27,211 research outputs found

    Numerical modeling of shape and topology optimisation of a piezoelectric cantilever beam in an energy-harvesting sensor

    Get PDF
    Piezoelectric materials are excellent transducers for converting mechanical energy from the environment for use as electrical energy. The conversion of mechanical energy to electrical energy is a key component in the development of self-powered devices, especially enabling technology for wireless sensor networks. This paper proposes an alternative method for predicting the power output of a bimorph cantilever beam using a finite-element method for both static and dynamic frequency analyses. A novel approach is presented for optimising the cantilever beam, by which the power density is maximised and the structural volume is minimised simultaneously. A two-stage optimisation is performed, i.e., a shape optimisation and then a “topology” hole opening optimisation

    Supervised semantic labeling of places using information extracted from sensor data

    Get PDF
    Indoor environments can typically be divided into places with different functionalities like corridors, rooms or doorways. The ability to learn such semantic categories from sensor data enables a mobile robot to extend the representation of the environment facilitating interaction with humans. As an example, natural language terms like “corridor” or “room” can be used to communicate the position of the robot in a map in a more intuitive way. In this work, we first propose an approach based on supervised learning to classify the pose of a mobile robot into semantic classes. Our method uses AdaBoost to boost simple features extracted from sensor range data into a strong classifier. We present two main applications of this approach. Firstly, we show how our approach can be utilized by a moving robot for an online classification of the poses traversed along its path using a hidden Markov model. In this case we additionally use as features objects extracted from images. Secondly, we introduce an approach to learn topological maps from geometric maps by applying our semantic classification procedure in combination with a probabilistic relaxation method. Alternatively, we apply associative Markov networks to classify geometric maps and compare the results with a relaxation approach. Experimental results obtained in simulation and with real robots demonstrate the effectiveness of our approach in various indoor environments

    Improved Distributed Estimation Method for Environmental\ud time-variant Physical variables in Static Sensor Networks

    Get PDF
    In this paper, an improved distributed estimation scheme for static sensor networks is developed. The scheme is developed for environmental time-variant physical variables. The main contribution of this work is that the algorithm in [1]-[3] has been extended, and a filter has been designed with weights, such that the variance of the estimation errors is minimized, thereby improving the filter design considerably\ud and characterizing the performance limit of the filter, and thereby tracking a time-varying signal. Moreover, certain parameter optimization is alleviated with the application of a particular finite impulse response (FIR) filter. Simulation results are showing the effectiveness of the developed estimation algorithm

    Methods and strategies of object localization

    Get PDF
    An important property of an intelligent robot is to be able to determine the location of an object in 3-D space. A general object localization system structure is proposed, some important issues on localization discussed, and an overview given for current available object localization algorithms and systems. The algorithms reviewed are characterized by their feature extracting and matching strategies; the range finding methods; the types of locatable objects; and the mathematical formulating methods

    Convex Global 3D Registration with Lagrangian Duality

    Get PDF
    The registration of 3D models by a Euclidean transformation is a fundamental task at the core of many application in computer vision. This problem is non-convex due to the presence of rotational constraints, making traditional local optimization methods prone to getting stuck in local minima. This paper addresses finding the globally optimal transformation in various 3D registration problems by a unified formulation that integrates common geometric registration modalities (namely point-to-point, point-to-line and point-to-plane). This formulation renders the optimization problem independent of both the number and nature of the correspondences. The main novelty of our proposal is the introduction of a strengthened Lagrangian dual relaxation for this problem, which surpasses previous similar approaches [32] in effectiveness. In fact, even though with no theoretical guarantees, exhaustive empirical evaluation in both synthetic and real experiments always resulted on a tight relaxation that allowed to recover a guaranteed globally optimal solution by exploiting duality theory. Thus, our approach allows for effectively solving the 3D registration with global optimality guarantees while running at a fraction of the time for the state-of-the-art alternative [34], based on a more computationally intensive Branch and Bound method.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Tele-Autonomous control involving contact

    Get PDF
    Object localization and its application in tele-autonomous systems are studied. Two object localization algorithms are presented together with the methods of extracting several important types of object features. The first algorithm is based on line-segment to line-segment matching. Line range sensors are used to extract line-segment features from an object. The extracted features are matched to corresponding model features to compute the location of the object. The inputs of the second algorithm are not limited only to the line features. Featured points (point to point matching) and featured unit direction vectors (vector to vector matching) can also be used as the inputs of the algorithm, and there is no upper limit on the number of the features inputed. The algorithm will allow the use of redundant features to find a better solution. The algorithm uses dual number quaternions to represent the position and orientation of an object and uses the least squares optimization method to find an optimal solution for the object's location. The advantage of using this representation is that the method solves for the location estimation by minimizing a single cost function associated with the sum of the orientation and position errors and thus has a better performance on the estimation, both in accuracy and speed, than that of other similar algorithms. The difficulties when the operator is controlling a remote robot to perform manipulation tasks are also discussed. The main problems facing the operator are time delays on the signal transmission and the uncertainties of the remote environment. How object localization techniques can be used together with other techniques such as predictor display and time desynchronization to help to overcome these difficulties are then discussed

    Driving with Style: Inverse Reinforcement Learning in General-Purpose Planning for Automated Driving

    Full text link
    Behavior and motion planning play an important role in automated driving. Traditionally, behavior planners instruct local motion planners with predefined behaviors. Due to the high scene complexity in urban environments, unpredictable situations may occur in which behavior planners fail to match predefined behavior templates. Recently, general-purpose planners have been introduced, combining behavior and local motion planning. These general-purpose planners allow behavior-aware motion planning given a single reward function. However, two challenges arise: First, this function has to map a complex feature space into rewards. Second, the reward function has to be manually tuned by an expert. Manually tuning this reward function becomes a tedious task. In this paper, we propose an approach that relies on human driving demonstrations to automatically tune reward functions. This study offers important insights into the driving style optimization of general-purpose planners with maximum entropy inverse reinforcement learning. We evaluate our approach based on the expected value difference between learned and demonstrated policies. Furthermore, we compare the similarity of human driven trajectories with optimal policies of our planner under learned and expert-tuned reward functions. Our experiments show that we are able to learn reward functions exceeding the level of manual expert tuning without prior domain knowledge.Comment: Appeared at IROS 2019. Accepted version. Added/updated footnote, minor correction in preliminarie
    corecore