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Abstract

The registration of 3D models by a Euclidean transfor-
mation is a fundamental task at the core of many applica-
tion in computer vision. This problem is non-convex due to
the presence of rotational constraints, making traditional
local optimization methods prone to getting stuck in lo-
cal minima. This paper addresses finding the globally op-
timal transformation in various 3D registration problems
by a unified formulation that integrates common geometric
registration modalities (namely point-to-point, point-to-line
and point-to-plane). This formulation renders the optimiza-
tion problem independent of both the number and nature of
the correspondences.

The main novelty of our proposal is the introduction of a
strengthened Lagrangian dual relaxation for this problem,
which surpasses previous similar approaches [32] in effec-
tiveness. In fact, even though with no theoretical guaran-
tees, exhaustive empirical evaluation in both synthetic and
real experiments always resulted on a tight relaxation that
allowed to recover a guaranteed globally optimal solution
by exploiting duality theory.

Thus, our approach allows for effectively solving the 3D
registration with global optimality guarantees while run-
ning at a fraction of the time for the state-of-the-art al-
ternative [34], based on a more computationally intensive
Branch and Bound method.

1. Introduction
The problem of registering 3D geometric data is a classi-

cal problem in numerous fields, including computer vision,
robotics, photogrammetry or medical imaging [23, 12, 37].
It seeks the transformation that brings closest together dif-
ferent surfaces according to some meaningful distance func-
tion. Consider the ubiquituous scenario in which a sys-
tem (usually a sensor) returns 3D points {xi}mi=1 of an
object and a model of the same is available consisting of
3D primitives {Pi} (typically points, lines and/or planes)
[3, 14, 47, 28]. Assuming the correspondences between the

Figure 1. This paper presents a unified formulation for the 3D
registration with point-to-plane, point-to-line and point-to-point
correspondences, and then provides a certifiable globally optimal
solution using Lagrangian duality.

sets are given, xi ↔ Pi, the general problem reduces to
finding the optimal roto-translation T = (R, t) ∈ SE(3) as

T ? = arg min
T∈SE(3)

m∑
i=1

dPi
(T ⊕ xi)

2. (1)

Here SE(3) stands for the usual Special Euclidean group
in 3D, T ⊕ xi denotes the Euclidean transformation of the
point xi and dPi

(·) is the distance to the primitive Pi [34].
Even with known correspondences, the registration problem
(1) is tough to solve in a global fashion due to the non-
convexity of the constraints in the rotation R ∈ SO(3). A
closed-form solution exists only if all the correspondences
are point-to-point, as given by Horn et al. [24]. For the other
cases, most pipelines resort to local approximations, with
the inherent risk of getting stuck in local minima [33, 34].

In this paper we address the global optimization of the
general 3D registration problem (1). After providing a thor-
ough overview of potential alternatives for this task in Sec-
tion 2, we present in Section 3 a unified formulation inte-
grating point-to-point, point-to-line and point-to-plane cor-
respondences into a single quadratic objective that is a func-
tion of the rotationR only. Our main contribution is the de-
velopment of a novel convex relaxation for this formulation
under the usual framework of the Lagrangian dual problem,
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which results on a small constant size semidefinite program
(SDP). This novel relaxation, fully characterized in Section
4, turned tight for all the evaluations performed on synthetic
and real data, under an extensive range of different problem
conditions (Section 5). This allowed us to solve the original
non-convex problem in a global fashion using its connection
to the convex relaxation through duality theory [4].

In summary, the proposed algorithm Alg. 1 provides an
iterative optimization framework for 3D registration prob-
lems that, unlike current local iterative approaches, is able
to provide a certifiable global solution and, in fact, our em-
pirical observation is that it always does so.

We remark that this global performance comes without
any theoretical guarantees so far. Whereas we acknowledge
the importance of the missing formal proof that justifies this
behavior, we hope the empirical performance of the pro-
posed relaxation is motivation enough to encourage further
exploitation of this approach.

2. Related work

As a result of its widespread interest, geometric registra-
tion has been object of extensive research for decades now.
The number of works aiming at guaranteing global optimal-
ity in registration problems is much smaller, though, and
focuses mainly on the case of point cloud registration with
unknown correspondences [27, 35, 50, 52].

Multimodal registration

Registration across diverse 3D geometric primitives
arises in a variety of problems and applications. In the
Iterative Closest Point (ICP) framework, since the origi-
nal proposal using point-to-point correspondences by Besl
and McKay [3], different types of correspondences have
been introduced for improved performance: e.g. point-to-
plane [14] or plane-to-plane [45, 46]. Multimodal cor-
respondences play also an important role in the extrinsic
calibration of sensors of different nature, such as cam-
era and lidar [51, 49, 16, 18]. Numerous state-of-the-art
SLAM (Simultaneous Localization and Mapping) solutions
work with models that include plane and line primitives too
[2, 47, 17, 43, 28, 19].

In the context of multimodal registration a significant
effort has been devoted for decades to the resolution of
minimal problems [26], e.g. for line-to-plane correspon-
dences [14, 49, 6, 5] and point-to-plane correspondences
[21, 39, 38]. These solutions find application mainly in
random sample and consensus (RANSAC) frameworks, but
they do not face the more general least squares problem (1).
Instead, this optimization problem is traditionally addressed
through local linear approximations on the rotation, assum-
ing an initialization close to the solution is given [14], which
can easily lead to suboptimal local solutions [33].

Global optimization

Next we review the main approaches available in the lit-
erature for global optimization [22] and connect them to the
registration problem (1) at hand.

Analytical solutions A classical approach involves the
computation of all the stationary points (among which there
is the global minimum). This approach is used by Censi
[13] for the global resolution of the 2D registration prob-
lem, reducing the problem to solving a 4-th order polyno-
mial equation. However, this approach does not generalize
well to the 3D case due to the higher complexity of the rota-
tion space, which produces an explosion in the complexity
of the resulting polynomial system [29, 30].

Branch and Bound A commonly used tool for NP-hard
optimization problems is Branch and Bound (BnB). This is
used by Olsson et al. [33, 34] for solving the same problem
addressed in this paper, yielding a provably global solution.
However, the resolution time is notably high (in the order
of seconds) due to the exploratory nature and exponential
worst-case performance of BnB.

Convex relaxations Convex relaxation techniques con-
sider approximate, simpler versions of the problem whose
global optimum is much easier to reach. If the approxima-
tion is good, the solution of the relaxed problem may then
provide valuable information about the original problem.
Thus, the main task is to find an appropriate relaxation. For
problems such as ours (1), which are affected by the non-
convexity of rotation constraints, a possible relaxation is the
search into the convex hull of SO(3). This has proved to
give good approximations in rotation synchronization [44],
SLAM [41] and 2D/3D registration [25].

Another generic (and successful) tool for providing re-
laxations of difficult constrained problems is the Lagrangian
dual relaxation [4]. This provides particularly good approx-
imations for many problems that can be reformulated as
a Quadratically Constrained Quadratic Program (QCQP),
where the relaxed problem becomes a Semidefinite Pro-
gram (SDP) [4, 15]. Some problems involving rotations can
be characterized as QCQPs, such as Pose Graph Optimiza-
tion, for which recent literature applying the Lagrangian
dual relaxation has shown impressive results finding glob-
ally optimal solutions based solely on convex relaxations
[11, 10, 7, 40, 8].

The Lagrangian dual relaxation has been applied before
to the QCQP formulation of 3D registration [32]. In this
case the approximation can be very good and even provides
the global solution in a certain range of problems, but it
deteriorates when the noise level increases or the number
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of correspondences approaches the minimal cases, that is,
when the problem becomes inherently more difficult [33].

Still in the context of the Lagrangian dual relaxation,
the relaxation can be strengthened (improved) by introduc-
ing additional valid constraints [31, Chap. 13]. This has
found applicability in the optimization literature [36, 42],
and in QCQP problems involving orthonormal constraints,
improving the obtained relaxation considerably [1].

To the best of our knowledge, this “trick” has not been
considered before for relaxations involving rotations. In
this paper, we extend the QCQP formulation of [32] with a
whole set of valid quadratic rotational constraints to achieve
an improved relaxation that (empirically) returned a glob-
ally optimal solution in all problem instances, regardless of
the noise level or the number of correspondences.

3. Formulation of multimodal registration
In this section we revisit the formulation of the 3D regis-

tration problem (1), rewriting it in a suitable form for later
applying the Lagrangian dual relaxation.

3.1. Generalized distance function

First, we provide a unified formulation of the distances
for the point-to-point, point-to-line and point-to-plane cor-
respondences on the basis of the results presented in [34].

In the registration problem (1), the square distance from
a 3D point x to a 3D primitive P minimized in the registra-
tion problem (1) is typically that to the closest point in P ,
defined by

d2
P (x) = min

y′∈P
‖x− y′‖22. (2)

For all the primitives considered here (see Fig. 1) the closest
distance problem (2) has a simple closed-form solution that
fits a generalized distance function of the form

dP (x)2 = ‖x− y‖2C = (x− y)>C(x− y), (3)

namely

min
y′∈P
‖x− y′‖22 = (4)

=‖x− y‖22 = ‖x− y‖2I3 , (point)

=‖(I − vv>)(x− y)‖22 = ‖x− y‖2(I−vv>), (line)

=(n>(x− y))2 = ‖x− y‖2nn> . (plane)

Here y ∈ R3 is any point lying in the primitive1, v is the
unit direction vector for a line, ni is the unit normal vector
for a plane, and C ∈ S3 is a symmetric matrix whose ex-
pression depends on the primitive as reflected by (4). These
results stem from applying elementary algebra to each prim-
itive [34], but we provide the full proof in the supplemen-
tary material for completeness.

1 For the point-to-point case yi is the primitive.

3.2. Quadratic formulation and marginalization

The distances minimized in the registration problem (1)
depend on the transformation T ,

d2
Pi

(T ⊕ xi) = (T ⊕ xi − yi)
>Ci(T ⊕ xi − yi). (5)

If a matrix representation is chosen for the rotation R, the
expression of the transformed point T ⊕ xi is linear in the
elements ofR and t:

T ⊕ xi = Rxi + t = (x̃> ⊗ I3)︸ ︷︷ ︸
Xi

vec(T ), (6)

where x̃ =
[
x>, 1

]>
refers to the homogeneized version of

x, ⊗ is the Kronecker product and vec(T ) is the vectoriza-
tion (applied column-wise) of the transformation matrix,

vec(T ) =

[
vec(R)
t

]
. (7)

Proof. Supplementary material

With this linear parameterization of the transformed
point, it is easy to see that the generalized distance to mini-
mize is a quadratic function of τ = vec(T ), writable as

d2
Pi

(T ⊕ xi) = τ̃>N>i CiN i︸ ︷︷ ︸
M̃i

τ̃ , (8)

with N i =
[
x̃>i ⊗ I3| − yi

]
and τ̃ =

[
vec(T )

1

]>
. Be-

cause of the quadratic nature of the cost (8) it is possible to
accumulate the observations, compressing all the data into
a single 13× 13 matrix term M̃ :

f(T ) =

m∑
i=1

d2
Pi

(T ⊕ xi) = τ̃>

(
m∑
i=1

M̃ i

)
︸ ︷︷ ︸

M̃

τ̃ . (9)

Thanks to this compression step, the size of the following
reformulated problem is independent of m.

When minimizing the quadratic objective f(T ) in (9),
the problem can be further reduced if we apply marginal-
ization on the unconstrained part of the unknown T , that
is, in the translation t. It is well known from previous work
that t can be derived in terms ofR [24, 33]. In the quadratic
formulation this is straightforward:

Lemma 1. The optimal translation for a fixedR is

t?(R) = −M̃−1

t,tM̃ t,!t r̃, r̃ =

[
vec(R)

1

]
. (10)
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Input: List of correspondences {xi ↔ Pi}mi=1

Output: Global optimum T ?

/* build compressed quadratic form */

initialize M̃ ← zeros(13);
for (xi, Pi) ∈ {xi ↔ Pi}mi=1 do

M̃ i ← buildTerm(xi, Pi) ; // depends on Pi

M̃ ← M̃ + M̃ i;
end
/* minimize quadratic objective */

marginalize Q̃ = M̃/M̃ t,t ; // Schur complement

solve optimal rotationR? using Alg. 2;
get optimal translation t? = t?(R?) from (10);
return T ? = (R?, t?)

Algorithm 1: Globally optimal 3D registration

Here the subindex t stands for the set of indexes correspond-
ing to translation variables, whereas !t is its complement.
The marginalized optimization problem is then

f? = min
R∈SO(3)

r̃>Q̃r̃︸ ︷︷ ︸
q(r̃)

, r̃ =

[
vec(R)

1

]
, (11)

where the marginalized quadratic form Q̃ = M̃/M̃ t,t is
the Schur complement of the block M̃ t,t in the matrix M̃ .

Proof. Supplementary material

The registration problem is addressed then following the
pipeline depicted in Algorithm 1, where the main complex-
ity remains in solving the marginalized problem (11). This
is still a non-convex optimization problem in R, for which
a convex relaxation is provided in the next session. This re-
laxation empirically proves to be tight in all the evaluated
cases, allowing us to recover a globally optimal solution for
the marginalized problem (11).

4. Tight dual relaxation
The key ingredient to solve the non-convex problem (11)

lies upon an adequate application of Lagrangian duality. We
will apply fundamental results from duality theory [4, 9], so
some basic properties and notions regarding the Lagrangian
dual problem are provided in the supplementary material
for completeness. Then we present a specific formulation
(P̃) of the constrained problem (11) in Section 4.1 and its
corresponding dual problem (D) in Section 4.2. Finally we
show how to recover the globally optimal solution in Sec-
tion 4.3, provided that strong duality holds. The experi-
ments of Section 5 show that, empirically, this relaxation is
always tight (strong duality holds), even in extreme condi-
tions.

Once the whole dual framework has been developed, its
implementation is straightforward and the resolution of the

marginalized problem (11) is done following the relatively
simple pipeline depicted in Algorithm 2.

4.1. Primal problem

We will address now the task of formulating the opti-
mization problem (11) in such a manner that the approach
described above produces successful results.

The constraint Ri ∈ SO(3) in this problem states that
the 3 × 3 rotation matrix R fulfills the orthonormality and
determinant constraints, that is,

SO(3) ≡ {R ∈ R3×3 : R>R =I3,det(R) = +1}. (12)

In order to apply the Lagrangian dual relaxation, it is
particularly appealing to formulate the primal problem as
a Quadratically Constrained Quadratic Program (QCPQ).
In the usual characterization of SO(3), the orthonormality
constraints are all quadratic but the determinant constraint is
cubic. Because of this, it has been customary in other prob-
lems involving rotations to relax the constraints by dropping
the determinant constraint det(R) = +1 and keeping only
the orthonormality constraints R>R = I3, which amounts
to performing the optimization in O(3) rather than in SO(3).
This approach has provided tight relaxations for other prob-
lems [11, 10, 7, 40]. For the registration problem however
it works well only in a certain range of problems [32].

Duality strengthening Let us now make a quick anno-
tation about an important fact concerning the Lagrangian
duality that will be key for the success of our proposal: By
construction, every time a new scalar constraint ck+1(·) is
introduced into the Lagrangian a new dual variable λk+1

appears and the domain of the dual problem increases its
dimension in one. As a result, the bound d?k+1 provided by
the new dual problem is at least as good as that of the pre-
vious one, d?k ≤ d?k+1 ≤ f?. As a consequece the dual
problem is not intrinsic [36, 4]: it depends on the particular
formulation of the primal problem. In particular, it depends
on the specific characterization of the optimization domain
or feasible region: Adding appropiate redundant valid con-
straints has actually shown to be remarkably effective for
improving the quality of the dual relaxations in other prob-
lems [31, Chap. 13].

Following this idea, our approach is to characterize the
feasible set SO(3) with the largest possible amount of
quadratic constraints. The chosen constraints need to be
linearly independent to introduce any potential improve-
ment [36]. It is important that we keep the complexity of the
constraints quadratic in order to maintain the Lagrangian
dual problem simple. For the set of orthogonal matrices
O(3) it has been shown [1] that a complete set of quadratic
constraints is given by the combination of both column-
based and row-based orthogonality constraints: {R>R =
I3,RR

> = I3}. However, Tron et al. show in [48] that the
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Table 1. Table of constraints, Lagrange multipliers and penalizations for Problem (P̃)

Constraint type Constraint equation Dual variable Penalization term

Orthonormal rows y2I3 −RR> = 0 Λr =

λ1 λ6 λ5

λ6 λ2 λ4

λ5 λ4 λ3

 ∈ S3 r̃>P̃ r(Λr)r̃

Orthonormal columns y2I3 −R>R = 0 Λc =

 λ7 λ12 λ11

λ12 λ8 λ10

λ11 λ10 λ9

 ∈ S3 r̃>P̃ c(Λc)r̃

Handedness
R(1)×R(2)−yR(3) = 0 λd123 =

[
λ13 λ14 λ15

]> ∈ R3

r̃>P̃ dijk(λdijk)r̃R(2)×R(3)−yR(1) = 0 λd231 =
[
λ16 λ17 λ18

]> ∈ R3

R(3)×R(1)−yR(2) = 0 λd312 =
[
λ19 λ20 λ21

]> ∈ R3

Homogeneization 1− y2 = 0 γ ≡ λ22 ∈ R γ + r̃>P̃ h(γ)r̃

(a) Orthonormal rows: P̃ r(Λr) (b) Orthonormal columns: P̃ c(Λc) (c) Handedness: P̃ dijk (λdijk ) (d) Homogeneization: P̃ h(γ)

Figure 2. Pattern of the penalization matrices (top row) and dual variables (bottom row) for the different sets of constraints. A coloured
cell indicates its value depends (linearly) only on the corresponding dual variable λi. Black cells in (a) and (b) stand for values involving a
linear combination of several dual variables.

rotation space SO(3) has additional quadratic constraints
due to the handedness property that forces the positive unit
determinant: Since R ∈ O(3) ⇒ det(R) = ±1, pro-
vided that R ∈ O(3) the positive sign is guaranteed if
the matrix columns fulfill the well-known right-hand rule,
R(1) × R(2) = R(3), where R(k) is the k-th column of
R. Taking any of the three possible cyclic permutations of
the column indexes for the right-hand rule provides exactly
three independent quadratic constraints. Altogether we end
up with 2 · 6 + 3 · 3 = 21 scalar rotational constraints: 6 for
each symmetric matrix constraint from orthonormality, and
3 for each vector constraint from the handedness constraint.

Problem homogeneization The optimization objective in
(11) as well as the gathered constraints are all quadratic
functions but in general not homogeneous. It is very conve-
nient for simplifying the derivation of the dual problem to

homogeneize the problem by introducing an auxiliary vari-
able y with the constraint y2 = 1 [11, 48]. We define the
equivalent, homogeneous, strengthened primal problem:

min
R
r̃>Q̃r̃, r̃ =

[
vec(R)
y

]
s.t. R>R = y2I3,

RR> = y2I3,

R(i)×R(j) =yR(k), i, j, k = cyclic(1, 2, 3)

y2 = 1.

(P̃)

4.2. Dual problem

Once the primal problem has been clearly defined, the
derivation of the dual problem is a mechanical work, ba-
sically reduced to the derivation of the penalization term
corresponding to each constraint.
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The primal problem (P̃) is a QCQP, so the Lagrangian is

L(r̃, λ̃) = γ + r̃> (Q̃+ P̃ (λ̃))︸ ︷︷ ︸
Z̃

r̃, (13)

where the “homogeneous” dual vector λ̃ =
[
λ>, γ

]> ∈
R22 gathers the dual variables λ corresponding to all the
rotation constraints (altogether 21) and the dual variable
γ from the homogeneization constraint y2 = 1, shown in
Tab. 4. The penalized matrix Z̃ is the sum of two terms:
Q̃ that contains all the data from the original problem, and
P̃ (λ̃) that accumulates all the penalization terms corre-
sponding to the different kinds of constraints:

P̃ (λ̃) = P̃ r(Λr) + P̃ c(Λc) + P̃ d({λdijk}) + P̃ h(γ).

This matrix is (by definition) a linear function of the dual
variables, and the pattern of the different matrix compo-
nents can be seen in Fig. 2. A detailed overview of the
construction and formulae for P̃ (λ̃) is available in the ac-
companying supplementary material.

With this particularly simple expression for the La-
grangian function, the Lagrangian relaxation is an uncon-
strained problem which can be solved in closed-form as

d(λ̃) = min
r̃

L(r̃, λ̃) = min
r̃
γ + r̃>Z̃r̃ (14)

=

{
γ if Z̃ < 0,

−∞ otherwise.
(15)

The Lagrangian relaxation is unbounded below unless the
penalized matrix Z̃ is positive semidefinite (PSD). As a re-
sult, the maximization of the dual objective d(λ̃) can be
safely restricted to those vectors λ̃ preserving the positive
semidefiniteness of Z̃. Thus, the dual problem correspond-
ing to the homogeneous primal problem (P̃) is a Semidefi-
nite Program (SDP):

d? = max
λ̃

γ, s.t. Z̃(λ̃) = Q̃+ P̃ (λ̃) < 0. (D)

This problem is convex and off-the-shelf specialized solvers
exist for it [20].

4.3. Primal-via-dual resolution

In this section we begin by assuming that the duality gap
for our primal-dual pair is zero (we will see in the experi-
ments that this assumption always holds in practice). By du-
ality theory [4], r̃? must be a minimizer of the Lagrangian
(13) evaluated at λ̃

?
,

x? = arg min
x

L(x,λ?)⇒ (r̃?)>Z̃
?
r̃? = 0. (16)

Since Z? < 0, this means that the primal optimum r̃? must
lie in the nullspace of Z̃

?
:

x? = arg min
x

L(x,λ?)⇒ r̃? ∈ null(Z̃
?
). (17)

Input: Marginalized quadratic form q(r̃) (11)
Output: Global optimumR? (if no error occurs)
build symbolic penalized matrix Z̃(λ̃)← Q̃+ P̃ (λ̃);
solve the SDP problem (D) to get λ̃

?
and Z̃

?
; // CVX

get nullspace V = null(Z̃
?
);

ASSERT( rank(V ) == 1 );
dehomogeneize r̃? ← V /V (end);
ASSERT( q(r̃?)− d? ≈ 0 ) ; // strong duality

R?� r̃? ; // reshape

returnR
Algorithm 2: Convex global optimizer

If the nullspace has rank 1, the solution r̃? is recovered up
to a scale factor. Then, since the solution must also fulfill
the original constraints in the primal problem (P̃), we fully
determine the solution by setting y = 1, which in practice
reduces to dehomogeneizing the solution r̃?.

Then with the obtained primal solution r? we can check
that our initial assumption holds and the duality gap is ef-
fectively zero, d? = f(R?). As we will see in the experi-
ments, both conditions rank(null(Z̃

?
)) = 1 and d? = f?

were fulfilled for absolutely all the experiments considered,
even under the most extreme situations (in terms of noise
and number of correspondences).

5. Experiments
In this section we show that in practice the strong dual-

ity assumption holds in our primal-dual formulation for any
considered problem. As a result, using Algorithm 1 it is al-
ways possible to recover the primal optimal solution, and
we do this at a fraction of the time necessary for the more
complex exploratory techniques. The SDP (D) is solved
using CVX [20].

We assess the performance of our method, Ours, in both
synthetic and real data and compare it to that of two differ-
ent state-of-the-art approaches for solving the 3D registra-
tion problem globally: a provably optimal exploratory ap-
proach based on Branch and Bound, BnB [34], and a dual-
based approach which provides a relaxation, referred to as
Olsson [32].

But first of all, we define the main parameters that will
characterize our general registration problem (1) as well as
the metrics used in the assessment of performance.

Effective number of correspondences The number of
measurements has a notable impact in the complexity of
the registration problem. Namely, Olsson and Eriksson [32]
justify and illustrate that the problem becomes easier to
solve as the number of measurements increase.

Following this intuition, the most difficult registration
problems should be those close to minimal cases. In or-
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der to measure how close a problem is to being minimal
we consider the unifying framework presented by Rama-
lingam and Taguchi [38]: Point-to-point and point-to-line
correspondences can be transformed into equivalent sets of
3 and 2 point-to-plane correspondences, respectively. We
define then the effective number of correspondences, m̂, as
the equivalent number of independent point-to-plane corre-
spondences

m̂ = 3mpoint + 2mL + 1mΠ. (18)

The minimum value of m̂ for which a general 3D registra-
tion problem may have a unique global minimum is 7 [38].

Geometry Even if the effective number of correspon-
dences is higher than 6, degeneracies and symmetries with
multiple global minima may still occur depending on the
geometric distribution of the correspondences. These cases
are identified as well in [38]. We took care during the evalu-
ation on both synthetic and real data to discard these degen-
erate configurations where the true global minimum cannot
be found from the data only.

Measurement noise This models the quality of the mea-
surements (we consider no oultliers). If there is no noise, a
simple linear relaxation would provide the global solution.
Then, as the noise level σ increases the problem becomes
harder to solve [32].

Metrics Several metrics can be used to measure the effec-
tiveness of the relaxation approaches, Ours and Olsson.
Due to space issues we choose to show here the most signif-
icant metric, which is in our view the optimality ratio, that
is, the percentage of cases in which a globally optimal solu-
tion was attained. A solution is considered globally optimal
if the suboptimality gap ∆ = f − f? is zero up to numer-
ical precision. The global minimum f? can be found from
a provably global algorithm such as BnB or, as we will see
next, also from our tight relaxation.

In order to measure the computational performance of
the different methods we also plot the resolution times. In
particular, we use shaded error bars to display the median
values plus the 1st and 3rd quartiles reflecting the distribu-
tion of the values.

The statistics shown in the figures were generated from
a population of 100 registration problems in each case.

Other interesting metrics, as well as other parameters
ranges beyond those displayed in this document are avail-
able in the supplementary material. These additional
results support the same conclusions about the methods
reached in this document and previous works [32, 34].
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Figure 3. Results in the synthetic scenario for increasing level of
noise σ, with m̂ = 10. (a) The effectivenes of the reference relax-
ation Olsson [32] drops steadily as the level of noise increases.
Ours remained optimal in all cases. (b) Both convex relaxations
Ours and Olsson take roughly the same time, whereas BnB gets
two orders of magnitude slower.
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Figure 4. Results in the synthetic scenario for extremely severe σ
noise conditions and reduced amount of effective number mea-
surements m̂ = 7. These conditions are of reduced practical
interest, but are used to show the general robustness of the tight
condition for our relaxation compared to the reference relaxation
Olsson [32]. In these regimes BnB suffers of numerical issues.

5.1. Synthetic data

For obtaining synthetic problems we generated a set of
random model primitives that added up to m̂ effective cor-
respondences. Similarly to [32], each primitive was deter-
mined by randomly taking a point inside a sphere of radius
10 m (plus a random unit direction for the case of lines and
planes). Then a “measured” point was randomly picked
from the set defined by the primitive and we corrupted it
with a Gaussian noise of standard deviation σ.

We show the behaviour w.r.t. the noise level in Fig. 3 in
a challenging case with m̂ = 10. The results for a varying
value of m̂ were similar to those shown for the real data in
Fig. 6(a). These and other evaluations for different ranges
of parameters are shown in the supplementary material.
To sum up, our method attained the globally optimal solu-
tion in all the considered cases, without exception, even in
the most severe cases where the number of features m̂ re-
mained almost minimal and the measurement noise σ was
raised way beyond any expectable value in real scenarios
(see Fig. 4). The reference relaxation Olsson in contrast
was rarely tight in the challenging scenarios and returned a
suboptimal solution.
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Figure 5. The experimental setup for obtaining real data, taken
from [32], and optimal registration of the measurements to the
model.

5.2. Real data

Thanks to the corresponding authors, it was possible
to exploit the same real data employed in the references
[32, 34]. Their experimental setup consisted of using a
MicroScribe-3DLX 3D scanner to measure the 3D coordi-
nates of some points on the real object, as shown in Fig.
5. For the Space Station model 49 points were measured
on different primitives of the object, namely 27 on planes,
12 in lines and 10 on corner points. The registration of the
complete set to the computer model is shown in 5. In [32] it
was shown that for this complete problem Olsson works
fine, attaining the global optimum as BnB but in much less
time.

We use the same data to generate a more extensive set of
challenging real problems. In this case, we can produce sig-
nificantly more difficult problems by sampling a smaller set
of measurements from the data: We choose different com-
binations of point-to-point, point-to-line and point-to-plane
correspondences that result in a particular effective number
of measurements m̂. The precision σ of the measurements
in this case is fixed by the sensor, with errors of about 0.5
millimeters according to the authors of the dataset.

The obtained results are consistent with those observed
from the evaluation on synthetic data. The optimality ra-
tio is displayed in Fig. 6(a). The behaviour for Olsson
w.r.t. the parameter m̂ was consistent with that predicted in
the original work [32]: It hardly attained global optimal-
ity in near-minimal cases, and the performance improved
steadily with the increase on m̂. Meanwhile, our approach
succeeded again in all the cases, always returning the glob-
ally optimal solution. Again, both convex relaxations Ours
and Olsson took roughly the same time, whereas BnB is
two orders of magnitude slower (see Fig. 6(b)).

In conclusion, our approach attained the same optimality
ratio guaranteed so far only for the provably optimal BnB
method, whereas Ourswas two orders of magnitudes faster
than BnB.
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Figure 6. Results in the real scenario for a low effective number
of measuremens m̂. (a) The effectivenes of the reference relax-
ation Olsson [32] improves with the increase in m̂, yet it hardly
attains optimality in most cases whereas ours remained optimal in
all cases. (b) Both convex relaxations Ours and Olsson take
roughly the same time, whereas BnB is two orders of magnitude
slower.

6. Conclusions
We have presented a unified formulation for the 3D reg-

istration problem involving point-to-point, point-to-line and
point-to-plane correspondences that compresses the objec-
tive into a single quadratic function of the rotation. Thanks
to its generality and flexibility, this formulation should have
the potential to introduce further types of correspondences
beyond those explored in this work.

The remaining optimization problem has then been char-
acterized as a Quadratically Constrained Quadratic Pro-
gram. Exploiting a full set of quadratic rotational con-
straints we obtain a Lagrangian dual relaxation from which
a globally optimal solution could be recovered in 100% of
the tested cases, although it remains open the theoretical
question of why strong duality holds for this relaxation in
virtually all cases.

Finally, even though the current approach is already 2 or-
ders of magnitude faster than the competing BnB approach,
we are just taking an off-the-shelf generic SDP solver so this
performance could be improved further by using specialized
solvers that exploit the low-rank structure of the underlying
SDP problem.
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Graph Optimization using Lagrangian duality. In Int. Conf.
on Robotics and Automation (ICRA). IEEE, 2017.

[9] G. C. Calafiore and L. El Ghaoui. Optimization Models.
Cambridge university press, 2014.

[10] L. Carlone, G. C. Calafiore, C. Tommolillo, and F. Dellaert.
Planar Pose Graph Optimization: Duality, Optimal Solu-
tions, and Verification. IEEE Trans. Robot., 32(3):545–565,
2016.

[11] L. Carlone, D. M. Rosen, G. Calafiore, J. J. Leonard, and
F. Dellaert. Lagrangian duality in 3D SLAM: Verifica-
tion techniques and optimal solutions. In Intell. Robot.
Syst. (IROS), 2015 IEEE/RSJ Int. Conf., pages 125–132, sep
2015.

[12] U. Castellani and A. Bartoli. 3d shape registration. In 3D
Imaging, Anal. Appl., pages 221–264. Springer, 2012.

[13] A. Censi. An ICP variant using a point-to-line metric. Robot.
Autom. 2008. ICRA 2008. IEEE, 2008.

[14] Y. Chen and G. Medioni. Object modelling by registration of
multiple range images. Image Vis. Comput., 10(3):145–155,
1992.

[15] Y. Ding. On efficient semidefinite relaxations for quadrati-
cally constrained quadratic programming. 2007.

[16] E. Fernández-Moral, J. González-Jiménez, and V. Arévalo.
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Table 1. Symbols used in the paper

Matrix operators
vec(·) Column-wise vectorization
⊗ Matrix Kronecker product
Problem variables
r ∈ R9 Column-wise vectorization ofR ∈ SO(3)
τ ∈ R12 Vectorization of T ∈ SO(3)× R3

Homogeneous variables
ã ≡ [a; 1]/[a; y]/[a; γ] Augmented homogeneous vector

Ã ≡
[
A b

b> c

]
Augmented matrix (for hom. coordinate)
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(a) Point-to-point distance (b) Point-to-line distance (c) Point-to-plane distance

Figure 1. Given a 3D point x, the distance to the closest point y? in the primitive is readily obtained using simple algebra for the case of
a point (a), a line (b) or a plane (c).

1. Generalized distance function
This section provides the expression for the closest distance of a point to the different primitives considered in the paper

(see Fig. 1), namely the square distance from a 3D point x to a 3D primitive P is typically defined by

d2
P (x) = ‖x− y?‖22 = min

y′∈P
‖x− y′‖22. (1)

The considered primitives have simple closed-form solutions to (1) that are used in each case to characterize the parameters
of a generalized distance function of the form

dP (x)2 = ‖x− y‖2C = (x− y)>C(x− y). (2)

A summary is available in Tab. 2.

Table 2. Generalized parameters (2) for each correspondence

Correspondence y C

Point-to-point The point primitive I3
Point-to-line Any point in the line I3 − vv>
Point-to-plane Any point in the plane nn>

1.1. Point-to-point

There is only one point, so the closest point y? is the proper primitive (Fig. 1(a)), and this is a trivial case with

d2
point(x) = ‖x− y‖22 = (x− y)>(x− y). (3)

This is a particularization of the generalized metric (2) with

C = I3. (4)

1.2. Point-to-line

Given any point y in the line and its direction described by the unit vector v, the signed distance from y to the point y?

closest to x is v>(x− y) (see Fig. 1(b)). As a result the seeked distance can be computed as

d2
line(x) = ‖x− y?‖22 (5)

= ‖x− (y + (v>(x− y))v)‖22 (6)

= ‖(x− y)− vv>(x− y))‖22 (7)

= ‖(I3 − vv>)(x− y)‖22. (8)
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The matrix I − vv> is the orthogonal projection onto the line. An orthogonal projection matrix is symmetric,

I − vv> = (I − vv>)> (9)

and idempotent,
(I − vv>)2 = I − vv>. (10)

As a result, the distance to the line (8) can be refactored as

d2
line(x) = (x− y)>(I − vv>)>(I − vv>)(x− y)

= (x− y)>(I − vv>)(x− y), (11)

and comparing to the generalized distance (2) this settles for the line case

C = I − vv>. (12)

1.3. Point-to-plane

Given any point y in the plane and its unit normal vector n, it is well known from basic geometry that the signed distance
from x to the plane is n>(x− y) (see Fig. 1(c)). The square of this distance yields

d2
plane(x) = (n>(x− y))22 (13)

= (x− y)>(nn>)(x− y), (14)

so generalized distance (2) for the plane case is given by

C = nn>. (15)

1.4. Discussion

Note that even though we have used here the 2-norm for the closest distance (1), the considered generalized distance could
also cover other extended norms such as ‖x−y?‖A, withA a positive semidefinite matrix condensing uncertainty weights.

2. Linear transformation operator
The Euclidean transformation of a point x by T into x′ is usually referred to symbolically as the operation T ⊕ x.

Depending on the specific parameterization chosen for the transformation T = (R, t), this is a non-linear operator w.r.t. T .
However, if we choose a matrix representation for the rotation R, the expression of the transformed point x′ is linear in the
elements ofR and t:

x′ = T ⊕ x = Rx+ t (16)

If we take a different perspective on the operator, this can be seen as the mapping of the transformation (R, t) into a point
x′ according to a fixed x:

(·)⊕ x : SE(3)→ R3 (17)
T ⊕ x→ x′ (18)

It will be convenient for the formulation exploited in the paper to write this linear operator in a matrix form with the param-
eters in the transformation given in vector form:

(·)⊕ x : vec(SE(3)) ≡ R12 → R3 (19)

Using the properties of the vectorization operator vec(·) [2], namely vec(AXB) = (B> ⊗A) vec(X), we see that

Rx = vec(Rx) = (x> ⊗ I3) vec(R). (20)

Thus, with some simple block algebra the linear operator is

T ⊕ x = Rx+ t =
[
x> ⊗ I3 I3

]
︸ ︷︷ ︸

x̃>⊗I3

[
vec(R)
t

]
︸ ︷︷ ︸

τ

. (21)

Here x̃> ⊗ I3 becomes the matrix defining the linear operator, with x̃ =
[
x>, 1

]>
the homogeneous augmented version of

x, whereas τ stands for a vectorization of the variables defining the transformation, τ ≡ vec(T ).
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3. Marginalization in quadratic forms
This section provides a detailed overview on how the minimization of a quadratic objective can be marginalized w.r.t. the

unconstrained variables. In our particular case the problem is

f? = min
R∈SO(3)

ti∈R3

τ̃>M̃τ̃ , τ̃ =
[
vec(R)>, t>, 1

]>
(22)

From the method of Lagrange multipliers, the necessary conditions for a local minimum (and hence for a global mimum
(R?, t?)) is that the gradient of the Lagrangian w.r.t. all the parameters vanishes:

∇L(R, t,λ) = 0. (23)

For our problem (22) the Lagrangian takes the form

L(R, t,λ) = f(R, t) + λ · cSO(3)(R), (24)

that is, the constraints in the problem affect only the rotation and are abstracted to some set of functions cSO(3)(R). These
constraints are independent of t and taking the gradient w.r.t. t we get

∂ L(R, t,λ)

∂t
=
∂f(τ̃ )

∂t
= 03×1. (25)

Let us reorder the quadratic form as

f(τ̃ ) =

[
!t
t

]> [
M̃ !t,!t M̃ !t,t

M̃ t,!t M t,t

] [
!t
t

]
(26)

=!t>M̃ !t,!t !t+ 2t>M̃ t,!t !t+ t>M t,t t, (27)

where !t refers to the complementary set of variables in the quadratic form that are not t:

!t = τ̃\t =

[
vec(R)

1

]
≡ r̃. (28)

The zero gradient condition w.r.t. t (25) becomes

∂f(τ̃ )

∂t
= 2M̃ t,!t r̃ + 2M t,t t = 0, (29)

which is a linear system from which the optimal t? can be obtained as

t?(r̃) = −M−1
t,tM̃ t,!t r̃. (30)

Note that ifM t,t is not invertible, for any vector u in its nullspace we getM t,tu = 0. If t? is a solution to the linear system
(29), so is t? + u as well:

M̃ t,!t r̃ +M t,t(t
? + u) (31)

=(M̃ t,!t r̃ +M t,t t
?) +M t,t u = 0. (32)

This case would leave us with infinitely many solutions and thus the problem would not be well-posed.
The substitution of t?(r̃) into the complete quadratic form (26) leaves us with a reduced quadratic form q(r̃) function of

r̃ only:

q(r̃) = r̃>Q̃r̃. (33)

The marginalized quadratic form matrix Q̃ has the expression

Q̃ = M̃ !t,!t − M̃ !t,tM
−1
t,tM̃ t,!t, (34)

which is equivalent to the Schur complement M̃/M t,t of the complete matrix M̃ w.r.t. the translation diagonal subblock
M t,t. Thus, after marginalization the marginalized optimization problem (35) reduces to finding the optimal value for the
remaining variable r so that

r? = arg min
R∈SO(3)

r̃>Q̃r̃︸ ︷︷ ︸
q(r̃)

, r̃ =

[
vec(R)

1

]
. (35)
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4. Relaxations and Lagrangian duality
The marginalized problem (35) is difficult only because of the non-convex constraints that apply to the rotationR. In fact,

if we drop the constraintR ∈ SO(3) and perform the optimization inR ∈ R3×3 the remaining relaxed problem

fl = min
R∈R3×3

r̃>Q̃r̃, (36)

is quadratic and straightforward to solve. However, the optimization domain in the unconstrained problem is bigger, dim(R3×3) =
9 vs. dim(SO(3)) = 3, and its optimal solution will most probably lie out of SO(3), that is, it will not be a proper rotation.
This “naive” relaxation can be improved if we penalize the violation of constraints in the optimized objective in order to
favour solutions closer to the original feasible domain.

The Lagrangian function does this for any general constrained optimization problem of the form

f? = inf
x
f(x), s.t. ci(x) = 0, ∀i ∈ C, (37)

(where C is a set indexing the constraints ci(x)) by penalizing the original optimization objective with a weighted sum of all
the constraints:

L(x,λ) = f(x) +
∑
i∈C

λici(x). (38)

Note the optimum x? for the original problem (37) fulfills all the constraints ci(x?) = 0, so L(x?,λ) = f? for any λ. The
unconstrained problem

d(λ) = min
x

L(x,λ) ≤ f? (39)

provides a family of relaxations parameterized by the Lagrange multipliers λ.
The key insight of Lagrangian duality is that, by choosing the parameter λ appropiately, we can obtain better relaxations

(d(λ) closer to f?). The (Lagrangian) dual problem seeks the best possible relaxation by choosing the weights λi, henceforth
dual variables, that maximize the lower bound obtained from the Lagrangian relaxation:

d? = max
λ

d(λ). (40)

For consistency with this terminology, the original problem, its unknowns and objective are referred to as primal. From the
definitions above it is easy to prove that

d? ≤ f?. (41)

This fundamental result, referred to as weak (Lagrangian) duality, holds for any optimization problem and the positive value
f? − d? ≥ 0 is called the duality gap. If the duality gap is zero, that is, d? = f?, we say that there is strong duality and the
relaxation is tight.

The dual problem has very appealing properties [1, Sec. 5.2]:

1. It is always convex, so it can be solved globally using local search techniques, which are inherently faster that global
search methods.

2. If there is strong duality, the primal optimum x? is also the minimizer of the Lagrangian evaluated at the dual optimum:

x? = arg min
x

L(x,λ?). (42)

This last property is highly useful, as in many cases these constraints suffice to fully recover the primal optimum x? in terms
of the dual optimum λ?. As a result, if there is strong duality we can avoid the non-convexity of the general primal problem
and solve instead the dual problem, then recover the primal solution. This settles a very interesting course of action for global
optimization.
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5. Lagrangian derivation
This section shows the construction of the Lagrangian function for the equivalent, homogeneous, strengthened primal

problem:

min
R,y

r̃>Q̃r̃︸ ︷︷ ︸
q(r̃)

, r̃ =

[
vec(R)
y

]
(P̃)

s.t. R>R = y2I3, (43)

RR> = y2I3, (44)

R(i)×R(j) =yR(k), (i, j, k) ∈ (123), (45)

y2 = 1. (46)

We use the notation (123) to refer to the set of cyclic permutations: (123) = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. The Lagrangian
of the primal problem (P̃) is then built by introducing the equality constraints as penalization terms

L(r̃, λ̃) = q(r̃) [objective] (47)

+ 〈Λr, y
2I3 −RR>〉 [orthonormal rows] (48)

+ 〈Λc, y
2I3 −R>R〉 [orthonormal columns] (49)

+
∑

(i,j,k)∈(123)

〈λdijk ,R
(i)×R(j)−yR(k)〉 [handedness] (50)

+ 〈γ, 1− y2〉. [homogeneization] (51)

Every penalization term is written as the inner product of a Lagrange multiplier with a set of constraints. If the constraint
is scalar (51) the inner product is a simple scalar product 〈a, b〉 = ab. For vector constraints (50) it becomes the dot
product for vectors, 〈a, b〉 = a>b. Finally if the constraints form a matrix (48)(49), we use the inner product for matrices
〈A,B〉 = tr(A>B).

Since the constraints in the primal problem (P̃) are (homogeneous) quadratic functions ofR, a linear combination of them
will still be quadratic w.r.t.R and the Lagrangian can be refactored into

L(r̃, λ̃) = γ + r̃>(Q̃+ P̃ (λ̃))r̃. (52)

The offset γ originates from the homogeneization constraint (51), the only constraint with a non-homogeneous term. The
augmented vector of dual variables λ̃ ∈ R22 is formed from the concatenation of all the dual variables, and the penalization
matrix P̃ is the sum of the different components coming from the constraints in (P̃), namely orthonormality of rows (r) (48),
orthonormality of columns (c) (49), positive determinant or handedness (d) (50) and homogeneization (h) (51):

P̃ (λ̃) = P̃ r(Λr) + P̃ c(Λc) + P̃ d({λdijk}︸ ︷︷ ︸
λd

) + P̃ h(γ). (53)

Next we will fully characterize these penalization terms. A complete summary of the constraints, associated dual variables
and penalizations can be seen in Tab. 5. A visualization of the pattern for the resulting matrices P̃ (·) is available in Fig. 2.

5.1. Orthonormality of rotation rows (48)

The matrix constraint for the orthonormality of rows,RR> = I3, provides the penalization term

〈Λr, y
2I3 −RR>〉 = tr(Λ>r (y2I3 −RR>)) (54)

[using Λr = Λ>r and cyclic property of tr(·)] = y2 tr(Λr)− tr(R>ΛrR) (55)

[using tr(IX>BY ) (81)] = y2 tr(Λr)− r>(I3 ⊗Λr)r (56)

[reordering into block matrix] = r̃>P̃ r(Λr)r̃. (57)
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Table 3. Table of constraints and penalizations for (P̃)

Constraint type Constraint equation Dual variable Penalization term

Orthonormal rows y2I3 −RR> = 0 Λr =

λ1 λ6 λ5
λ6 λ2 λ4
λ5 λ4 λ3

 ∈ S3 r̃>P̃ r(Λr)r̃, see (58)

Orthonormal columns y2I3 −R>R = 0 Λc =

 λ7 λ12 λ11
λ12 λ8 λ10
λ11 λ10 λ9

 ∈ S3 r̃>P̃ c(Λc)r̃, see (63)

Handedness
R(1)×R(2)−yR(3) = 0 λd123 =

[
λ13 λ14 λ15

]> ∈ R3

r̃>P̃ dijk(λdijk)r̃, see (74)R(2)×R(3)−yR(1) = 0 λd231 =
[
λ16 λ17 λ18

]> ∈ R3

R(3)×R(1)−yR(2) = 0 λd312 =
[
λ19 λ20 λ21

]> ∈ R3

Homogeneization 1− y2 = 0 γ ≡ λ22 ∈ R γ + r̃>P̃ h(γ)r̃, see (77)

(a) Orthonormal rows, see (58) (b) Orthonormal columns, see (63) (c) Handedness, see (74) (d) Homogeneization, see (77)

Figure 2. Sparsity pattern of the penalization matrices (top row) and dual variables (bottom row) due to the different sets of constraints.
A coloured cell indicates its value depends (linearly) only on the corresponding dual variable λi. Black cells (in (10, 10)) stand for values
involving a linear combination of several dual variables.

The matrix Lagrange multiplier Λr is symmetric because only 6 effective different scalar constraints stand here. The quadratic
penalization matrix P̃ r is shown in Fig. 2(a) and takes the expression

P̃ r(Λr) =

−I3 ⊗Λr 09×1

01×9 tr(Λr)

 . (58)

5.2. Orthonormality of rotation columns (49)

Similar to the previous orthonormality constraint but with exchanged transposes, R>R = I3, the orthonormality of
rotation columns provides the penalization

〈Λc, y
2I3 −R>R〉 = tr(Λ>c (y2I3 −R>R)) (59)

= y2 tr(Λc)− tr(Λ>c R
>R) (60)

[using tr(A>X>IY ) (81)] = y2 tr(Λc)− r>(Λc ⊗ I3)r (61)

[reordering into block matrix] = r̃>P̃ r(Λc)r̃. (62)
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Again, there are only 6 different constraints, so Λc ∈ S3. The quadratic penalization matrix P̃ c is shown in Fig. 2(b) and
takes the expression

P̃ c(Λc) =

−Λc ⊗ I3 09×1

01×9 tr(Λc)

 . (63)

5.3. Determinant constraints (50)

The right-hand rule applied to the columns of the rotation matrixR takes the form

R(i)×R(j) =yR(k), (64)

where R(u) refers to the u-th column in the matrix R. Let us introduce the canonical vector eu ∈ R3, defined as the vector
that is zero everywhere except for the u-th entry which is 1. It will be useful as well to define the canonical matrix euv as
the matrix which has entry 1 at the position (u, v) and is zero everywhere else. Note euv = eue

>
v . Then the handedness

constraint can be written in a more convenient form as

〈λdijk ,R
(i)×R(j)−yR(k)〉 = λ>dijk((Rei)× (Rej)− y(Rek)) = (65)

[using a · (b× c) = −b · (a× c)] = −(Rei)
>(λdijk × (Rej))− yλ>dijk(Rek) (66)

[using a× b = [a]× b] = −e>i R
> [λdijk

]
×Rej − yλ

>
dijkRek (67)

[using tr(a) = a, a ∈ R] = − tr(e>i R
> [λdijk

]
×Rej)− y tr(λ>dijkRek) (68)

[using cyclic property of tr(·)] = − tr(eje
>
i R
> [λdijk

]
×R)− y tr(ekλ

>
dijkR) (69)

[reordering transposes] = − tr(e>ijR
> [λdijk

]
×R)− y tr((λdijke

>
k )>R) (70)

[using tr(A>X>IY ) (81) and tr(A>B) (80)] = −r>(eij ⊗
[
λdijk

]
×)r − y vec(λdijke

>
k )>r (71)

[using vec(ab>) (79)] = −r>(eij ⊗
[
λdijk

]
×)r − y(ek ⊗ λdijk)>r (72)

[reordering into block matrix] = r̃>P̃ dijk(λdijk) r̃. (73)

The (symmetric) quadratic penalization matrix P̃ dijk(λdijk) takes the expression

P̃ dijk =

−eij ⊗ [λdijk

]
× −(ek ⊗ λdijk)

01×9 0

 . (74)

Note this expression is generic for (i, j, k) ∈ (123) = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. The complete penalization matrix
P̃ d(λd) = P̃ d123(λd123) + P̃ d231(λd231) + P̃ d312(λd312) from all the determinant constraints, after taking an equivalent
symmetric matrix for the representation, is shown in Fig. 2(c).

5.4. Homogeneization constraint (51)

Finally, the simple scalar constraint y2 = 1 yields

〈γ, 1− y2〉 = γ − γy2 (75)

= γ + r̃>P̃ h(γ)r̃ (76)

For compatibility with the rest of quadratic expressions this has been written in matrix form too, where P̃ h(γ) = −γe10,10
is the matrix with all zeros but the lower right corner, where it contains the value −γ:

P̃ h(γ) =

 09×9 09×1

01×9 −γ

 . (77)

6. Additional experimental results
Due to the lack of space, only the most relevant experimental results and metrics were shown in the paper. In this section

we include all the obtained results comparing the BnB solution [4], and the dual-based relaxations, Ours and Olsson [3].
The results support the claims in the main document.
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Evaluation metrics

We used several metrics to evaluate the performance of the methods. Next we describe them and give some notes on the
representation used for the results. All the statistics were obtained from 200 samples.

Suboptimality gap The suboptimality gap is defined as ∆ = f − f?, where f? is the minimum objective value attained in
the global solution. Since our solution always provided a globally optimal solution (in a certifiable way, since f = d? ⇒ f =
f?), it is possible to plot this value for all the methods giving a clear reference for the performance: A solution is optimal if
∆ = 0, suboptimal otherwise.

We displayed the suboptimality gap in the oncoming figures using boxplots. To show as much information as possible,
we also superimposed a sorted set of points displaying the original values underlying each boxplot. Note that for the globally
optimal methods, Ours and BnB, the boxplots and points degenerate to a single line in ∆ = 0.

In order to cope with the high variability of the suboptimality values for the different methods, we applied a custom scale
in the Y axis, where the log(1 + x) of the values is displayed in order to better visualize different orders of magnitude while
keeping the lower threshold ∆ = 0 in the origin.

Global optimality ratio The global optimality ratio provides a refined view of suboptimality metric, where we directly
show a bar plot with the percentage of cases in which a globally optimal solution (∆ = 0) was attained.

Time The computational performance of the different algorithms is evaluated by measuring the CPU time necessary to solve
each problem. Note these times are just for orientation, as the implementations were not highly optimized. Nevertheless, the
conclusions when comparing the different methods remain valid. The obtained values are represented with a shaded error
bar plot displaying the median values plus a band defined by the 1st and 3rd quartiles to reflect the distribution of the values.
Note that we always used a logarithmic scale for the time values, in order to better compare all the considered methods.

Problem parameters

As discussed in the paper, the main problem parameters defining the overall difficulty of solving the optimization problem
globally are the effective number of correspondences m̂ and the level of the noise σ affecting the measurements. A more
detailed explanation of these is available in the main document.

6.1. Evaluation on synthetic data

6.1.1 Challenging range of m̂

The evaluation in a challenging range of m̂ values, going from the almost minimal case m̂ = 7 up to m̂ = 15, shows that
as the number of correspondences increases the level of difficulty of the problem decreases (see Fig. 3). This is consistent
with the claim in [3]. This explains why the looser relaxation Olsson has better performance as m̂ grows. This trend holds
for different levels of noise σ, although as expected the general difficulty keeps higher when the noise is larger, making the
performance of Olsson worse. In all cases, as the provably optimal method BnB, our method provided a globally optimal
solution. However, the computational burden for the BnB method was notably higher, and in the easier scenario (σ = 0.1)
it increased with the decrease in the number of correspondences. This is consistent with the remarks in [4], where the near-
minimal cases were tagged as harder to explore in the Branch and Bound framework. The time for the dual-based algorithms
(Ours and Olsson) remained practically constant in all cases and was notably lower than for BnB (around 2 orders of
magnitude).
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(a) Suboptimality gap, σ = 0.1 m
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(d) Suboptimality gap, σ = 0.5 m
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(g) Suboptimality gap, σ = 1 m
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Figure 3. Evaluation in a challenging range of effective number of correspondences, from the almost minimal case m̂ = 7 to m̂ = 15.
Different levels of noise were considered: A low value of σ = 0.1 m (top row), a middel value of σ = 0.5 m (middle row), and a more
challenging scenario with σ = 1 m (bottom row).

6.1.2 Evaluation w.r.t. noise level

As in [3], we provide a continuous analysis on how the performance of the methods are affected for different levels of noise
σ within usual application values, going from the ideal noise-free case with σ = 0 to the significantly high value of σ = 0.5
m. This evaluation is repeated several times under a fixed effective number of correspondences, namely m̂ = {7, 10, 14, 21}.
The whole set of results can be seen in Fig. 4.

As expected, the general trend is that the difficulty of the problem increases with the noise level σ, making it harder for
Olsson to reach the global solution, and also rendering the resolution with BnB slower. In all cases our solution provided
the globally optimal solution, at a constant low resolution time.
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(a) Suboptimality gap, m̂ = 7
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(d) Suboptimality gap, m̂ = 10
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(g) Suboptimality gap, m̂ = 14
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(j) Suboptimality gap, m̂ = 21
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Figure 4. Evaluation w.r.t. noise level from σ = 0 to σ = 0.5 m, for different effective numbers of measurements: m̂ = {7, 10, 14, 21}.
Note the decreasing scale in the suboptimality gap (first column of figures) as the effective number of correspondences m̂ increases.
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6.1.3 Evaluation in extreme conditions

Finally, we used the synthetic framework to test our method in a substantially difficult scenario. For that purpose, we took
the most challenging conditions for the registration problem, that is almost minimal number of correspondences m̂ = 7 and
very high noise level (far beyond any expectable value found in a real problem). Specifically, we increased the noise level σ
exponentially from σ = 1 m to σ = 1000 m. With such a high level of noise the results of the problem would of little use in
a real application, but again we do this just with the main aim of testing the behaviour and robustness of all the algorithms
from a purely mathematical point of view.

The results, displayed in Fig. 5, show that under these severe conditions the relaxation used by Olsson never worked
in the higher regimes of noise, and even the BnB method incurred in some suboptimalities probably due to numerical issues
and exit conditions in the algorithm. Meanwhile, Ours worked in 100% of the cases without exception.
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Figure 5. Evaluation in the most severe regime of parameters: Lowest possible number of correspondences m̂ = 7 and significantly high
measurement noise. Note the different scales in the axes.

6.2. Evaluation on real data

We use the same real dataset used in [3]. Following the procedure explained in the main document, we were able to
generate a large set of different registration problems by taking different effective numbers of correspondences m̂. The noise
level was intrinsic to the sensor used for the measurements, so it is out of our control.

As a result, as in Section 6.1.1, the evaluation on real data considers an increasing value for m̂. Note however that, even
though the sensor noise should be well below the synthetic noise considered in the top row of Fig. 3, σ = 0.1 m, the results
are closer to those of a much higher synthetic noise (compare to σ = 0.5 m in Fig. 3). This may be a consequence of the
non-Gaussian noise in the real measurements, which might be turning the problem even harder.

In any case, our method still reached a globally optimal solution in all cases, regardless of the effective number of mea-
surements m̂, and at a fraction of the time for BnB.
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Figure 6. Evaluation in real data taken from the Space Station dataset [3]. Different subsets of the complete dataset are sampled to get
more challenging registration problems with a variable effective number of correspondences m̂.
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A. Some matrix calculus
Next we provide some properties related to the vectorization of matrix expressions. These relations were taken from [2]:

vec(AXB) = (B> ⊗A) vec(X) (78)

vec(ab>) = b⊗ a (79)

tr(A>B) = vec(A)> vec(B) (80)

tr(A>X>BY ) = vec(X)>(A⊗B) vec(Y ) (81)
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