123,403 research outputs found

    Bacteriorhodopsin films for optical signal processing and data storage

    Get PDF
    This report summarizes the research results obtained on NASA Ames Grant NAG 2-878 entitled 'Investigations of Bacteriorhodopsin Films for Optical Signal Processing and Data Storage.' Specifically we performed research, at Texas Tech University, on applications of Bacteriorhodopisin film to both (1) dynamic spatial filtering and (2) holographic data storage. In addition, measurements of the noise properties of an acousto-optical matrix-vestor multiplier built for NASA Ames by Photonic Systems Inc. were performed at NASA Ames' Photonics Laboratory. This research resulted in two papers presented at major optical data processing conferences and a journal paper which is to appear in APPLIED OPTICS. A new proposal for additional BR research has recently been submitted to NASA Ames Research Center

    Optical pulse processing towards Tb/s high-speed photonic systems

    Get PDF
    Due to the continued growth of high-bandwidth services provided by the internet, there is a requirement to operate individual line rates in excess of 100 Gb/s in next generation optical communications systems. Thus, to implement these high-speed optical networks all-optical processing techniques are necessary for pulse shaping and pulse routing. Two sub-systems (pulse generation and wavelength conversion), which exploit optical processing techniques are explored within this thesis. Future systems will require high-quality pulse sources and this thesis develops the pulse generation technique of gain switching to provide simple and cost efficient pulse sources. The poor pulse quality typically associated with gain switching is enhanced by developing all-optical methods. The main attribute of the first pulse generation scheme presented is its wavelength tunability over 50 nm. The novelty of the second scheme lies in the ability to design a grating which has a nonlinear chirp profile exactly opposite to the gain-switched pulses. This grating used in conjunction with the gain-switched laser generates transform limited pulses suitable for 80 Gb/s systems. Furthermore the use of a vertical microcavity-based saturable absorber to suppress detrimental temporal pulse pedestals of a pulse source is investigated. Next generation networks will require routing of data in the optical domain, which can be accomplished by high-speed all-optical wavelength converters. A semiconductor optical amplifier (SOA) is an ideal device to carry out wavelength conversion. In this thesis pulses following propagation through an SOA are experimentally characterised to examine the temporal and spectral dynamics due to the nonlinear response of the SOA. High-speed wavelength conversion is presented using SOA-based shifted filtering. For the first time 80 Gb/s error-free performance was obtained using cross phase modulation in conjunction with blue spectral shifted filtering. In addition an important attribute of this work experimentally examines the temporal profile and phase of the SOA-based shifted filtering wavelength converted signals. Thus the contribution and effect of ultrafast carrier dynamics associated with SOAs is presented

    Optical image compression and encryption methods

    No full text
    International audienceOver the years extensive studies have been carried out to apply coherent optics methods in real-time communications and image transmission. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. However, the transmitted data can be intercepted by nonauthorized people. This explains why considerable effort is being devoted at the current time to data encryption and secure transmission. In addition, only a small part of the overall information is really useful for many applications. Consequently, applications can tolerate information compression that requires important processing when the transmission bit rate is taken into account. To enable efficient and secure information exchange, it is often necessary to reduce the amount of transmitted information. In this context, much work has been undertaken using the principle of coherent optics filtering for selecting relevant information and encrypting it. Compression and encryption operations are often carried out separately, although they are strongly related and can influence each other. Optical processing methodologies, based on filtering, are described that are applicable to transmission and/or data storage. Finally, the advantages and limitations of a set of optical compression and encryption methods are discussed

    Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications

    Get PDF
    All-optical data processing is expected to play a major role in future optical communications. The fiber nonlinear optical loop mirror (NOLM) is a valuable tool in optical signal processing applications. This paper presents an overview of our recent advances in developing NOLM-based all-optical processing techniques for application in fiber-optic communications. The use of in-line NOLMs as a general technique for all-optical passive 2R (reamplification, reshaping) regeneration of return-to-zero (RZ) on-off keyed signals in both high-speed, ultralong-distance transmission systems and terrestrial photonic networks is reviewed. In this context, a theoretical model enabling the description of the stable propagation of carrier pulses with periodic all-optical self-regeneration in fiber systems with in-line deployment of nonlinear optical devices is presented. A novel, simple pulse processing scheme using nonlinear broadening in normal dispersion fiber and loop mirror intensity filtering is described, and its employment is demonstrated as an optical decision element at a RZ receiver as well as an in-line device to realize a transmission technique of periodic all-optical RZ-nonreturn-to-zero-like format conversion. The important issue of phase-preserving regeneration of phase-encoded signals is also addressed by presenting a new design of NOLM based on distributed Raman amplification in the loop fiber. © 2008 Elsevier Inc. All rights reserved

    Challenges in Polybinary Modulation for Bandwidth Limited Optical Links

    Get PDF
    Optical links using traditional modulation formats are reaching a plateau in terms of capacity, mainly due to bandwidth limitations in the devices employed at the transmitter and receivers. Advanced modulation formats, which boost the spectral efficiency, provide a smooth migration path towards effectively increase the available capacity. Advanced modulation formats however require digitalization of the signals and digital signal processing blocks to both generate and recover the data. There is therefore a trade-off in terms of efficiency gain vs complexity. Polybinary modulation, a generalized form of partial response modulation, employs simple codification and filtering at the transmitter to drastically increase the spectral efficiency. At the receiver side, polybinary modulation requires low complexity direct detection and very little digital signal processing. This paper provides an overview of the current research status of the key building blocks in polybinary systems. The results clearly show how polybinary modulation effectively reduces the bandwidth requirements on optical links while providing high spectral efficiency

    High spatial resolution and high contrast optical speckle imaging with FASTCAM at the ORM

    Full text link
    In this paper, we present an original observational approach, which combines, for the first time, traditional speckle imaging with image post-processing to obtain in the optical domain diffraction-limited images with high contrast (1e-5) within 0.5 to 2 arcseconds around a bright star. The post-processing step is based on wavelet filtering an has analogy with edge enhancement and high-pass filtering. Our I-band on-sky results with the 2.5-m Nordic Telescope (NOT) and the lucky imaging instrument FASTCAM show that we are able to detect L-type brown dwarf companions around a solar-type star with a contrast DI~12 at 2" and with no use of any coronographic capability, which greatly simplifies the instrumental and hardware approach. This object has been detected from the ground in J and H bands so far only with AO-assisted 8-10 m class telescopes (Gemini, Keck), although more recently detected with small-class telescopes in the K band. Discussing the advantage and disadvantage of the optical regime for the detection of faint intrinsic fluxes close to bright stars, we develop some perspectives for other fields, including the study of dense cores in globular clusters. To the best of our knowledge this is the first time that high contrast considerations are included in optical speckle imaging approach.Comment: Proceedings of SPIE conference - Ground-based and Airborne Instrumentation for Astronomy III (Conference 7735), San Diego 201

    CMOS Architectures and circuits for high-speed decision-making from image flows

    Get PDF
    We present architectures, CMOS circuits and CMOS chips to process image flows at very high speed. This is achieved by exploiting bio-inspiration and performing processing tasks in parallel manner and concurrently with image acquisition. A vision system is presented which makes decisions within sub-msec range. This is very well suited for defense and security applications requiring segmentation and tracking of rapidly moving objects

    High contrast optical imaging of companions: the case of the brown dwarf binary HD-130948BC

    Full text link
    High contrast imaging at optical wavelengths is limited by the modest correction of conventional near-IR optimized AO systems.We take advantage of new fast and low-readout-noise detectors to explore the potential of fast imaging coupled to post-processing techniques to detect faint companions to stars at small separations. We have focused on I-band direct imaging of the previously detected brown dwarf binary HD130948BC,attempting to spatially resolve the L2+L2 benchmark system. We used the Lucky-Imaging instrument FastCam at the 2.5-m Nordic Telescope to obtain quasi diffraction-limited images of HD130948 with ~0.1" resolution.In order to improve the detectability of the faint binary in the vicinity of a bright (I=5.19 \pm 0.03) solar-type star,we implemented a post-processing technique based on wavelet transform filtering of the image which allows us to strongly enhance the presence of point-like sources in regions where the primary halo dominates. We detect for the first time the BD binary HD130948BC in the optical band I with a SNR~9 at 2.561"\pm 0.007" (46.5 AU) from HD130948A and confirm in two independent dataset that the object is real,as opposed to time-varying residual speckles.We do not resolve the binary, which can be explained by astrometric results posterior to our observations that predict a separation below the NOT resolution.We reach at this distance a contrast of dI = 11.30 \pm 0.11, and estimate a combined magnitude for this binary to I = 16.49 \pm 0.11 and a I-J colour 3.29 \pm 0.13. At 1", we reach a detectability 10.5 mag fainter than the primary after image post-processing. We obtain on-sky validation of a technique based on speckle imaging and wavelet-transform processing,which improves the high contrast capabilities of speckle imaging.The I-J colour measured for the BD companion is slightly bluer, but still consistent with what typically found for L2 dwarfs(~3.4-3.6).Comment: accepted in A\&
    corecore