probing power of the n-th airborne radar with respect to target q, Λn denotes the
spatial-temporal covariance matrix due to the interference from communication systems to

airborne radar n, Γ
q
n,k =

[
∂u(rq

n,k)

∂rq
n,k
⊗ v(ϕ

q
n,k), u(rq

n,k)⊗
∂v(ϕ

q
n,k)

∂ϕ
q
n,k

]†
, u(rq

n,k) denotes the transmit-

ted waveform sequence of the n-th airborne radar, and v(ϕ
q
n,k) denotes its steering vector

with respect to target q. The terms σ2
rq

n,k
and σ2

ϕ
q
n,k

represent the Cramér–Rao lower bounds

of the estimation accuracy of range and bearing with respect to target q, respectively, which
have the following proportional relationships:

σ2
rq

n,k
∝
(

Pq
t,n,kTq

d,n,kσ
q
RCS,n(β

q
n,k)

2
)−1

,

σ2
ϕ

q
n,k

∝
(

Pq
t,n,kTq

d,n,kσ
q
RCS,n/BNN

)−1
,

(10)

where β
q
n,k represents the effective bandwidth of the transmit signal, σ

q
RCS,n is the target q’s

radar cross-section (RCS) with respect to radar n, and BNN is the null-to-null beamwidth of
the receiving antenna.

In this work, the measurements from all the airborne radar nodes at the k-th tracking
frame are collected, which can be given by:

Zq
k =

[
zq

1,k, · · · , zq
n,k, · · · , zq

N,k

]†
, (11)

where the centralized fusion framework is employed in the underlying system.
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3. Proposed CTPRA Strategy for MTT
3.1. Basis of the Technique

From a mathematical perspective, the CTPRA strategy established here can be viewed
as an optimization problem of minimizing a cost function about the MTT accuracy subject
to the tolerable threshold of interference energy, platform physical limitations, and several
resource budgets. Since the BCRLB is able to bound the error variance of the unbiased
estimates of a target state, we derive the predicted BCRLB and adopt it as the performance
metric to evaluate the tracking accuracies of multiple targets for the developed CTPRA
strategy. In this paper, the adaptable parameters are the kinematic velocity vector vk, the
course angle vector θk, the radar assignment vector µ

q
k, the transmit power vector Pq

t,k,
the dwell time vector Tq

d,k, and the signal effective bandwidth vector β
q
k, which can be

written as: 

vk = [v1,k, · · · , vn,k, · · · , vN,k]
†,

θk = [θ1,k, · · · , θn,k, · · · , θN,k]
†,

µ
q
k = [µ

q
1,k, · · · , µ

q
n,k, · · · , µ

q
N,k]

†,
Pq

t,k = [Pq
t,1,k, · · · , Pq

t,n,k, · · · , Pq
t,N,k]

†,
Tq

d,k = [Tq
d,1,k, · · · , Tq

d,n,k, · · · , Tq
d,N,k]

†,
β

q
k = [β

q
1,k, · · · , β

q
n,k, · · · , β

q
N,k]

†.

(12)

Subsequently, the primary goal of the CTPRA strategy is to design the variables of
interest in order to achieve better MTT accuracy while meeting the available resource
constraints. The detailed steps of the CTPRA strategy are described in the following,
and feasible solutions to the resulting optimization problem are also provided.

3.2. MTT Performance Metric under Spectral Coexistence

The standard BCRLB is able to provide a tight lower bound for the MSE of any
unbiased estimator; thus, it is widely adopted as the performance metric for the MTT
task in various resource-aware management problems. It should be pointed out that the
state estimates acquired from local airborne radars with respect to different targets are
independent from each other. In the context of spectrum sharing between radar and
communication systems, the predicted Bayesian information matrix (BIM) for the q-th
target can be approximately written as:

J(xq
k|k−1) ≈

[
Qq

k−1 + FqJ−1(xq
k−1)(F

q)†
]−1

+
N

∑
n=1

[
µ

q
n,k(G

q
n,k)

†(Ω
q
n,k)
−1Gq

n,k

]∣∣∣∣∣
xq

k|k−1

, (13)

where xq
k|k−1 denotes the predicted state vector of target q at the (k− 1)-th tracking frame

and Gq
n,k represents the Jacobian matrix of the observation function.

Hence, the predicted BCRLB of target q can be defined as the inverse of the predicted
BIM, which is written as:

Cq
k(x

q
k|k−1, vk, θk, µ

q
k, Pq

t,k, Tq
d,k, β

q
k) =

[
J(xq

k|k−1)
]−1

, (14)

where the diagonal elements of Cq
k(x

q
k|k−1) are the lower bounds of the variances of the

target state estimates.
In this article, the objective function F(vk, θk, µ

q
k , Pq

t,k, Tq
d,k, β

q
k) is utilized to characterize

the tracking accuracy of target q, which is defined as:

F(vk, θk, µ
q
k, Pq

t,k, Tq
d,k, β

q
k) , Tr

[
Cq

k(x
q
k|k−1, vk, θk, µ

q
k, Pq

t,k, Tq
d,k, β

q
k)
]
, (15)

where Tr[·] represents the matrix trace operator.
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3.3. Problem Formulation

In the MTT scenario, when operating the CTPRA strategy, some physical limitations
and constraints must be taken into consideration. First, since the airborne radar networks
coexist with several communication systems in the same frequency band, the interference
signals generated by the different radar nodes to the communication systems should be
addressed. In this context, the tolerable interference energy produced by multiple airborne
radars to the m-th communication system should be below the threshold Emax to maintain
the communication performance, that is:

E(µq
k, Pq

t,k) ≤ Emax, (16)

where the interference from airborne radars to communication systems, which is character-
ized by the spatial and spectral energy distribution of the radar signal, can be formed as:

E(µq
k, Pq

t,k) ,
Q

∑
q=1

N

∑
n=1

µ
q
n,kPt,n,kGq

n(xR
n,k)s

H
n Φn,msn, (17)

where sn = [sn(1), · · · , sn(L)]† denotes the finite interval waveform sequence of length L,
Gq

n(xR
n,k) denotes the spatial distribution of the radiated energy of the n-th airborne radar

with respect to target q, and the definition of Φn,m is provided in [29,30], which is omitted
here for brevity.

In reality, the kinematic velocity and course angle should satisfy the platform limita-
tions, such that: {

vmin 6 vn,k 6 vmax, ∀n,
|θn,k − θn,k−1| 6 θmax, ∀n,

(18)

where vmin and vmax represent the minimum and maximum values of the kinematic velocity,
respectively, and θmax represents the maximum turning angle.

Then, the transmit power, dwell time, and signal effective bandwidth in each airborne
radar node are finite, and the illumination resources allocated to each target are usually
limited, that is: 

Pmin 6 Pq
t,n,k 6 Pmax,

Tmin 6 Tq
d,n,k 6 Tmax,

βmin 6 β
q
n,k 6 βmax,

∑N
n=1 Pq

t,n,k ≤ Ptot,
∑N

n=1 Tq
d,n,k ≤ Ttot,

∑N
n=1 β

q
n,k ≤ βtot,

(19)

where Pmin and Pmax denote the minimum and maximum values of the transmit power in
each airborne radar node, respectively, Tmin and Tmax denote the lower and upper bounds
of the dwell time in each node, respectively, βmin and βmax denote the corresponding mini-
mum and maximum values of the signal effective bandwidth, respectively, and Ptot, Ttot,
and βtot denote the total illumination power, dwell time, and signal effective bandwidth
allocated to each target, respectively.

Furthermore, each airborne radar node can track at most one target at the k-th tracking
frame, while the maximum number of radars dispatched to track target q at each instant
cannot exceed Nmax, namely: 

∑Q
q=1 µ

q
n,k ≤ 1,

∑N
n=1 µ

q
n,k ≤ Nmax,

µ
q
n,k ∈ {0, 1}.

(20)
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Generally speaking, the main aim of the CTPRA strategy is to appropriately design the
flight trajectory and optimize the radar assignment, transmit power, dwell time, and signal
effective bandwidth allocation of different airborne radar nodes subject to the constraints
of the tolerable threshold of interference energy, physical platform limitations, and given
illumination resource budgets, which can result in the minimization of the cost function
provided in (15). As a consequence, the mathematical representation of the optimization
model at the k-th tracking instant can be posed as follows:

min
vk ,θk ,µq

k ,Pq
t,k ,Tq

d,k ,βq
k ,∀q

F(vk, θk, µ
q
k, Pq

t,k, Tq
d,k, β

q
k),

s.t.: (16), (18)–(20),
(21)

for n = 1, · · · , N and q = 1, · · · , Q.

3.4. Solution Technique

The formulated optimization problem in (21) for the CTPRA strategy involves six
parameters of interest, namely an integer variable for target-to-radar assignment and five
continuous value variables for flight trajectory and illumination resources. On the other
hand, since the six adaptable parameters are highly coupled in the objective function and
constraints, it is rather difficult and challenging to obtain the optimal solutions in real
time. Thus, it is obvious that the underlying problem is a mixed-integer programming,
non-linear, non-convex optimization model, where the standard convex techniques cannot
be exploited to deal with the underlying formulation. One direct idea is to partition the
discrete parameter and other continuous parameters. To this end, an efficient four-stage-
based solution technique is put forth in the following to find sub-optimal solutions timely
through exploiting the structure of the above problem.

Stage (1) Target-to-Radar Assignment with Given Flight Trajectory and Illumination Resource
Allocation: In order to tackle the non-linear and non-convex optimization problem (21), it
is intuitive and reasonable to partition the airborne radar assignment and other parameter
optimizations. Then, for the specified kinematic velocity v̂k, course angle θ̂k, illumination
power P̂q

t,k, dwell time T̂q
d,k, and signal effective bandwidth β̂

q
k, the original problem (21)

can be simplified as:
min
µ

q
k ,∀q

F(v̂k, θ̂k, µ
q
k, P̂q

t,k, T̂q
d,k, β̂

q
k),

s.t.:


E(µq

k, P̂q
t,k) ≤ Emax, ∀q,

∑Q
q=1 µ

q
n,k ≤ 1,

∑N
n=1 µ

q
n,k ≤ Nmax,

µ
q
n,k ∈ {0, 1}.

(22)

Then, we replace the non-convex constraint µ
q
n,k ∈ {0, 1} with convex ones 0 ≤ µ

q
n,k ≤

1 to obtain the convex relaxation of the target-to-radar assignment problem, which can
equivalently be converted into an SDP problem as follows:

min
µ

q
k ,Ξq

k ,∀q
Tr[Ξq

k],

s.t.:



[
Ξ

q
k I4

I4 J(xq
k|k−1)

]
� 0, ∀q,

∑Q
q=1 µ

q
n,k ≤ 1,

∑N
n=1 µ

q
n,k ≤ Nmax,

0 ≤ µ
q
n,k ≤ 1,

(23)

where Ξ
q
k is an auxiliary matrix and I4 is the identity matrix of order 4. Although the

problem in (23) is a convex optimization model [32], the solution µ̂
q
k is fractional. As such,
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we impose a rounding technique directly on the obtained solution µ̂
q
k to achieve a sub-

optimal airborne assignment result. To execute the rounding method, we arrange µ̂
q
k in

descending order. In this way, the radar nodes with higher weight coefficients are much
more likely to be selected to observe the corresponding targets, which is able to guarantee
the best target tracking performance of the overall system. Subsequently, we set the Nmax
largest elements of µ̂

q
k as 1, while others are set to 0. The radar assignment process does

not stop until the number of airborne radars allocated to the multiple targets meets the
constraints in (20).

Stage (2) Illumination Resource Allocation with Given Flight Trajectory and µ̂
q
k: After the

feasible target-to-radar assignment result µ̂
q
k is obtained, we can remove the relevant pa-

rameters and subsequently convert the optimization problem in (21) to the following form:

min
Pq

t,k ,Tq
d,k ,βq

k ,∀q
F(v̂k, θ̂k, µ̂

q
k, Pq

t,k, Tq
d,k, β

q
k),

s.t.:



E(µ̂q
k, Pq

t,k) ≤ Emax, ∀q,
Pmin 6 Pq

t,n,k 6 Pmax,
Tmin 6 Tq

d,n,k 6 Tmax,
βmin 6 β

q
n,k 6 βmax,

∑N
n=1 Pq

t,n,k ≤ Ptot,
∑N

n=1 Tq
d,n,k ≤ Ttot,

∑N
n=1 β

q
n,k ≤ βtot.

(24)

Likewise, with the specified kinematic velocity, course angle, and radar assignment,
the probing power, dwell time, and signal bandwidth allocation results of airborne radar
networks can also be obtained separately by solving the SDP problem [32], which is similar
to Stage (2) and omitted for brevity.

Stage (3) Flight Trajectory Planning with Given µ̂
q
k and Illumination Resource Allocation:

After the airborne radar assignment and transmit resource allocation results are acquired,
the original problem in (21) can be reformulated as:

min
vk ,θk ,∀q

F(vk, θk, µ̂
q
k, P̂q

t,k, T̂q
d,k, β̂

q
k),

s.t.:
{

vmin 6 vn,k 6 vmax, ∀n,
|θn,k − θn,k−1| 6 θmax, ∀n.

(25)

It is implied in [17,19] that the above complex optimization problem is difficult to
deal with by employing the traditional convex optimization algorithms. Thus, we use the
PSO technique for tackling the problem of flight trajectory planning. It is well known that
the PSO technique is a population-based metaheuristic approach, which is able to achieve
a better trade-off between local and global exploration of the search space, overcome
premature convergence, and improve the search capability. In addition, since the PSO
method is not affected by the convexity and convergence requirements of the optimization
model, the standard PSO and its different variants have been extensively used in various
applications. Since the purpose of the problem in (25) is to minimize the target tracking
error by optimally designing the flight trajectory of each airborne platform, these motion
variables can be mapped to different positions of the particles, that is:{

Ws = [vs,1,k, · · · , vs,N,k, θs,1,k, · · · , θs,N,k]
†,

Vs = [Vv
s,1,k, · · · , Vv

s,N,k, Vθ
s,1,k, · · · , Vθ

s,N,k]
†,

(26)

where Ws and Vs represent the position and velocity of the s-th particle, respectively.
During the iteration procedure, each particle represents a single solution, which

coordinates the position and velocity according to the best previous search experience and
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the best experience of other particles [19]. The position and velocity of the s-th particle are
updated as follows:W(j+1)

s = W(j)
s + V(j+1)

s ,

V(j+1)
s = ζV(j)

s + c1r1

(
U(j)

s −W(j)
s

)
+ c2r2

(
U(j)

g −W(j)
s

)
,

(27)

where W(j+1)
s and V(j+1)

s indicate the position and velocity of particle s-th at the j-th
iterations, respectively; ζ is the inertia weight; c1 ≥ 0 and c2 ≥ 0 are two acceleration
factors, respectively; r1 and r2 are uniformly distributed random numbers between 0 and
1, respectively; U(j)

s denotes the best solution that the s-th particle has obtained until the
j-th iteration; and U(j)

g denotes the best solution achieved in the whole population at the
j-th iteration.

The objective utility function given in (25) can be exploited as the fitness function
G
(

W(j)
s

)
to optimize the flight trajectory of each airborne platform. In the end, all the

particles can converge to the global optimal points via iteration and interaction with one
another. The detailed steps of the PSO method for trajectory planning are shown in
Algorithm 1, on the basis of which we can obtain the best flight trajectory subject to the
predefined physical limitations.

Algorithm 1: The Detailed Steps of the PSO Method for Trajectory Planning in
Airborne Radar Networks

Input: Initialize S particles with position W(0)
s and velocity V(0)

s satisfying the
constraints in (18), ζ, c1, c2, r1, r2, and the total number of iteration Jmax.

Output: The global optimal particle U(j)
g as the final solution for trajectory

planning.
1 repeat
2 Update the position W(j)

s and velocity V(j)
s of each particle by employing (27);

3 Calculate the fitness function G
(

W(j)
s

)
;

4 if G
(

W(j)
q

)
< U(j)

s then

5 U(j)
s ←W(j)

s ;
6 end

7 if G
(

W(j)
s

)
< U(j)

g then

8 U(j)
g ←W(j)

s ;
9 end

10 until j > Jmax or convergence;

Stage (4) Cyclic Iteration: The flight trajectory optimization, resource allocation re-
sult, and the corresponding value of the objective function are recorded at each iterative
step. Then, Stages (1)∼(3) are iterated until the gap in the acquired value of objective
function between one iteration and another is smaller than a specified threshold. In the
end, the smallest value of the criterion function in (21) is recorded as the final result,
and the corresponding collaborative optimization results are considered as the reasonable
feasible solutions.

3.5. Resource-Aware Closed-Loop Signal Processing Framework for MTT

The primary objective of the CTPRA strategy for MTT in airborne radar networks
under the consideration of spectral coexistence is to optimally design the kinematic ve-
locity, course angle, target-to-radar assignment, transmit power, dwell time, and signal
effective bandwidth allocation at each instant in order to improve the tracking accuracies
of multiple targets in the context of several constraints on the tolerable level of interfer-
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ence energy, platform kinematic limitations, and certain illumination resource budgets.
In order to clearly illustrate the working mechanism, Figure 2 shows the flow chart of the
joint optimization process for MTT in airborne radar networks under spectral coexistence.
The multi-target state measurements obtained by all the local airborne radars are sent
directly to the fusion center for further processing to acquire the optimal MTT accuracy.
Due to the non-linear characteristics of the observation function in (7) and the convergence
requirement, the EKF technique is adopted to track multiple targets. In the closed-loop
process, the measurement of each target from the previous tracking instant is regarded
as the prior knowledge for the current instant to calculate the state prediction. It can be
observed from Equations (10) and (13) that the covariance matrix of measurement noise
and the predicted BCRLB are both functions of the flight trajectory and transmit resource
of the overall system, which have great impacts on the MTT accuracy. Then, the estimated
states of multiple targets are retrieved and employed to compute the performance metric
for tracking target q in the spectral coexistence environment. After that, the parameters
of interest, vn,k, θn,k, µ

q
n,k, Pq

t,n,k, Tq
d,n,k, and β

q
n,k, can be obtained by solving the CTPRA

problem. The outcome is sent back to individual airborne platforms to guide trajectory
planning and resource allocation and obtain new measurements for the next recursion.

Figure 2. General schematics of the closed-loop process of CTPRA for MTT in airborne radar networks
under spectral coexistence.

4. Numerical Results
4.1. Parameter Designation

To demonstrate the effectiveness and advantages of the developed CTPRA strategy,
several numerical examples are presented here. The airborne radar networks are composed
of N = 6 separately deployed airborne radar nodes, which coexist with M = 2 commu-
nication systems in the same frequency band. Each airborne radar can only track one
target during each tracking frame. Q = 2 targets are tracked by the radar system, whose
initial states are shown in Table 1. The time interval between two consecutive tracking
frames is set as ∆T = 3 s, and a sequence of LFr = 50 data frames is utilized to support
the numerical simulations. Unless otherwise specified, the tolerable level of interference



Remote Sens. 2023, 15, 3386 13 of 28

energy produced by different radars in the m-th communication system is Emax = 10 J.
The total illumination power, dwell time, and signal bandwidth assigned to each target are
Ptot = 700 W, Ttot = 0.1 s, and βtot = 3 MHz, respectively. In the PSO algorithm, the total
number of particles is S = 20, ζ = 1, c1 = 0.8, c2 = 0.8, and Jmax = 50. Other simulation
parameters are provided in Table 2, and the initial states of multiple airborne platforms are
summarized in Table 3.

Table 1. Initial States of Multiple Targets.

Index Initial Position Initial Velocity

1 [−80, 20] km [150, 260] m/s
2 [80, 60] km [−150,−260] m/s

Table 2. Simulation Parameters.

Symbol Value Symbol Value

vmax 400 m/s vmin 300 m/s
βmax 15o Nmax 3
Pmax 600 W Pmin 100 W
Tmax 0.08 s Tmin 0.01 s
βmax 2.4 MHz βmin 0.6 MHz

Table 3. Initial States of Multiple Airborne Platforms.

Index Initial Position Initial Velocity Initial Course Angle

1 [−60, 30] km 400 m/s 90o

2 [40,−30] km 400 m/s 0o

3 [−100, 80] km 400 m/s 60o

4 [100, 10] km 400 m/s 150o

5 [−40, 100] km 400 m/s 240o

6 [60, 100] km 400 m/s 300o

4.2. Experiment 1

In this experiment, the RCSs of multiple targets with respect to all the airborne radars
are the same, namely σ

q
RCS,n = 1 m2, which factors out the influence of target reflectivity.

Figure 3 illustrates the simulated target tracking scenario, where the thick solid red lines
mean the optimized trajectories of multiple airborne radar platforms. Figures 4 and 5 depict
the optimization results of the kinematic velocity and course angle of multiple airborne
platforms, respectively, where one can notice that the planned trajectory of each airborne
platform is smooth due to the physical limitations.

The illumination power, dwell time, and signal effective bandwidth allocation re-
sults of the developed CTPRA strategy with respect to different targets are depicted in
Figures 6–8, respectively, where black areas mean that µ

q
n,k = 0, and other areas imply

that µ
q
n,k = 1, with different colors representing the value of assigned resources to the q-th

target from airborne radar n. It is noteworthy that, in Figure 6, Radar 1, Radar 3, and
Radar 5 are dispatched to observe Target 1, whereas the other radars are chosen to track
Target 2. In addition, more transmit resources are distributed to Radar 2 and Radar 5, as the
corresponding targets are flying towards them. The same can be observed for resource
allocation in Figures 7 and 8. Generally speaking, the results suggest that closer airborne
radars with a better angular spread are more likely to be selected to track the corresponding
targets. Moreover, more illumination resources are assigned to the selected airborne radar
nodes with worse propagation path conditions, which leads to a better MTT performance.
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Figure 3. Simulated tracking scenario in Experiment 1.
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Figure 4. The kinematic velocity optimization results of the CTPRA strategy in Experiment 1:
(a) airborne platform 1; (b) airborne platform 2; (c) airborne platform 3; (d) airborne platform 4;
(e) airborne platform 5; (f) airborne platform 6.
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Figure 5. The course angle optimization results of the CTPRA strategy in Experiment 1: (a) airborne
platform 1; (b) airborne platform 2; (c) airborne platform 3; (d) airborne platform 4; (e) airborne
platform 5; (f) airborne platform 6.
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Figure 6. Transmit power allocation results of the CTPRA strategy with respect to different targets in
Experiment 1: (a) target 1; (b) target 2.
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Figure 7. Dwell time allocation results of the CTPRA strategy with respect to different targets in
Experiment 1: (a) target 1; (b) target 2.
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Figure 8. Signal effective bandwidth allocation results of the CTPRA strategy with respect to different
targets in Experiment 1: (a) target 1; (b) target 2.

To further demonstrate the superiority of the proposed CTPRA strategy in terms of the
obtained MTT accuracy, Figure 9 compares its averaged root mean square error (ARMSE)
of radar networks with those of the following five benchmarks, which are obtained from
100 independent Monte-Carlo trials:

• Benchmark 1: This benchmark jointly optimizes the kinematic velocity, course angle,
radar assignment, transmit power, and dwell time of each airborne radar node by uti-
lizing the developed four-stage-based solution technique, whereas the signal effective
bandwidth of multiple airborne radars is uniformly allocated [17].

• Benchmark 2: This benchmark adopts the developed four-stage-based solution al-
gorithm to collaboratively coordinate the kinematic velocity, course angle, radar as-
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signment, and transmit power of each airborne radar node, while the dwell time and
signal effective bandwidth of multiple airborne radars are uniformly distributed [2].

• Benchmark 3: In this benchmark, only the kinematic velocity, course angle, and
radar assignment of each airborne platform are jointly optimized, whereas the other
illumination resources are uniformly allocated to the chosen airborne radar nodes.

• Benchmark 4: This benchmark employs the proposed four-stage-based solution
methodology to solve the problem in (21), whereas the corresponding kinematic
velocity and course angle are fixed to their initial values, respectively [29,30].

• Benchmark 5: This benchmark randomly assigns the airborne radars to multiple tar-
gets. For the selected radar nodes with respect to the corresponding targets, the flight
trajectory and illumination resource are optimally designed by solving the problem in
(21) with the four-stage-based solution approach.
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Figure 9. Comparison of the achievable ARMSE by employing various algorithms for different targets
in Experiment 1: (a) target 1; (b) target 2.
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The tracking ARMSE for multiple targets at the k-th tracking instant is given as follows:

ARMSE ,
Q

∑
q=1

√√√√ 1
Mc

Mc

∑
i=1

1
LFr

LFr

∑
k=1

[
(xq

k − x̂q
i,k|k)

2 + (yq
k − ŷq

i,k|k)
2
]
, (28)

where Mc is the number of Monte-Carlo trials and [x̂q
i,k|k, ŷq

i,k|k] represents the position
estimate of target q at the i-th trial. From Figure 9, we can notice that the proposed
CTPRA strategy exhibits the smallest ARMSE compared with the results obtained from
other methods. This is due to the fact that the CTPRA strategy is able to collaboratively
adjust the kinematic velocity, course angle, target-to-radar assignment, illumination power,
dwell time, and signal effective bandwidth of the overall system to minimize the objective
function in (21) for the tolerable threshold of interference energy, whereas less degrees
of freedom are available for other benchmarks, which confirms the statement that the
proposed scheme can effectively improve the MTT accuracy and increase the resource
usage efficiency of airborne radar networks. These results indicate the superiority of the
developed CTPRA strategy.

4.3. Experiment 2

In this experiment, we reveal the impact of target reflectivity on the flight trajectory
optimization and resource allocation results. Figure 10 shows the second RCS model of
different targets with respect to multiple airborne radars at each tracking instant, which
fluctuate according to the Swerling I model, while the other RCS parameters stay the
same at 1 m2. The simulated target tracking scenario in Experiment 2 is depicted in
Figure 11. The optimization results of the kinematic velocity and course angle of different
airborne platforms in Experiment 2 are provided in Figures 12 and 13, respectively, and the
corresponding resource allocation results are shown in Figures 14–16, which are acquired
from a single Monte-Carlo simulation run. The above results are quite different from the
phenomena in Experiment 1, whereas the tendencies are the same. It is implied that the
CTPRA strategy can automatically select the most appropriate airborne radars to track the
targets while optimizing the flight trajectories and transmit resources of those preferred
radar nodes. That is to say, the airborne radars with shorter distances to the targets, better
angular spread, and stronger reflectivity tend to be chosen over other nodes. Particularly,
as shown in the above-mentioned figures, Radar 2 is more likely to be dispatched to
illuminate Target 1 along with Radar 3 and Radar 5 due to the RCS value of Target 1 with
respect to Radar 2 being much larger than 1 m2 during most tracking frames. In addition,
more probing power and dwell time resources are allocated to the dispatched airborne
radars with weaker measurement conditions. Therefore, it can be concluded that the target
RCS has a great impact on the trajectory planning and resource allocation of airborne
radar networks.

In Experiment 2, the achievable ARMSE for MTT by exploiting the proposed CTPRA
strategy is also adopted as a metric to compare with the five baseline algorithms, as illus-
trated in Figure 17. Overall, with the specified thresholds of interference energy, platform
kinematic limitations, and given resource budgets, the developed strategy can make bet-
ter use of the available illumination resources of airborne radar networks to achieve an
enhanced MTT accuracy.
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Figure 10. The second RCS model of the targets with respect to multiple airborne radars at each
tracking frame.
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Figure 11. Simulated tracking scenario in Experiment 2.
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Figure 12. The kinematic velocity optimization results of the CTPRA strategy in Experiment 2:
(a) airborne platform 1; (b) airborne platform 2; (c) airborne platform 3; (d) airborne platform 4;
(e) airborne platform 5; (f) airborne platform 6.
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Figure 13. The course angle optimization results of the CTPRA strategy in Experiment 2: (a) airborne
platform 1; (b) airborne platform 2; (c) airborne platform 3; (d) airborne platform 4; (e) airborne
platform 5; (f) airborne platform 6.
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Figure 14. Transmit power allocation results of the CTPRA strategy with respect to different targets
in Experiment 2: (a) target 1; (b) target 2.
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Figure 15. Dwell time allocation results of the CTPRA strategy with respect to different targets in
Experiment 2: (a) target 1; (b) target 2.



Remote Sens. 2023, 15, 3386 22 of 28

(a)

5 10 15 20 25 30 35 40 45 50
Frame

2

4

6
R

ad
ar

 I
nd

ex
0

0.5

1

1.5

2

×106

(b)

5 10 15 20 25 30 35 40 45 50
Frame

2

4

6

R
ad

ar
 I

nd
ex

0

0.5

1

1.5

2

×106

Figure 16. Signal effective bandwidth allocation results of the CTPRA strategy with respect to
different targets in Experiment 2: (a) target 1; (b) target 2.
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Figure 17. Comparison of the achievable ARMSE by employing various algorithms for different
targets in Experiment 2: (a) target 1; (b) target 2.
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4.4. Experiment 3

In this experiment, we examine the impact of the tolerable threshold of interference
energy generated by multiple airborne radars to communication systems on the collabora-
tive optimization results, which is set to be Emax = 8 J. Figure 18 illustrates the simulated
target tracking scenario. The optimization results in terms of the kinematic velocity, course
angle, transmit power, dwell time, and signal effective bandwidth of each airborne radar
node are shown in Figures 19–23, respectively. An interesting phenomenon is that, al-
though the radar assignment principle stays the same as before, much more probing power
and dwell time resources are assigned to the selected airborne radars. The reason for this
is that with the decrease in the tolerable threshold of interference energy, less illumina-
tion resources are available to track the targets at each frame, resulting in a limited MTT
performance improvement.
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Figure 18. Simulated tracking scenario in Experiment 3.
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Figure 19. The kinematic velocity optimization results of the CTPRA strategy in Experiment 3:
(a) airborne platform 1; (b) airborne platform 2; (c) airborne platform 3; (d) airborne platform 4;
(e) airborne platform 5; (f) airborne platform 6.
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Figure 20. The course angle optimization results of the CTPRA strategy in Experiment 3: (a) airborne
platform 1; (b) airborne platform 2; (c) airborne platform 3; (d) airborne platform 4; (e) airborne
platform 5; (f) airborne platform 6.
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Figure 21. Transmit power allocation results of the CTPRA strategy with respect to different targets
in Experiment 3: (a) target 1; (b) target 2.
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Figure 22. Dwell time allocation results of the CTPRA strategy with respect to different targets in
Experiment 3: (a) target 1; (b) target 2.
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Figure 23. Signal effective bandwidth allocation results of the CTPRA strategy with respect to
different targets in Experiment 3: (a) target 1; (b) target 2.

Finally, Figure 24 compares the achievable ARMSE by using the proposed CTPRA
strategy with different values of Emax. It is worth noting that with the increase in the
tolerable level of interference energy generated by airborne radars to communication
receivers, much more transmit resources can be used to improve the tracking performance
of multiple targets, and thus the ARMSE for MTT can be further reduced.
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Figure 24. Comparison of the achievable ARMSE by employing the CTPRA strategy with different
values of Emax in Experiment 3: (a) target 1; (b) target 2.

5. Concluding Remarks

This article proposes a CTPRA strategy for MTT in a spectral coexistence environment
employing ] airborne radar networks, whose main purpose is to adopt the optimization
technique to jointly coordinate the working parameters at both the airborne platforms
and the radar transmitters in order to reach a better MTT performance for the tolera-
ble thresholds of interference energy, platform physical limitations, and overall resource
constraints. The formulated mixed-integer programming, non-linear, non-convex opti-
mization problem is solved through a comprehensive four-stage solution methodology
incorporating the SDP, PSO, and cyclic minimization algorithm, where the flight trajectory,
target-to-radar assignment, transmit power, dwell time, and signal effective bandwidth
allocation of airborne radar networks can be controlled effectively. The numerical results
demonstrate the superiority of the proposed CTPRA scheme in terms of the achieved MTT
accuracy. It is noteworthy that the locations of different radars have an important impact
on system performance. In the near future, we might focus on the problem of cooperative
detection threshold optimization and probing resource scheduling for MTT in airborne
radar networks.
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