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 ABSTRACT – OPTICAL PULSE PROCESSING TOWARDS 

TB/S HIGH-SPEED PHOTONIC SYSTEMS 

 

Aisling Clarke 

B.Eng., MIEEE 

 

Due to the continued growth of high-bandwidth services provided by the internet, there 

is a requirement to operate individual line rates in excess of 100 Gb/s in next generation 

optical communications systems. Thus, to implement these high-speed optical networks 

all-optical processing techniques are necessary for pulse shaping and pulse routing. Two 

sub-systems (pulse generation and wavelength conversion), which exploit optical 

processing techniques are explored within this thesis.  

 

Future systems will require high-quality pulse sources and this thesis develops the pulse 

generation technique of gain switching to provide simple and cost efficient pulse 

sources. The poor pulse quality typically associated with gain switching is enhanced by 

developing all-optical methods. The main attribute of the first pulse generation scheme 

presented is its wavelength tunability over 50 nm. The novelty of the second scheme lies 

in the ability to design a grating which has a nonlinear chirp profile exactly opposite to 

the gain-switched pulses. This grating used in conjunction with the gain-switched laser 

generates transform limited pulses suitable for 80 Gb/s systems. Furthermore the use of a 

vertical microcavity-based saturable absorber to suppress detrimental temporal pulse 

pedestals of a pulse source is investigated.  

 

Next generation networks will require routing of data in the optical domain, which can 

be accomplished by high-speed all-optical wavelength converters. A semiconductor 

optical amplifier (SOA) is an ideal device to carry out wavelength conversion. In this 

thesis pulses following propagation through an SOA are experimentally characterised to 

examine the temporal and spectral dynamics due to the nonlinear response of the SOA. 

High-speed wavelength conversion is presented using SOA-based shifted filtering. For 

the first time 80 Gb/s error-free performance was obtained using cross phase modulation 

in conjunction with blue spectral shifted filtering. In addition an important attribute of 

this work experimentally examines the temporal profile and phase of the SOA-based 

shifted filtering wavelength converted signals. Thus the contribution and effect of 

ultrafast carrier dynamics associated with SOAs is presented.  
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 INTRODUCTION 
 

The continued growth and demand for high-bandwidth to the home and business spurred 

on by new multimedia applications and file sharing, is stimulating the further 

development of high-speed optical fibre communications systems. In comparison to 

other bandwidth providing solutions, optical fibre systems are the top competitor due to 

its ability to provide almost limitless capacity. Therefore, there is a requirement to 

develop and research all-optical subsystems that will be required as components in future 

optical networks. Two such all-optical subsystems are optical pulse sources and 

wavelength converters. This thesis develops a high quality optical pulse source, 

investigates its performance in a high-speed test-bed and explores a semiconductor 

optical amplifier (SOA)-based wavelength conversion scheme in-depth.  

Main Contributions 

The main contributions of this work are: 

o Development of Optical Techniques to Achieve High Quality Pulse 

Generation – Pulse generation techniques based principally on the method of 

gain switching are demonstrated. The first source exhibits high wavelength 

tunability, up to 50 nm, with excellent side mode suppression ratio (SMSR) and 

low jitter, providing a source suitable for future wavelength division 

multiplexing (WDM) and optical time division multiplexing (OTDM) systems. 

A second gain switching source is presented which uses a tailor-made 

nonlinearly chirped grating to achieve transform limited 3.5 ps pulses suitable 

for use in an 80 Gb/s OTDM system. The novelty of this source lies in the 

experimental method used to find the chirp profile of the fibre Bragg grating 

(FBG) to achieve full compensation of the nonlinear chirp of the gain-switched 

pulse. In addition, we investigated the technique of a vertical microcavity based 

saturable absorber (SA) to improve the temporal quality of a pulse source. In 

particular the nonlinear transfer function of the SA results in a large reduction of 

pulse temporal pedestals which are detrimental to the quality of pulse sources. 

Thus it is shown that the inclusion of a SA in high-speed pulse source results in 

an overall system performance enhancement.  

o High-Speed Implementation and Characterisation of an SOA-based 

Wavelength Conversion Scheme – 80 Gb/s error-free polarity preserved 

wavelength conversion was achieved by implementing simple cross gain 
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modulation (XGM)/cross phase modulation (XPM) in an SOA in conjunction 

with shifted filtering. In contrast to other similar shifted filtering wavelength 

conversion schemes, the technique presented is advantageous in that the polarity 

of the output signal is preserved, the scheme exhibits polarisation independence, 

and the set-up has a very simple configuration. Optimisation and comparison of 

the filter placement in order to retain the red or blue spectral components of the 

filtering assisted schemes is presented. In particular a frequency-resolved optical 

gating (FROG) characterisation of the wavelength converted signals is given to 

provide enhanced understanding of the gain and phase dynamics of the SOA 

which contribute to the shape and performance of the wavelength converted 

pulses. 

Outline of the Thesis 

This section outlines the content of this thesis which is divided into six chapters as 

follows: 

o Chapter 1 outlines the motivation for the development of future high-speed 

optical communications systems. Future direction points towards the 

implementation of systems capable of operating at higher bit rates per channel to 

reduce cost and complexity of networks. Thus all-optical systems may be 

required to overcome the limited speed of electronics and/or provide a more 

cost-efficient alternative to electronic processes. An overview of multiplexing 

schemes which are presently used and which will be used in the future such as 

electrical time division multiplexing (ETDM), WDM and OTDM are given. As 

individual line rates increase, all-optical processing may be required to route and 

regenerate the optical signal, thus the importance of wavelength converters in 

future networks is discussed.  

o Chapter 2 introduces the requirements that pulse generation methods must meet 

in order to be suitable for future high-speed systems and discusses the 

techniques used to measure these ultrashort pulses. Particular emphasis is given 

to the measurement technique of FROG as this technique is able to retrieve the 

electric field of the measured pulses. Various pulse generation methods are 

outlined, but focus is placed on the pulse generation method of gain switching. 

The poor pulse quality of gain-switched pulses can be improved by optical 

injection, and the performance enhancement obtained is examined. Finally a 

wavelength tunable source capable of providing tunability up to 65 nm is 

presented based on dual Fabry–Pérot lasers and self or external seeding. The 
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generated pulses exhibit high quality characteristics such as 60 dB SMSR, with 

low jitter and narrow pulse widths from 15-30 ps.  

o Chapter 3 investigates in detail the effect on system performance of different 

temporal pedestal suppression ratio (TPSR) levels of a pulse source. A pedestal 

of varying levels is introduced to a 2 ps pulse source and tested in an 80 Gb/s 

OTDM system. One method to overcome insufficient TPSR levels is to employ 

a SA. It is shown how the inclusion of a vertical microcavity based SA improves 

significantly the TPSR and the overall system performance. The work presented 

on gain-switched pulse sources in Chapter 2, is further enhanced in this chapter, 

by processing the generated pulses which involves spectral shaping, temporal 

compression and chirp compensation. The generation of transform limited short 

optical pulses, which display excellent spectral and temporal qualities is 

presented. The pulses are generated by employing a novel technology, based on 

an externally injected gain-switched laser in conjunction with a nonlinearly 

chirped grating. The excellent system performance of this source in an 80 Gb/s 

OTDM system is detailed. 

o Chapter 4 outlines how a semiconductor optical amplifier (SOA) is a promising 

device to provide all-optical switching due to the large nonlinearity caused by 

gain saturation. The gain dynamics of an SOA upon the input of a picosecond 

pulse is presented, and an explanation of how this limits the speed of operation 

to less than 40 Gb/s is given. A complete experimental characterisation of the 

temporal and chirp profiles of amplified picosecond pulses following an SOA is 

characterised by the FROG measurement technique. This study is important to 

examine the SOA as an amplifier but also to aid the development of SOA-based 

all-optical processing devices. 

o Chapter 5 initially overviews the various wavelength conversion techniques 

which are available, with particular emphasis given to the nonlinear processes of 

XGM, XPM and four wave mixing (FWM) in an SOA. A brief outline is given 

which explains the effects SOA operating parameters have on wavelength 

converted pulses following XGM and XPM. To overcome the carrier recovery 

dynamics of an SOA and the corresponding patterning effects, shifted filtering in 

conjunction with XGM/XPM can be employed. We examine the different 

characteristics of the converted pulses by exploiting either XGM or XPM for 

both blue and red shifted filtering at 10 Gb/s. XPM in conjunction with shifted 

filtering offers many advantages over XGM, which include preserving the 

polarity of the input signal and a simple configuration. Therefore we proceeded 

to concentrate on this scheme and present error-free performance at 80 Gb/s for 
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the blue-shifted filtering scheme. To examine in detail the shape and chirp 

attributable to the gain and chirp dynamics and the placement of the filter, a 

detailed FROG characterisation is carried out of the wavelength converted 

pulses at repetition rates from 10-80 GHz.  

o Chapter 6 gives a brief summary and analysis of the main points of the work 

presented in this thesis. 
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 CHAPTER 1 – HIGH-SPEED OPTICAL COMMUNICATIONS 

SYSTEMS 

1.1 Introduction 

Optical fibre communications systems provide huge-bandwidth capabilities, and offer 

many advantages over other communications systems [1]. Statistics reported by the 

Organisation for Economic Co-operation and Development (OECD) show that the 

number of broadband subscribers has increased by 33% from June 2005-June 2006 [2]. 

Presently the largest uptake is digital subscriber line (DSL), however as high-bandwidth 

consumer products unfold fibre-to-the-home (FTTH) will be required to support the 

large data transfer rates needed for these high-bandwidth products. In general Internet 

traffic is becoming more symmetric in that peer-to-peer communications presently 

accounts for 50-70% of all its traffic [3]. In business, high-bandwidth applications 

include e-commerce capabilities, video-on-demand and mobile telephony. In the home 

applications include high-definition television (HDTV), video sharing, and online 

gaming (which accounted for 10% Internet traffic in 2003) all of which are driving the 

need to install fibre-to-the-premises. Future applications which will continue to increase 

the demand for high-bandwidth include telemedicine (home care/health-monitoring), and 

multimedia connected homes (media PCs will replace numerous electronic devices such 

as music, HDTV, video phones, etc. which will receive feeds from one central device) 

[4]. Thus an overall increase in demand for bandwidth in the access and metro networks 

will in turn result in increased data capacity requirements in the transport/core network. 

Therefore, it is important for network providers to better utilise their installed fibre 

networks and to develop the components within these systems so that they can meet 

consumer demands of increased bandwidth requirements at cost-efficient prices. 

 

One way to exploit the large bandwidth capabilities of optical fibre is to use different 

multiplexing techniques, where multiple data channels are transmitted simultaneously 

over a single optical fibre. This chapter will discuss electrical time division multiplexing 

(ETDM) and the two main optical multiplexing techniques optical time division 

multiplexing (OTDM) and wavelength division multiplexing (WDM). The push for 

higher data rates on single wavelength channels, which has historically always left 

behind the development of high-speed electronics, necessitates the use of OTDM 

transmitters and receivers until their economically more attractive ETDM equivalents 

become available [5]. The principal motivation for all-optical networks arises from the 
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ability of optics and not electronics as being the most cost effective way to tap the multi-

Tb/s capacity of the optical fibre, i.e. through the use of optical bypass and optical 

switching nodes. In doing so the growing demand for bandwidth per user, higher path 

reliability, and simplified operation and management is fulfilled [6].  

 

1.2 Multiplexing Schemes to Implement High-Speed Systems 

Historically, serial optical data transport has proven most attractive because it has the 

advantage of decreasing the power and space consumption, reducing the complexity of 

terminals and thus lowering costs and management effort of the fibre network in 

comparison to parallel WDM systems. This trend has continued to hold true, despite the 

fact that transmission at higher per-channel bit rates is accompanied by a reduced 

tolerance to some fibre transmission impairments. As high-speed optoelectronic 

components mature, implementing ETDM schemes is the preferred option due to the 

reduced cost in data transmission. However, due to the limited speeds of optical 

modulators and driver amplifiers, OTDM is an option to achieve large increases in serial 

channel rates [5]. However new technologies are needed for the implementation of 

OTDM systems. An alternative multiplexing scheme which has the potential to take full 

advantage of the terahertz bandwidth of optical fibres is WDM [7]. Thus, a solution to 

increase the overall capacity of fibre networks will most likely employ WDM, however 

with increased capacity on each individual wavelength channel. The next data rate of 

individual wavelength channels will aim to meet the next important bit-rate hierarchy of 

160 Gb/s [8].  

1.2.1 Electrical Time Division Multiplexing 

The choice of serial versus parallel transmission is driven by the overall cost to transmit 

information across an optical network, which is impacted by aspects such as high-speed 

hardware availability, transceiver footprint, geographic network dimensions, optical 

transmission impairments, and wavelength management considerations [9]. Thus these 

demands can be achieved by implementing the highest speed ETDM schemes. Electronic 

circuitry for 40 Gb/s is currently available commercially, however electronic circuitry 

for bit rates of 80 Gb/s and greater is still in development stages [10]. Presently, only 

few reports of binary modulators operating at bandwidths of 80 GHz and above have 

been published [9]. Thus one of the first challenges to implementing more efficient 

optical networks is related to the development of commercial grade broadband high-

speed electronics for high-speed transmitter and receivers.  
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In ETDM, a number of lower speed (baseband) sub-channels are multiplexed together in 

the time domain using electronics [11]. A simple representation of an ETDM system is 

illustrated in Figure 1-1. The transmitter consists of a modulator, multiplexer and 

distributed feedback (DFB) continuous wave (CW) source, where the multiplexed 

electrical signal is converted into an optical signal. Future networks will most likely use 

external modulation techniques as they give superior transmission performance in 

comparison to directly modulated sources (which generate highly chirped pulses). The 

incoming data tributaries are multiplexed in the electrical domain, electrically amplified 

and applied to the first modulator. Presently, driver amplifiers lack sufficient bandwidth 

and can exhibit signal distortions at bit rates >80 Gb/s, thus electro-absorption 

modulators (EAMs) are more suitable in comparison to Mach Zehnder modulators 

(MZMs) as a smaller applied voltage is required [9]. The second modulator is optional 

and can be used to convert the non return-to-zero (NRZ) signal to a return-to-zero (RZ) 

signal, by gating the NRZ signal by the applied transfer function of the second 

modulator. To date the highest binary operating rates of ETDM transmitters are 100 and 

107 Gb/s [12]. Following transmission in the optical fibre, the signal is detected using a 

high-speed photodiode. The signal is then electronically demultiplexed into smaller 

tributary bit rates. In ETDM receivers, a synchronous electrical clock signal has to be 

recovered from the incoming data signal. Thus far, ETDM receivers have only 

accomplished 80 Gb/s operation [13]. 

 
Figure 1-1 A schematic illustration of an ETDM transmitter and receiver system. 
 

Thus, it is clear that present ETDM systems will result in the formation of bottlenecks at 

the transmitter and receiver and thus will not be capable of meeting the required 

bandwidth for optical networks.  

1.2.2 Wavelength Division Multiplexing 

Due to the limited speed of electronics as outlined above, further techniques are required 

to exceed the bandwidth of a simple point-to-point link. Wavelength division 

multiplexing (WDM) is one such scheme whereby the simultaneous transmission of 
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multiple data channels at different wavelengths over a single fibre is enabled (16 

channels operating at 10 Gb/s can give an overall data rate of 160 Gb/s) [14,15]. WDM 

is related to frequency division multiplexing (FDM), the electronic multiplexing scheme 

and takes advantage of the fact that optical sources have a very narrow spectral 

linewidth. Figure 1-2 illustrates a WDM multiplexing scheme. Light sources with 

narrow spectral widths operating at different wavelengths are coupled together and then 

transmitted along the optical waveguide. At the receiver, a coupler is used to split the 

data into number of different channels and filters are used to extract the channel at a 

certain wavelength that holds the requested information. For more efficient multiplexing 

and demultiplexing new components such as the arrayed waveguide grating (AWG) are 

replacing the traditional couplers and filters [16,17].  

 

 
Figure 1-2 A basic illustration of a WDM system.  
 

The advent of the Erbium doped fibre amplifier (EDFA) led to the wide scale 

deployment of WDM systems [18]. The EDFA allows for the amplification of many 

wavelength channels over a large span with little detrimental effects, resulting in the 

redundancy of repeaters. EDFAs dramatically reduced the overall cost of optical systems 

and enabled very large bandwidth and large transmission distance capabilities in optical 

networks. 

 

The most important factor in WDM systems is the channel spacing, the wavelength 

range between two peak wavelength emissions. The ITU-T G.692 standard (Oct 1998) 

sets out the minimum channel spacing that can be used, which is 50 GHz (corresponding 

to 0.4 nm at 1550 nm) and sets the starting central channel at a frequency of 196.1 THz 

(corresponding to 1528.77 nm) for dense WDM (DWDM) [14]. The channel spacing 

chosen for a specific network is required to take crosstalk effects into account, to ensure 

that the integrity of each of the independent messages from each wavelength source is 

maintained for subsequent retrieval at the receiver. Crosstalk can be divided into two 

categories, linear and nonlinear. Linear crosstalk is due to the inability of WDM optical 
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components (e.g. the stop-band rejection of optical filters) to prevent some power from 

the adjacent wavelengths falling on the receiver [19] resulting in the degradation of the 

receiver sensitivity [20]. Nonlinear mechanisms in fibre can cause coupling of power 

from one wavelength to another, such as stimulated Raman scattering (SRS) [21]. In 

addition, mixing of the crosstalk and signal optical fields can result in the generation of 

interferometric noise at the receiver if both arise from the same laser source or from 

distinct laser sources whose wavelengths are closely aligned [22,23]. 

 

The advent of optically amplified transmission and of DWDM technology has 

transformed the technology and also the economics of optical network deployments. In 

less than 10 years, the capacity of a single optical fibre equipped with commercial 

transmission equipment has increased from a single OC-48 signal, transmitting at a rate 

of 2.488 Gb/s to 160 OC-192 (9.953 Gb/s) signals, giving an overall data rate of 1.6 Tb/s 

[24]. The economics of DWDM are driving the development and deployment of a new 

generation of ultra-long-haul DWDM systems for terrestrial networks that can carry 

these high-capacity data streams over thousands of kilometres. As the capacity of 

DWDM systems have exploded, the cost of terminals and regenerators has become an 

even larger fraction of the total system cost. Minimising the number and the cost of 

regenerators is now a major economic driver in the design of new equipment and the 

design of carriers’ fibre networks. Therefore increasing the number of channels by 

decreasing the channel spacing will increase the overall costs. It has the additional 

expense of higher levels of penalty induced by linear and nonlinear crosstalk [25]. These 

economic factors are driving increased channel bit-rates from OC-48 (2.448 Gb/s) to 

OC-192 (9.953 Gb/s), and in the near future, to OC-768 (39.813 Gb/s) to minimise the 

number of regenerators, transmitters, and receivers. The cost benefit of increasing 

channel bit-rates is due to the redundancy of expensive optoelectronic regenerators 

between nodes [26]. However presently, the maximum data rate for each wavelength 

channel is defined by the maximum speed of electronics, thus a different multiplexing 

scheme is required to increase the individual channel rates even further.  

1.2.3 Optical Time Division Multiplexing 

Optical time division multiplexing (OTDM) is one such multiplexing technique that can 

provide ultra-high bit rates for each individual wavelength channel until high-speed 

electronics become commercially available, or to fully replace electronics which may not 

be able to reach speeds in excess of 100 Gb/s [27]. In addition, high-speed OTDM 

techniques are becoming increasingly important to investigate high-speed optical signal 

processing and for investigating the ultimate transmission capability of a single channel 
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[28,29]. OTDM is a very logical approach to investigate transmission issues before the 

advent of high-speed electronic or optoelectronic components, and can be used for 

evaluating similar systems carried out using ETDM to find the superior sub-system 

technology.  

 

OTDM was first proposed by Zhang et al. in a patent disclosure in 1987 [30] and first 

reported by Tucker et al. in 1988 [31]. The principle behind OTDM involves modulating 

a number of electrical NRZ data signals onto an optical pulse source to generate optical 

RZ data channels and then multiplex them together in the temporal domain. Figure 1-3 

displays a typical OTDM system. The temporal modulation of OTDM dictates that RZ 

coding is a requirement for OTDM. Thus an optical pulse source is required to generate 

very narrow pulses. The pulse width is determined by the overall required data rate and 

the optimum pulse width has been found to be a third of the bit slot duration (e.g. 2 ps 

for 160 Gb/s transmission). The pulse train is amplified to overcome the large loss 

introduced by the coupler, which splits the pulse train into the number of required paths 

(e.g. 2 ps pulses at 10 GHz, requires 16 paths for 160 Gb/s transmission). The optical 

pulse train in each path is encoded using electrical NRZ data by a modulator to give RZ 

data encoded optical pulses. Each path includes a fixed fibre delay so that each data 

channel is assigned a certain temporal bit slot. Clearly the overall data rate in an OTDM 

system is determined by the pulse width achievable, therefore emphasizing the 

importance of developing a high quality optical picosecond pulse source.  

 

 
 
Figure 1-3 A schematic illustration of an OTDM set-up. 
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At the receiver, an OTDM demultiplexer is required to separate the multiplexed channels 

to lower bit rates so that they can be detected using high-speed detectors. An ideal 

candidate for use as an all-optical demultiplexer is a semiconductor optical amplifier 

(SOA) [32,33]. For successful demultiplexing, a clock signal must be retrieved from the 

inputted data stream and optical clock recovery has been demonstrated using injection 

locked laser diodes [34]. One system parameter required for an OTDM signal is a high 

optical signal-to-noise ratio (OSNR) because of the high density of bits. For 40 Gb/s 

based systems a receiver will require an OSNR of 24 dB (0.1 nm resolution) in order to 

achieve a BER performance better than 10-9. Theoretically the OSNR must increase by 6 

dB for each factor of four increase in the channel bit rate, to maintain the same noise 

performance. A summary describing the progression of OTDM single channel 

achievable rates is given by Nakazawa, which includes a transmission example of a 1.28 

Tb/s OTDM system [35]. 

 

The overall advantages of implementing OTDM systems are: 

o Simple management and control (single stream vs. many wavelength channels). 

o A reduced number of transmitters and receivers, and a smaller footprint for 

networking components used for switching and routing (such as add-drops and 

cross connects). 

o The use of digital regeneration, digital buffering, coding and encryption. 

 

The reduction in component count and complexity (serial rather than parallel) of the 

network generally leads to an overall improvement of the size, cost, and electrical power 

consumption of the network. The deployment of high-speed transport reduces the 

number of paths to monitor and restore in case of hardware failure or malfunction, thus 

simplifying the provision, operation, administration, and maintenance of the network. It 

is cheaper to spare one high-speed transponder than several low-speed WDM 

transponders. Besides these aforementioned advantages of OTDM, there are a number of 

disadvantages associated with it, such as synchronisation and the elimination of protocol 

transparency.  

1.2.4 Hybrid WDM/OTDM System 

One method to overcome the restrictions of implementing OTDM and WDM at their 

maximum data rates is to use hybrid WDM/OTDM [36,37]. The hybrid approach works 

by utilising OTDM to enhance the bandwidth of a number of different wavelength 

channels in a WDM network by putting OTDM coding on top of the channels provided 

by WDM. This would result in a smaller number of WDM channels each operating at 
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much higher data rates. These benefits include space advantages in terminal buildings, 

lower power consumption, less complexity of terminals, and thus lower costs and 

management effort of the fibre network [38]. Many hybrid applications have been 

presented, operating at individual line rates of 160 Gb/s for 4 and 8 wavelength channels 

[38,39]. They exploit the parallelism of WDM architectures and the speed of OTDM 

[11]. A key requirement for such high-capacity hybrid networks, are optical pulse 

sources that are able to generate wavelength tunable picosecond pulses.  

1.2.5 Modulation Formats for High-Speed Systems 

An increasingly important aspect of future all-optical networks is the modulation format 

of the transmitted data. High-capacity transmission systems are known to suffer from 

impairments arising from fibre nonlinear effects [40], chromatic dispersion (CD) [41], 

polarisation mode dispersion (PMD) [42], and amplified spontaneous emission (ASE) 

[43]. One method to overcome these impairments is to use advanced modulation formats 

[44]. Modulation formats can be categorised into three main areas: amplitude-shift 

keying (ASK) or on-off keying (OOK), phase-shift keying (PSK), frequency-shift keying 

(FSK) or a combination of these. OOK encodes data by turning on or off the amplitude 

of light and includes NRZ and RZ formats. These formats are the most simple 

modulation formats to implement in high-speed optical systems. RZ data does not 

perform well with respect to dispersion, i.e. the broader spectrum of RZ compared to 

NRZ results in a faster broadening of the data signal. The smaller the duty cycle the 

faster the eye closes with cumulative dispersion (neglecting nonlinear effects). However, 

RZ coding generally enables transmission at higher powers, and is not limited by 

nonlinearity in the fibre to the same extent as NRZ coding [45]. Higher powers provide 

larger power budget margins that can be used to extend the reach of the system.  

 

Although NRZ is presently the format used in long-haul transmission, RZ coding will 

most likely be the coding of choice for high bit rate applications due to its superior 

performance resulting from its inherent receiver sensitivity improvement [46,47], and 

reduced sensitivity to fibre impairments caused by nonlinearity [45] and PMD [48]. 

Although RZ coding is more susceptible to CD, (which becomes a limiting factor at bit 

rates greater than 40 Gb/s in comparison to NRZ coding), RZ coding used in conjunction 

with more advanced modulation formats (e.g. RZ differential-phase shift keying) will 

provide overall better tolerance to the combination of system impairments [45]. In 

addition, data processing and regeneration is simpler to carry out in RZ format in 

comparison to NRZ. Therefore to implement RZ coding in future systems, the 

development of high-quality picosecond optical pulse sources are required. 
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1.3 All-Optical Processing for Future High-Speed Systems  

The successful delivery of information through such high-speed networks requires the 

optical signals to be manipulated or processed in some way; processing applications 

include amplification, regeneration, retiming, multiplexing, demultiplexing, reshaping 

and rerouting. Commonly data is processed electronically, which requires optical-

electronic-optical (OEO) conversion. Due to the introduction of the EDFA, WDM 

systems became cost-efficient as optical signals could be optically amplified without 

electrical conversion over a large wavelength span [18]. Cost reductions and increased 

flexibility will be the main drivers for the evolution of all-optical transport networks 

[49]. Electronic processing techniques therefore may not continue to be cost effective 

when they are scaled up to accommodate the growth in network capacity. In WDM 

systems, electronic regeneration would require demultiplexing the wavelength channels, 

detecting and electronically regenerating each individual channel and then transmitting 

the regenerated signal and multiplexing them together again. Electronic processing 

would therefore be costly in high-capacity systems with large channel counts. In OTDM 

systems, due to the limited speed of electronic components processing can not presently 

be implemented in the electronic domain, therefore all-optical processing techniques are 

a requirement.  

 

It has been predicted that the escalating bandwidth requirement is driving a shift from 

fixed to reconfigurable optical nodes [50]. In the physical layer, wavelength contention 

management issues will necessitate the implementation of wavelength conversion and 

regeneration on demand [51,52]. Thus all-optical wavelength converters will lead to an 

increased flexibility and capacity in the network, the capability of reconfiguration and 

the provision of decentralised management of wavelengths. Assigning dynamic links 

between channels allows for network management by a link-to-link process rather than a 

fixed start-to-end process, resulting in relaxed requirements. If there are link or node 

failures local reconfigurations can be carried out rather than a full global reconfiguration. 

Thus dynamic reconfiguration of a network, by applying all-optical wavelength 

conversion has the capability of creating a more cost-efficient network [53]. As a result 

the development and research of all-optical processing components and sub-systems are 

necessary, and to ensure they are effective they will be required to have high-speed 

capability, low cost, small footprint and efficient power consumption  
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1.4 Summary 

In 2005, typical commercial transport systems offered a maximum capacity per link near 

1 Tb/s. Assuming modest traffic growth rates maximum capacities of 10 Tb/s or higher 

will be reached within 10 years. This link capacity will require optical bandwidths that 

exceed devices that are available from the market today. Each multiplexing scheme 

described in this chapter will have a place in future networks, individually or as a 

combination. The choice of multiplexing scheme to be implemented will depend on the 

required transmission speeds, cost, performance, power consumption, footprint, and 

complexity of the network. However larger serial rate channels are preferable to the 

parallelism of WDM. Until the technology becomes available to implement very high-

speed ETDM/OTDM, WDM will continue as the optimum choice for long-haul and 

metropolitan area networks. Thus there is a requirement to develop all-optical processing 

components so that OTDM systems can be implemented with a view that they will 

enable dynamic and regenerative properties of high-speed signals. In this thesis, novel 

all-optical components/subsystems are presented that meet the demands in reaching the 

proposals outlined for future high-speed all-optical networks.  
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 CHAPTER 2 – PICOSECOND PULSE GENERATION FOR 

FUTURE HIGH-SPEED SYSTEMS 

2.1 Introduction 

Picosecond pulse generation is of paramount importance for the development of high-

speed optical communications. Return-to-zero (RZ) modulation is superior to non return-

to-zero (NRZ) modulation at data rates greater than 10 Gb/s due to its inherent receiver 

sensitivity improvement, and reduced sensitivity to polarisation mode dispersion [1,2]. 

More advanced modulation formats such as differential phase-shift keying are becoming 

increasingly popular, and research comparing RZ to NRZ coding, when used with these 

advanced modulation formats, show that RZ coding provides better tolerance to system 

nonlinearities [3]. Thus it is likely that future systems will employ RZ coding in some 

particular form, which requires the development of picosecond optical pulse sources. To 

implement these pulse sources in future high-speed communications systems specific 

standards must be met. These requirements include high side mode suppression ratio 

(SMSR), low temporal jitter, wavelength tunability, and small frequency chirp. Most 

importantly cost-effectiveness is imperative, as well as a simple configuration. In order 

to establish the quality of the generated pulses, different measurement techniques can be 

applied, which include an optical spectral analyser (OSA), a high-speed detector and 

oscilloscope, and an autocorrelator. However, these measurement schemes are limited in 

that they cannot retrieve the full electric field of an optical pulse. This limitation is 

overcome by the measurement technique of frequency-resolved optical gating (FROG). 

 

Picosecond pulse generation can be accomplished through various methods such as 

external modulation of a continuous wave (CW) source, mode locking and gain 

switching. This chapter presents an overview of these different pulse generation 

techniques. Of all the available techniques gain switching presents the simplest and most 

cost-efficient process for pulse generation. Thus the process of gain switching is 

explored in-depth, in particular how optical injection can greatly enhance the quality of 

gain-switched pulses. Then, a novel set-up is presented which generates widely 

wavelength tunable picosecond pulses via self and external seeding of a dual gain-

switched source.  
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2.2 Pulse Requirements 

Picosecond optical pulses need to adhere to specific requirements to be suitable for use 

in high-speed optical systems. These requirements include picosecond pulse width, 

narrow spectral width, giving Fourier transform limited pulses. Further characteristics of 

the pulses should include low temporal jitter, high SMSR, and wide wavelength 

tunability [4,5]. These parameters are now explained in more detail. 

2.2.1 Pulse and Spectral Width 

In order to increase the overall achievable data rates of future high-speed systems very 

narrow pulses in the order of picoseconds and femtoseconds need to be generated. 

Previous research has shown that a duty cycle of less than 0.4 is the optimum for optical 

time division multiplexed (OTDM) systems to prevent an induced penalty due to 

incoherent cross talk [6]. Typically, the duty cycle chosen is 0.33 which equates to a 

pulse width of 8 ps and 4 ps for 40 Gb/s and 80 Gb/s respectively. 

 

The spectral width is also very important. As pulses get narrower, there is a 

corresponding increase in the spectral width. However, for each pulse width there is a 

corresponding minimum spectral width for a particular pulse shape. If the spectral width 

is wider than its minimum value dispersive effects will be much greater causing the 

pulse to spread out in time, thus reducing the transmission length of the signal. Thus, 

transform limited pulses are required. The time bandwidth product (TBP) is a 

measurement of how transform limited pulses are and it is calculated by multiplying the 

full width half maximum (FWHM) spectral width (Hz) by the FWHM temporal width 

(s) [7]. The TBP is a function of the actual pulse shape, thus Gaussian and sech2 pulses 

have TBPs of 0.441 and 0.315 respectively.  

2.2.2 Frequency Chirp 

Frequency chirp is related to the dynamic broadening of the spectral bandwidth, which 

results in pulses which are not transform limited. Chirp can be generated in directly 

modulated lasers due to the modulation induced changes in the carrier density. It can 

also be generated as pulses propagate due to self phase modulation (SPM) in optical 

fibre [8]. The generated chirp is deleterious in optical fibre communication systems as it 

can cause an increased rate in pulse broadening due to dispersion [9]. 

2.2.3 Extinction Ratio and Temporal Pedestal Suppression Ratio  

The extinction ratio (ER) of a pulse is the ratio of on-state power to off-state power. A 

similar parameter is the temporal pedestal suppression ratio (TPSR), which is the ratio of 
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power at the peak of the pulse to the power at the peak of the next pedestal. This is an 

important parameter to investigate as many pulse sources generate satellite pulses or 

pedestals, which will lead to increased performance penalty due to interferometric noise 

[10]. The effect of varying TPSR heights is investigated further in Chapter 3. It has been 

found that a TPSR of at least 30 dB is required in a high-speed system to ensure penalty 

free transmission [11,12].   

2.2.4 Timing Jitter 

Jitter is defined as the random fluctuation of the pulse from its starting position. As pulse 

widths become shorter, pulse-to-pulse timing jitter becomes a more serious factor 

determining the whole system performance, such as bit error rate (BER) and temporal 

resolution. Experiments and theory have shown that the timing jitter should be less than 

1/12 of the switching window width of the demultiplexer to achieve a BER of less than 

10-9 for a signal pulse whose width is equal to 1/5 the time slot width [13]. Thus for 80 

Gb/s systems the jitter is required to be better than 1 ps rms for an ideal demultiplexing 

window of 12 ps.  

2.2.5 Side Mode Suppression Ratio 

The side mode suppression ratio (SMSR) is defined as the ratio of the main mode power 

to the power carried by the most intense side mode. Previous results have shown that the 

SMSR of an optical pulse source needs to at least 30 dB. In wavelength division 

multiplexing (WDM) systems this is a stringent parameter as low SMSR can cause 

interference between side modes and adjacent wavelength channels, and can also result 

in mode partition noise (MPN) [14]. The side modes may interfere with adjacent WDM 

channels of the same wavelength, and this interference generates a beat noise that 

imposes a power penalty on that channel [15]. MPN is caused by the random pulse-to-

pulse power fluctuation among longitudinal modes of laser diodes in conjunction with 

chromatic dispersion induced by transmission in optical fibre [16]. In a laser random 

fluctuations between the main mode and side mode can occur but the overall power in 

the pulse can remain constant. However when this laser light is transmitted through a 

dispersive fibre, the signals emitted in different modes will be delayed and attenuated 

with increasing distance. Since the power fluctuations among the dominant modes can 

be quite large, significant variations in signal levels can occur at the receiver. This will 

result in timing jitter and pulse broadening at the receiver for high bit rates [17].  

2.2.6 Wavelength Tunability 

Wavelength tunablity is another parameter that needs to be considered. A wider tuning 

range translates to a greater number of channels that then can be used in an optical 
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communications system. This is an especially important feature in next generation 

hybrid WDM/OTDM systems were dynamic provisioning enabled by wavelength 

tunability will be employed.  

2.3 Pulse Measurement Schemes 

To determine the quality of pulses in high-speed optical communication systems a 

variety of pulse measurement schemes are required. An oscilloscope in conjunction with 

a photodiode, an OSA, and an autocorrelator can provide indications of the spectral or 

temporal quality of the pulse under measurement. However, a full electric field 

characterisation is required to fully understand the effects that pulses undergo in optical 

components [18] and in fibre transmission [19]. Applications of short pulse 

characterisation includes optimisation of pulse carving [20], characterisation of pulse 

source parameters [21], and analysis of optical signals after propagation in optical fibre 

[19,22]. In this section a brief overview of the measurement techniques used in this 

thesis is given but a more comprehensive review of high-speed measurement techniques 

can be found in Ref. [23]. 

2.3.1 Oscilloscope in Conjunction with a Photodiode  

From test and measurement applications, such as performance monitoring in an optical 

communications network, the signal of interest is repetitive rather than a unique singular 

event. This allows the use of sequential sampling which uses the concept of equivalent 

time [24]. In general picosecond optical pulses are detected and characterised using a 

high-speed photodiode in conjunction with a high-bandwidth oscilloscope. Two types of 

oscilloscopes which can be used to view high-speed signals are a wide-bandwidth 

sampling oscilloscope and a real-time sampling oscilloscope. A real-time sampling 

scope can be regarded as an ultrafast analogue-to-digital converter. The sampling rate 

can presently detect signals as fast as 5 Gb/s accurately [25]. A wide-bandwidth 

sampling oscilloscope samples at a much slower rate but can have an ‘overall 

bandwidth’ in excess of 80 GHz. This is achieved through the triggering mechanism. 

The trigger periodically samples the data signal, but after each sweep the pulse is 

sampled at a very small incremental time delay so that the same point is not sampled 

again. This process is then repeated, to give the pulse trace on the screen.  

 

The experiments described within this thesis use an Agilent DCA series 86100 (A-C) 

with a 60 GHz maximum bandwidth in conjunction with a 50 GHz u2t photodiode to 

measure the eye diagrams and oscilloscope traces of incident pulses. These bandwidths 

translate to a pulse width measurement resolution of ~9 ps [26]. In addition to the DCA 
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measuring the pulse shape, it is also used for jitter measurements in the following 

chapters. Jitter measurements can be accurately measured down to 1 ps, but values 

below this are limited by the resolution of the trigger. 

 

Another method to record pulses in the temporal domain is to use streak cameras 

[27,28], however the highest temporal resolution to date is 200 fs [29]. Thus for a 2 ps 

pulse only 10 measurement values will be obtained. An alternative to bandwidth limited 

photodetectors is the application of pulse sampling [30]. The presently available DCAs 

can be used in conjunction with an optical sampler to achieve optical bandwidths 

capable of measuring a 320 Gb/s signal [31]. A 100 fs pulsed laser interacts with the 

input data signal in a nonlinear crystal to generate an optical signal at a new wavelength, 

which is measured in a fast photodiode. However the main disadvantage of sampling is 

that the phase information relating to the pulse is lost. 

2.3.2 Optical Spectrum Analyser 

The measurement of a pulse in the frequency domain is achieved using an optical 

spectrum analyser (OSA), which can incorporate either spectrometers or interferometers. 

The most common spectrometer involves diffracting a collimated beam off a diffraction 

grating and focusing it on a camera [32]. Alternatively, Fourier transform spectrometers 

operate in the time domain and measure the integrated intensity from a Michelson 

interferometer, to give the field autocorrelation. The Fourier transform of the field 

autocorrelation is the spectrum [33]. Spectral measurements taken for experiments 

within this thesis are measured using an Anritsu diffraction grating spectrum analyser 

(MS9717A and MS9710B), for the measurement of wavelengths from 0.6 µm to 1.7 µm, 

with 0.05 nm resolution in the 1.55 µm range [34].   

2.3.3 Autocorrelation 

Typically, the most common method to measure ultrashort pulses in the temporal 

domain, which are too narrow for high-speed oscilloscopes and detectors, is to use 

autocorrelators [35,36]. The basic principle behind an autocorrelator is that the pulse is 

used to measure itself. The typical configuration of an autocorrelator is displayed in 

Figure 2-1 [37]. The input pulse to be measured is split in two by a beam splitter. One 

arm is delayed by a small time delay, τ with respect to the other arm, and the two pulses 

overlap and combine in a nonlinear medium to generate a second harmonic generated 

(SHG) signal. SHG is the nonlinear process where an input wave can generate a wave 

with twice the optical frequency (i.e. half the wavelength) [38,39].  
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Figure 2-1 The configuration of a typical SHG autocorrelator [37].  
 

The SHG light generated in the nonlinear crystal is directed on to the detector and the 

resultant electrical signal is integrated over a period that is long compared to the pulse 

duration. The total optical field incident on the nonlinear crystal is the sum of the direct 

and retarded fields [33]: 

)exp()()()( 11 ωττεεε ittt −−+=                                        Equation 2-1 
 

The second harmonic field has a complex amplitude that is proportional to the square of 

the complex amplitude ε(t) of the original incident field and it can be shown that:  

)()(),( ττ −∝ tEtEtE SHG
sig                                            Equation 2-2 

 

This signal is then incident on the optical detector. The detector has a slow response and 

integrates the signal resulting in an output that is a function of delay, τ only to give: 

)()(),( ττ −∝ tItItI SHG
sig                                                   Equation 2-3 

 

Detectors are too slow to time resolve ),( τtI SHG
sig , so the measurement produces the 

intensity autocorrelation A(2)(τ) which is a time integral: 

∫
∞

∞−
−= dttItIA )()()()2( ττ                                                Equation 2-4 

 

The autocorrelation always has its maximum at τ = 0, and is symmetrical and does not 

give any phase information regarding the pulse. An interferometric autocorrelation 

(which is generally based on a Michelson-type interferometer) measures an 

autocorrelation of collinear beams. Some chirp information regarding the pulse can be 

extracted using this method [40,41]. However, for both cases certain assumptions have 

to be made about the pulses in order to ascertain characteristics from the measured 
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autocorrelation. Thus a very different pulse width and pulse shape can be retrieved from 

the autocorrelation in comparison to the real/actual pulse structure [37,42].  

 

Other nonlinearities can be used for autocorrelation and would have different 

mathematical functions to describe their autocorrelation. However the SHG nonlinearity 

is the most sensitive, such that it is most suitable for use in telecoms as the optical pulses 

to be characterised are typically low in power. 

2.3.4 Second Harmonic Generation Frequency-Resolved Optical Gating 

Over the past decade there has been increased interest in using the technique of 

frequency-resolved optical gating (FROG) for full electric field characterisation [37,45]. 

The FROG measurement technique involves taking a measurement in the time-frequency 

domain. It is an extension of the autocorrelator as described above, however it measures 

the spectrum of the pulses rather than the signal energy at each delay. Many techniques 

exist which use the FROG technique to measure ultra-short pulses [37,46], but the 

following description concentrates on SHG FROG, as SHG FROG is the measurement 

set-up used for pulse characterisation throughout this thesis. The experimental 

configuration of the FROG is shown in Figure 2-2 [37]. The spectrometer outputs the 

spectrogram of E(t) which in turn can determine E(t). An example of a spectrogram is 

shown in Figure 2-3. 

 

 
Figure 2-2 Experimental configuration of the SHG FROG [37]. 
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Figure 2-3 (a) A linear and (b) a logarithmic spectrogram of a 2 ps mode-locked source. The 
spectrogram builds up information about the pulse in the temporal and spectral domain and the 
colour indicates intensity.  
 

The spectrogram measured by a SHG FROG can be described by the following equation: 
2

)exp()()(),( ∫
∞

∞−
−−= dttitEtEI SHG

FROG ωττω                       Equation 2-5 

 

The pulse is spectrally resolved at each delay point, i.e. the FROG measures the signal 

spectrum vs. delay rather than the autocorrelator signal energy vs. delay.  

 

The pulse intensity and phase are obtained from this measured spectrogram by applying 

a 2-D phase retrieval program [47-49]. The basic algorithm starts with an initial guess of 

the electric field, and applies the signal field to it (i.e. for SHG E(t)E(t-τ)), before 

Fourier transforming it to find the signal field in the frequency domain. The FROG trace 

is then used to generate an improved signal field. This improved signal field is inversely 

Fourier transformed and the new signal field is used to generate a better guess to 

continue the process again. This is repeated until the estimated signal field has a low 

error between it and the measured FROG trace.  

 

Thus this retrieval gives the complex amplitude of the optical wave as described in 

Equation 1 of Appendix I. As a result the temporal profile of the pulse, its spectral 

amplitude and corresponding spectral phase can all be measured. However there are 

some ambiguities associated with the SHG FROG (which can be overcome with other 

FROG techniques). These ambiguities include: 

1. The absolute phase remains unknown. 

2. There is no absolute time reference because the pulse is used to measure itself, 

therefore the pulse arrival time or delay is not measured.  

3. The signal can be inverted in the temporal domain, i.e. there is a time ambiguity. 
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4. If the pulse consists of two or more well-separated pulses, then the relative phase 

of the pulses have an ambiguity. In addition if the well separated pulses are 

symmetrical, one pulse’s phase can be time reversed with respect to the other.   

 

However FROG completely determines the pulse with essentially infinite temporal 

resolution, even if the temporal delay is of the order of the pulse itself [50]. This is 

because the time delay measurement gives long time resolution and the frequency 

domain measurement provides the short time resolution of the pulse structure.  

2.3.5 Accurate Picosecond Pulse Measurement using FROG 

In taking a FROG measurement it is important that the FROG trace has returned to a 

reference level so that the pulse is fully measured by the temporal span of the 

spectrometer, in order for the algorithm to retrieve an accurate pulse. The FROG 

measurement scheme deals well with noise in the system for example 10% additive or 

10% multiplicative noise will lead to only a 1% rms error in the retrieved intensity and 

phase [37]. If the background noise is too large, this will result in large frequency 

fluctuations in the retrieved pulses. Thus to avoid background noise, the background 

noise is initially measured and subtracted before the pulses are measured experimentally. 

Then following a FROG measurement of a pulse, simple processing can be applied to 

filter any further noise in the measurement.  

 

The FROG error measures the rms average difference between the experimental FROG 

trace and the retrieved FROG across the entire trace. Errors less than 0.005 result in an 

accurate retrieval of low noise data on a 128 x 128 pixel trace. The acceptable error 

scales by N-1/2 with the grid size, thus 0.0035 is the acceptable error for a 256 x 256 grid 

size. 

 

A 2 mm thick Lithium Niobate (LiNbO3) crystal is employed in the FROG used for the 

experiments in the following chapters to perform the process of SHG. For low pump 

intensities, the second harmonic conversion efficiency, γ is small and grows linearly with 

increasing pump intensity, so that the intensity of the second-harmonic wave, P2 grows 

with the square of the pump intensity, P1.  
2

12)( PPSHG γ=                                       Equation 2-6 
 

An important consideration is to ensure that the nonlinear crystal is phase matched. This 

is achieved through optimising the polarisation of the input signal and aligning the 

crystal orientation for different wavelengths. When the polarisation wave and light wave 
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at the SHG frequency are phase matched (i.e. when the phase velocities of the two waves 

are equal) there is maximum transfer of energy to the SHG wave from the pump [39]. 

Phase matching is very sensitive to crystal orientation, therefore the LiNbO3 crystal is 

rotated to achieve optimum phase matching for different input wavelengths. The phase 

matching condition can be described as a medium whose refractive index at ω and 2ω 

are the same [37]. As LiNbO3 crystals have a large phase matching condition, they can 

be employed in measurements that range over a large wavelength span.  

 

The FROG has a temporal step delay of 26.66 fs, achieved by a high accuracy stepper 

motor (linear resolution of 4 µm). The spectrometer is a double pass diffraction grating, 

which has a focal length of 30 cm. The pixel-to-pixel spectral spacing of the linear 

charge coupled device (CCD) array is 0.023 nm which gives an optical resolution of 

<0.05 nm at 750 nm.  

 

A typical measurement of a pulse involves a optimising the number of counts measured 

on the spectrometer by adjusting the polarisation and crystal angle to obtain optimum 

phase matching of the nonlinear crystal. A 2 ps high-quality pulse at 10 GHz would 

require 13 dBm input power to obtain maximum sensitivity of the FROG measurement 

scheme and to minimise the time taken to acquire the results. Thus for the measurement 

of typical pulses generated by low-power telecommunication pulse sources an amplifier 

is required in conjunction with the FROG in order to obtain a sufficient power level. 

Therefore all FROG characterisations carried out in this thesis employed a high power 

Erbium doped fibre amplifier (EDFA). This EDFA is specifically designed for the 

amplification of pulses in the order of 2 ps and is operated in the linear gain regime such 

that it does not alter the phase of the optical pulses being characterised by the FROG.  

 

The number of counts measured by the spectrometer can also be increased by increasing 

the integration time. Longer integration periods relate to a greater CCD exposure time. 

An exposure time of 0.1 s is sufficient for most signals, but for weaker signals this time 

can be increased anywhere up to 10 s. Once the signal viewed on the spectrometer is 

optimised, the spectrogram is then taken; this is initiated through the pulse analyser user 

interface as shown in Figure 2-4.   
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Figure 2-4 The pulse analyser interface of the FROG, which initiates and records the spectrogram 
and autocorrelation measurement of the pulse. 
 

Post-processing techniques can then be applied to the acquired raw spectrogram to 

manipulate the data so that it is in an appropriate format for the retrieval. This process 

involves thresholding and interpolating the data. A 2-D phase retrieval algorithm is then 

applied to the spectrogram which retrieves the electric field of the pulse. The number of 

iterations for the algorithm is set in the user interface and typically 50-100 iterations are 

sufficient to achieve convergence. The algorithm generates a spectrogram and a low 

error difference between this spectrogram and the measured spectrogram indicates an 

accurate retrieval. The retrieval user interface is shown in Figure 2-5. In all the 

experimental work presented within this thesis, the pulse recovery routinely gave 

retrieval errors <0.005 on a 128 x 128 grid thus indicating the accuracy of all the 

retrieved pulse measurements. 
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Figure 2-5 The pulse recovery interface which applies the 2-D phase retrieval algorithm to the 
post processed spectrogram to retrieve the pulse electric field.  
 

2.4 Pulse Generation Techniques 

2.4.1 Pulse Carving by an External Modulator 

Pulse generation can be achieved by the modulation of a CW light by an external 

modulator as shown in Figure 2-6. Pulse generation is obtained as a result of the 

nonlinear response of the modulator as a function of drive voltage. Modulators can have 

the form of a Mach-Zehnder interferometer (MZI) or an electro-absorption modulator 

(EAM). The MZI is typically configured using LiNbO3 as it has a strong electro-optic 

effect. Constructive interference due to phase matching of the two waveguides occurs 

when no voltage is applied. Upon an applied voltage the refractive index of the 

waveguides change, causing a phase difference between the waveguides. When the two 

arms are 180º out of phase with respect to one another there is complete destructive 

interference. Thus if the propagation delays are equal for the two waveguides chirp free 

pulse generation can be achieved [51].  

 



 32

PC

Bias-tee

Signal Generator

Osc Trigger

RF Amp

EAMCW Source

O/P Pulse Train

 
Figure 2-6 An experimental set-up of a modulator pulse carving scheme. Pulse generation is 
accomplished by applying a sinusoidal RF signal to a modulator (e.g. EAM), which carves optical 
pulses in the CW signal as a result of the nonlinear transfer function of the modulator.  
 

EAMs in comparison to other modulators can achieve shorter pulse widths due to their 

larger nonlinear transfer curve [52]. An EAM is a semiconductor device, whereby an 

applied reverse bias causes the effective bandgap energy to decrease due to the resultant 

electric field in the depletion region [26]. Thus photons with energy smaller than the 

bandgap are absorbed. This electro-optic effect is due to the Franz-Keldysh effect in bulk 

EAMs and due to the quantum confined Stark effect in quantum-well (QW) EAMs [53]. 

Pulses generated by an EAM in comparison to a Mach Zehnder modulator (MZM) 

typically have a larger chirp, as an EAM is made from a semiconductor material. 

Therefore carrier density changes result in a corresponding phase change. However in 

comparison to directly modulated lasers the chirp is considerably less as there is not the 

same ringing of carriers due to relaxation oscillations [51].  

 

An example of a DC bias transfer curve of an EAM is presented in Figure 2-7 (a). Using 

the experimental set-up as shown in Figure 2-6, 5 ps FWHM pulses are generated. The 

EAM was driven by a 15 dBm sine wave at a repetition rate of 40 GHz, and a CW signal 

of 3 dBm was optically input. The pulse temporal profile and its corresponding chirp 

profile as measured by the FROG technique are presented in Figure 2-7 (b). The small 

chirp (TBP = 0.45) translates to a pulse which is nearly transform limited. This example 

illustrates the advantages of pulse generation based on external modulation of a CW 

signal. They include the generation of nearly transform limited pulses with very low 

jitter and the scheme has a simple configuration with the ability to employ tunable 

repetition rates. However the major disadvantages are that the modulator is an expensive 

component, it introduces a substantial insertion loss and further compression techniques 

are required to generate shorter pulse widths.  
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Figure 2-7 (a) DC transfer characteristic of an EAM at 1550 nm and (b) a corresponding 
generated pulse at 40 GHz with a FWHM of 5ps.   
 

2.4.2 Mode Locking 

In general shorter pulse widths can be obtained by mode locking a laser. A full review of 

mode locking is given in Ref. [54-56]. The output of a laser occurs at a number of 

discrete wavelengths corresponding to different resonant frequencies (modes) of the 

resonator. If there is no fixed phase relationship between these modes, the various 

frequencies will interfere with each other, and the output will fluctuate over time. By 

fixing the relative phases of these modes, the laser will emit a train of narrow light 

pulses due to constructive and destructive interference, which is the basic principle of 

mode locking. The larger the band of frequencies (the gain bandwidth) over which the 

laser oscillates the shorter the duration of the mode-locked generated pulses. In order to 

induce the phase modulation of the laser, either passive or active mode locking can be 

applied.  

 

Passive mode locking is achieved by placing a nonlinear element within the cavity of the 

laser to switch high intensity light. The cavity structure of a passively mode-locked 

source is illustrated in Figure 2-8. The nonlinear element typically a saturable absorber 

(SA) has a nonlinear transfer curve whereby high intensity light is transmitted and low 

intensity light is absorbed. Initially there will just be CW light in the cavity, but random 

intensity fluctuations will occur, leading to high intensity spikes oscillating in the cavity. 

After a number of round-trips these high intensity spikes will result in a train of optical 

pulses. Passive mode locking can produce a stable pulse train with very short pulse 

widths. However there can be issues regarding initiation of the mode-locking process as 

it relies on random noise fluctuations [7].  

(a) (b) 
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Figure 2-8 An illustration of the process of passive mode locking. SA: saturable absorber, AR: 
anti-reflection coating, L: the cavity length, c: the speed of light, DG: diffraction grating. 
 

In active mode locking, the switching is typically achieved by a modulator driven by an 

external power source. The loss modulator that is commonly used may be pictured as a 

shutter that periodically opens and closes. When the modulation frequency is correctly 

adjusted the shutter period is then exactly synchronized to the resonator round-trip time. 

Thus a short pulse travelling back and forth within the laser may pass through the shutter 

without loss, again and again. Active mode locking generates broader pulses in 

comparison to pulses generated by passive mode locking, because passive mode locking 

pulses are generally related to the response time of the SA which is inherently faster than 

the shutter speeds achievable by active mode locking. 

 

Hybrid mode locking is a mixture of passive and active mode locking. It has the benefit 

of passive mode locking i.e. narrow pulse widths, and the advantage of active mode 

locking i.e. the pulse jitter is improved and becomes close to the jitter of the applied 

electrical source. Figure 2-9 displays the intensity and corresponding chirp profile of a 

hybrid mode-locked source measured using the FROG technique. The pulses are 

generated using a commercially available tunable mode-locked laser (TMLL 1550) 

source available from u2t [57]. The TMLL was driven by a 30 dBm 10 GHz sine wave 

and generates pulses in the order of 2 ps tunable over a 70 nm wavelength range. The 

inset of Figure 2-9 shows the oscilloscope trace of the pulse which gives an indication of 

the low jitter levels achievable by this pulse source.   
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Figure 2-9 The intensity and corresponding chirp profile of a 10 GHz mode-locked source with a 
1.5 ps FWHM driven by a 30 dBm RF sine wave. The inset shows an oscilloscope trace of the 
source to give an indication of the low jitter performance of the pulse.  
 

Although the mode-locking process has many advantages, it has a serious drawback due 

to the described cavity complexity, which limits mode locking to a harmonic of the 

cavity frequency [58].  

2.4.3 Gain Switching 

One of the simplest and most reliable methods to generate picosecond pulses involves 

gain switching [56,59,60]. The pulses can be wavelength tunable and can be modulated 

at any arbitrary repetition rate. Gain switching is achieved by applying an electrical pulse 

or sine wave of high amplitude to a DC biased laser below threshold. The outputted 

pulse can be up to 10 times shorter than the applied electrical signal. The disadvantages 

of gain switching, which include low SMSR and large jitter, can be easily overcome by 

seeding the laser by self or external injection. The next two chapters examines optical 

processing techniques used to enhance gain-switched pulses in order to generate high 

quality picosecond pulse sources, because gain switching is a very simple and cost-

effective method in comparison to the other pulse generation schemes previously 

outlined. 

2.5 Gain Switching 

2.5.1 Principle of Gain Switching 

Gain switching is achieved by applying an electrical pulse or sine wave of high 

amplitude to a DC biased laser, thus switching the optical gain through the modulation 

of the driving current [56]. The first indications that short optical pulses could be 

generated by the gain-switching technique came about with the observations of 

relaxation oscillations when turning on a laser diode from below threshold using 

electrical pulses with fast leading edges. The generated optical pulses were considerably 
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shorter than the applied electrical pulses [61]. Gain switching consists of exciting the 

first relaxation oscillation and terminating the electrical pulse before the onset of the 

next oscillation. Electrical pulses can be generated using an electrical comb generator 

typically utilised by a step recovery diode [62]. Alternatively a high-frequency large- 

amplitude sine wave can be applied to the laser diode.  

 

The principle of gain switching is illustrated in Figure 2-10. The laser is DC biased 

below threshold at I0, and a step current is applied (Figure 2-10 (a)). The resultant 

relaxation oscillations are clearly visible, until the laser reaches steady-state [63]. These 

periodic oscillations are due to the time delay between the build-up of gain in the active 

region and the initiation of photon generation. The carrier density population in the 

active region increases due to the applied step current. The carrier decay due to 

spontaneous emission is typically of the order of 10’s ps. Due to the increasing carrier 

density, net gain is achieved and initiates stimulated emission. As the photon density 

rises, the carrier density quickly decreases. When the carrier density is depleted to below 

the carrier threshold, the optical pulse is terminated, leading to the process repeating 

again until steady state is reached. At steady-state the carrier density threshold, nth 

remains clamped, as any increase in applied current leads to an increase in generated 

photons via stimulated emission. To generate a single optical pulse, the step current is 

replaced by an electrical pulse or sine wave as illustrated in Figure 2-10 (b). The 

electrical current switches off just after the first relaxation oscillation, suppressing the 

generation of further relaxation oscillations. However, if optimum settings are not 

applied to the RF and DC bias currents, a secondary pulse can be generated on the tail of 

the gain-switched pulse. It occurs when the electrical sine wave continues to pump 

carriers into the laser active region, bringing the carrier density above threshold again, 

reinitiating the lasing process until the carriers are once again depleted to below 

threshold.  
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Figure 2-10 An illustration of the current and photon densities for (a) a current step and (b) a 
current pulse. Nth: carrier density threshold. 
 

2.5.2 Laser Diode Parameters which Determine the Gain-Switched Pulse Shape 

The pulse shape of a gain-switched diode can be described as a combination of two 

exponential curves with time constants τr (rising edge) and τf (falling edge). The pulse 

rise time is inversely proportional to the net charge transferred by the electrical signal to 

the active region. The fall time depends on how far below threshold the carrier density is 

brought. If I0 remains too high, a pedestal can form on the trailing edge of the gain-

switched pulse, which is a consequence of the second relaxation oscillation. These two 

examples are illustrated in Figure 2-11 which compares a gain-switched Fabry–Pérot 

(FP) laser DC biased at Ith/2 and at Ith.  

 

      
 

Figure 2-11 A gain-switched laser biased (a) below threshold (14 mA), and (b) at threshold (28 
mA) with a large RF amplitude modulation (29 dBm). 
 

The optimum DC drive bias, I0 is typically half the threshold current, i.e. Ith/2, in order to 

achieve the smallest pulse width [56]. By increasing the DC bias current above this 
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optimum value the pulses are broadened. As I0 increases above Ith, the gain-switched 

pulse width becomes insensitive to the further increases in I0. The amplitude and 

frequency of the applied modulation current, Isig also determines the pulse 

characteristics. An increase in the amplitude of the modulation signal leads to a decrease 

in pulse width, while an increase in its frequency results in an increase in the optical 

pulse width, and a reduction in peak power. The pulse width broadening is due to a 

reduction of the modulation depth.  

 

One of the main reasons limiting the further reduction of the gain-switched pulse width 

(10-40 ps) is due to the difficulty of sustaining a large inversion level (i.e. a build up of 

free carriers in the active region) before the emission of the optical pulse [64]. Thus there 

is a trade off in optimising the bias for a gain-switched laser. If the laser is unbiased, a 

large build-up of charge is achieved but it is possible for the laser not to reach positive 

inversion. On the other hand if the laser is biased above threshold, the existing 

stimulated emission will clamp the inversion level to just above threshold, thus the 

generated pulses are wider and have less peak power. The maximum achievable 

inversion is limited by the fundamental parameters of the laser, such as the differential 

gain, the photon lifetime and nonlinear gain compression.  

 

The bandwidth of a laser can be improved by increasing the differential gain and 

reducing the photon lifetime [65]. The differential gain is dependent on the material and 

structure of the device, in particular the length of the device. The photon lifetime can 

also be reduced by shortening the device length of the laser diode and by applying an 

antireflection coating to one of the facets. Thus, a shorter device length results in the 

generation of narrower pulse widths [66]. Nonlinear gain compression is detrimental in 

that it limits the peak photon density by damping the large frequency oscillation, thus 

increasing the pulse width and reducing the peak power. The nonlinear gain compression 

is dependent particularly on the device structure and its effects can be offset by 

introducing a destabilising effect (e.g. the introduction of an intracavity SA) [67]. The 

nonlinear gain coefficient sets the limit on the minimum obtainable pulse width and 

maximum obtainable peak power. 

2.5.3 Laser Diode Multimode Rate Equations 

To numerically determine pulse shape generated by the gain-switching process, the rate 

equations can be used [68]. The carrier density rate equation incorporates all the 

mechanisms by which the carriers are generated or lost inside the active region. Since 
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the number of electrons is equal to the number of holes, it is sufficient to consider one 

rate equation for electrons alone. The multimode carrier density rate equation is: 

nm
mm

NSg
qV
I

dt
dN

τ
−−= ∑                                     Equation 2-7 

 

where, N is the carrier density, t is the time, I is the applied current, q is the electronic 

charge, V is the volume of the active region, τn is the carrier lifetime, gm and Sm are the 

optical gain and photon density of the mth longitudinal mode respectively. Carrier 

diffusion is neglected for lasers where the active region width is very small in 

comparison to the diffusion length. The first term on the right-hand-side (RHS) of this 

equation governs the rate at which the carriers, electrons or holes are injected into the 

active region because of external pumping. For a gain-switched pulse, the applied 

current is described as a sine wave, Isig sitting on a DC bias, I0. The other terms take into 

account the carrier loss owing to various radiative and non-radiative recombination 

processes. The second term describes stimulated emission and leads to a nonlinear 

coupling between photons and charge carriers. gm = dg/dN(N-N0), where dg/dN is the 

differential gain and N0 is the carrier density required to achieve transparency. The last 

term takes monomolecular, spontaneous and Auger recombination into account. 

Monomolecular recombination is due to mechanisms such as trap or surface defects, and 

results in electronic levels near the centre of the bandgap. It only affects one carrier-type. 

Spontaneous emission involves both types of carriers, whereby an electron in the 

conduction band and a hole in the valence band recombine in a random process and a 

photon is spontaneously emitted. Auger recombination occurs when two carriers collide. 

The collision transfers the energy released from the recombining carrier to the surviving 

carrier, and the surviving carrier goes to a higher energy level.  

 

The photon density rate equation for each longitudinal mode is described by: 
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                          Equation 2-8 

 

where, Γ is the optical confinement factor (the fraction of mode energy confined within 

the active region), τs and τsp is the photon and spontaneous recombination lifetime 

respectively and βsp is the spontaneous emission factor. The first term on the RHS gives 

the number of photons that are created due to stimulated emission in the optical gain 

region. The second term is the photon decay rate which reduces the photon density as it 

accounts for the photons lost through the cavity facets at each end of the laser and to 

internal processes. The last term governs the number of photons that add to the lasing 
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process due to spontaneous emission. A certain fraction of the carriers that 

spontaneously recombine emit photons that enter the waveguide travelling in the correct 

direction and a proportion of these have the same wavelength as the stimulated emitted 

photons.  

2.5.4 Frequency Chirping due to Gain Switching 

Gain switching is a result of a large variation of the carrier density in the active region of 

the laser as illustrated in Figure 2-10 (thin blue line). This large change in the carrier 

density results in a large frequency chirp in pulses generated by the gain-switching 

process. The pulses can be far from transform limited and thus can cause detrimental 

effects in the propagation of these pulses in high-speed systems. The origin of this chirp 

can be accounted for by the Kramers-Kronig equations, which relate a change in the gain 

(or loss) in a semiconductor to a corresponding change in its refractive index [69]. The 

linewidth enhancement factor (LEF), α which relates the changes in gain to changes in 

refractive index is defined by the following expression [70]: 

dNdg
dNdn

/
/4

λ
πα −

=                                                 Equation 2-9 

 

where n and g are the refractive index and gain of the semiconductor material 

respectively. This equation shows that a large change in carrier density during the 

emission of a gain-switched pulse leads to a variation of the refractive index, causing a 

variation of the frequency distribution across the pulse [71]. The chirp, ∆v(t) which is the 

differentiation of the phase, can be expressed in terms of the LEF as shown here [72]:  
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Equation 2.9 shows that a higher differential gain (dg/dN), results in lower chirp. In 

addition to the benefits listed above with regard to the generated pulse shape a high 

differential gain (achievable in short devices and quantum-well structures) will also 

generate pulses with smaller chirp. Chirp reduction can also be achieved by increasing 

the bias current above threshold as this reduces the magnitude of carrier density 

variation. However this has the detrimental effect of damping the relaxation oscillations 

thus increasing the pulse width and reducing the output pulse peak power.  
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Previous studies have analysed the chirp generated by gain-switched lasers including 

FROG measurement techniques [73], interferometric two-photon absorption (TPA) 

autocorrelation [74], and numerical calculations [75]. An example of a gain-switched 

pulse and its corresponding chirp profile measured by the FROG technique are 

illustrated in Figure 2-12. The chirp is linear across the central part of the pulse going 

from high frequency components (blue chirp) to low frequency components (red chirp), 

which is due to the depletion of carriers during optical pulse emission via stimulated 

emission. The chirp is nonlinear in the wings of the gain-switched pulse, which is a 

result of the increased carrier density in the gain medium during the pulse build-up time 

[76]. Thus dispersion compensating techniques are required to compensate for the chirp 

and to reduce the pulse width. Generally linear compression techniques are applied, 

however the nonlinear chirp in the wings of the pulse result in the generation of 

pedestals due to the insufficient compression of the nonlinear chirp. This is discussed in 

more detail in Chapter 3, Section 3.4. 

 
Figure 2-12 The temporal profile and corresponding chirp of a gain-switched DFB laser. A 10 
GHz sine wave biased at 2.5 Ith with a corresponding power of 30dBm was applied to the laser to 
generate pulses at a wavelength of 1551.54 nm. 
 

2.5.5 Side Mode Suppression Ratio of a Gain-Switched Laser Diode 

The SMSR of a gain-switched source is degraded due to the large fluctuation in the 

photon density as the laser is pulled below threshold, which strongly excites the side 

modes. This SMSR degradation is illustrated in Figure 2-13, which compares the 

spectrum of a laser operating in CW and a gain-switched laser. As can be clearly seen 

the SMSR reduces dramatically from 40 dB to 6 dB.  
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Figure 2-13 SMSR degradation is illustrated here by comparing the spectrum of a laser (a) before 
gain-switched modulation (i.e. CW operation) and (b) following gain switching.    
 

2.5.6 Extinction Ratio of a Gain-Switched Laser Diode 

The ER of a gain-switched laser can be enhanced by increasing the differential gain of 

the laser [77]. As is expected the ER is highly dependent on the current drive conditions. 

To achieve the highest ER, the DC drive bias current, I0 should be operated below 

threshold. If I0 is greater than Ith, the ER is severely degraded. In addition, the 

modulation amplitude, Isig will determine the power in the ‘one’ level.  

2.5.7 Jitter of a Gain-Switched Source 

The timing jitter of a gain-switched pulse originates from random fluctuations of the 

photon density in the laser cavity. The start-up phase of each pulse in a gain-switched 

laser relies on the generation of random spontaneous photons. Thus a lower DC current, 

I0 causes a longer turn-on delay of the optical pulse. In gain-switched lasers where the 

pulse turn-on is dependent on the build-up of spontaneously generated photons the phase 

is not retained for each subsequent pulse and these phase variations lead to wide-band 

noise. Timing jitter decreases as the ratio I0/Ith increases. There are two sources of jitter, 

correlated and uncorrelated [78]. The timing jitter due to the random spontaneous 

emission is uncorrelated jitter and depends largely on the drive current. If the drive 

conditions are not optimised uncorrelated rms timing jitter up to 14 ps has been 

measured [79]. The rms timing jitter is proportional to the ratio of the standard deviation 

to the mean cavity photon density around t0, where to is the time at which the carrier 

density reaches threshold [7]. By contrast, mode-locked lasers exhibit a negligible 

contribution of uncorrelated jitter due to the strong coupling between spectral modes (as 

was discussed in Section 2.4.2). In both gain-switched and mode-locked sources the 

correlated jitter is dependent on the laser diode electronics and the driving RF source, 

thus very low values can be obtained if low phase noise electronics are used. The gain-

switched source shown in Figure 2-11 (a) shows the large jitter that can be present on a 

gain-switched FP laser.  
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Gain-switched sources are dependent on the random build-up of spontaneous emitted 

photons. The jitter in a gain-switched single-mode distributed feedback (DFB) laser is 

larger than in a multimode free running laser. This is because the relative fluctuation of 

the photon number which as a random process is estimated to scale inversely 

proportional to the square root of the photon number, which is significantly lower for a 

multimode laser than for a single mode laser, resulting in a lower jitter [80].  

2.6 Gain Switching and Optical Injection 

Optical injection of gain-switched sources can provide reduced chirp, linewidth 

reduction, enhanced SMSR, large reduction in timing jitter and a higher frequency 

bandwidth [81] at the expense of a small increase in pulse width. There are two methods 

of providing optical injection, through self seeding or external injection. 

2.6.1 Self Seeding of a Gain-Switched Laser Diode 

Self seeding was first investigated by Lundquist et al. [82]. Self seeding entails the use 

of a wavelength selective external cavity to re-inject a small fraction of the output light 

back into the gain-switched laser at only one longitudinal mode frequency [83,84]. 

Provided that the optical signal re-injected back into the laser arrives during the build-up 

of an optical pulse in the cavity, then a single-mode output pulse is obtained. This is 

achieved by either adjusting the frequency of the RF applied to the laser or by inserting a 

tunable optical delay (ODL) line in the set-up. Figure 2-14 illustrates the principle of 

operation of self seeding. Pulses from the gain-switched DFB laser are reflected from the 

wavelength selective device back into the active region of the laser. A polarisation 

controller (PC) is used to ensure that the light being fed back is aligned with the optical 

axis of the laser, thus maximizing the effect of feedback. To achieve single mode steady-

state takes approximately 5-10 round-trips of the pulse in the cavity, depending on the 

feedback wavelength [85]. In comparison it takes approx 100 round-trips for an active 

mode-locked device to achieve optimum pulse width conditions [7].  

 

 
Figure 2-14 Principle of operation of self seeding a gain-switched laser diode. 
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2.6.2 External Injection of a Gain-Switched Laser Diode 

An alternative technique to self seeding entails external light injection from a CW source 

into a gain-switched laser [86,87]. External injection has an advantage over self seeding 

because no adjustment of the repetition rate or the external cavity length is required. The 

effects of the external injection on the gain-switched laser are immediate unlike self 

seeding and mode locking which take time to stabilise. The wavelength is tuned by 

changing the injection wavelength to the desired mode. Thus, external injection provides 

a more stable operation in comparison to self seeding as it has an instantaneous 

switching time, which is only dependent on the CW laser switching time. This advantage 

is at the expense of a costly tunable CW source.  

 

2.7 Experimental Investigation of the Effects of Optical Injection 

on a Gain-Switched Pulse 

The initial experiments undertaken investigate the effect of external optical injection on 

the spectral profile, pulse width, and chirp of a gain-switched source. The experimental 

set-up is shown in Figure 2-15. The laser which provides the optical injection is a 

commercially available single mode tunable CW source, with a precision of 1 pm (125 

MHz) and delivers up to 6 mW of power. The isolator ensures uni-directional 

propagation of the light from the CW source to the gain-switched laser. The gain-

switched source consists of a commercially available NEL DFB laser (data sheet 

included in Appendix 2), which is modulated by the 10 GHz sine wave amplified by a 

high power RF amplifier to 30 dBm. The bias-tee combines the DC bias (2.5Ith) and the 

RF signal which is applied to the laser. The laser is characterised by a 3 dB bandwidth of 

20 GHz and an output power of 4.7 dBm, both measured at a bias of 3Ith. The output 

pulses had a wavelength of 1551.54 nm. 

 

The components that make up the pulse source and external injection are polarisation 

maintaining, so that the polarisation of the injected field is controlled to ensure constant 

coupling, except for the fibre output of the gain-switched source. Thus a PC is included 

to align the axis of the polarisation of the injected light to the polarisation of the gain-

switched laser. Throughout the experiment the parameters of the gain-switched laser 

remain fixed. The injected power, Pinj can be varied through the variable optical 

attenuator (VOA) and the detuning (vcw-vgs) is set to around 20 GHz (1551.383 nm), to 

give optimum performance [88].  
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Figure 2-15 The experimental set-up used to investigate the impact of optical injection on a gain-
switched laser source. 
 

2.7.1 Spectral and Temporal Width Analysis as a Function of Injected Power 

Initially the externally injected gain-switched spectrum is characterised as a function of 

Pinj as shown in Figure 2-16 (a). As previously reported, as the injected power is 

increased there is a corresponding decrease in the FWHM spectral width and an increase 

in the SMSR [73,86]. The origin of this reduction of the spectral width can be attributed 

to the reduced threshold gain induced by the optical injection field. If the power of the 

optical injection field is greater than the power of the spontaneous emission of the gain-

switched source, the injected field acts as a source to initiate gain switching [64]. Thus 

the peak inversion level is reduced and the gain variation during the emission of a pulse 

also decreases, leading to a reduced spectral width, and a smaller chirp at the expense of 

a small increase in temporal width of a pulse. A sufficient SMSR of 30 dB is achieved at 

-10 dBm injected power. The small increase in pulse width as a function of increasing 

injected power is illustrated in Figure 2-16 (b). The pulse width increases from 7.7 ps to 

8.7 ps when comparing a gain-switched pulse with no optical injection to a pulse with 

optical injection equal to -10 dBm.  
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Figure 2-16 (a) Optical spectrum of a gain-switched DFB laser under different levels of optical 
injection and (b) the variation of pulse width as a function of injected power.  
 

2.7.2 Chirp Reduction due to Optical Injection 

Chirp reduction due to optical injection has been demonstrated experimentally by 

Mohrdiek et al. [89], using eye diagrams obtained with a transmission experiment with 

and without injection. Here the chirp is measured directly using the FROG technique. As 

illustrated in Figure 2-17, the chirp is greatly reduced for the gain-switched source with 

optical injection in comparison with no injection. The gain-switched laser with no 

injection has an approximate amplitude of 700 GHz and this is reduced to approx 200 

GHz under injection for an injection power of -11 dBm at a detuning of 20 GHz. For 

both cases the chirp is nonlinear in the wings of the pulse. 

(a) 

(b) 
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Figure 2-17 A gain-switched temporal profile overlaid by the chirp profile without and with 
optical injection (Pinj = -11 dBm). 
 

2.7.3 Jitter Improvement due to Optical Injection 

As was explained the jitter in an unseeded gain-switched laser is dominated by random 

spontaneous emission. As was discussed in Section 2.5.7, the gain-switched pulses are 

initiated by spontaneously emitted photons. When optical injection is used the injected 

photons initiate the pulse generation process a lot sooner in comparison to spontaneously 

emitted photons [90]. This reduces relative fluctuations in the photon density resulting in 

a corresponding reduction in timing jitter. Thus as the optical injection increases the 

timing jitter decreases. For maximized jitter reduction the optical injection wavelength is 

required to be injected over a small span close to the centre of the gain-switched 

spectrum [88]. The improvement in jitter of a gain-switched source is clearly visible by 

applying optical injection as shown in Figure 2-18. The measured jitter was 

approximately 3 ps for the unseeded gain-switched laser and was <1 ps for the seeded 

gain-switched laser, corresponding to Figure 2-18 (a) and (b) respectively.  
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Figure 2-18 (a) A large uncorrelated jitter is identifiable on the gain-switched pulse and (b) 
indicates the improvement which can be obtained by applying optical injection to the gain-
switched source.  
 

2.8 Wavelength Tunable Self-Seeded Gain-Switched Pulse Source 

In this section a novel set-up is presented which employs self-seeding in a dual laser 

source to provide transform limited pulses, with an approximate width of 20 ps at 

FWHM, which are highly wavelength tunable over 50 nm. This source is an excellent 

candidate for WDM and hybrid WDM/OTDM systems due to its large wavelength 

tunability, high SMSR and low pulse width. This work extends research that has been 

carried out in the development of wavelength tunable self-seeded gain-switched sources 

that resulted in the generation of 90-130 ps optical pulses with SMSRs of around 32 dB, 

that are tunable over 19 and 26 nm respectively [91,92]. 

2.8.1  Experimental Set-up 

Figure 2-19 illustrates the experimental configuration of the pulse source. It essentially 

consists of two gain-switched FP laser diodes that are self seeded using a single external 

cavity. Two FP lasers were used to expand the tuning range of the source. They were 

chosen in such a way as to ensure that there was only a very small overlap between their 

gain profiles as illustrated in Figure 2-20 (a).  
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Figure 2-19 Experimental set-up for self-seeded gain-switched pulses. 
 

The FP lasers used were commercial 1.5 µm InGaAsP devices, with threshold currents 

of about 26 mA and mode spacings of 1.12 nm. Gain switching of both lasers was 

carried out by applying a DC bias current of 17 mA, and a 2.5 GHz sinusoidal 

modulation signal with a power of 29 dBm to both devices. The gain-switched output 

from both lasers was coupled together before being fed into the external cavity 

configuration, which selects out the wavelength of the mode to be re-injected back into 

the laser. The external cavity consists of a PC, a 3 dB coupler, a tunable Bragg grating 

(TBG) and an EDFA. An optical isolator in the EDFA ensures that light only propagates 

in one direction around the feedback loop. The tunable filter eliminates unwanted 

amplified spontaneous emission (ASE) from the EDFA in addition to selecting the lasing 

mode of operation. The TBG has a 3 dB spectral bandwidth of 0.23 nm, a wavelength 

tuning range of 1460-1575 nm, and an insertion loss of 5 dB. The external cavity for 

self-seeding FP2 contains a tunable ODL to ensure that self seeding of FP1 and FP2 can 

be achieved. The EDFA is required to overcome the high losses obtained in the TBG and 

to ensure that there is sufficient light re-injected into either laser to obtain a suitable 

SMSR on the output pulses.  

 

To achieve optimum pulse generation, the Bragg grating was initially tuned to one of the 

longitudinal modes of the gain-switched FP1 laser. The frequency of the modulation was 

then varied to ensure that the signal re-injected into the laser, from the external cavity, 

arrives as an optical pulse is building-up in the laser. An operating frequency of 2.498 

GHz was found to be suitable. The grating was then tuned to one of the longitudinal 

modes of FP2, and in this case, the ODL was varied to ensure that the signal fed back 

into FP2 arrives at the correct instant. The bias currents of FP1 and FP2 were then 
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slightly changed to obtain the minimum pulse width. By subsequently tuning the grating 

across the gain curves of the lasers, single mode operation was achieved over a wide 

range of wavelengths.  

2.8.2 Results and Discussion  

The optical spectrum of the dual wavelength signal from the gain-switched lasers 

without self seeding is shown in Figure 2-20 (a). Figure 2-20 (b, c & d) shows in their 

respective order the shortest, central and longest wavelengths that can be seeded. The 

seeded spectra shown are the composite output of the two self-seeded gain-switched 

lasers before passing through the optical filter and amplifier measured at port 1. 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 2-20 Output optical spectra at port 1 of: (a) dual wavelength signal, and an illustration of 
three wavelengths obtained at the: (b) shortest wavelength (1517.73 nm), (c) central wavelength 
(1540.4 nm) and longest wavelength (1566.64 nm). 
 

The composite signal from the self-seeded gain-switched lasers is then passed through 

the external cavity before being outputted at port 2. The effect of this is to eliminate the 

signal from the unseeded laser, and greatly improve the SMSR of the generated optical 

pulses from the seeded laser (as shown below in Figure 2-21 (b) and (d)). The output 

pulses and their associated spectra, generated at two specific wavelengths (1524 and 

1560 nm), are shown in Figure 2-21. The deconvolved pulse width for the 1524 nm 

signal was 16 ps while that of the 1560 nm was 18.5 ps. The associated spectral widths 

of these two signals were 27 GHz and 26 GHz respectively, while the SMSR of the 

generated pulses were 54 and 56 dB respectively. The measured pulse width remained 

reasonably constant (16 – 20 ps) as the output pulses were tuned across the tuning range, 

with slight increases at the limits of tunability, and the TBP of the generated pulse varied 

slightly from 0.43 to 0.49 over the wavelength tuning range. The average output power 

is around 1.8 mW. The main limitation on the wavelength tuning of the generated pulses 

1495.4 1585.4 1495.4 1585.4 
Wavelength (9 nm/div) Wavelength (9 nm/div) 
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was imposed by the gain bandwidth of the EDFA used in the experimental set-up. The 

tuning range could be enhanced by using an EDFA with a wider gain bandwidth or 

eliminating the need for an EDFA. The latter is demonstrated in the next experiment and 

shows a tuning range increase from 50 nm to 65 nm.       

 

 

 

Figure 2-21 Output optical pulses (a) & (c) and their corresponding spectra (b) & (d) at 
wavelengths 1524 and 1560 nm respectively. 
 

The dependence of the SMSR on the seeding wavelength is plotted and shown in Figure 

2-22. It can be clearly seen that an SMSR of 50 dB and above is obtainable within the 

range of 48.91 nm (1517 .73 to 1566.64 nm). Figure 2-22 also shows the pulse width 

variation as the wavelength is tuned. The point where the pulse width exhibits a sudden 

increase is the juncture when the seeded wavelength is moved from FP1 to FP2.  
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Figure 2-22 SMSR (left-hand-side (LHS) axis) and deconvolved pulse width (RHS axis) against 
tunable wavelength range. 
 

Intensity, (6 dB
/div) 

Intensity, (6 dB
/div) In

te
ns

ity
, (

A
.U

.) 

(a) (b) 

(c) 

Time, 55 ps/div 
1519 Wavelength 1 nm/div  1529 

In
te

ns
ity

, (
A

.U
.) 

Time, 55 ps/div 
1555 Wavelength 1 nm/div  1565 

(d) 



 52

2.9 Widely Tunable Picosecond Pulse Source using External 

Injection 

The results obtained in the experiment above (Section 2.8) are improved on further by 

replacing the self-seeding feedback loop by an external injection source. Thus the 

generation of pulses over a larger tuning range (>65 nm) with SMSRs in excess of 60 dB 

over the entire tuning range [93,94] is achieved. This complete pulse source offers the 

largest tuning range and SMSR that has been based on gain-switching laser diodes to 

date.  

2.9.1 Experimental Set-up 

The experimental set-up is shown in Figure 2-23. The gain switching of the two laser 

diodes is the same as the previous experiment. The seeding is now provided by external 

injection from a tunable CW source, via an isolator to prevent any re-injection of the 

light into the CW source. Without the need of an EDFA (that had previously limited the 

wavelength span due to its gain curve) the wavelength tuning range has been increased. 

In addition there is no need for the ODL because a CW source is used rather than pulses 

to provide injection. Therefore the set-up is very stable and has a repetition rate that can 

be easily tuned without the need to adjust the feedback cavity length.  

 

The output power of the CW source is set at -3 dBm, however, taking into account 

various losses, we estimate the injection level into the gain-switched sources to be about 

-13 dBm. The resulting single-mode output obtained after external injection into one of 

the FP lasers, together with the signal from the unseeded FP laser is passed through the 

TBG filter. The filter is used to eliminate the optical output from the gain-switched FP 

laser that is not influenced by the external injection, and to enhance the SMSR of the 

generated pulses.  

 
Figure 2-23 The experimental set-up used for external injection seeding of a gain-switched dual 
laser source. 
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2.9.2 Results and Discussion 

Similar to the first set-up, the use of two FP lasers enables injection over a large 

wavelength span. Different longitudinal modes of each FP laser were selectively excited 

when the seeding wavelength from the external cavity laser (ECL) was tuned near the 

centre of any desired mode. Figure 2-24 (a) and (c) displays the resulting spectral and 

temporal (non-averaged) output before the optical filter showing good SMSR for the 

seeded gain-switched diode and a clean optical pulse with a good ER at a wavelength of 

1520 nm. With the addition of the filter, the optical output from the unseeded FP laser is 

eliminated and the SMSR of the output pulses is improved such that it becomes almost 

impossible to detect the sidemodes above the noise floor of the OSA. The resulting 

SMSR is around 60 dB for the entire wavelength tuning range that can be achieved with 

this set-up. The spectral and temporal profile of the pulse following the filter are shown 

in Figure 2-24 (b) and (d), which clearly illustrates the excellent temporal and spectral 

purity of the pulse source. The pulse width FWHM is 28 ps while the spectral width is 

approximately 20 GHz, resulting in a TBP of 0.56 (slightly larger than that of a 

transform limited Gaussian pulses). The ER was measured to be 25 dB, and the timing 

jitter was estimated to be less than 1 ps.  

 

          
 

    
 

Figure 2-24 Output results taken at a wavelength at 1519.9 nm showing (a) the spectrum before 
the filter, (b) the spectrum following the filter, (c) the optical pulse before the filter and (d) the 
optical pulse after the filter. 
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Figure 2-25 (a) illustrates the SMSR before and after the filter as a function of 

wavelength across the tuning range of the pulse source. It is important to note that the 

use of the filter in this set-up is dependent on achieving a suitably high SMSR from the 

gain-switched externally injected laser before the filter, which is clearly shown to be 

greater than 30 dB. If this was not the case then MPN could seriously affect the temporal 

quality of the pulse (from Figure 2-25 (a) this is clearly not the case). Figure 2-25 (b) 

shows the variation in pulse width over the tuning range. The pulse width increase of 

FP2 in comparison to the pulse width obtained for FP2 in the self-seeding experiment is 

due to the use of a different FP laser. The electrical bandwidth of the laser will determine 

the obtainable pulse width. The variation in pulse width around 1545 nm is due to the 

external injection from the ECL changing from seeding FP1 to seeding FP2. Differences 

in various physical parameters (e.g. gain) of the two lasers are responsible for the 

variation in output pulse width. This set-up exhibited very stable operation even at the 

crossover section when the injection seeding changes from FP1 and FP2. This is 

achieved because there is no overlap between the modes from the two different FP 

lasers, and thus, light is never injected into the modes of the same wavelength of both FP 

lasers at the same time. This source could play a vital part in ensuring optimal 

performance of high-speed hybrid WDM/OTDM optical communication networks. It 

should also be noted that the tuning range could be expanded further by introducing a 

third FP laser with an appropriate spectral profile (e.g. 1470 –1510 nm), which would 

provide a source that covers the S, C and L bands [95]. In addition, by simultaneously 

injecting another light source into the FP lasers used, it could be possible to develop a 

multiwavelength pulse source. 
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Figure 2-25 (a) SMSR of output pulses as a function of wavelength before and after the filter, and 
(b) the measured pulse width as a function of wavelength tuning range of FP1 and FP2. 
 

2.10 Summary 

This chapter has provided an overview of the different parameters required by pulse 

sources which will be utilised in future OTDM and hybrid WDM/OTDM optical 

systems. In order to measure the quality of pulses, different measurement and 

characterisation equipment is required. In addition to typical spectral and temporal 

measurements as carried out using OSA and a high-speed detector with a DCA, the 

FROG technique provides full electric field characterisation. Different pulse generation 

techniques exist which include external modulation of a CW source, mode locking and 

gain switching. Gain-switched semiconductor diodes provide short pulse width 

generation in a simple and stable configuration. The undesirable quality of the gain-

switched pulse can be overcome by the use of optical injection through self or external 

seeding. Two novel techniques to generate high quality optical pulses were presented, 

which could be implemented in 20 Gb/s OTDM or hybrid OTDM/WDM systems. With 

the advancement of laser device fabrication technology, higher repetition rates could be 

applied and the generation of shorter pulses could be achieved at increased line rates. 

The first experiment employing self seeding generated <20 ps pulses over a 50 nm 

range. By employing a tunable CW source to provide external injection, the tuning range 

was extended to 65 nm as there was no EDFA incorporated in the source which was the 

(a) 

(b) 
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limiting factor in the first set-up. In both cases for the self-seeded and external injection 

sources, closely transform limited pulses were generated with large SMSR values (<60 

dB) and very low timing jitter (<1 ps). The next chapter develops this work further by 

using optical processing techniques to improve the characteristics of gain-switched pulse 

sources, and present bit error rate (BER) measurements which demonstrate that these 

sources can achieve the same high quality as other commercially available sources.  
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 CHAPTER 3 – ALL-OPTICAL PROCESSING TECHNIQUES 

FOR PULSE GENERATION 
 

3.1 Introduction 

An optical pulse source is a key determining factor in optimising the overall 

performance of a high-speed optical system. Thus the design of a high-quality pulse 

sources is vital (as was discussed in detail in Chapter 2). In this chapter novel techniques 

are introduced which enhance optical pulse generation methods, generating high quality 

optical pulses which are transform limited, with high side mode suppression ratio 

(SMSR) and large temporal pedestal suppression ratio (TPSR). To understand the extent 

of the detrimental effect of insufficient TPSR, varying levels of pulse TPSR on the 

performance of an optical time division multiplexed (OTDM) system is examined. 

Generated pulses, when multiplexed to higher data rates, should not overlap in order to 

avoid interference between adjacent channels. One method to overcome these large 

pedestal levels is to introduce a saturable absorber (SA) to the pulse source. Large TPSR 

improvement is demonstrated through the use of a vertical microcavity SA. System 

results show that the use of the SA with the pulse source not only eliminates the penalty 

introduced by large TPSR levels but it also improves the receiver sensitivity as it 

enhances the overall pulse quality. For gain-switched diode lasers, the generation of 

temporal pedestals are problematic due to the incomplete compensation of nonlinear 

chirp by linear pulse compression schemes. A novel technique is introduced to obtain the 

design criteria for the fabrication of a custom-made nonlinear fibre Bragg gratings 

(FBG). These FBGs when used in conjunction with gain-switched sources result in 

pedestal free pulse trains. The grating has a nonlinear chirp profile which is opposite to 

the chirp profile of the gain-switched pulse. The precise nonlinear chirp profile is 

determined by using the measurement technique of frequency-resolved optical gating 

(FROG). It is shown that the gain-switched source in conjunction with the nonlinear 

grating overcomes the serious penalty in the transmission system in comparison to when 

a linear compression technique is implemented.  

3.2 OTDM System Performance Investigation due to Varying 

TPSR Levels of a Pulse Source 

Considering the main pulse generation techniques available, namely; mode locking, gain 

switching, and the use of electro-absorption modulators (EAM), it is extremely difficult 
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to achieve a TPSR or extinction ratio (ER) in excess of 30 dB. This can have a serious 

detrimental effect in high-speed communications systems as it can result in a large 

interferometric noise which degrades system performance [1]. The actual ER or TPSR 

required to prevent degradation of system performance will depend on the number of 

return-to-zero (RZ) channels multiplexed together to obtain the overall OTDM signal, 

which in turn will be determined by the pulse width and repetition rate of the optical 

pulse source employed at the transmitter. Thus, an experimental verification of the effect 

of varying levels of TPSR has on the power penalty in an 80 Gb/s system is presented. 

Other research studies have given indications about the required TPSR level for a pulse 

source [2,3], however a full experimental analysis has not yet been published.  

3.2.1 Introduction and Verification of Varying TPSR Levels of a Pulse Source  

The experimental set-up used to introduce the pulse pedestal of varying levels is shown 

in Figure 3-1. The main element of the set-up is a hybrid mode-locked semiconductor 

laser that generates 2.1 ps pulses with a time-bandwidth-product (TBP) of 0.35 at 10 

GHz. The outputted pulse train was split into two paths by a 3 dB coupler. The top path 

(pedestal generation arm) was delayed by around 8 ps with respect to the pulses in the 

lower path by a variable optical delay line (ODL), and attenuated via a variable optical 

attenuator (VOA). The main pulse and pedestal arms were then recombined via a second 

coupler. A polarisation controller (PC) and a polarizer were used to match the 

polarisation of the main pulse with the pedestal so that an accurate measurement of the 

TPSR could be taken by using the FROG technique.  

Modelocked
Pulse Source

VOAODL

EDFA 50:50
Coupler

50:50
CouplerPC

FROG

EDFA
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Signal
Generator

To
Oscilloscope

Trigger

Polariser
 

Figure 3-1 Experimental set-up used to introduce varying TPSR levels.  
 

By adjusting the attenuation of the VOA the height of the pedestal was set to different 

values, and was then measured using the FROG. The resulting pulses with varying TPSR 

levels are shown in Figure 3-2. This plot verifies that the FROG technique can measure 

TPSR up to levels of approximately 30 dB, given that pulses portray a high signal-to-

noise ratio (SNR).  
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Figure 3-2 FROG measurement of varying TPSR levels determined by increasing the VOA to 
generate TPSR levels of 10, 15, 20, and 30 dB.  
 

3.2.2 80 Gb/s OTDM System Test-bed 

To test the back-to-back (B2B) performance of the optical pulse source with varying 

TPSR levels, in an 80 Gb/s OTDM system, we used the experimental test-bed presented 

in Figure 3-3. The pulses generated in Figure 3-1, were modulated with a pseudo random 

bit sequence (PRBS) of length 27-1 from a pulse pattern generator (PPG) with the aid of 

a Mach-Zehnder modulator (MZM). The resultant STM 64 RZ optical signal is then 

passed into a passive fibre based interleaver and multiplexed up to 80 Gb/s. A PC at the 

input and a polarizer at the output of the multiplexer ensure that the same state of 

polarisation is maintained in each of the tributaries. In order to take bit error rate (BER) 

measurements, the 80 Gb/s signal is initially demultiplexed down to 40 Gb/s using an 

EAM and then to 20 Gb/s using a MZM. The EAM is driven with a 40 GHz sine wave to 

yield a 6 ps switching window, and the MZM is driven with a 20 GHz sine wave to give 

a 10 ps switching window. The signal is then optically pre-amplified prior to being 

received by a photodetector after which it is demultiplexed back down to the base rate 

(10 Gb/s) using an electrical demultiplxer. BER measurements are performed for a range 

of received optical powers, (indicated by Prec in Figure 3-3). 
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Figure 3-3 An 80 Gb/s OTDM test-bed to characterise the performance of picosecond pulses with 
varying TPSR levels.  
 

3.2.3 Varying TPSR Levels of a Pulse Source in an 80 Gb/s OTDM System 

The effect of pulses with varying input TPSR values was examined by measuring the 

power penalties introduced, as displayed in Figure 3-4. This plot clearly displays the 

effect of TPSR on the performance of an 80 Gb/s OTDM system. TPSR values of 15 and 

20 dB exhibit power penalties of 3 and 1 dB respectively at a BER 1e-9, compared to a 

TPSR of 30 dB (which results in negligible system degradation). The pedestal delay of 8 

ps was chosen, as this delay corresponded to the point where the penalty due to the 

introduced pedestal level becomes significant. As the delay is increased the penalty 

correspondingly increases for the same TPSR as the power overlap between the next 

pulse and pedestal increases until it reaches the bit slot duration (12.5 ps). The increase 

in pulse and pedestal overlap leads to a larger generation of interferometric noise.  
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Figure 3-4 Induced power penalty as a function of varying pulse TPSR levels in an 80 Gb/s 
OTDM system.  
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3.3 TPSR Enhancement Using a Vertical Microcavity based 

Saturable Absorber 

In order to overcome the limitation that poor TPSR and ER levels of pulse sources have 

in high-speed communications systems, a number of techniques have been developed to 

improve the generated optical pulses. These techniques include the use of an EAM [4], a 

nonlinear amplifying loop mirror (NALM) [2], or self phase modulation (SPM) in a 

semiconductor optical amplifier (SOA) in conjunction with shifted filtering [5]. The 

EAM can provide a large increase in TPSR values however it is an active and expensive 

component, which may significantly increase the cost of the pulse source. The NALM is 

fibre-based, which makes it bulky, and suffers from instability problems, and the SOA 

scheme exhibits limited TPSR improvement (~7 dB). The limitation of these ER 

enhancement techniques maybe overcome through the use of a vertical microcavity 

based SA. An experimental demonstration is presented to show how the use of a SA 

following a pulse source with insufficient TPSR can overcome the large power penalty 

introduced by poor TPSR and in addition provide a small negative power penalty.  

 

A SA is an optical device which introduces an increased loss for reducing optical 

intensities [6]. Below, a threshold value, the photonic absorption of the SA is high and 

the device is opaque to the signal (low transmittance). Above the threshold level, the SA 

transmittance rapidly increases and saturates at a level to give near unity output 

(excluding the insertion loss). The nonlinear transfer curve of the SA makes it ideal for 

use in mode-locking lasers to aid the start-up process of pulse formation [7,8] and for 

optical pulse regeneration [9]. The SA which is used here to enhance the TPSR of an 

optical pulse source is a passive device that can be monolithically integrated with 

semiconductor lasers. It has already been shown that this SA is very efficient for ER 

enhancement and ‘space’ noise attenuation [9,10].  

 

The SA is a 7 quantum-well (QW) structure (InGaAs/InAlAs) placed in a resonant 

microcavity with a dielectric mirror (2x[TiO2/SiO2]) as the front mirror, and a 

broadband high-reflectivity metallic based mirror (Ag + SiO2) as the back mirror [11]. A 

heavy-ion-irradiation shortens the absorption recovery time to 1.5 ps, which is short 

enough for the SA to be employed in 160 Gb/s systems [10]. The SA is placed on a high 

precision mount and free space coupling of the light to and from the fibre is optimised by 

analysing the reflection spectrum of the SA on an OSA. Figure 3-5 shows the optimised 

reflection profile of the SA characterised with amplified spontaneous emission (ASE) 



 70

from an EDFA incident on the device. The average power from the EDFA ASE was 

approximately 9 dBm, measured at the fibre output before the SA mount. 

 

 
Figure 3-5 The reflection profile of the SA, measured using ~9 dBm (average power) from an 
EDFA ASE incident on the SA.  
 

3.3.1 Experimental Characterisation of the TSPR Enhancement due to the SA 

The SA was introduced after the pulse source with varying TPSR levels (as used in the 

previous experiment) via a circulator as shown in Figure 3-6. The average power at the 

input of the circulator (point A) was approximately 9 dBm and the output power 

following light incident on the SA was approximately -9 dBm (point B). With the 

introduction of the SA the TPSR is improved by around 10 dB (to 20 dB) when its input 

value to the SA is 10 dB as shown in Figure 3-7. As the input pedestal level decreases, 

the improvement in TPSR following the SA (measured at point B) increases due to the 

nonlinear transmission curve of the SA. Due to the limitation of the FROG the TPSR 

values greater than 30 dB were extrapolated and are represented by the dashed line in the 

figure. 
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Figure 3-6 Experimental set-up to verify the TPSR improvement obtainable through the use of a 
SA.  
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Figure 3-7 Graph of input and output TPSR to the SA measured at point A and B respectively by 
the FROG. The TPSR values are extrapolated at values greater than 30 dB (represented by a 
dashed line) as the FROG is limited by the noise floor of the system.  
 

Figure 3-8 displays the intensity and chirp profile of the pulse before and after the SA, 

with an input TPSR of 20 dB. This figure demonstrates that the SA reduces the pedestal 

level to greater than 40 dB from the peak of the pulse, and also has very little effect on 

the frequency chirp of the pulse, an additional benefit of the device. Furthermore, it can 

be seen that the nonlinear response of the SA slightly compresses the pulse to 1.8 ps, and 

has a corresponding TBP of 0.33. 

 

 
Figure 3-8 A temporal profile of a pulse and its corresponding chirp profile with a TPSR of 20 dB 
measured before and after the SA. 
 

3.3.2 System Performance Enhancement due to SA 

The introduction of the SA to the pulse source with poor TPSR was investigated to 

demonstrate the power penalty performance improvement obtained when used in an 80 

Gb/s OTDM system. The 80 Gb/s OTDM system was the same as used in Figure 3-3. 

For this work we used a pulse source with an initial TPSR of 15 dB, (which is improved 

to 30 dB after the SA). Figure 3-9 displays the BER vs. received power when using (i) 

the pulse source with a TPSR of 15 dB, (ii) this pulse source followed by the SA, which 
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improves the TPSR to 30 dB, and (iii) a mode-locked pulse source with a TPSR set to 30 

dB. The results show that the SA improves the system performance by 3.3. dB. It is also 

important to note that the introduction of the SA improves the performance by 0.3 dB 

greater than what would be expected due to the increase in TPSR alone. This additional 

improvement is due to the narrowing of the main pulse which improves the main pulse 

which improves the overall sensitivity of the OTDM system. The demultiplexed eye 

diagram measured at the receiver in Figure 3-10 shows the nose improvement due to the 

inclusion of the SA in the pulse source without a SA with TPSR levels of 15 dB. 

 

 
Figure 3-9 BER vs. received power for (i) pulse source with15 dB TPSR, (ii) this pulse source 
after the SA, showing TPSR improvement to 30 dB, and (iii) a mode-locked pulse source with a 
TPSR of 30 dB.  
 

 
Figure 3-10 The demultiplexed 20 Gb/s eye diagram for a) a pulse source with 15 dB TPSR and 
b) this pulse source including the SA. 
 

(ii) (iii) (i) 

(a) (b) 
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3.4 Optimised Gain-Switched Pulse Source to achieve Transform 

Limited Pulses for 80 Gb/s OTDM 

In this section, further development and enhancement of the gain-switched pulse sources 

described in Chapter 2 is presented. The generated gain-switched pulses undergo spectral 

shaping, temporal compression and chirp compensation, resulting in transform limited 

short optical pulses. This optical processing is achieved by a nonlinearly chirped grating. 

The novel technology is the method used to measure the design criteria of these 

nonlinearly chirped gratings. The specially designed grating in conjunction with an 

externally injected gain-switched source generates 3.5 ps pulses exhibiting a TBP of 

0.45. This technique overcomes the poor pulse TPSR resultant from the commonly used 

linear compression techniques, thus ensuring optimum system performance at high bit 

rates of 80 Gb/s.  

 

3.4.1 Chirp Compensation and Pulse Compression of Gain-Switched Sources 

To implement gain-switched sources in high-speed communications systems, pulse 

compression techniques are required to achieve short pulse widths and compensation of 

the large chirp present on the pulses. Many studies have examined pulse compression 

techniques following gain-switched sources by applying dispersion compensating fibre 

(DCF) [12-14] and linearly-chirped fibre Bragg gratings (L FBG) [15-18]. Typically 

these methods compensate for the linear chirp across the centre of the pulse, but do not 

eliminate the nonlinear chirp in the wings of the pulse. Thus the compression techniques 

can result in the generation of pedestals on either side of the pulse, rendering them 

unsuitable in high-speed communications systems. Thus nonlinearly-chirped FBGs (NL 

FBG) are required to compensate fully for the nonlinearly chirp profile of the gain-

switched pulses.  

 

To date applications of NL FBGs have had interest in dynamic dispersion compensation 

of higher order dispersion [19-21], and polarisation mode dispersion (PMD) using a high 

birefringence photosensitive fibre [22]. However to the best of our knowledge, the 

concept of applying a NL FBG to a gain-switched source to obtain transform limited 

pulses with negligible pedestals suitable for 80 Gb/s OTDM transmission is first 

presented here.  

 

One method to compensate nonlinear chirp of a quadratic profile in mode-locked sources 

has been proposed in [23], in which a four-pass grating compressor is used with S-band 
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profiles. The disadvantages of this technique are that the grating is an active device 

which requires a large applied voltage, and the set-up is sensitive to accurate positioning 

and is bulky. Due to the quadratic chirp profile of the grating compressor the exact chirp 

profile is unable to be fully compensated for. Other examples try to eliminate the 

pedestals using more complex arrangements involving nonlinear loop mirrors or external 

modulators after the linearly compressed pulse to reduce the pedestals [4,21]. A simple 

technique to reduce pedestals can be carried out by eliminating the spectral edges where 

the group delay profile becomes nonlinear. However spectral-filtering results in a large 

pulse width increase [24]. Another technique investigated includes specifically designing 

a multi-quantum well (MQW) laser (which is gain-switched) so that it has a large 

differential gain and small damping factor to overcome the nonlinearity of the chirp. 

However an ER of only 24 dB was achieved following linear compression for this 

technique [25].  

 

3.4.2 Fibre Bragg Gratings 

A fibre Bragg grating (FBG) is a piece of fibre with a periodic perturbation in its 

refractive index along the fibre core [26]. The periodic index perturbation is formed by 

exposing the fibre to an intense optical interference pattern in ultra-violet (UV) light 

[27]. The advantages of a FBG are its low loss, low cost and polarisation insensitivity 

and overall its inherent fibre compatibility and flexibility to achieve desired spectral 

characteristics [28]. A chirped reflective grating provides a wavelength dependent delay 

of the reflected optical signal, as is illustrated in Figure 3-11. The first report of linearly 

chirped FBGs was made by Ouellette et al. [29]. If a FBG has a periodicity that varies 

nonlinearly along the length of the fibre it will produce a time delay that varies 

nonlinearly with wavelength [30]. Chirp in gratings may take many different forms, such 

that the period may vary symmetrically, linearly [31], quadratically [32] or with random 

variations along its length [33].  

3λ

1λ 2λ 3λ
1λ

 
Figure 3-11 Conceptual Diagram of a chirped FBG. 
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3.4.3 FBG Design 

A review of the design techniques for FBGs is given by Erdogen [34]. The gratings used 

in our optimised pulse source below were manufactured by Redfern Optical Components 

[35]. The design parameters of the gratings was accomplished by applying the group 

delay measured by the FROG technique to an inverse scattering algorithm, which 

converts the group delay into a chirped term of the FBG [36-38]. The algorithm 

calculates the FBG design (i.e. refractive index modulation amplitude and the phase of 

the index modulation versus the fibre position) from a given complex reflection 

spectrum. The complex reflection spectrum can be constructed from the given 

reflectivity amplitude and a given group delay (or optical phase) profile. The FBGs are 

fabricated using a holographic writing method [39], where a computer electronically 

controls the FBG phase and amplitude and does not require a custom-made phase mask. 

Hence it possible to fabricate NL FBGs for each individual laser in large volumes at low 

cost, if the chirp profile is different from one laser to the next. 

3.4.4 Experimental Method to Retrieve the NL FBG Complex Reflection Spectrum   

The characterisation of the externally injected gain-switched source using the 

measurement scheme of FROG yields the parameters that are required for the design of a 

NL FBG with a group delay which is opposite to the measured pulse. The experimental 

set-up is shown in Figure 3-12. A 10 GHz sine wave is amplified with the aid of a high-

power RF amplifier. A bias tee is then used to combine the electrical RF signal with a 

DC bias (2.5Ith) to enable gain switching of a commercially available distributed 

feedback (DFB) laser contained within a hermetically sealed high-speed package. The 

laser used has a 3-dB bandwidth of 20 GHz and an output power of 4.7 dBm measured at 

3Ith. The resulting pulses generated were at a wavelength of 1549.35 nm. Wavelength 

tunability of a laser mode over a range of 2 nm could be achieved by temperature 

controlling the diode. To overcome the poor SMSR (~5 dB) and timing jitter (~2 ps) of 

the gain-switched pulses, CW light (via an optical circulator), from a second DFB laser 

(DFB 2) biased at (~1.2Ith) was injected into DFB1. A PC was used to ensure that the 

injected light was aligned to the axis of polarisation of the gain-switched laser. The 

injected power incident on the modulated laser was measured to be about -20 dBm after 

considering the losses incurred in the optical injection path. External injection improves 

the SMSR to around 30 dB and reduces the timing jitter to less than 1 ps. The actual 

jitter is expected to be in the order of 200 fs or less as demonstrated in previous work by 

Nogiwa et al. [40]. 
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Figure 3-12 The experimental set-up to retrieve the group delay profile for the NL FBG. 
 

Figure 3-13 (a) and (b) displays the optical spectra of the gain-switched laser both 

without and with external injection respectively. Degradation of the SMSR and a 

relatively large temporal jitter are inherent problems associated with the technique of 

gain switching. However by externally injecting a gain-switched laser, the above 

mentioned short comings can be overcome [4,41]. It is clearly visible that the external 

injection improves the degraded SMSR from 5 dB to an acceptable level of 30 dB. The 

overlapping of the broadened modes in prevents the side mode being distinguished from 

the main mode in Figure 3-13 (a). The spectral width of the externally injected gain-

switched laser is measured as approximately 140 GHz. Figure 3-13 (c) shows the non-

averaged oscilloscope trace of the detected pulse. This figure gives an indication of the 

low jitter and high ER as a result of applying optical injection. To accurately characterise 

the pulse, it is necessary to use the FROG technique.  

 

 
Figure 3-13 Spectra of gain-switched laser (a) without and (b) with optical injection and (c) an 
oscilloscope trace of the pulse following injection.  
 

Using the FROG measurement scheme we can accurately characterise the intensity and 

chirp profile across the optical pulses from the gain-switched laser with external 

injection. Figure 3-14 (a) indicates that the pulses have a duration of 10.5 ps FWHM and 

the frequency chirp becomes nonlinear in the wings of the pulse due to the gain-

(a) (b) (c) 
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switching mechanism, resulting in a TBP of 1.5. The group-delay profile of this gain-

switched laser diode source was measured and this was used to fabricate a NL FBG. The 

process involves the initial creation of the group-delay response for the FBG based on 

the group-delay data derived from the FROG measurements. The FBG target group-

delay response is simply selected as the inverse of the pulse group delay, which should 

result in a constant group-delay profile of the reflected pulse from the FBG. In addition 

to a constant group-delay profile over the pulse bandwidth, for an optimised pulse 

source, a Gaussian spectrum is also required. The Fourier transform of a rectangular 

spectrum, which results in a Sinc temporal pulse [42], can result in the presence of 

pedestals. Gain-switched spectra are generally more rectangular in comparison to 

Gaussian spectra. Thus the reflection profile of the NL FBG is constructed as the 

difference between the spectral amplitude of the gain-switched output and of a Gaussian 

profile. This spectrally shapes the output pulse so that it will portray a Gaussian 

spectrum. Once the FBG target spectrum and group-delay profile are obtained as shown 

in Figure 3-14 (b), the FBG can be designed by implementing an inverse scattering 

algorithm as outlined in Section 3.4.3.  

 

 
Figure 3-14 (a) Log intensity and chirp profiles of the generated pulses from the externally 
injected gain-switched laser and (b) target reflection spectrum and group-delay profile of the NL 
FBG.  
 

The FWHM bandwidth of the grating is 5 nm and has 71 % reflectivity at the maximum 

point of reflectivity. The grating length is 20 mm. The reflective and group-delay 

profiles of the fabricated NL FBG are shown in Appendix II. A L FBG that has a chirp 

profile opposite to a linear approximation of the chirp across the gain-switched pulse 

was fabricated also. In both the cases, the agreement between the measured and the 

target group-delay profile was very good, with a standard deviation of the measurement 

error <2 ps, which is quite close to the estimated noise level of ± 1 ps for the group-delay 

measurements. It is also important to note that a large group delay ripple (GDR) in the 

compressing FBG could cause low-intensity temporal pedestals [43,44]. However, in 

(a) (b)
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this set-up no such pedestals were observed due to the low level of GDR which was 

mentioned earlier, with a standard deviation of less than half the compressed pulse 

width. 

3.4.5 Characterisation of the Generated Pulses following the NL FBG  

By placing the nonlinear and linear fibre gratings after the externally injected gain-

switched laser, as shown schematically in Figure 3-15 the subsequent pulse compression 

was characterised using the FROG technique.  

 
Figure 3-15 The experimental set-up for optimised pulse generation by applying a L/NL FBG to 
an externally injected gain-switched source. 
 

Figure 3-16 (a) and (b) shows the measured intensity and chirp profile of the gain-

switched optical pulses after compression with the linearly and nonlinearly chirped 

gratings, respectively. In both cases the gratings have eliminated any frequency chirp 

across the centre of the pulses. However when the linearly chirped grating is used, it can 

be seen how the nonlinearity of the chirp directly from the gain-switched laser results in 

significant pedestals on the leading and trailing edges of the pulse. Such pedestals, which 

are around 23 dB from the peak of the pulse, would clearly pose significant problems 

(through interferometric noise), for the use of these pulses in high-speed OTDM systems 

(which has been previously established). 
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Figure 3-16 Intensity and chirp profiles of externally-injected gain-switched pulses following (a) 
linearly chirped and (b) nonlinearly chirped gratings. 
 

The compression in the nonlinear fibre grating results in a 3.5 ps pulse at FWHM. The 

resultant chirp is flat and has a very small value across the pulse. In addition the 

pedestals have been virtually eliminated (TPSR >35 dB). The elimination of the 

pedestals is due to the compensation of the chirp and also the spectral shaping of the 

compressed pulse, as well as the small GDR. To confirm the effect of a non-Gaussian 

output spectrum, simulations were carried out which showed the generation of pedestals 

at approximately 20 dB below the peak of the pulse [24].  

 

The spectra and group delay of the input and output pulses to and from the NL FBG are 

shown in Figure 3-17. It is clear that the group delay has been compensated for entirely 

by the tailor-made NL FBG. The output spectrum is more Gaussian shaped and 

symmetric in comparison to the input, which is due to the nonlinear reflection profile of 

the NL FBG. The spectral width is 130 GHz which results in a TBP of 0.45. 

 
Figure 3-17 The input and output spectra to the NL FBG and their corresponding group-delay 
profiles.  
 

(a) (b)
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The pulse generation/compression technique portrays excellent repeatability. Within 

laboratory conditions, the scheme exhibited stable operation over a 5 day period as 

shown in Figure 3-18. This could be mainly attributed to the fact that the two DFB lasers 

(modulated and seeding) were temperature and current controlled by precision Profile 

controllers. Hence, drifts in wavelength of the lasers, due to current or temperature 

variations were negligible. Furthermore, the wavelength variation with temperature of 

the fabricated FBGs being relatively small (~0.009 nm/˚C) also leads to the stable 

generation of optimised pulses over very long periods of time. 

 

 
Figure 3-18 Pulse and chirp profiles as measured by the FROG over a 5 day period which 
demonstrates the excellent stability of the NL FBG gain-switched source. 
 

3.4.6 80 Gb/s System Performance of the Optimised Pulse Source 

To verify the system performance improvement the gain-switched pulse sources, one 

employing the NL FBG (TPSR ~ 35 dB), and the other using the L FBG (TPSR ~20 dB), 

were employed in a 40 Gb/s and 80 Gb/s OTDM system. Further performance 

confirmation of the optimised pulse source is carried out by comparing it to a 

commercially available tunable mode-locked laser (TMLL) pulse source in the same 80 

Gb/s test-bed. The TMLL generates 2 ps pulses at a repetition rate of 10 GHz. This result 

acts as a reference when encompassed with the overall evaluation. 
 

The test-bed used in this work to characterize the performance of the three different 

pulses sources employed in-turn as the transmitter is demonstrated in Figure 3-3. In the 

first instance of system performance characterisation, the externally injected gain-

switched laser diode was followed by the NL FBG. Secondly, the NL FBG was replaced 
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by the L FBG. The final transmitter consisted of the commercially available TMLL. The 

pulses generated by the three different techniques are compared in Figure 3-19. The 

generated pulses after the NL FBG (bold line), the L FBG (faint line), and the TMLL 

(dotted line) have FWHM pulse widths of 3.5 ps, 3.6 ps and 1.6 ps respectively. The 

associated TBPs of the three pulse sources were 0.45, 0.47 and 0.33 respectively. As can 

be seen, the pulses compressed by the L FBG portray a TPSR of about 20 dB while that 

compressed by the NL FBG and the TMLL exhibit a TPSR >35 dB. 

 
Figure 3-19 Intensity profiles of NL FBG gain-switched pulses (bold), L FBG gain-switched 
pulses (faint) and TMLL pulses (dotted). 
 

Figure 3-20 displays the BER versus received power curves for one of the demultiplexed 

channels at 40 Gb/s and 80 Gb/s. It can be observed that to achieve a BER of 10-9, power 

penalties of 1.2 dB and 3.5 dB are incurred in the case of the L FBG when compared to 

the NL FBG, when operated at 40 and 80 Gb/s respectively. This degraded performance 

is due to the presence of the pedestals about 20 dB below the peak of the pulse. These 

pedestals deteriorate the extinction between the adjacent timeslots of the temporally 

multiplexed signal thereby leading to intensity fluctuations that causes the BER 

degradation. At 80 Gb/s a difference of 0.4 dB was noticed in the case of the commercial 

TMLL and the optimised gain-switched pulse source employing the NL FBG. This 

variation could be attributed to the difference in pulse width, with the narrower pulse 

width leading to a slightly better sensitivity at the receiver. The degraded performance 

(3.5 dB power penalty) in the case of the L FBG, even though both sources generate 

Gaussian pulses that are transform-limited and have durations < 30% of the 80 Gb/s bit 

slot, is attributed to the presence of pulse pedestals. Thus, it has been demonstrated that 

the externally injected gain-switched source employing a NL FBG exhibits excellent 

performance when employed in an 80 Gb/s OTDM system. 
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Figure 3-20 (a) BER vs. received power for NL FBG, L FBG at 40 Gb/s and (b) for both sources 
and the 2ps TMLL source at 80 Gb/s. 
 

 

3.5 Summary 

This chapter has experimentally investigated the importance for pulse sources to have a 

high TPSR when used in high-speed OTDM systems. A 3 dB improvement in 

performance was obtained when the TPSR values were improved from 15 to 30 dB. In 

doing so the accuracy of the FROG measurement scheme in the measurement of low 

intensity temporal artefacts was confirmed. For pulse sources that display poor pedestal 

suppression, the detrimental effects of poor TPSR values can be overcome, by the 

introduction of a vertical microcavity-based SA, which has the potential to be integrated 

(a) 

(b) 
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with a semiconductor-based pulse source. It was demonstrated that a SA can improve a 

pulse source with an initial TPSR of 15 dB, to a TPSR of 30 dB, and improve the overall 

system performance by 3.3 dB when implemented in an 80 Gb/s OTDM system. 

  

In the case of a gain-switched source, instead of applying linear compression and an 

extra component to reduce high pedestal levels generated due to insufficient chirp 

compensation, a grating can be designed that can compensate fully for the nonlinear 

chirp. Thus pedestal free pulse generation can be achieved (TPSR >35 dB). The 

measurement technique of FROG enabled the extraction of the exact group-delay profile 

of the filter as it is the inverse of that across the gain-switched pulse directly from the 

laser. In addition the fibre grating required a specially adapted transfer characteristic to 

yield an output Gaussian profile. Thus a very simple and reliable pulse source is 

proposed, generating picosecond pulses with low jitter and high SMSR by externally 

injecting a gain-switched laser and applying a tailor-made NL FBG. A major 

improvement in system sensitivity (3.5 dB) achieved by the increased suppression of the 

temporal pedestals was recorded when compared with a gain-switched source employing 

a L FBG in an 80 Gb/s OTDM system. A commercially available mode-locked pulse 

source, used as a benchmark, further stressed the excellent performance of the proposed 

pulse source.  
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 CHAPTER 4 – PULSE PROPAGATION CHARACTERISATION 

FOLLOWING AMPLIFICATION IN A SEMICONDUCTOR 

OPTICAL AMPLIFIER 
 

4.1 Introduction 

Semiconductor optical amplifiers (SOAs) are attracting a lot of interest in the field of 

telecommunications due to their high gain, small size, low noise figure and opportunities 

for integration and low cost [1]. The development of SOAs followed soon after the 

invention of the semiconductor laser and the progression of the SOA device design went 

hand in hand with the advancement in design of the laser diode. During the 1990’s due to 

the development of the erbium doped optical amplifier (EDFA) the popularity of the 

SOA as a linear amplifier declined as the EDFA provided more gain without the 

detrimental nonlinearities associated with an SOA [2]. However, there was renewed 

interest in SOAs in the late 1990’s as SOA design techniques developed, and thus its 

possibilities for integration and cost effectiveness led the SOA to become a competitive 

component in comparison to the EDFA. The design of SOAs developed in two 

directions, one to reduce the detrimental nonlinearities so that it could be used as an 

amplifier and second to take advantage of these nonlinear effects and exploit them for use 

in all-optical signal processing. Therefore, it is an essential study to examine the 

operation of SOAs in high bit rate communications systems both as gain amplifiers and 

optical data processing [3].  

 

In this chapter, a brief overview of the various optical amplifiers that are available is 

conducted. A basic introduction of the SOA design is then given followed by a 

description of its carrier dynamics which affect propagation of a picosecond pulse 

through it. The main contribution of pulse and spectral distortion is caused respectively 

by gain saturation and corresponding self phase modulation (SPM) due to interband 

filling. As pulse widths reduce and approach 2 ps effects such as carrier heating (CH) and 

spectral hole burning (SHB) become much more dominant and cause greater 

nonlinearities to occur. The main contribution of this chapter is the accurate and full 

characterisation of pulses following propagation through an SOA. This is an important 

result in order to understand how SOA dynamics affect its application as an amplifier and 

as an all-optical processing device. The pulses are analysed as a function of input power, 

pulse duration and wavelength. High input pulse power to the SOA results in temporal 
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pedestal suppression ratio (TPSR) deterioration and generation of large chirp due to gain 

saturation which can render the pulses unsatisfactory for use in high-speed optical time 

division multiplexed (OTDM) systems.  

 

4.2 Optical Amplifiers 

Optical amplifiers can be categorised into three major classes; rare earth doped amplifiers 

(e.g. EDFA), semiconductor-based amplifiers (e.g. InGaAsP SOA), and amplification 

based on stimulated Raman scattering (SRS) in silica fibre (e.g. distributed Raman 

amplifier (DRA)) [4]. The gain in EDFAs and similar doped fibre amplifiers is provided 

by the fibre, doped by a rare earth element e.g. erbium. The input signal and pump laser 

are coupled together into the doped fibre. The pump excites electrons of the doped fibre 

to a higher energy level and the signal is amplified via stimulated emission as the input 

photon results in the decay of the electrons to a lower energy level. Thus the EDFA is 

optically pumped. The gain bandwidth in an EDFA is limited to the C and L band 

windows. New rare earth dopants are being developed so that amplification can be 

provided in other telecommunications windows of the wavelength spectrum. An SOA is 

an optoelectronic device where the gain is provided by an active semiconductor material, 

typically a III-V compound which can provide gain for wavelengths between 1200 and 

1700 nm. In contrast to the EDFA, the SOA is electrically pumped by the injected bias 

current. Raman amplification is generally used in long haul systems in conjunction with 

EDFAs to improve the transmission performance of the signal. It is generally a 

distributed amplification technique although some discrete units are available [5]. Raman 

amplifiers use the physical property of SRS to provide gain. A pump laser at a certain 

power and wavelength is launched into the fibre together with the propagating signal and 

amplification occurs when the pump photon gives up energy to create a new photon at 

the signal wavelength. In addition some residual energy is absorbed as phonons. The 

available gain is highly dependent on the wavelength offset and power of the pump. 

Typically optimum amplification for signals propagating at 1550 nm is achieved when 

the pump is offset by 100 nm to lower wavelengths.  

 

There are three different areas where amplification is deployed, as a power booster (to 

boost signal power of a source), as an inline amplifier (to compensate signal due to 

attenuation in the transmission line) and as a preamplifier (to improve receiver 

sensitivity). EDFAs are the dominant amplifiers in long-haul systems as they have lower 

noise levels and much better crosstalk properties for multi-channel amplification in 

comparison to SOAs. However the SOA offers a cost competitive alternative to the 
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EDFA when used as an inline amplifier in metro networks, as a power booster and as a 

preamplifier. Additional benefits of the SOA include the possibility of monolithic 

integration with other semiconductor components, a small footprint and low energy 

consumption.  

 

One important property of the SOA is that it has varying recombination times, associated 

with different carrier dynamics. This can cause large gain compression and nonlinear 

effects to the applied signals. In contrast to SOAs, EDFAs have a much longer 

recombination time for excited states in erbium and thus cause minimal nonlinearities in 

high-speed systems. Although these nonlinear effects are detrimental to the SOA for use 

as an amplifier, this nonlinearity can be exploited for all-optical signal processing in 

high-speed systems.  

 

4.3 Semiconductor Optical Amplifiers 

An SOA is based on very similar technology to the semiconductor laser diode. There are 

two types of SOA, the Fabry–Pérot amplifier (FPA) and the travelling wave amplifier 

(TWA), both of which have the same basic structure but differ in their reflectivities of the 

mirrors. FPAs have reflectivities in the order of 0.01-0.3, thus creating resonant devices. 

However, this reflectivity limits the amplifier bandwidth and the transmission 

characteristics are highly dependent on fluctuations in bias current, temperature and input 

signal polarisation. In order to amplify only, it is necessary to protect the device against 

self oscillations generating a lasing effect. This is accomplished by TWAs which block 

cavity reflections using both an antireflection coating and the technique of angle cleaving 

the chip facets. Thus there is only a single pass of the signal through the cavity [6]. 

Telecom applications require a TWA design, which allows amplification over a larger 

bandwidth (e.g. up to 40 nm in the 1550 nm window) and is the type of SOA which is 

discussed from now on. 

4.3.1 Device Structure of a Bulk SOA 

A bulk SOA is a simple forward biased p-n junction as shown in Figure 4-1 [7]. By 

doping the semiconductor material with donor and acceptor impurities, the Fermi level 

can be raised above or below the centre of the bandgap to create n-type and p-type 

semiconductors respectively [8]. The dominant carrier is electrons in the n-type material 

and holes in the p-type material. When the two materials are brought together, as the 

majority, holes in the p-type material tend to diffuse towards the n-type material (which 

has a majority of electrons), and forms a thin depletion layer. The thin depletion layer is 
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free of mobile carriers, and a built in potential is created. By applying a forward bias 

electric field (in the opposite direction of the built-in potential), the width of the depletion 

layer shrinks and the potential barrier is reduced. Electrons and holes can flow more 

easily across the active region. As a result both free electrons and holes are present in the 

depletion region leading to a high inversion level. A high population inversion translates 

to the population of the higher energy level exceeding the population of the lower energy 

level so that photonic emission can exceed photonic absorption. This is achieved through 

applied electrical bias.  

 

 
Figure 4-1 A schematic of a p-n junction diode illustrating the process of radiative emission [7]. 
 

Electrical and optical confinement in the SOA can be improved by using a double-hetero 

structure. In this configuration materials which have a higher bandgap are placed on 

either side of the p-n junction. These cause potential barriers to improve electrical 

confinement to the active region. These materials with a higher bandgap also have a 

smaller refractive index and thus due to total internal reflection improve the optical 

confinement area. A typical structure of a chip SOA is displayed in Figure 4-2.  



 93

 
Figure 4-2 Diagram of structure of an SOA from (a) a cross section view, and (b) a top view of the 

active waveguide. 

 

Technological advancement in the design of a bulk SOA can give enhanced performance 

in terms of reduced threshold current, higher gain efficiency lower noise and higher 

saturation power [9,10]. These devices can be categorised as quantum well (QW) and 

quantum dot (QD) SOAs. 

4.3.2 Quantum Well SOAs 

A quantum well (QW) device is very similar in structure to a bulk SOA except for the 

thickness of the active layer. When the thickness of a semiconductor active layer is 

reduced to the order of a 100 Angstroms (10 nm), effects not typical of the bulk material 

called quantum size effects occur [11]. When a thin layer is sandwiched between wider 

band gap materials, electrons or holes in the middle layer are restricted (confined) to a 

finite potential well and the usual band-to-band recombination process is then modified 

in a fundamental manner. Quantum confinement in the well causes the conduction and 

valence bands to break up into a series of subbands with a step-like density of states 

function, thus stimulated emission only occurs at discrete energy levels. Thus it is the 

difference between QW energy levels, rather than the bandgap energy, which is 

responsible for the stimulated emission process.  

4.3.3  Quantum Dot Amplifiers 

Quantum dot (QD) lasers and SOAs have active regions in which the gain material is 

confined in all three spatial dimensions [12]. If the density of states for a conventional 

diode-laser hetero structure is regarded as three-dimensional (i.e. continuous) and a QW 

structure is regarded as two dimensional, a QD structure is zero-dimensional. A QD is a 

very small piece of semiconductor material on the nanometre dimension scale and thus 

(a) (b) 
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has quantum-like properties. QDs are defined by a size limit whose volume is smaller 

than the volume defined by the Bohr radius of that particular semiconductor (e.g. 0.053 

nm) [13]. QD SOAs are even more attractive devices for future signal amplification and 

all-optical signal processing, due to their high material gain, low threshold current and 

small chirp. However, these devices are currently only in research stages with the 

promise of becoming commercially available in the next four years [14]. Research 

carried out so far has measured gain responses on the order of a few picoseconds [15,16]. 

 

4.4 Radiative Processes of an SOA 

An SOA undergoes three different radiative processes. Photon emission can be achieved 

by spontaneous and stimulated emission and the third process is absorption of input 

photons. These processes can be described by simple rate equations [17].  

4.4.1 Stimulated Emission 

Stimulated emission is the process where an input photon to the SOA interacts with an 

electron in the conduction band, thus causing it to recombine with a hole, thereby 

emitting a photon. The incident photon must have an energy equal to the recombination 

energy of the electron-hole pair. Due to stimulated emission, an input optical wave (of 

the correct wavelength) to the active region undergoes gain. The gain available to the 

input signal increases as the number of electrons and holes injected across the junction 

increases. This process is illustrated in Figure 4-3. The emitted signal has the same 

frequency, phase, direction and polarisation of the incident photon, thus, outputting a 

highly coherent amplified signal.  

 

 
 

Figure 4-3 An illustrative view of stimulated emission within an SOA 

4.4.2 Spontaneous Emission 

When an electron and a hole are present in the same region, they may recombine by 

spontaneous emission, i.e. the electron may re-occupy the energy state of the hole, 

emitting a photon with energy equal to the difference between the electron and hole states 

Conduction Band 

Valence Band 

Amplified 

 Photons Input Photon 
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involved. Spontaneous emission is a random radiative process whereby the resultant 

emitted photons have no corresponding phase and can be emitted in any random direction 

[18]. As spontaneously emitted photons travel along the active region, they can also be 

amplified generating amplified spontaneous emission (ASE). ASE is considered as noise, 

which degrades the SOA performance. If the spontaneous emission photons happen to be 

emitted close to the direction of travel of the signal photons, they will interact with the 

signal photons, causing both amplitude and phase fluctuations. Thus, the measured power 

of the amplifier output consists of both amplified signal power and the ASE power.  

4.4.3 Absorption 

An electron in a lower energy state is raised to an excited energy state after having 

absorbed a photon with energy equivalent to bandgap energy. Without population 

inversion the probability of stimulated emission and absorption taking place are equal. 

Thus for an SOA to provide gain, population inversion must be achieved such that the 

population of the higher energy level exceeds the population of the lower energy level. 

4.4.4 SOA Rate Equations 

The SOA rate equations are very similar for the rate equations described in Chapter 2, 

Section 2.5.3, however they also need to account for the changes due to an input light 

signal. Generally, single mode evaluation is sufficient to describe the carrier dynamics in 

an SOA. The carrier density rate equation can be described as [17]: 

gSN
qV
I

dt
dN

n

Γ−−=
τ

                                           Equation 4-1 

 

where N is the carrier density, t is the time, I is the injected bias current, q is the 

electronic charge, V is the volume of the active region, τn is the carrier lifetime, Γ is the 

optical confinement factor g is the material gain and S is the photon density. The first 

term describes the generation of carriers due to the applied bias current, the second term 

describes the carriers lost due to recombination processes such as spontaneous emission, 

monomolecular and Auger recombination. The last term describes the carriers depleted 

due to stimulated emission. The gain is defined as g = a(N-N0), where, a is the 

differential gain (dg/dN) and No is the carrier density at transparency. 

 

The photon density rate equation of an SOA is: 
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                        Equation 4-2 
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where τs is the photon cavity lifetime, βsp is the spontaneous emission factor, τsp is the 

spontaneous emission lifetime, and Sin is the photon density injected by the incident 

optical signal per second. The first term describes the decrease in photon density due to 

losses in the cavity. For a TWA the mirror losses are nearly 100% due to the very low 

facet reflectivities now achievable. The next two terms describe the generation of 

photons due to stimulated emission, and the generation of photons due to spontaneous 

emission which are confined to the active region respectively. Finally the last term takes 

onto account the increase in photon density due to the input optical signal. 

 

When an optical pulse is injected into an amplifier the majority of the electrons in the 

excited state are depleted due to stimulated emission. The reduction in the density of 

excited electrons has two consequences. First, amplifier gain is reduced, and 

consequently the refractive index as seen by the waveguide changes [19] as described by 

Kramers-Kronig relations [8]. This causes a change in wavelength of the output pulse as 

a function of time i.e. chirp. The gain recovery processes following depletion by an 

injected optical pulse are described below. 

 

4.5 Carrier Dynamics of an SOA 

When an optical beam is injected into an SOA, electrons in the excited states are depleted 

due to the electron-hole recombination. This depletion in carriers due to interband effects 

leads to a reduction in available gain. In addition ultrafast phenomena such as SHB and 

CH also lead to gain suppression for amplification of further optical signals. The gain 

recovers on different timescales for these afore mentioned interband and ultrafast 

processes. Figure 4-4 shows the gain recovery of an SOA following each of the gain 

saturation effects. In addition there is an associated change in the phase for each change 

in gain. In the following section a more detailed description of these effects will be given 

and it will be shown how they are important for applications of the SOA.  
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Figure 4-4 Carrier evolution of the electron density (p) versus electron energy (E) in the active 

region of an SOA. 

4.5.1 Spectral Hole Burning 

Spectral hole burning (SHB) is a localised reduction in gain (or carriers) around the 

spectral region of the lasing wavelength [20] as shown in Figure 4-4 (b). At the 

amplifying wavelength, intense stimulated emission depletes carriers in this spectral area 

faster than the rate at which the carriers can ‘fill in’ the ‘hole’. The magnitude of gain 

compression produced by this effect depends critically on the intraband relaxation times 

of the carriers. There is a subsequent redistribution of carrier energies due to carrier-

carrier scattering as shown in Figure 4-4 (c). The scattering process due to SHB is more 

prominent in InGAsAsP optical amplifiers in comparison to GaAs-AlGaAs amplifiers as 

they have time scales of the order of 50-100 fs and <20 fs respectively [21]. SHB affects 

gain as seen by the incident pulse as the gain reduction is localised at the incident pulse 

wavelength. For some optical signal processes such as wavelength conversion, the probe 

signal is not affected by SHB as the CW signal is located at a different wavelength which 

does not see the localised gain reduction.  

4.5.2 Carrier Heating 

Carrier heating (CH) is a transient heating of electron and hole temperatures [22]. Thus 

carriers are excited into the high momentum states. When a pulse at the wavelength 

corresponding to the gain curve of the SOA is transmitted through an SOA, it reduces the 

carrier population but heats the plasma (by removing cool carriers). As a result, the gain 

reduces, since the active layer gain is a sensitive function of the carrier temperature. The 

carrier temperatures relax towards the lattice temperature by electron-phonon scattering 

on the time scale of 0.5-2 ps as shown (c-d) of Figure 4-4. The main mechanism of CH 

within the lattice structure is stimulated emission however there are other contributions 

such as free-carrier absorption (FCA) and two-photon absorption (TPA). FCA is an effect 

where a free carrier (arising from lattice vibrations) can absorb a photon and move to a 

(a) (b) (c) (d) (e) 
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higher energy state within the band, thus increasing the temperature of the lattice [23]. 

TPA becomes an important parameter to consider upon the input of high power pulses to 

the SOA [24]. The strong injection pulse causes the generation of free carriers of very 

high energy, which results in heating of the conduction band electrons (and to a lesser 

extent, heating of the valence band holes). TPA is a process where two photons are 

absorbed in the generation of a single electron-hole carrier pair [25]. It occurs when a 

photon of energy Es is incident on an active area of a semiconductor device with a 

bandgap exceeding Es but less than 2Es, and thus the probability of TPA increases with 

an increase in input signal [51].  

4.5.3 Interband Recovery 

The interband carrier recovery time is the time it takes for the carriers depleted from the 

conduction band to be replenished by the applied bias current. The interband relaxation 

time is the step illustrated from (d-e) in Figure 4-4. It has an intrinsic timescale of 

approximately 40-200 ps. This large time range which the interband gain recovery time 

occurs is highly dependent on many parameters such as the length of the SOA, the bias 

current and the injected optical power [26,27]. 

4.5.4 Phase Dynamics 

The changes in gain lead to a variation of the refractive index. This relationship between 

the gain and refractive index is related by the linewidth enhancement factor (LEF), or 

alpha factor [28] and can be described by Kramers-Kronig relations. There is an LEF 

associated with each of the SOAs individual gain recovery processes [29]. A reduction in 

carrier density or gain results in an increase in refractive index and thus an increase in 

phase shift. Small changes in carrier density in an SOA can lead to a large change in its 

refractive index and thus large phase-shift changes.  

4.5.5 Self Phase Modulation 

The large refractive index change in the SOA leads to a modulation of the phase of the 

input signal. This nonlinear change which is a result of gain saturation is described as self 

phase modulation (SPM) and is the physical mechanism which leads to spectral distortion 

of the input signal [19]. Relatively low input powers can result in considerable distortion 

in the spectral domain. SPM due to gain depletion leads to an asymmetric spectral 

broadening biased towards longer wavelengths i.e. red chirp. Gain recovery results in a 

negative phase shift and thus spectrally there is a corresponding shift to lower 

wavelengths i.e. blue chirp. Additionally the spectrum develops a multi-peak structure 

after propagation through the SOA, due to interference effects. The same value of 

instantaneous frequency can exist at two points within the profile of the pulse, and this 
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leads to constructive and destructive interference occurring resulting in an oscillatory 

nature of the spectra [19].  

 

For pulse widths greater than 10 ps, the time resolved gain is just the integral of the pulse 

intensity, which leads to an instantaneous frequency shift which is directly proportional 

to the intensity envelope of the input optical pulse. The instantaneous frequency therefore 

has its maximum deviation at the peak of the optical pulse. As the pulse width reduces, in 

a similar fashion to the ultrafast gain recovery of the SOA, there is a corresponding 

ultrafast phase change [30]. There is a SPM contribution due to the thermalisation or 

cooling of hot carriers [31]. The time varying gain of the SOA leads to a temporally 

varying refractive index due to carrier depletion, however the LEF relating these changes 

is much smaller in magnitude in comparison to carrier induced refractive index change. 

Thus the ultrafast phase change has a much smaller contribution to the overall phase 

recovery of the SOA.  

 

The LEF, α describes the amplitude-phase coupling of an SOA. There is an associated 

LEF for each carrier dynamic relating to band filling, CH and SHB. Typical LEFs for 

SOAs are reported to be 3.1 and 1.9 for carrier density gain saturation and the nonlinear 

gain reduction caused by CH respectively [38]. The LEF, αN for interband effects is 

defined as the change of the real and imaginary parts of susceptibility, i.e. the change in 

refractive index, n and in the gain, g with respect to changes in the carrier density, dN as 

described by the following expression [28]: 

dNdg
dNdn

N /
/4

λ
πα −

=                                                         Equation 4-3 

 

The alpha factor dependence on wavelength and current in a SOA is described by 

Storkfelt et al. [32]. The large differential gain at lower wavelengths corresponds to a 

small alpha factor and thus a small chirp. With increasing applied bias current the gain 

peak wavelength decreases linearly. The alpha factor and thus the chirp increases with 

increasing wavelength as the differential gain reduces.  

 

The ultrafast gain dynamics of an SOA cannot be measured using an oscilloscope due to 

its limited bandwidth resolution. Therefore the ultrafast gain and phase dynamics of an 

SOA can be measured using time and spectrally resolved pump-probe experiments [23]. 

The gain and phase dynamics of a typical Kamelian SOA are shown in Figure 4-5 [33]. 

The input pulses were 2 ps FWHM. The gain recovery time due to CH is 1 ps and the 

associated gain recovery is 3 dB. The magnitude of the ultrafast gain recovery of the CIP 
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SOA is only approximately a half of the ultrafast gain recovery of the Kamelian SOA 

[34]. The ultrafast phase recovery is typically an order of magnitude smaller than the 

associated ultrafast gain recovery [35].  

 
 
Figure 4-5 Measured (a) gain and (b) phase dynamics of a Kamelian SOA displaying a large 
ultrafast gain recovery, and a small ultrafast phase recovery [33].  
 

4.5.6 Gain Saturation 

High energy input pulses induce gain saturation of the SOA which in turn results in pulse 

deformation. Amplification of an optical signal consumes carriers, thereby transiently 

saturating (i.e. reducing) the gain. Gain saturation induced nonlinearities lead to pulse 

distortion in all amplifiers because the leading edge saturates the amplifier and reduces 

the gain available for the trailing edge. If the input pulse energy is only a small fraction 

of that required for gain saturation then there is little distortion to the pulse. However, 

large input pulse energies could prove detrimental to communications system 

performance. If the amplifier does not provide approximately the same gain for all data 

bits, it results in the generation of patterning effects and the quality of the optical data 

signal is significantly degraded [18]. To avoid distortion of the signal, the magnitude of 

gain saturation must be sufficiently small, or the amplifier dynamics must be such that 

transient gain changes do not affect the neighbouring bits.  

 

Gain saturation is dependent not only on the energy of the input pulses but is also 

dependent on the width of the input pulses. Therefore the saturation energy for pulse 

widths of 150 fs is much less than for pulse widths of 15 ps [36]. This pulse width 

dependence is due to the nonlinear gain saturation effects of CH and SHB. Bori et al. 

have shown that a critical pulse width of 10-12 ps is the point where saturation of the 

carrier density and nonlinear effects contribute equally [37]. Therefore data streams 

output from an SOA undergo linear and nonlinear patterning effects at high bit rates. The 

maximum line rate of an SOA for use as an amplifier to date is 40 Gb/s, due to the effects 

of patterning which leads to eye closure. 
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4.6 Experimental Characterisation of Amplified Pulse following 

Propagation through an SOA 

There has been a proliferation of publications concerning the ultrafast gain and phase 

dynamics of SOAs measured and explained through pump-probe experiments 

[20,33,38,39], autocorrelation techniques [40], cross-correlation analysis [41], spectral 

characterisation [19,42] and spectrogram measurements [43,44]. Delfyett et al. [45,46] 

analysed the pulse intensity and its corresponding temporal shift of 2 ps pulses 

propagating through an SOA to retrieve some chirp information. Other methods used the 

measurement technique of frequency-resolved optical gating (FROG) to characterise 

pulses and their phase for pulse widths around 175 fs in the absorption, transparency and 

gain regimes following propagation in an SOA [47,48].  

 

However there is no single complete study of short picosecond pulses suitable for high-

speed systems (2 ps and 8 ps FWHM suitable for 160 Gb/s and 40 Gb/s OTDM 

respectively) following propagation in an SOA to date. The following experimental 

characterisation fills this void by characterising the temporal, spectral and chirp profiles 

of the outputted pulses as a function of varying SOA and input pulse parameters (input 

power, wavelength, and polarisation for two different SOA devices). The changes in 

pulse shape and the amplitude of the SOA induced chirp is important in determining the 

propagation distance of the amplified pulses. In addition the induced nonlinear chirp 

shape is measured. Thus this characterisation is important in examining the effects of 

these amplified pulses in a high-speed network but also how these effects will impact 

nonlinear processing capabilities of the SOA. A significant result of the characterisation 

which has not been previously published is the large TPSR deterioration of the input 

pulse due to SOA gain saturation [49]. 

4.6.1 Kamelian and CIP SOA Device Characterisation 

Two commercially available SOAs were used in the experiment available from Kamelian 

and CIP. (See Appendix II for basic device characterisation for both SOAs). The 

Kamelian SOA as illustrated in Figure 4-2 is a 1 mm long device including tapers for the 

improvement of chip-fibre coupling (detailed device information is reported in [50]). The 

material gain curve of the Kamelian SOA is shown in Figure 4-6, modelled for a carrier 

density of 2.9x1024
 m-3 [50]. The CIP SOA is a multiple QW (MQW) device 1.5 mm long 

[34]. Both devices have an active region which is tilted 7º from the normal axis to 

prevent the gain from having a resonant peak due to the formation of an optical cavity. 

The CIP device is nonlinear in that it has a low saturation output power of 9 dBm, while 
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the Kamelian device does not reach the same level of saturation until 13 dBm. The 

Kamelian and CIP SOA have an unsaturated fibre-to-fibre gain of 21 dB and 26 dB at an 

operating current of 200 mA at a wavelength of 1550nm respectively.  

 

 
Figure 4-6 Material gain curve of the Kamelian SOA for a carrier density of 2.9x1024

 m-3 [50]. 
 

The gain recovery of each SOA was measured as shown in Figure 4-7 (a). A 2 ps pulse 

train and a CW signal (also known as probe signal) are coupled together and are input to 

the SOA. The CW signal is modulated by the gain of the SOA. The input pulse train is 

filtered from the output of the SOA and the probe signal measured by the digital 

communications analyser (DCA) represents the gain recovery of the SOA. The 

normalised gain recovery of the Kamelian and CIP SOAs are shown for an input probe 

power of -12.8 dBm in Figure 4-7 (b). The interband gain recovery time of the Kamelian 

and CIP SOAs are 68.1 ps and 58.2 ps respectively. The ultrafast gain recovery is also 

visible but an accurate measurement of its time frame cannot be measured due to the 

limited temporal resolution of the DCA. However this figure shows that the magnitude 

of intraband gain recovery is larger (~3 dB) for the Kamelian SOA in comparison to the 

CIP SOA for hese operating conditions. 
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Figure 4-7 (a) Experimental set-up to measure the interband gain recovery time of an SOA and 
(b) the gain recovery response of the Kamelian and CIP SOAs (68.1 ps and 58.2 ps respectively).  
 

4.6.2 Experimental Set-up 

The experimental set-up used to characterise the SOA amplified pulses using the FROG 

measurement technique is shown in Figure 4-8. Two different pulse sources were used to 

generate the 8 ps and 2 ps pulses. The generation of the 8 ps pulse train was 

accomplished through gain switching in conjunction with a nonlinearly-chirped fibre 

Bragg grating (NL FBG) as shown in Figure 4-8 (a). The generated Gaussian pulses have 

a time bandwidth product (TBP) of 0.44 (transform limited), a wavelength of 1549.5 nm 

and a repetition rate of 2.5 GHz. The pulse generation method is described in detail in 

Chapter 3 Section 5.4. The second pulse source comprised of a 10 GHz hybrid mode-

locked semiconductor laser, which generates pulses with an approximate FWHM of 2 ps, 

tunable from 1530 – 1565 nm as shown in Figure 4-8 (b). In each set-up the pulse train 

was amplified and then selectively attenuated via a variable optical attenuator (VOA) and 

then injected into the SOA. In the case of the 2 ps pulses the experiment was carried out 

by setting the input pulses to match the either the transverse electric (TE) and transverse 

magnetic (TM) polarisation of the SOA. The SOA TE and TM axis of polarisation was 

found by respectively maximising or minimising its ASE following a polarizer. The input 

signal was then matched to the TE/TM axis of the SOA by adjusting the polarisation 

controller (PC) to give maximum output power following the SOA and polarizer. 

Isolators were placed before and after the SOA to ensure no lasing action could take 

(a) 

(b) 
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place due to reflections from other components in the set-up, (due to the very high gain 

of both SOAs a small reflection can initiate lasing action in the SOAs). The output pulses 

were characterised using the FROG via an EDFA and PC.  
 

 
Figure 4-8 Experimental set-up of pulse characterisation following propagation through an SOA 
for (a) 8 ps pulses generated by a gain-switched laser in conjunction with a NL FBG and (b) 2 ps 
pulses generated by a mode-locked source. 

4.6.3 Characterisation of 8 ps and 2 ps Pulse Widths as a Function of Input Peak 
Power 

The first important characterisation is to investigate different pulse widths to determine 

how they affect the intensity and phase of pulses following propagation in an SOA. Pulse 

widths of 8 ps and 2 ps were chosen as they are the typical pulse widths used in 40 Gb/s 

and 160 Gb/s OTDM systems respectively. Figure 4-9 displays the intensity profile and 

corresponding chirp of the 8 ps input and output pulses at different input powers. The 

input peak power is varied from 1.5 mW to 150 mW, the SOA bias current is 150 mA 

and the input wavelength is 1550 nm. For low input peak powers (<1.5 mW) the output 

pulses only show a small degree of distortion in comparison to the input pulses. With an 

increase in input peak power the pulse width increases from 8.8 ps to 12.4 ps. The reason 

for pulse broadening is as follows: the leading edge sees a large gain, and is linearly 

amplified. However the gain of the SOA begins to saturate with increased power, 

resulting in less gain available for the rest of the pulse causing pulse broadening. The 

TBP deteriorates from 0.44 to 0.63, and the formation of a large amount of nonlinear 

chirp due to the SOA SPM is clearly visible. The chirp becomes more nonlinear as the 

input power to the SOA is increased. Carrier density depletion induced SPM is the main 

mechanism contributing to the nonlinear chirp for these 8 ps pulses [19]. The chirp 

profile is shaped closely to the shape of the pulse. The chirp minimum corresponds to the 

pulse maximum as this point corresponds to the point of maximum red-shift of the pulse. 
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From this point onwards the pulse is in less saturation and thus the chirp returns to its 

initial level.  

 

 
Figure 4-9 The intensity profile and corresponding chirp of an 8 ps gain-switched pulse input to 
and output of the SOA as the input peak power is varied from 1.5 to 150 mW. 
 

Previous studies have shown that as pulse widths become narrower the ultrafast gain and 

phase recovery effects become more prominent [37]. Thus we repeated the above 

experiment with a 1.5 ps pulse to examine how the narrower input pulse width and the 

contribution of the ultrafast gain and phase recovery affect the pulse intensity and chirp 

profile. The intensity profile and the chirp before and after propagation through the SOA 

as a function of input peak power varied from 2 mW to 125 mW are shown Figure 4-10. 

The wavelength of the input pulse is 1550 nm, the bias current to the SOA is 200 mA and 

the input polarisation of the pulse is set to match the TE mode of the SOA. This figure 

shows the pulse width increases from 1.5 ps at the input to 1.8 ps, 2.4 ps, and 2.7 ps as 

the input power increases. This pulse width increase is due to the interband gain 

saturation effects (similar to 8 ps pulse widths) but there is also a further gain 

compression due to the ultrafast effects. Thus the pulse width increase factor is 1.5 for 

the 8 ps pulses and 1.8 for the 2 ps pulses at the maximum input peak power. The 

magnitude of the chirp for the 1.5 ps pulse is much greater than the 8 ps pulse for the 

same input peak powers. Taking the maximum input power to the SOA for both pulse 

widths the chirp magnitude increases from 125 GHz to 300 GHz. This is due to the pulse 

width dependence on the energy saturation level of the SOA as was described in section 

4.5.6 and the corresponding refractive index dependence outlined in section 4.5.4. For 2 

ps pulses, the contribution of CH due to effects of stimulated emission, FCA and in 

particular TPA [51] is much greater in comparison to the case of pulse widths of 8 ps. An 

additional contribution to SPM originates from the instantaneous non-linear index [52]. 
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Together all these effects result in gain suppression and a corresponding change in phase 

through the process of SPM.  

 
Figure 4-10 Input and output pulse profiles and corresponding chirp as a function of input peak 
power (2, 20, 125 mW) to the Kamelian SOA. (Set-up parameters include IB = 200 mA, λ = 1550 
nm, and TE polarisation).  

 

The Kamelian SOA has a fast intraband gain recovery of at least 1 dB as shown in Figure 

4-7 (b) (This will increase as the input pump power increases). This introduces a 

corresponding ultrafast phase recovery response, i.e. a blue chirp. Figure 4-11 shows 

some blue chirp on the trailing edge corresponding to the intraband gain recovery. When 

the magnitude of the chirp is greater on the trailing edge in comparison to the magnitude 

of the chirp on the leading edge of the pulse, the excess chirp corresponds to blue chirp. 

There was no blue chirp visible for the 8 ps pulses, thus confirming that as pulse widths 

reduce the contribution of intraband effects to shaping the intensity and chirp profiles 

increase.  

 
Figure 4-11 Diagram to show red and blue chirp of amplified pulse. (Set-up parameters: Pin= 125 
mW, IB = 200 mA, λ = 1550 nm, and TE polarisation).  
 
An important finding from this characterisation is the large TPSR degradation associated 

with gain suppression. A detailed study has not been previously published [49]. Figure 

4-12 shows the dramatic increase in pedestals on the pulse leading and trailing edges as 

the input power is increased. The pedestals on the input pulses to the SOA cannot be seen 
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as they are below the noise level of our measurement system. We estimate that they are 

40 dB down from the peak of the pulsei. At the output of the SOA the pulse TPSR 

reduces from 40 dB to 22 dB. The leading pedestal in the unsaturated regime sees a 25 

dB gain and partially saturates the gain available for the main pulse. The high intensity 

main pulse fully saturates the gain of the SOA and sees only 8 dB gain. Thus the 

resulting output TPSR is 23 dB between the peak of the leading pedestal and the peak of 

the main pulse. Upon the onset of the trailing edge pedestal (7.7 ps from peak of input 

pulse) the gain in the Kamelian SOA has recovered by a few decibels due to the ultrafast 

gain recovery dynamics of the SOA. Thus the trailing pedestal sees an approximate gain 

of 15 dB, reducing the TPSR to 35 dB on the trailing edge of the pulse. The large 

increase in these pedestals would clearly pose significant problems for the use of these 

pulses in high-speed OTDM systems as described in detail in Chapter 3 Section 5.2. In 

most cases the SOAs when used as amplifiers would not have such large input peak 

powers, however for all-optical processing SOAs are most generally used in saturation 

and these large pedestals could cause considerable detrimental effects to the processes 

pulses. 

 
Figure 4-12 Input and output pulse profiles (log scale) as a function of input peak power (2, 20, 
125 mW) to the Kamelian SOA to illustrate the large TPSR degradation introduced by SOA gain 
suppression.  

4.6.4 Characterisation of Different SOAs as a Function of Input Peak Power 

To compare the performance and effects of different SOAs, the same 1.5 ps mode-locked 

pulses were characterised following propagation in the CIP SOA. The operating 

conditions were the same as the Kamelian SOA, except the bias current to the CIP SOA 

was set to 300 mA. The output pulses and their corresponding chirp profiles are shown in 

Figure 4-13. The pulse width broadened from an input pulse width of 1.5 ps to 2.1 ps, 2.9 

ps and 3.4 ps as the input power was increased and the magnitude in chirp increased from 

                                                      
i Pedestals can be formed in mode-locked lasers due to a small residual reflectivity as small as 10-5 from the 
antireflection coatings of the cavity. These pulses are separated by the round trip time of the diode cavity 
(7.7 ps). 
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100 GHz to 380 GHz (80 GHz greater than Kamelian SOA). No blue shift of the CIP 

SOA is visible in the output chirp for the high input power pulses. The magnitude of the 

ultrafast gain recovery is less in the CIP SOA in comparison to the Kamelian SOA, thus 

the corresponding blue chirp is not visible for these pulses. Due to the lower saturation 

power (Psat) value of the CIP SOA the pedestals on the leading edge see a large gain, 

however the main pulse sees a much smaller gain and thus the TPSR is reduced to 12 dB. 

The trailing pedestals see negligible gain as the CIP SOA does not have a large ultrafast 

gain recovery component.  

 
Figure 4-13 (a) Input and CIP SOA output pulse profiles and corresponding chirp and (b) 
logarithmic pulse profiles as a function of input peak power (2, 20, 125 mW). Other pulse 
parameters included IB = 200 mA, λ = 1550 nm, and TE Polarisation.  
 

Figure 4-14 shows the spectra of the input pulse and output pulses for different input 

peak powers of 2-125 mW for the Kamelian and CIP SOA respectively measured using 

an optical spectrum analyser (OSA). The overall red-shift of the signal following 

propagation through the SOAs is clearly visible. The oscillatory nature of the spectra is 

due to the interference effect common to nonlinear media, whereby the same value of 

instantaneous frequency existing at two points within the profile of the pulse can lead to 

constructive and destructive interference occurring causing a multi-peak structure [19]. 

 

 
Figure 4-14 Input (125 mW) and output OSA spectra as a function of input peak power (2, 20, 125 
mW) for (a) the Kamelian and (b) the CIP SOA. 
 

(a) (b) 

(a) (b) 
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The CIP SOA would most likely have superior performance to the Kamelian SOA when 

used as linear amplifier as its total gain recovery time is less than the Kamelian SOA, 

thus reducing patterning effects at higher bit rates. In contrast the Kamelian SOA has a 

larger intraband gain recovery and this would contribute to reducing a small portion of 

interband patterning [53]. We will look in more detail in the next chapter at the 

performance difference of these two SOAs used as all-optical wavelength converters.  

4.6.5 Characterisation as a Function of Input TE and TM Polarisations 

Following on from this the SOA amplified pulses were characterised as a function of TE 

and TM polarisation to examine the sensitivity of the SOAs to the different polarisations 

[54]. Figure 4-15 (a) shows the output pulse intensity and chirp for TE and TM 

polarisations for the Kamelian SOA with a small signal input of 2 mW. The wavelength 

is 1550 nm, the bias current is 200 mA. For a small signal input there is negligible 

polarisation dependence on the characteristics of the output pulses. In Figure 4-15 (b) and 

(c) a large input signal of 125 mW is injected into the SOA. Here the differences due to 

TE and TM polarisations are more visible. The chirp of the pulses aligned to TE 

polarisation is greater due to the larger gain available for TE polarisation, and thus the 

larger carrier density variation. Input pulses aligned to TM polarisation see less gain and 

have a lower Psat in comparison to pulses aligned to the TE polarisation of the SOA. Thus 

effects of gain saturation are more visible on the pulses aligned to the TM polarisation of 

the SOA. Hence, the pulse leading edge is sharper with a longer trailing edge and the 

TPSR is less. The results show that the Kamelian SOA shows some polarisation 

dependence but it is not significant enough to have a large impact on the amplified 

pulses. 

 
Figure 4-15 Comparison of how TE and TM polarisation signals affect the linear temporal and 
chirp profiles following propagation through the Kamelian SOA at input powers of (a) 2 mW (b) 
125 mW and (c) the logarithmic temporal profile for the high input power of 125 mW.  
 

4.6.6 Characterisation of Pulses following an SOA as a Function of Wavelength 

To further characterise the effects on the pulses output from the SOA, the pulses were 

examined as a function of wavelength. The Kamelian SOA was investigated and the bias 

current was set at 200 mA, at an input peak power of 125 mW. The respective input pulse 



 110

widths for wavelengths of 1540 nm, 1550 nm, and 1560 nm are 1.3 ps, 1.5 ps, and 2.1 ps. 

The temporal and chirp characterisation of the pulses at 1540 nm, 1550 nm, and 1560 nm 

are displayed in Figure 4-16. As can be seen from the gain curve of the Kamelian SOA 

shown in Figure 4-6 the gain peak is situated at 1530 nm. As the wavelength of the input 

pulses move further from the gain peak of the SOA, the gain available for the input 

pulses is reduced. The output pulse widths are 2.1 ps, 2.9 ps, and 3.1 ps, indicating an 

approximate 50% increase in pulse width, showing that there is negligible dependence of 

the pulse-width increase on wavelength. The TPSR reduces as the input wavelength 

moves further from the gain peak of the SOA, as there is a corresponding increase in the 

effective carrier lifetime. The chirp profile does not show a large dependence on 

wavelength. The reduction in chirp at longer wavelengths is more likely due to the larger 

input pulse width rather than related to the wavelength dependence. A larger chirp is 

expected at longer wavelengths, because the differential gain is smaller which results in a 

larger alpha factor [32]. 

 

 
Figure 4-16 (a) Kamelian SOA output pulse profiles and corresponding chirp and (b) logarithmic 
pulse profiles as a function of different input wavelengths (1540 nm, 1550 nm, 1560 nm).  
 

4.7 Summary 

This chapter introduces SOAs and their basic device structure. A brief analysis was given 

to explain the different gain and phase dynamics that the SOA undergoes upon the input 

of a signal. When a pulse of high intensity is input to the SOA, carriers in the SOA are 

instantaneously reduced via stimulated emission. In addition, the carrier dynamics are 

affected by intraband effects such as SHB and CH. Sources of CH include stimulated 

emission, FCA and TPA (for high power input pulses). Inter and intraband effects 

introduce gain compression and a phase shift via the change in refractive index, inducing 

a large nonlinear chirp. Recovery following gain compression occurs over different 

(a) (b) 
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timescales. Intraband effects recover on a timescale of ~2 ps and generally the intrinsic 

gain recovery time of the SOA due to carrier injection is of the order of 10-100’s ps.  

 

Experimentally, this chapter characterised typical pulses used in Gb/s high-speed systems 

following propagation in an SOA. The intensity and corresponding phase of the 

amplified pulses were characterised by the FROG measurement scheme. Amplified 

pulses with input powers varying from 2 mW to 150 mW were analysed for input pulse 

widths of 2 ps and 8 ps. These results show that shorter pulses undergo a higher degree of 

gain saturation effects due to the larger contribution of intraband effects, and thus a 

partial fast gain recovery in comparison to the longer pulses. There is also a 

corresponding increase in chirp magnitude. An important result of these characterisations 

is the large deterioration in TPSR as the input peak power to the SOA is increased. As the 

wavelength of the input pulses moves further from the gain peak of the SOA the TPSR 

deteriorates due to lower power saturation levels. It was shown how the TPSR on the 

trailing edge of the pulse is dependent on the ultrafast gain recovery of the SOA. The 

different ultrafast gain recovery of each of the SOAs also affected the magnitude of blue 

chirp measured across the pulse. The generation of blue-chirped components agreed with 

the gain recovery measurements which show that the Kamelian SOA has a larger 

ultrafast component in comparison to the CIP SOA. The nonlinear shape of the chirp was 

confirmed as outlined by previous studies and the overall wavelength shift to longer 

wavelengths and the multi-peak structure of the spectrum was measured. The accurate 

characterisation of the effects of SOA amplification on picosecond pulses is vital for the 

design of high-speed systems that may employ SOAs as amplifiers and as optical 

processing elements. In an amplification system nonlinear chirp and gain saturation are 

detrimental to the performance of the system, however these characteristics are desirable 

when SOAs are used as an all-optical processor. The above detailed analysis of the 

picosecond pulses following propagation through an SOA, will aid in the optimisation 

and development a wavelength conversion scheme, which is introduced in the next 

chapter.  



 112

REFERENCES

                                                      

[1]  M.J. Connelly, “Semiconductor Optical Amplifiers,” Kluwer Academic Press, 

Dordreacht, 2002.  

[2]  M.C. Farries, P.R. Morkel, R.I. Laming, T.A. Birls, D.N. Payne, and E.J. 

Tarbox, “Operation of Erbium-Doped Fiber Amplifiers and Lasers Pumped with 

Frequency-Doubled Nd:YAG Lasers,” J. Lightwave Technol., vol. 7, pp. 1473-

1477, Oct. 1989. 

[3] M.J. O’Mahony, “Semiconductor Optical Amplifiers for use in Future Fiber 

Systems,” J. Lightwave Technol., vol. 6, pp. 531-543, Apr. 1988. 

[4] G. van den Hoven, “Alternative Amplifiers,” OSA Optical Fiber Commun. Conf. 

(OFC’04), paper ThJ3, 2004.  

[5] M.N. Islam, “Raman Amplifiers for Telecommunications,” J. Quantum 

Electron., vol. 8, pp. 548-559, May/June 2002. 

[6] T. Saitoh, and T. Mukai, “Travelling-Wave Semiconductor Laser Amplifiers for 

Optical Communications Systems,” Global Telecommun. Conf.,( Globecom’90), 

vol. 2, pp. 1274-1280, 1990.  

[7]  A. Yariv, “Quantum Electronics” Wiley, New York, 1989. 

[8] B.A. Saleh, and M.C. Teich, “Fundamentals of Photonics,” Wiley, New York, 

1991.  

[9]  P.J.A. Thijs, L.F. Tiemeijer, P.I. Kuindersma, J.J. M. Binsma, and T. Van 

Dongen, “High-Performance 1.5 µm Wavelength InGaAs-InGaAsP Strained 

Quantum Well Lasers and Amplifiers,” IEEE J. Quantum Electron., vol. 27, pp. 

1426-1439, 1991. 

[10] D. Tauber, R. Nager, A. Livne, G. Eisenstein, U. Koren, and G. Raybon, “A 

Low-Noise-Figure 1.5 µm Multiple-Quantum-Well Optical Amplifier,” IEEE 

Photonics Technol. Lett., vol. 4, pp. 238-241, 1992.    

[11]  N. Holonyak, R.M. Kolbas, R.D. Dupuis, and P.D. Dapkus, “Quantum-Well 

Heterostructure Lasers,” IEEE J. Quantum Electron., vol. 16, pp. 170-186, 1980. 

[12] D. Bimberg, and N. Ledentsov, “Quantum Dots: lasers and amplifiers,” J. Phys. 

Condens. Matter, vol. 15, pp. R1063-R1076, 2003.  

[13] Dept. of Chmeistry – Florida State University URL: 

http://www.chem.fsu.edu/editors/strouse/learning.html, “The Basics of Quantum 

Dots”. 



 113

                                                                                                                                                

[14] Compound Semiconductor, URL: 

http://compoundsemiconductor.net/articles/news/9/3/6, “Quantum Dot Amplifier 

Restores 40Gb/s Signals”. 

[15]  P. Borri, W. Langbein, J.M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. 

Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in InGaAs 

Quantum-Dot Amplifiers,” J. Sel. Top. Quantum Electron., vol. 6, pp. 544-551, 

May/June 2000. 

[16]  T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, 

O. Wada, and H. Ishikawa, “Nonlinear Gain Dynamics in Quantum-Dot Optical 

Amplifiers and Its Application to Optical Communications Devices,”  IEEE J. 

Quantum Electron., vol. 37, pp. 1059-1065, 2001.  

[17] H. Ghafouri-Shiraz, “The Principles of Semiconductor Laser Diodes and 

Amplifiers – Analysis and Transmission Line Laser Modeling,” Imperial 

College Press, London, 2004.  

[18] J. Mork, M.L. Nielsen, and T.W. Berg, “The Dynamics of Semiconductor 

Optical Amplifiers, Modelling and Applications,” Optics and Photonics News, 

pp. 42-48, July 2003.  

[19]  G.P. Agrawal, and N.A. Olsson, “Self-Phase Modulation and Spectral 

Broadening of Optical Pulses in Semiconductor Laser Amplifiers,” J. Quantum 

Electron., vol. 25, pp. 2297-2306, Nov. 1989. 

[20]  B.N. Gomatam, and A.P. DeFonzo, “Theory of Hot Carrier Effects on Nonlinear 

Gain in GaAs-GaAlAs Lasers and Amplifiers,” J. Quantum Electron., vol. 26, 

pp. 1689-1703, Oct. 1990. 

[21]  K.L. Hall, J. Mark, E.P. Ippen, and G. Eisenstein, “Femtosecond Gain Dynamics 

in InGaAsP Optical Amplifiers,” Appl. Phys. Lett., vol. 56, pp. 1740-1742, 1990. 

[22] M. Willatzen, A. Uskov, J. Mork, H. Olesen, B. Tromborg, and A.-P. Jauho, 

“Nonlinear Gain Suppression in Semiconductor Lasers due to Carrier Heating,” 

IEEE Photonics Technol. Lett., vol. 3, pp. 606-609, July 1991. 

[23]  M.S. Stix, M.P. Keslar, and E.P. Ippen, “Observations of Subpicosecond 

Dynamics in GaAlAs Laser Diodes,” Appl. Phys. Lett., vol. 48 pp. 1722-1724, 

June 1986. 

[24]  J. Mork, and J. Mark, “Carrier Heating in InGaAsP Laser Amplifiers due to Two 

Photon Absorption,” Appl. Phys. Lett. vol. 64, pp. 2206-2208, Apr. 1994. 

[25] B.C. Thomsen, L.P. Barry, J.M. Dudley, and J.D. Harvey, “Ultrahigh Speed All-

Optical Demultiplexing on Two-Photon Absorption in a Laser Diode,” IEE 

Electron. Lett., vol. 34, pp. 1871-1872, Sep. 1998. 



 114

                                                                                                                                                

[26] R.J. Manning, D.A.O. Davies, and J.K. Lucek, “Recovery Rates in 

Semiconductor Laser Amplifiers: Optical and Electrical Bias Dependencies,” 

IEE Electron. Lett., vol. 30, pp. 1233-1234, July 1994. 

[27] F. Girardin, G. Guekos, and H. Houbavlis, “Gain Recovery in Bulk 

Semiconductor Optical Amplifiers,” IEEE Photonics Technol. Lett., vol. 10, pp. 

784-786, June 1998.    

[28] C.H. Henry, “Theory of the Linewidth of Semiconductor Lasers,” J.  Quantum 

Electron., vol. 18, pp. 259-264, Feb 1982. 

[29]  A. Dienes, J.P. Heritage, M.Y. Hong, and Y.H. Chang, “Time- and Spectral-

Domain Evolution of Subpicosecond Pulses in Semiconductor Optical 

Amplifiers,” Optics Lett. vol. 17, pp. 1602-1604, Nov. 1992. 

[30]  C.T. Hultgren, and E.P. Ippen, “Ultrafast Refractive Index Dynamics in AlGaAs 

Diode Laser Amplifiers,” Appl. Phys. Lett. vol. 59, pp. 635-637, Aug. 1991. 

[31] P.J. Delfytt, Y. Silberberg, and G.A. Alphonse, “Hot-Carrier Thermalization 

Induced Self-Phase Modulation in Semiconductor Travelling Wave Amplifiers,” 

Appl. Phys. Lett., vol. 59, pp. 10-12, 1991. 

[32]  N. Storkfelt, B. Mikkelsen, D.S. Olesen, M. Yamaguchi, and K.E Stubkjaer, 

“Measurement of Carrier Lifetime and Linewidth Enhancement Factor for 1.5-

µm Ridge-Waveguide Laser Amplifier,” IEEE Photonics Technol. Lett., vol. 3, 

pp. 632-634, Jul. 1991. 

[33] R. Giller, R.J. Manning, and D. Cotter, “Gain and Phase Recovery of Optically 

Excited Semiconductor Optical Amplifiers,” IEEE Photonics Technol. Lett., vol. 

18, pp. 1061-1063, May 2006. 

[34] A. Poustie, “Semiconductor Devices for All-Optical Signal Processing,” 

European Conf. Optical Commun. (ECOC’05), paper We 3.5.1, 2005. 

[35] R. Giller, and R.J. Manning, “Recovery Dynamics of Optically Excited 

Semiconductor Optical Amplifiers,” OSA Optical Fiber Commun. Conf. 

(OFC’06), paper OWI74, 2006. 

[36]  A. Uskov, J. Mork, and J. Mark, “Theory of Short-Pulse Gain Saturation in 

Semiconductor Laser Amplifiers,” IEEE Photonics Technol. Lett., vol. 4, pp. 

443-446, May 1992. 

[37]  P. Borri, S. Scaffetti, J. Mork, W. Langbein, J.M. Hvam, A. Mecozzi, and F. 

Martelli, “Measurement and Calculation of the Critical Pulsewidth for Gain 

Saturation in Semiconductor Optical Amplifiers,” Optics Comms. vol. 164, pp. 

51-55, June 1999.  



 115

                                                                                                                                                

[38]  M.Y. Hong,  Y.H. Chang, A. Dienes, J.P. Heritage, P.J. Delfyett, S. Dijaili, and 

F.G. Patterson, “Femtosecond and Self- and Cross-Phase Modulation in 

Semiconductor Laser Amplifiers,” J. Sel Top Quantum Electron., vol. 2, pp. 

523-539, Sep. 1996. 

[39] Y. Lai, K.L. Hall, E.P. Ippen, and G. Eisenstein, “Short Pulse Gain Saturation in 

InGaAsP Diode Laser Amplifiers,” IEEE Photonics Technol. Lett., vol. 2, pp. 

711-713, Oct. 1990. 

[40] T. Saitoh, T. Mukai, “Gain Saturation Characteristics of Travelling-Wave 

Semiconductor Laser Amplifiers in Short Optical Pulse Amplification,” J. 

Quantum Electron., vol. 26, pp. 2086-2094, Dec. 1990.  

[41] H. Kawaguchi, and Y. Ito, “Precise Measurement of Nonlinear Propagation 

Characteristic of Sub-Picosecond Optical Pulses in SOAs,” Conf. Lasers and 

Electro-Optics Europe (CLEO Europe’00), paper CTuP6, 2000. 

[42] J.H. Kim, K.-R. Oh, K.-M. Cho, “Spectral Characteristics of Optical Pulse 

Amplification with a Holding Light in Semiconductor Optical Amplifiers,” 

Optics Commun., vol. 170, pp. 99-109, Oct. 1999. 

[43] J.M. Dailey, and T.L. Koch, “Impact of Carrier Heating on SOA Dynamics for 

Wavelength Conversion,” IEEE Lasers and Electro-Optics Society 19th Annual 

Meeting (LEOS), paper MP4, 2006. 

[44]  I. Kang, and C. Dorrer, “Measurements of Gain and Phase Dynamics of a 

Semiconductor Optical Amplifier using Spectrograms,” OSA Optical Fiber 

Commun. Conf. (OFC’04), paper MF43, 2004. 

[45] P.J. Delfyett, H. Shi, S. Gee, I. Nitta, J.C. Connolly, and G.A. Alphonse, “Joint 

Time-Frequency Measurements of Mode-locked Semiconductor Diode Lasers 

and Dynamics using Frequency-Resolved Optical Gating,” IEEE J. Quantum 

Electron., vol. 35, pp. 487-500, 1999. 

[46] K. Sutkus, K. Shum, R.R. Alfano, and P.J. Delfyett, “Effect of Carrier Heating 

on the Wavelength Chirp of Ultrashort Laser Pulses in Semiconductor Optical 

Amplifiers,” IEEE Photonics Technol. Lett., vol. 6, pp. 372-374, 1994. 

[47] F. Romstad, P. Borri, W. Langbein, J. Mork, and J.M. Hvam, “Measurement of 

Pulse Amplitude and Phase Distortion in a Semiconductor Optical Amplifier,” 

IEEE Photonics Technol. Lett., vol. 12, pp. 1674-1676, 2000. 

[48] S. Hughes, P. Borri, A. Knorr, F. Romstad, and J.M. Hvam, “Ultrashort Pulse-

Propagation Effects in a Semiconductor Optical Amplifier: Microscopic Theory 

and Experiment,” J. Sel. Top. Quantum Electron., vol. 7, pp. 694-702, Jul/Aug. 

2001. 



 116

                                                                                                                                                

[49] A.M. Clarke, M.J. Connelly, P. Anandarajah, L.P. Barry, D. Reid, “Investigation 

of Pulse Pedestal and Dynamic Chirp Formation on Picosecond Pulses after 

Propagation Through an SOA,” IEEE Photonics Technol. Lett., vol. 17, pp. 

1800-1802, 2005. 

[50] M.J. Connelly, “Wideband Steady-State Numerical Model and Parameter 

Extraction of a Tensile-Strained Bulk Semiconductor Optical Amplifier,” IEEE 

J. Quantum Electron., to be published. 

[51] J.M. Tang, and K.A. Shore, “Amplification of Strong Picosecond Optical Pulses 

in Semiconductor Optical Amplifiers,” IEE Proc.-Optoelectron., vol. 146, pp. 

45-50, 1999.  

[52] M.Y. Hong, Y.H. Chang, A. Dienes, J.P. Heritage, and P.J. Delfyett, 

“Subpicosecond Pulse Amplification in Semiconductor Laser Amplifiers: 

Theory and Experiment,” IEEE J. Quantum Electron., vol. 25, pp. 2297-2306, 

1989. 

[53] M.L. Nielsen, J, Mork, R. Suzuki, J. Sakaguchi, and Y. Ueno, “Experimental 

and Theoretical Investigation of the Impact of Ultra-fast Carrier Dynamics on 

High-speed SOA-based All-optical Switches,” OSA Optics Express, vol. 14, pp. 

331-347, Jan. 2006. 

[54]  B. Kennedy “A study of the Origin and Applications of Nonlinear Polarization 

Rotation in Semiconductor Optical Amplifiers,” PhD Thesis, pp. 136-146, 

Dublin City University, Mar. 2007. 



 117

 CHAPTER 5 – ALL-OPTICAL WAVELENGTH CONVERSION 

USING SEMICONDUCTOR OPTICAL AMPLIFIERS 
 

5.1 Introduction 

In order to implement high-speed networks and to make full use of the bandwidth 

potential of optical fibre, networks must be fully transparent. Thus to realise these 

transparent optical networks it is imperative to develop photonic devices that can 

undertake basic processing at ultrahigh data rates. One specific processing element that 

is of particular importance is a wavelength converter, as it is required to avoid 

wavelength conflict at nodes and generally to render wavelength division multiplexed 

(WDM) systems more flexible [1]. Although optical transmission is a mature 

technology, optical switching functionalities are not. Presently, optical switching 

platforms are primarily based on optical-electronic-optical (OEO) approaches, limiting 

processing speeds to maximum line rates of 40 Gb/s. The COST 290 report [2] strongly 

advises that investment should continue in the area of wavelength conversion (and other 

all-optical processing techniques) because of the various advantages (e.g. transparency) 

that it brings. In the long term, increases in individual line rates will demand processing 

speeds approaching terabits per second, but for the short term, the next step is likely to 

be 160 Gb/s for each individual line rate. In particular, wavelength conversion has the 

potential to increase the capacity of WDM networks by using dynamic provisioning (by 

assigning dynamic channels between links). This allows for network management by a 

link-to-link process thus network requirements become more relaxed. For example if 

there is a link or node failure a local reconfiguration can be carried out rather than 

implementing a global reconfiguration, thus creating a more cost-efficient WDM 

network [3]. 

  

An ideal candidate for the functional application of wavelength conversion is the 

semiconductor optical amplifier (SOA) [1,4-7]. It is a highly nonlinear device, with a 

refractive index dependence related to the gain saturation of the SOA itself as was 

discussed in the previous chapter. The wide gain bandwidth of the SOA provides a large 

span to realise wavelength conversion and the tens of picoseconds carrier lifetime 

provides the speed necessary for gigabit per second bit-rate conversion. SOA 

nonlinearities which can be used for wavelength conversion include cross gain 

modulation (XGM), cross phase modulation (XPM) and four wave mixing (FWM) [4,5]. 
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By operating the SOA under these nonlinear settings, the SOA can be used in 

applications in addition to wavelength conversion, which include clock recovery [8,9], 

time-domain demultiplexing [10-12], and 3R (reamplify, reshape, and retime) 

regeneration [13-15]. To date wavelength conversion implemented using SOAs can 

perform at data rates of 160 Gb/s [16-18] and 320 Gb/s [19]. To enhance the switching 

speeds further for processing of femtosecond pulses ultrafast carrier dynamics such as 

carrier heating (CH), spectral hole burning (SHB), free carrier absorption (FCA) and two 

photon absorption (TPA) can be exploited [20,21]. The very short gain recovery time for 

these processes provides the potential for terabit per second wavelength conversion.  

 

This chapter provides an overview of the different techniques available to implement 

wavelength conversion. From this overview it will be clear why SOA-based switches are 

ideal candidates for future all-optical network wavelength converters. An explanation of 

the nonlinearities which occur in an SOA which can provide wavelength conversion via 

XGM, XPM and FWM is given. In particular we examine a popular wavelength 

conversion scheme, which uses shifted filtering in conjunction with XPM in an SOA to 

overcome the interband patterning effects of the SOA. The placement of the filter to the 

red or blue-wavelength side of the converted signal is analysed using the bit error rate 

(BER) measurements and frequency-resolved optical gating (FROG) characterisation. 

The main contribution of this work is the achievement of an 80 Gb/s error-free 

wavelength conversion scheme using XPM and blue-shifted filtering (BSF). This 

scheme provides many advantages in that it is a very simple technique, it is polarisation 

insensitive, and it preserves the polarity of the input signal. This chapter also provides an 

in-depth analysis of the converted pulse shape and output chirp which to date has not yet 

been carried out. This aids in the understanding of the SOA gain and phase dynamics 

effects and also the effects of the filtering on this type of wavelength conversion scheme. 

5.2 All-Optical Wavelength Conversion Overview 

There are a wide range of schemes which enable wavelength conversion which are now 

briefly examined. To ensure negligible performance penalty in a system and to provide 

large dynamic functionality, all-optical wavelength converters must meet the following 

parameters so that they can be implemented in real high-speed network [4]: 

o gigahertz switching speeds (>40 GHz) 

o bit-rate transparency 

o high extinction ratio (ER) 

o large signal-to-noise ratio (SNR) at output (to ensure cascadability) 

o moderate input power levels (~0 dBm) 
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o high conversion efficiency (CE) 

o large wavelength span for both input and output signals 

o possibility for same input and output wavelength (i.e. no conversion) 

o low chirp 

o insensitivity to input signal polarisation and 

o simple implementation. 

5.2.1 Fibre-Based All-Optical Wavelength Conversion Schemes 

Fibre-based switches have an inherent potential to provide terahertz processing speeds 

due to the nearly instantaneous nonlinearities that occur on a timescale in the order of a 

few femtoseconds. However, due to the very small nonlinear coefficient of silica fibre, 

very large input powers and long lengths of fibre are required. This can introduce 

instabilities in these systems. Thus, all-optical fibre-based switches are not commercially 

viable devices. For example, 1 W peak power is typically required for a 1 km long fibre 

to operate as an efficiently controlled optical switch [22]. 

 

All-optical switching can be performed by fibre-based switches by exploiting 

nonlinearities such as the Kerr effect, FWM and XPM. These switches may use 

polarisation, the newly generated wavelength and/or the induced π phase shift as the 

discriminating factor [23]. The latter two methods have demonstrated wavelength 

conversion at 160 Gb/s [24] and 640 Gb/s [25]. Generally these nonlinearities are 

exploited through the use of interferometric set-ups. For fibre-based systems typical 

Mach-Zehnder interferometer (MZI) configurations are highly susceptible to instabilities 

due to arm length mismatching. This can be overcome by joining the two arms of the 

coupler to form a nonlinear optical loop mirror (NOLM) [22,26], or by passing both 

signals through the same fibre for example a Symmetric MZI (SMZI).  

5.2.2 Difference-Frequency Generation Wavelength Conversion 

Wavelength conversion can be carried out using difference-frequency generation (DFG). 

DFG is a consequence of a nonlinear interaction of a material with two optical waves: a 

pump wave and a signal wave [1]. DFG has been demonstrated in LiNbO3 and AlGaAs 

waveguides [27,28]. In passive waveguides it is anticipated that DFG can offer 

transparent wavelength conversion with quantum noise limited operation. It is also 

capable of chirp reversal and multi-wavelength conversions with extremely low cross-

talk [28]. The CE remains low, but research in fabrication techniques continues to 

improve phase-matching of the waveguide materials.  
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5.2.3 Other All-Optical Wavelength Conversion Techniques 

Wavelength conversion can also be achieved by using single-mode semiconductor lasers 

[29]. This can typically be achieved by using a distributed Bragg reflector (DBR) laser 

[30], which has a saturable absorber (SA) region. When no input light is injected into the 

cavity the SA absorbs the light from the laser. Upon the injection of light into the cavity 

the absorption loss decreases so that the wavelength converted light is emitted. The 

response speed of the device is limited to the response of the SA. Alternatively, 

wavelength conversion can be achieved using single-mode semiconductor lasers below 

threshold [31]. The lasing mode at one wavelength can be modulated by injecting an 

intensity-modulated light signal at a different wavelength. The response of this 

wavelength conversion scheme is dependent on the bandwidth of the laser [32]. 

Additionally, all-optical wavelength conversion devices can be implemented using 

optical micro-electro-mechanical systems (MEMS)-based switches, thermal optical 

switches, additional electro-optical switches (rather than the SOA), and acoustic-optic 

switches. A full review and comparison is given in Ref. [33]. However to enable future 

bit-level time division multiplexing applications, switching speeds on the order of a few 

picoseconds will be required. Thus to date SOA-based switches and fibre-based switches 

are so far the only technologies that can operate at these picosecond switching speeds, 

and the SOA-based switches are most efficient due to their low switching energy 

requirements and their small footprint.  

5.3 SOA Wavelength Conversion 

5.3.1 Hybrid Fibre and SOA-Based Wavelength Conversion 

In order to overcome the bulky footprint, large input powers, and instability of the fibre-

based designs some research has moved towards implementing hybrid fibre and SOA-

based techniques. In this hybrid set-up the SOA provides a large nonlinearity, thus only a 

small input signal power is required and the overall footprint of the switch is reduced. 

However the elimination of the inherent terahertz switching capability of the fibre is a 

drawback, as the switching speed is now determined by the longer carrier recovery time 

of the SOA. The switches mentioned in the previous section can be implemented using 

an SOA as the nonlinear element. An SOA in a NOLM set-up, known as a 

semiconductor laser amplifier in a loop mirror (SLALOM) [34], has shown operation up 

to 40 GHz [35] and an SOA-based SMZI has exhibited 160 Gb/s performance [17]. 
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5.3.2 Monolithically Integrated Waveguide Devices 

Although the above mentioned hybrid fibre and SOA-based devices display many 

benefits, they still exhibit some of the disadvantages of the complete fibre switches. 

Their footprint remains quite large and they are difficult to mass produce. Therefore the 

direction of commercial application development is to integrate active and passive 

waveguides [36]. SOAs are ideal devices to incorporate monolithically on a single 

integrated chip [37]. The nonlinearities which are exploited in order to achieve 

wavelength conversion are now discussed.  

5.3.3 Cross Gain Modulation 

Cross gain modulation (XGM) requires inputting a high power signal (pump) coupled 

with a continuous wave (CW) signal (probe) into the SOA [38-40] as illustrated in 

Figure 5-1 (a). The pump signal modulates the gain of the SOA. The probe signal at the 

desired output wavelength is then modulated by the gain variation of the SOA [4,41]. 

Thus a signal which is an inverted replica of the pump is output from the SOA at a new 

wavelength as shown in Figure 5-1 (b) and (c). The filter following the SOA is centred at 

the wavelength of the probe to remove the input pump signal.  

 

I/P Data Signal at 1

2CW at BPF

XGM Signal at

2

2
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Figure 5-1 (a) An illustration of simple XGM in an SOA, (b) the pump and probe spectra at the 
input to the SOA and (c) the pump and modulated probe spectra following XGM in an SOA. 
 

The use of a filter can be avoided by implementing the scheme in counter-propagation, 

i.e. when the probe signal is input in the opposite direction to the pump signal. A 

circulator will then be required to further transmit the signal. This technique becomes 

problematic as pulses get shorter as the transit time of the pulse through the SOA must 

be less than the pulse width, which will require very short waveguides [7]. In counter 
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propagation schemes the wavelength-conversion response is therefore limited to the 

input-pulse’s transit time through the SOA (e.g. 4 ps for 400 µm long SOA). 

 

The technique of XGM in an SOA is desirable for the implementation of wavelength 

conversion due to its very simple configuration, polarisation insensitivity, and relatively 

low input powers. However, the disadvantages of this technique are that the converted 

signal is inverted with respect to the input, it has a relatively large chirp, and the ER can 

be significantly degraded when the signal is up converted to a higher wavelength. Simple 

XGM is limited by the interband gain recovery time of SOAs. Typical SOAs which are 

presently available and which were discussed in the previous chapter have gain recovery 

times ranging from 30-55 ps. For 20 Gb/s and 40 Gb/s systems the period is 50 and 25 ps 

respectively. Therefore XGM in these SOAs is limited to 40 Gb/s, as increased bit rates 

would lead to patterning effects and closure of the eye.   

5.3.4 Cross Phase Modulation  

In addition to the modulation of the SOA gain, the phase of the probe signal is also 

modulated upon the input of an optical signal and this is known as cross phase 

modulation (XPM). As was explained in Chapter 4 Section 4.5.4, the refractive index of 

an SOA is dependent on the amplifier gain and thus there is a gain-phase coupling via 

the alpha factors. This phase modulation causes a shift of the probe signal first to longer 

wavelengths (red shift) and then to shorter wavelengths (blue shift). Wavelength 

conversion employing XPM is a method that improves the shortcomings of XGM in that 

it generates a converted signal with a small chirp (due to the reduced gain modulation) 

and can be up-converted or down-converted without degradation of the ER [42-44]. This 

phase modulation can be converted to an intensity modulation by using interferometers 

or shifted filtering for further propagation of the signal. XPM in conjunction with shifted 

filtering is the technique chosen in this chapter to provide high bit rate wavelength 

conversion. 

5.3.5 Four Wave Mixing 

Four wave mixing (FWM) in an SOA is an attractive mechanism for wavelength 

conversion in WDM systems since it provides modulation format and bit rate 

transparency over wide tuning ranges [45,46]. FWM is an inherently fast process in 

comparison to XGM and XPM and in addition many wavelength channels can be 

handled simultaneously. A schematic of a typical FWM set-up is shown in Figure 5-2. 

An input data signal (probe) at a frequency of ω0-Ω and a CW pump at a frequency of ω0 

are coupled in the SOA. To achieve optimum efficiency the pump and probe are required 
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to be at the same polarisation. The input probe signal is a much weaker signal in 

comparison to the strong CW pump. Inside the SOA, the two electric fields cause the 

amplifier gain to be modulated at the beat frequency, Ω. The generated signal is the 

phase conjugate replica as the original input signal. This is shown in the spectrum of 

Figure 5-2 (a) where the conjugate is a shifted spectrally inverted replica of the input 

data signal.  
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Figure 5-2 (a) Wavelength conversion using FWM in an SOA, (b) the new FWM frequency 
generated signals at the output of the SOA, and (c) an example of FWM components measured on 
an OSA. 
 

FWM in an SOA is a third order nonlinear effect, thus the carrier density modulation and 

nonlinear gain effects in the SOA contribute to the generation of FWM. The gain of the 

SOA is modulated at the beat frequency between the pump and the probe signals. 

Therefore as the detuning is increased the gain of the SOA is modulated at increasingly 

smaller timeframes. At low Ω i.e. small detunings, the dominant mechanism is the 

modulation of the carrier density. This implies that this particular mechanism will only 

manifest itself for detuning frequencies of the order of gigahertz. With increasing 

detunings CH and then SHB become the dominant mechanism respectively as they relate 

to smaller gain recovery time frames. FWM is one method used to measure the 

contribution of each of the gain processes as a function of time as they each occur on a 

separate timescale as a function of frequency detuning, Ω [47].  

 

The major disadvantage of FWM is the input to output signal efficiency decreases with 

the bandwidth separation of the pump and the input signal. Consequently, it is difficult to 

retain a large SNR for the converted signal at ω0+Ω, and thus to cascade more 

converters. Although the resultant CE and SNR have been considered a weakness of 

(a) 

(b) (c) 
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FWM, acceptable efficiency has been demonstrated using two amplifiers in cascade 

[48]. Another consideration is that the output signal wavelength depends on both the 

pump and the input signal wavelengths, so the pump must be tunable even for converters 

with fixed output wavelength. In addition FWM is polarisation sensitive. To remove its 

polarisation sensitivity an extra pump signal is required [49,50]. 

5.4 The Effects of Various SOA Operating Parameters on 

XGM/XPM Wavelength Converted Pulses 

For optimised wavelength conversion, the SOA must have a reduced effective carrier 

lifetime to avoid patterning, and the output pulses must have a high ER and a large CE. 

The carrier recovery time expresses the speed with which the SOA carrier number 

recovers to its steady state value after removal of the switching light. An SOA has an 

intrinsic carrier lifetime which is on the order of a few hundred picoseconds but it can 

have a shorter effective carrier lifetime by increasing the stimulated emission 

contribution. This can be achieved by improving the waveguide confinement factor, 

increasing the number of photons into the active layer, and by enhancing the differential 

gain [51]. Maximising the SOA bias current optimises the stimulated recombination 

factor [52] and placing the pump signal to a wavelength shorter than the wavelength of 

the gain peak of the SOA, increases the differential gain. A high power probe signal or 

the addition of a CW assist light adds to the number of photons in the active region [53].  

Figure 5-3 shows the improvement of the effective gain recovery as a function of 

increasing input probe power. As the probe power is increased (-12.8 dBm, -5.8 dBm, 1.2 

dBm) the gain recovery time of the Kamelian (68.1 ps, 63.6ps, 54.25 ps) and CIP SOAs 

(58.15 ps, 49.24 ps, 37.70 ps) respectively decrease. The probe signal rapidly replenishes 

the carrier density after the propagation of a pulse through the SOA and reduces the gain 

saturation output power. 
 

 
 
Figure 5-3 Comparison of gain recovery for the Kamelian and CIP SOAs as a function of input 
probe power of (a) -12.8 dBm, (b) -5.8 dBm, and (c) 1.2 dBm.   
 

The extinction ratio (ER) is the ratio of power in the optical signal when there is a ‘1’ to 

the power in the optical signal when there is a ‘0’. An important feature for wavelength 

(a) (b) (c) 



 125

conversion is equal performance for the up and down-converted signals. In XGM, the 

ER increases as the CW wavelength decreases with respect to the gain peak, and when 

the pump is situated at the gain peak. Thus down-conversion (translation from long 

wavelengths to short wavelengths) results in an output signal with high ER. On the other 

hand, up-conversion gives rise to a poorer performance. The change in ER is due to the 

variation of the differential gain with respect to the CW and signal wavelengths [4]. As 

the gain is saturated, the gain peak of the amplifier shifts to longer wavelengths, 

resulting in a higher slope on the shorter wavelength side of the gain peak. Therefore, the 

probe channels at the shorter wavelengths will experience larger gain variations. This 

effect is enhanced by increasing the wavelength separation between the input pump and 

probe [54]. The ER can also be improved by increasing the input signal power, as further 

saturation of the SOA induces a larger gain modulation of the CW probe signal.  

 

The conversion efficiency (CE) is the ratio of the input optical signal to the output 

optical signal measured at the input and output device facets respectively by the optical 

spectrum analyser (OSA). Maximum CE is obtained when both pump and probe are 

close to the gain peak of the SOA and when they are reasonably close to each other. A 

low CE results in the output signal requiring further amplification and thus a reduction 

in optical signal-to-noise (OSNR) due to addition of amplified spontaneous emission 

(ASE) to the signal. Thus there is a trade-off between optimum ER and highest 

achievable CE. The CE can be improved by increasing the length of the SOA or by 

reducing the input pump average power [55]. Reducing the average pump power is the 

better option so that a sufficient ER can be maintained.  

5.5 Wavelength Conversion in Conjunction with Shifted Filtering 

One of the most detrimental aspects in employing SOAs as wavelength converters is the 

patterning effects associated with the SOA carrier recovery time which limits the overall 

bit rate achievable. It has been shown that simple XGM/XPM in an SOA in conjunction 

with shifted filtering can overcome this carrier recovery limitation [56-58]. Depending 

on the offset of the shifted filter XGM or XPM is the primary nonlinearity being 

exploited. Ellis et al. were the first to demonstrate high bit rate operation using the XGM 

and shifted filtering technique at 100 Gb/s [59]. Similarly Liu et al. have improved on 

this performance and have shown error-free wavelength conversion up to 320 Gb/s 

[19,60]. Alternatively Nielsen et al. have achieved error-free operation at 40 Gb/s 

primarily exploiting XPM by extending the offset of the shifted filter [61]. Although the 

bit rates achievable for XPM and shifted filtering are limited in comparison to the 

schemes that utilise XGM, this scheme offers many advantages which include preserving 
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the polarity of the wavelength converted signal, a higher ER, and the elimination of a 

complicated interferometric configuration (used to invert the XGM wavelength 

converted signal). In this chapter an experiment is presented, which builds on the work 

of Nielsen et al. [61] and achieves 80 Gb/s error-free performance using XPM in an SOA 

in conjunction with shifted filtering. B2B BER measurements are taken for a variety of 

filter offsets and two different SOAs are compared to establish the impact of their 

different gain recoveries on the wavelength conversion performance. 

 

Due to the popularity of this technique many studies have been carried out to achieve 

further understanding and improved results. Leuthold et al. proposed a pulse 

reformatting optical filter (PROF), which was designed to keep both the red and blue-

chirped components of the wavelength converted signal enabling 40 Gb/s error-free 

performance [62]. The impact of ultrafast carrier dynamics for XGM and XPM shifted 

filtering schemes is analysed experimentally and theoretically by Nielsen et al. [21]. This 

work is further enhanced by the FROG characterisation carried out for different filter 

spectral offsets. The analysis reveals important results as the FROG characterisation 

shows the contribution of the different carrier dynamics of the SOA and the filter have 

on influencing the shape and chirp of the wavelength converted pulses.  

5.5.1 Principle of Shifted Filtering in Conjunction with XGM/XPM 

An optical signal input to an SOA results in both gain and phase changes of the SOA 

related via Kramers-Kroning equations. In the case of XGM and XPM the gain and 

phase changes modulate the probe signal respectively. An illustrative example of the 

gain and chirp SOA dynamics following propagation of a ~2 ps pulse is illustrated in 

Figure 5-4. The probe signal undergoes a positive phase shift corresponding to the 

generation of red-chirped components as a consequence of gain depletion and has a time 

frame corresponding to the input pulse width. The SOA gain then begins to recover 

resulting in a negative phase shift and the generation of blue-chirped components. The 

gain and phase recovery occurs in accordance to different recovery processes, SHB 

(~100 fs), CH (~ 2 ps) and interband carrier recovery (~55 ps).  
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Figure 5-4 An illustrative example of the gain and corresponding chirp dynamics in an SOA upon 
the input of a short picosecond pulse. 
 

The principle of red-shifted filtering (RSF) and blue-shifted filtering (BSF) is illustrated 

in Figure 5-5 (a) and (b) respectively. By placing a filter to retain only the red chirp (or 

longer wavelength components) of the probe signal, is known as RSF, and 

correspondingly if a filter is placed to keep only the blue-shifted spectral probe 

components, it is called BSF. The high bit-rate performance of the BSF scheme is due to 

the large blue chirp generated by ultrafast carrier effects and thus short picosecond pump 

pulses are required to achieve optimum performance [63].  

 

 

                 
 
Figure 5-5 Schematic illustrating the principle of (a) red and (b) blue-shifted filtering.  
 

If the filter is shifted such that the original CW potion of the probe and either the 

red/blue shifted components are kept this process primarily exploits XGM. The output 

signal remains inverted in comparison to the input signal as displayed in Figure 5-6 (a) 

and (c) and displays a poor ER. In the case where the CW portion of the probe is 

suppressed and the only either the red or blue-chirped components of the probe are kept 

the process of XPM is primarily exploited. This results in polarity preserved pulses with 

Red Shifted Filtering Blue Shifted Filtering 
(a) (b) 
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an enhanced ER in comparison to the previous case. This is illustrated in Figure 5-6 (b) 

and (d).  

 

 

                 
 
Figure 5-6 Diagram to explain the principle of shifted filtering which either primarily exploits 
XGM (a) and (c) (the CW component of the probe is conserved) or XPM (b) and (d) (the CW 
component of the probe is rejected). Both examples undertake BSF, i.e. the blue-chirped spectral 
components are retained.  
 

The oscilloscope traces clearly show that the long gain recovery time is overcome as the 

eyes diagrams in Figure 5-6 (c) and (d) show clear eye openings at 40 Gb/s. One can see 

that the disadvantage of both these wavelength conversion schemes is the large spectral 

power which is lost due to the filtering. However the scheme can continue to operate at 

such high data rates due to noise suppression function of the filter that is otherwise a 

large detrimental effect for SOAs due to their inherent ASE [63].  

5.5.2 Experimental Set-up for 10 GHz Characterisation of Shifted Filtering Scheme 

An initial characterisation was carried out at 10 GHz to investigate the dependence of 

pump and probe parameters on the performance of the converted pulses. The 

experimental set-up is displayed in Figure 5-7. The pulses were generated by a 2 ps 

hybrid mode-locked pulse source operating at a repetition rate of 10 GHz. The pulses 

were amplified and coupled with a CW signal and injected into the SOA. The pump 

power was kept constant at 1.75 dBm, and the input probe power measured at the fibre 

input to the SOA was 1.2 dBm and -5.8 dBm. The Kamelian SOA was kept fixed at 250 

mA. Following the SOA there was a fixed flat top bandpass filter with a 5 nm width at 

the full width half maximum (FWHM). The CW laser was tuned to the short and long 

wavelength sides of the filter to achieve RSF and BSF respectively. The wavelength 

10 ps/div 10 ps/div 

Filter Filter(a) (b) 

(c) (d) 
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converted pulses were then characterised using the high-speed digital communications 

analyser (DCA) and the FROG measurement scheme.  

 

 
 
 
Figure 5-7 The experimental set-up for the 10 GHz characterisation of the shifted filtering 
wavelength conversion scheme.  
 

5.5.3 Comparison of RSF and BSF in XGM Configuration 

The CE for the shifted filtering scheme is quite poor as a lot of power is rejected by the 

filter and can lead to a reduced OSNR. However the filter also removes a large portion 

of ASE and so a relatively high OSNR can still be maintained [63]. The probe power, 

wavelength position and wavelength separation is investigated to determine their effect 

on the effective carrier lifetime and ER of the converted pulses. The effective carrier 

lifetime, τ is measured as the 10-90% rise time. The measurement for the ER and τ are 

measured from the DCA.  

 

The results for the case of XGM and shifted filtering are outlined in Table 5-1. The first 

result clearly shows how the filtering technique clearly improves the ER of the converted 

pulses for both RSF and BSF in comparison to the case when no filtering is employed. 

For XGM and shifted filtering wavelength conversion, BSF is optimum. The operating 

conditions of the pump and probe follow the same trends as they do for the general 

XGM case as described in Section 5.4.  
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Table 5-1 Investigation of the dependence of τ and ER on the wavelength position of the input 
pump and probe, their separation and power for RSF and BSF, for the XGM (polarity 
unpreserved) wavelength conversion scheme. (** measured at the input to the SOA, the pump 
power was kept constant at 1.75 dBm). 
 

A large probe power results in a reduced recovery time (compare (1) to (2) and (5) to 

(6)). The ER is optimum when the probe is at a shorter wavelength than the pump i.e. 

down-conversion. However this results in an increased τ (compare (1) to (3) and (5) and 

(7)), and therefore a compromise is required. When the scheme (both pump and probe) is 

operated at shorter wavelengths, there is a small improvement in τ and ER (compare (3) 

to (4) and (7) to (8)). The slight enhancement of τ may be due to the larger differential 

gain when the pump and probe are operated at lower wavelengths. Therefore, optimum 

performance for this type of wavelength conversion scheme is found when the 

wavelength converted signal is down-converted, when both the pump and probe are 

placed at lower wavelengths, and when BSF is used (as highlighted in (7)). The 

wavelength converted pulses are illustrated in Figure 5-8. Although the output power 

from the BSF pulses is less in comparison to the RSF, the overall improvement in 

effective carrier lifetime is clearly seen.  

 
Type of 

Filtering 

Pump λ 

(nm) 

Probe λ 

(nm) 

λ 

Separation 

(nm) 

Probe 

Power 

(dBm)** 

τ (ps) 
ER 

(dB) 

Input No Filtering 1556 1543.03 -13 1.2 54.25 2.39 

(1) RSF 1556 1543.03 -13 1.2 53.63 4.65 

(2) RSF 1556 1543.03 -13 -5.8 63.65 5.72 

(3) RSF 1533 1543.05 +10 1.2 51.09 3.94 

(4) RSF 1545 1552.81 +8 1.2 51.5 3.86 

(5) BSF 1556 1548.30 -8 1.2 38.32 4.48 

(6) BSF 1556 1548.30 -8 -5.8 52.00 2.93 

(7) BSF 1533 1548.26 +15 1.2 21.01 3.57 

(8) BSF 1545 1558.3 +13 1.2 22.01 3.12 
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Figure 5-8 Wavelength converted pulses of (a) RSF and (b) BSF polarity unpreserved pulses 
(labels correspond to parameters outlined in Table 5-1). 
 

5.5.4 Comparison of RSF and BSF in XPM Configuration 

The nonlinear process of XPM is primarily exploited when the filter is offset further 

from the centre of the probe so that the CW portion of the probe signal is suppressed. 

The optimum parameters for this scheme outlined in Table 5-2 differ significantly from 

the XGM case. The most significant differences are that both the ER and τ have 

considerably improved for RSF and BSF configurations.  

 

 
Table 5-2 Investigation of the dependence of τ and ER on the wavelength position of the input 
pump and probe, their separation and power for RSF and BSF, for the XPM (polarity preserved) 
wavelength conversion scheme. (** measured at the input to the SOA, the pump power was kept 
constant at 1.75 dBm). 
 

In this scheme the ER is optimum when the wavelength converted signal is up-converted 

to longer wavelengths i.e. the probe is placed at longer wavelengths to the pump 

wavelength (compare (1) to (3) and (5) to (6)). Thus the probe sees a lower differential 

 
Type of 

Filtering 

Pump λ 

(nm) 

Probe λ 

(nm) 

λ 

Separation 

(nm) 

Probe 

Power 

(dBm)** 

Tau 

(ps) 

ER 

(dB) 

Input No Filtering 1556 1543.03 -13 1.2 54.25 2.39 

(1) RSF 1556 1542.01 -14 1.2 5.55 11.49 

(2) RSF 1556 1542.01 -14 -5.8 5.93 22.93 

(3) RSF 1533 1542.01 +9 1.2 6.3 15.99 

(4) RSF 1545 1551.88 +7 1.2 5.93 16.43 

(5) BSF 1556 1548.69 -7 1.2 7.24 7.23 

(6) BSF 1556 1548.69 -7 -5.8 - - 

(7) BSF 1533 1548.69 +16 1.2 8.03 7.51 

(8) BSF 1545 1558.64 +14 1.2 6.70 19.96 

(a) (b) 
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gain but a higher linewidth enhancement factor (LEF), thus the probe has a larger chirp 

component which improves the ER [35]. For RSF, the ER is optimum for a reduced 

probe power (compare (1) to (2)), however with the consequence of reduced output 

power, and an increased τ. In the case of the BSF, the output power was so low that a 

measurement could not be taken. For both red and blue-shifted filtering schemes the ER 

is improved when pump and probe wavelengths are at longer wavelengths (greater than 

the SOA gain peak) due to the increase in generated chirp components due to a smaller 

differential gain. This improvement is more evident in BSF (compare (3) to (4) and (6) 

to (7)). The optimum operating parameters are highlighted for both types of filtering 

RSF (4) and BSF (8).  

 

The wavelength converted pulses for both RSF and BSF are shown in Figure 5-9 

measured using the DCA. The CE (and thus the output power) is significantly degraded 

for XPM and shifted filtering. This is due to the high filtering of the CW component. 

This becomes a major limitation for this wavelength conversion scheme when operating 

at higher bit rates.  

 

 
Figure 5-9 Wavelength converted pulses of (a) RSF and (b) BSF polarity preserved pulses (labels 
correspond to parameters outlined in Table 5-2). 
 

Due to the limited resolution of the DCA, the accurate pulse profile of the wavelength 

converted pulses cannot be measured. The optimum converted signals for the RSF (4) 

and BSF (8) were measured using the FROG technique and are shown in Figure 5-10. 

The FWHM pulse width for RSF and BSF are 2.4 ps and 7.2 ps respectively. The RSF 

scheme appears to give overall better performance in comparison to the BSF scheme. 

The ER is larger, and the pulse width is narrower, however BER measurements in the 

next section show that BSF gives superior system performance. The large signal both 

pulses are sitting on is eliminated by further filtering, which suppresses the CW 

component to an even greater extent.     

(a) (b) 
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Figure 5-10 A FROG intensity characterisation of (a) the RSF and (b) the BSF schemes 
corresponding to (4) and (8) in Table 5-2 respectively.  
 

5.6 System Performance and FROG Analysis of an SOA-based 

XPM and Shifted Filtering Scheme 

5.6.1 BER Measurement Experimental Set-up 

In Figure 5-11 a schematic of the experimental set-up used to perform BER 

measurements on the XPM and shifted filtering schemes is shown. A hybrid mode-

locked pulse source is used to generate 2 ps pulses at a wavelength of 1545 nm (the 

pump wavelength). These pulses are amplified and filtered (removes unwanted ASE) 

and the signal is then modulated by a 10 Gb/s Mach Zehnder modulator (MZM) with a 

pseudo random bit sequence (PRBS) of 27-1. This data signal has a SNR of 12 and 

displays very little jitter (<1 ps rms) as can be seen in Figure 5-12 (a). The signal was 

amplified before a passive fibre interleaved multiplexer to overcome its 10 dB insertion 

loss. A polarizer is included following the multiplexer to ensure equal polarisation on all 

temporal channels. The 80 Gb/s signal is displayed in Figure 5-12 (b). A 6 dB SNR was 

measured at 80 Gb/s using the DCA at an input power of 0 dBm.   

 

(a) (b) 
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Figure 5-11 Experimental set-up used to examine the BER performance of RSF and BSF polarity 
preserving wavelength conversion as a function of received power. 

 

     
 
Figure 5-12 (a) The modulated data signal at 10 Gb/s and (b) the 80Gb/s multiplexed data signal 
before the coupler to the wavelength conversion scheme.   
 

The wavelength converter consisted of a CW probe signal, an SOA (Kamelian and CIP 

SOAs were compared), a 5 nm fixed filter followed by an EDFA and a second 3 nm 

tunable filter. The EDFA was required to overcome the loss of the filters. Due to the first 

filter bandwidth the probe wavelength was tuned to 1551.91 nm and 1558.6 nm to 

implement RSF and BSF respectively. The probe power was kept constant at 2.5 dBm, 

measured at the input to the SOA. The pump and probe signals before and after the 

Kamelian SOA are shown in Figure 5-13. The fixed filter and tunable filter transmission 

profiles are shown in Figure 5-14. The tunable filter was tuned to a centre wavelength of 

1555 nm and 1553 nm for RSF and BSF respectively. Figure 5-15 shows the ER 

improvement obtained by the addition of the second filter to the wavelength conversion 

scheme. The pump average power was 0 dBm at 80 Gb/s, translating to a pulse energy of 

12.5 fJ. To maintain constant pulse energy entering the SOA the average power was 

decreased by 3 dB when the bit rate was decreased to 40 Gb/s. The Kamelian and CIP 

(a) (b) 
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SOAs were biased at 250 mA and 300 mA respectively. The pump and probe signals 

were then injected into the SOA where the probe signal is modulated via XGM and 

XPM. The values for the pump and probe were optimized to give the best SNR 

measurements just after the wavelength conversion scheme. 

 

 
Figure 5-13 Pump and probe spectra (a) at the input to the SOA and (b) following XGM/XPM in 
the SOA at 80 GHz. 

 

        
Figure 5-14 Transmission profiles of (a) the fixed filter and (b) the tunable filter.  
 

 
Figure 5-15 ER improvement of the wavelength converted signal for an 80 Gb/s BSF signal after 
(a) the fixed filter and after (b) the fixed and tunable filters.  
 

The demultiplexing of the signals was achieved using two modulators in series. The first 

modulator was an electro-absorption modulator (EAM), which had a sharp transfer 

function generating a narrow gate, to demultiplex signals from 80 Gb/s to 40 Gb/s. A 

MZM was used to demultiplex from 40 Gb/s to 20 Gb/s. The power received to take 

BER measurements was recorded before the photodetector. The 20 Gb/s signal was 

electrically demultiplexed to 10 Gb/s, before being directed to the error detector (ED).   

(a) (b) 

(a) (b) 

(a) (b) 
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5.6.2 SNR Evaluation and BER Measurements at 40 Gb/s and 80 Gb/s 

The initial characterisation for the XPM and shifted filtering schemes would lead one to 

expect that RSF filtering would give enhanced system performance in comparison to 

BSF because the output pulses were much shorter with greater output power as shown in 

Section 5.5.4. However BER measurements will show that BSF gives enhanced system 

performance and higher achievable bit rates in comparison to RSF. The SNR for the RSF 

wavelength conversion scheme for the Kamelian and CIP SOA are 5.2 and 5 at 40 Gb/s 

and 3.1 and 3.5 at 80 Gb/s respectively. The SNR for the BSF wavelength conversion 

scheme for the Kamelian and CIP SOAs at 80 Gb/s are 4.8 and 5.1 respectively. These 

values were measured at 0 dBm average power input to the DCA. The wavelength 

converted eyes for RSF and BSF at 80 Gb/s for the CIP SOA is displayed in Figure 5-16, 

which clearly show the enhanced eye opening for the BSF case.  

 
Figure 5-16 80 Gb/s CIP SOA wavelength converted eye following (a) RSF and (b) BSF.   
 

BER measurements of the different wavelength conversion schemes were undertaken. 

The power received, Prec was measured before the electrical photodiode (shown in 

Figure 5-11). BER measurements as a function of received power for RSF wavelength 

conversion at 40 Gb/s and 80 Gb/s for the Kamelian SOA are presented in Figure 5-17. 

Error-free performance can be achieved for 40 Gb/s RSF (considering 1e-9 as error free). 

However a large penalty of 5 dB is introduced in comparison to the 80 Gb/s B2B case 

(i.e. no wavelength conversion).  

 

(a) (b) 
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Figure 5-17 Comparison of B2B, 40 Gb/s and 80 Gb/s RSF wavelength conversion for the 
Kamelian SOA.  
 

BER measurements were then taken to compare the Kamelian and CIP SOAs at 80 Gb/s 

for RSF and BSF are displayed in Figure 5-18 (a) and (b) respectively. The different 

SOAs show similar performance characteristics for both RSF and BSF. Although the 

SOAs have different gain recovery profiles for low probe power, at high input probe 

power the gain recovery and thus the phase recovery of the two SOAs are similar as 

shown in Figure 5-3 (c). Thus the penalty introduced by the Kamelian is approximately 

equal to the penalty induced by the CIP SOA.  
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Figure 5-18 BER measurements at 80 Gb/s for both the Kamelian and CIP SOAs for (a) RSF and 
(b) BSF. 

(a) 
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An error floor is introduced by the RSF due to the patterning of the ‘1’ level due to gain 

saturation of the SOA. However by implementing BSF we show 80 Gb/s error-free 

performance in spite of the long interband gain recovery which typically limits the SOA 

performance to 20 Gb/s. A small penalty of 2.5 dB is introduced (measured at 1e-9) by 

the BSF wavelength conversion scheme in comparison to the B2B case.  

 

Error-free performance can be achieved at these high bit rates because the BSF 

overcomes the patterning effects introduced by the slow interband gain recovery. Figure 

5-19 displays the patterning dependence when comparing the RSF technique to the BSF 

technique. An input 40 Gb/s pattern was fixed to ‘00001010’. The input pump power 

was -3 dBm. Patterning effects are more prevalent in RSF because the magnitude of 

chirp generated is directly proportional to the rate of change of phase. Red chirp in an 

SOA is generated as a result of gain depletion which occurs over a small time scale (i.e. 

equal to the input pulse width). Thus following a long string of ‘0’s there is high gain 

depletion which translates into the generation of a large magnitude of red-chirped 

components. However upon the input of another signal before the gain has time to 

recover sufficiently the amount of gain depletion is reduced and thus the amount of 

generated red chirp is reduced. Thus there is a reduction in power of the wavelength 

converted signal as shown in Figure 5-19 (a). In contrast a smaller magnitude of blue 

chirped components is generated because the negative phase shift associated with gain 

recovery occurs over a longer timescale. Therefore the wavelength converted pulses 

have less power but the generation of blue chirp remains approximately constant for 

increasing bit rates, irrelevant of the previous data pattern. Thus placement of the filter to 

implement BSF is optimum to achieve high bit rate performance.  

 

 
Figure 5-19 Pump power dependence of a 40 Gb/s wavelength converted signal following a fixed 
pattern ‘00001010’ for (a) RSF and (b) BSF at an input pump power of -3 dBm.   
 

5.6.3 Alternative BER Measurement to Assess BSF Wavelength Conversion 

It is important to analyse the BER as a function of OSNR as this gives a more realistic 

performance estimation of the wavelength conversion scheme due to the influence of 
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noise in a system. Thus the same BSF wavelength conversion scheme was 

experimentally tested using the Kamelian SOA but in a different test-bed as illustrated in 

Figure 5-20 [64]. This test-bed consisted of a 40 GHz mode-locked fibre laser source 

(generates 2 ps pulses) and the signal was modulated using a LiNBO3 electro-optic 

modulator and an increased PRBS of 215-1 was applied (in comparison to 27-1). The 40 

Gb/s pulse train was multiplexed to 80 Gb/s using a fibre-based multiplexer. The CW 

probe signal was generated by a distributed feedback (DFB) laser at 1545 nm. The pump 

and probe signal were coupled and injected into the SOA with an average power of 3 

dBm and 5 dBm respectively. The optical demultiplexing from 80-40 Gb/s was achieved 

through the use of one EAM and error detection was carried out at the 40 Gb/s receiver. 

The Kamelian SOA was biased at 250 mA. To enable the measurement of the BER 

evolution as a function of the OSNR signal an ASE source was added to the system to 

degrade the 80 Gb/s OSNR signal. 

 

 

Figure 5-20 Experimental set-up to examine the BER performance of the BSF polarity preserving 
wavelength conversion scheme as a function of OSNR. 
 

5.6.4 SOA ASE Limited BER Penalty 

The generated blue-chirped spectral components due to the phase-amplitude coupling of 

the SOA are clearly seen in Figure 5-21 (a). The 3 nm filter was shifted by 2.4 nm to the 

lower wavelength side of the CW probe. Figure 5-21 (b) shows the spectrum before the 3 

nm filter and from this we can clearly see that the OSNR of the wavelength converted 

signal is essentially limited by the ASE of the SOA. In addition, the 3 nm filter selects 

only a small portion of probe spectrum which reduces the power and thus it also adds to 

the large reduction in the OSNR. The OSNR of the converted signal was measured as 23 

dB over a 2 nm span. The low level of OSNR explains in part the 5 dB penalties 

measured on the wavelength converted signal as presented in Figure 5-22. The reference 

signal was measured using the pump data which exhibited an OSNR of 33 dB over a 2 

nm span.    
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Figure 5-21 (a) Probe spectrum at the SOA output and (b) probe spectrum before 3 nm filter. 

 

At 40 Gb/s we measured a penalty of 1.5 dB similar to [61], but this increases to 5 dB at 

80 Gb/s. As explained previously, the penalties are due to the low OSNR of probe signal 

at the SOA output and are not primarily due to the noise of the EDFA as suggested in 

[61]. The poor OSNR at the SOA output will place a limitation on the use of this scheme 

at 160 Gb/s (as when the reference signal is multiplexed up to 160 Gb/s, an OSNR of 

23dB corresponds to a BER of 1e-8). Thus the ASE of the SOA would result in an error 

floor if this technique were used at 160 Gb/s. The large penalty difference of 5 dB 

measured here in comparison to 2.5 dB measured in Section 5.6.2, can be attributed to a 

number of factors. The first is because this system is a function of OSNR, showing that 

this wavelength conversion scheme is very sensitive to an increase in noise. Additionally 

although BSF is not affected by the same patterning affects as RSF, it undergoes some 

patterning dependence. Therefore the increased pattern length of 215-1 increases the 

penalty measured for the BSF scheme in comparison to the previous BER measurement 

of 27-1.  

 
Figure 5-22 BER evolution as a function of OSNR measured over a 2 nm span of the BSF 
wavelength conversion scheme exploiting XPM in an SOA at 80 Gb/s. (i) represents two 
tributaries of the B2B signal and (ii) represents two tributaries of the wavelength converted 
tributaries. 
 

(i) 

(ii) 

(ii) 

(i) 
3 nm filter 

(i) EDFA noise level 

(ii) SOA noise level 

(i) Without pump modulation 

(ii) With pump modulation 

(a) (b) 
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5.6.5 FROG Characterisation of RSF and BSF Wavelength Conversion at 
Repetition Rates of 10-80 GHz 

In this section we present a detailed characterisation of red and blue-shifted wavelength 

conversion schemes using the FROG measurement technique. This characterisation is 

important as it measures the exact temporal profile of the wavelength converted pulses 

and its corresponding output chirp as a function of input line rate from 10-80 GHz. Thus 

temporal patterning effects and the gain dynamics resulting from RSF and BSF can be 

examined in detail.  

 

The experimental set-up is shown in Figure 5-23. The initial set-up remained the same as 

described in Figure 5-11 but no data was applied to the MZM to ensure the best accuracy 

in taking FROG measurements. The pulse train was passively multiplexed to rates 

ranging from 10-80 GHz and the wavelength converted pulses were analysed directly 

after the conversion scheme at each output line rate.  

 

 
Figure 5-23 Experimental set-up to characterise the pulse temporal and chirp dependence on the 
applied repetition rate to the SOA for RSF and BSF polarity preserving wavelength conversion 
schemes. 
 

The intensity profiles of the wavelength converted pulses for RSF and BSF are shown in 

Figure 5-24. By placing the filter on the red shifted side of the original probe spectrum 

we obtain very short pulses as shown in Figure 5-24 (a). This is due to the very fast 

response caused by the depletion of carriers which induces an equally fast red chirp, 

which corresponds to the input pump pulse width. The shape of the RSF wavelength 

conversion signals are defined by the shape of the chirp. Furthermore one can note a 

double slope in the trailing edge of the RSF pulses. This is a consequence of two factors 

which determine the output pulse intensity; firstly the proportion of the probe transmitted 

through the shifted filter which is a function of the chirp imparted on probe by the SOA 

and secondly the level of gain saturation in the SOA. From Figure 5-4 it can be seen that 

at the point of greatest red chirp the gain has only been depleted by half. After this point 

the output pulse intensity falls because the decreasing red chirp reduces filter 

transmission and also due to the gain saturating further. This corresponds to the initial 
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fast fall of the trailing edge. When the gain saturates to its greatest extent and starts to 

recover the frequency chirp is still shifting towards the blue wavelengths. At this point 

the filter transmission is still decreasing but the gain is recovering. This leads to the 

second slower fall-off in the trailing edge of the pulse. It can also be noted that the 

change of slope appears earlier as the bit rate increases. This can be explained because 

generation of red-chirped components is reduced as the bit rate increases, therefore the 

probe component returns earlier to its original wavelength which reduces the first part of 

the trailing edge of the pulses. There is the possibility that this double sloping could be 

removed by using an optimised filter, especially designed for this application. 

 

In the case of BSF, illustrated in Figure 5-24 (b) the wavelength converted pulses are 

much broader, however the impact of patterning effects is far less evident as shown by 

the pulses being more independent of repetition rate. The dominant parameters in 

determining the pulse shape are, as for the RSF case, the gain recovery slope and, in this 

BSF case, the filter shape instead of the SOA chirp profile. The leading edge of the pulse 

has a sharp edge due to the initial fast intraband gain recovery and associated increase in 

the filter transmission (occurs over ~ 2 ps). The probe wavelength returns much more 

slowly to its original wavelength as the gain recovers, resulting in a pulse with a long 

trailing edge. The structure at the top of the pulses is due to a combination between the 

filter transmission and ultrafast gain phenomena such as intraband effects. 

 

 
Figure 5-24 Intensity profiles of the wavelength converted pulses which primarily use XPM in 
conjunction with (a) RSF and (b) BSF in an SOA at line rates of 10, 20, 40 and 80 GHz.  
 

In Figure 5-25 we show the wavelength converted pulses normalised and their 

corresponding output chirp. The output pulses have pulse widths of 2.5-3.6 ps and 7-6.3 

ps for respective red and blue-shifted converted pulses as the repetition rate increases 

from 10-80 GHz. The large pulse width around 7 ps after BSF may limit this type of 

wavelength conversion. Shorter pulses could be achieved by using a filter with a 

(a) (b) 
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narrower bandwidth, however this would significantly deteriorate the OSNR, and would 

become the limiting factor in achieving increased bit rates. The chirp in particular for the 

BSF pulses is approximately linear across the pulse. This is to be expected as the 

induced phase by the SOA is converted into amplitude modulation by the shifted filter. 

This linear chirp with an approximate magnitude of 200 GHz could be used to compress 

the blue-shifted converted pulses to approximately 3.5 ps. The small ripple on the output 

chirp is due to an uneven filter profile. Enhanced performance could be achieved by 

using a filter with a smoother profile and pulse compression could be obtained with a 

filter that has a linear chirp opposite to the wavelength converted pulses.    

 

 
Figure 5-25 Intensity and corresponding chirp profiles of the wavelength converted pulses which 
primarily use XPM in the Kamelian SOA in conjunction with (a) RSF and (b) BSF at line rates of 
10, 20, 40 and 80 GHz. 
 

A comparative analysis was subsequently made with the CIP SOA and is illustrated in 

Figure 5-26. Similarly to the system performance results in Section 5.6.2 the wavelength 

converted temporal profile and chirp magnitude of the CIP SOA follow the same trends 

as the Kamelian SOA. However, the double slope on the trailing edge of the RSF results 

appears sooner and the dip in BSF pulses is larger, because the gain at these points is less 

in comparison to the Kamelian SOA (as shown in Figure 5-3 (c)). These differences do 

not introduce any penalties for the B2B BER measurements but they could lead to 

greater problems if the pulses are further propagated in fibre that do not undergo full 

dispersion compensation or are affected by nonlinearities in the fibre.  

 

(a) (b) 
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Figure 5-26 Intensity profiles for (a) red and (b) blue shifted filtering wavelength converted 
pulses implemented using a CIP SOA at line rates of 10, 20, 40 and 80 GHz. 
 

The FROG characterisation gives us an improved understanding of this type of 

wavelength conversion scheme. In addition, these results have the potential to aid in 

enhancing the design of a filter to achieve an improved wavelength conversion 

performance. CW suppression could be improved by utilising a filter with a sharper band 

edge, the pulses could be optimally shaped by an asymmetric spectral transmission 

profile and a group delay profile opposite to the group delay of the pulses measured 

above. Thus, possibilities exist to enhance this wavelength conversion scheme further to 

provide short wavelength converted transform limited signals. 

5.7 Summary 

This chapter has presented an overview of the different all-optical wavelength 

conversion techniques presently being researched, including a detailed description of the 

three nonlinear processes (XGM, XPM and FWM) which enable wavelength conversion 

in an SOA. Currently there is a large interest in achieving wavelength conversion at high 

bit rates. One popular method uses a shifted filter to exploit primarily either XGM or 

XPM in an SOA. The focus of this chapter is the technique which primarily exploits the 

nonlinear process of XPM as this allows the polarity of the input pulses to be 

maintained. Large differences in the shape and performance of the wavelength 

conversion scheme can be achieved by placing the filter to retain either the red or blue-

shifted spectral components. Unlike RSF, error-free performance can be achieved using 

BSF at 80 Gb/s, due to the phase recovery which is less dependent on the gain saturation 

that has preceded it. Error-free performance using this scheme has not been achieved at 

this high bit rate previously. A 5 dB penalty for the wavelength conversion scheme was 

measured in comparison to the B2B case. The full temporal characterisation of the 

wavelength conversion scheme presented is an important analysis to achieve a full 

understanding of the SOA gain and phase dynamics which are exploited using the two 

(a) (b) 
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different filtering schemes. The wavelength converted signals were characterised using 

the FROG technique as a function of repetition rate. This type of characterisation has not 

been yet been provided before to the best of our knowledge. In general the output pulse 

shapes for both RSF and RSF are determined by a combination of the generated chirp 

and filter profile. A combination of intraband gain and chirp effects lead to some 

structure on the converted pulses. In addition the group delay and chirp information 

obtained from this FROG analysis would enable the design of an enhanced filter shape 

so that improved pulse quality in the temporal domain could be obtained giving a 

reduced system penalty. By achieving this, this wavelength conversion scheme could be 

presented as an ideal candidate for use in future high-speed photonic systems. 
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 CHAPTER 6 – CONCLUSION AND FUTURE OUTLOOK 
 

Optical fibre communications systems will continue to be the physical transmission 

system to deliver high-bandwidth voice and data information because it has the 

capability to provide terahertz of bandwidth, and can offer many advantages over other 

communications systems. As high-bandwidth consumer products unfold (e.g. high-

definition television (HDTV) and video sharing), the demand for fibre-to-the-home 

(FTTH) will increase rapidly. An overall increase in demand for bandwidth in the access 

and metro networks will in turn result in increased data capacity in the transport/core 

network. Therefore, it is imperative for network providers to better utilise their installed 

fibre networks. Due to the limited speeds of electronics it will be necessary to develop 

transparent networks, whereby the simple processing requirements of the networks will 

be carried out in the optical domain. This thesis meets these demands by developing all-

optical processing techniques for the generation and wavelength routing of optical 

pulses.  

 

As was discussed in Chapter 1, one way to exploit the large-bandwidth capabilities of 

optical fibre is to use different multiplexing techniques, where multiple data channels are 

transmitted simultaneously over a single optical fibre. Electrical time division 

multiplexing (ETDM) will be the multiplexing technique of choice in the future but due 

to limited operating speeds of present-day electronics, optical multiplexing techniques 

will also be required. Wavelength division multiplexing (WDM) is presently in operation 

globally due to its simple implementation and the ability of the Erbium doped fibre 

amplifier (EDFA) to amplify many wavelength channels simultaneously (with little 

distortion). The push for higher data rates on single wavelength channels, which has 

historically left the development of high-speed electronics behind, necessitates the use of 

optical time division multiplexing (OTDM) transmitters and receivers until their 

economically more attractive ETDM equivalents become available. In order to 

implement OTDM networks, transmitters capable of generating picosecond pulses are 

required.  

 

In addition to the limited speeds of electronics necessitating the need for all-optical 

networks, the ability of optics and not electronics as being the most cost effective way to 

tap the multi-terabit per second capacity of the optical fibre is also motivating the need 

for the development of all-optical processing components. In doing so the growing 

demand for bandwidth per user, higher path reliability, and simplified operation and 
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management is fulfilled. One of the most important components for future networks will 

be wavelength converters in order to provide dynamic provisioning at each node to avoid 

wavelength contention, resulting in more flexible networks with the ability to provide 

more bandwidth at reduced costs.  

 

In order to measure the quality of pulses, different measurement and characterisation 

equipment is required. The technique of frequency-resolved optical gating (FROG) can 

provide full electric field characterisation, and is advantageous as it overcomes the 

limited resolution of opto-electronic measurements and gives phase information 

corresponding to the pulse. The FROG technique is used throughout this thesis in order 

to provide full characterisation of the pulses output from developed sub-systems, and 

results in a greater understanding of the physical processes the components used induce 

on these optical signals. 

 

High quality pulse sources are required for the implementation of next generation 

networks and the requirements these pulse sources must meet are introduced in Chapter 

2. Different pulse generation techniques exist which include external modulation of a 

continuous wave (CW) source, mode locking and gain switching. Gain switching has 

many advantages in comparison to other pulse generation techniques because it is simple 

to implement, and is very cost efficient and is thus the pulse generation scheme 

examined in particular. The major disadvantage of gain switching is the poor output 

pulse quality, which places limits on its use in high-speed networks. However results 

presented show that by simply applying external or self seeding to the gain-switched 

laser large temporal and spectral improvements are achieved. These include large 

improvements in side mode suppression ratio (SMSR), a substantial reduction of 

temporal jitter to sub-picosecond levels and a considerable decrease in chirp across the 

pulse. These findings have been known for quite some time but the optical light injection 

was used in a novel way to develop a widely tunable picosecond pulse source (~ 65 nm) 

suitable for use in 20 Gb/s systems. Wavelength tunable pulse sources will be of great 

importance in future optical systems to facilitate dynamic provisioning in the network. 

The pulse sources presented employs two gain-switched Fabry–Pérot (FP) lasers which 

provided the large wavelength tuning range (largest span achievable to date by gain 

switching). With the advancement of laser device fabrication technology, improved 

performance will be achieved. Enhanced laser bandwidths will provide the generation of 

shorter pulses at increased bit rates. In addition, this source has the potential to be used 

as a multi-wavelength source, by simultaneous light injection at two or more 

wavelengths. 
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Pulse sources used in high-speed systems will require a high temporal suppression ratio 

(TPSR) as low TPSR can result in the generation of interferometric noise between 

OTDM channels. In Chapter 3 we quantifiably investigated the effect varying levels of 

TPSR have on a pulse source when used in a high-speed OTDM system. A 3 dB power 

penalty is introduced when TPSR levels are degraded from 30 dB to 15 dB in an 80 Gb/s 

back-to-back (B2B) system. An increase in pulse and pedestal overlap leads to a larger 

power penalty. Therefore TPSR is a very important parameter to optimise, however it is 

typically difficult for pulse generation techniques to achieve TPSR levels greater than 30 

dB. A simple and effective method is to employ a vertical microcavity based saturable 

absorber (SA) as part of the pulse source. We demonstrated that this SA has the ability to 

improve a pulse source with an initial TPSR of 15 dB, to a TPSR of 30 dB, and improve 

the overall system performance by 3.3 dB (provides additional regenerative properties to 

the TPSR enhancement). This SA also displays extra benefits, it can be monolithically 

integrated with a semiconductor-based pulse source and can operate at even greater bit 

rates due to its fast recovery time of <1.5 ps. 

 

To achieve short picosecond pulse widths (<10 ps) gain-switched sources require pulse 

compression. However linear compression of gain-switched pulses results in the 

generation of pedestals due to insufficient compensation of its nonlinear chirp. Therefore 

a specifically designed nonlinearly chirped grating is required to achieve full chirp 

compensation of the gain-switched pulses. We proposed a novel design method to 

extract the parameters required to fabricate a tailor-made nonlinearly chirped fibre Bragg 

grating (NL FBG). The FROG measurement technique enabled the extraction of the 

exact group-delay profile of the grating as it is the inverse of that across the gain-

switched pulse measured directly from the laser. In addition the grating design had a 

specially adapted transfer characteristic to give a symmetric output Gaussian spectral 

profile. Thus by applying this tailor-made NL FBG to a gain-switched laser a very 

simple and reliable pulse source is presented. This pulse source generates 3.5 ps 

picosecond transform limited (0.45) Gaussian pulses, with a negligible TPSR (>35 dB), 

low jitter (<1 ps) and high SMSR (>30 dB). The NL FBG gain-switched source 

demonstrates major improvement in system sensitivity (3.5 dB) when compared to the 

same source employing a liner grating in an 80 Gb/s OTDM system. To examine the 

quality of the proposed pulse source, B2B BER measurements of a commercially 

available mode-locked pulse source were carried out also and the NL FBG gain-switched 

source compared well to this commercial benchmark. In order to further extend the 

commercial benefits of this source (cost and simplicity), an investigation could be 
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carried out to determine if one grating design would suffice for a large group of lasers 

manufactured on a single wafer. 

 

In Chapters 2 and 3 we investigated in detail the applicability of gain switching as a pulse 

source candidate for future high-speed networks. A variety of optical pulse processing 

techniques were introduced which enhanced the pulse quality so short picosecond pulses 

were generated suitable for use in 80 Gb/s OTDM systems. To further develop high-

speed networks, processing data at each node (e.g. wavelength conversion) requires 

optical processing to overcome the optical-electronic-optical (OEO) conversion 

bottleneck. It is shown that a semiconductor optical amplifier (SOA) is an ideal candidate 

as an all-optical processing device, due to its large gain and phase nonlinearities. Both the 

interband and intraband gain and phase dynamics of an SOA dictate the performance of 

the SOA both as an amplifier and as an all-optical processing device. Two SOAs (a 

Kamelian and CIP SOA) show different gain and phase recoveries when used as an 

amplifier. The Kamelian SOA has a longer interband gain recovery time scale but a 

larger intraband gain recovery magnitude in comparison to the CIP SOA. This intraband 

gain recovery results in the generation of some blue-chirped components and in the 

degradation of TPSR on both the leading and trailing edges of the amplified pulse. In 

contrast blue-chirped components were not visible on the CIP SOA amplified pulses and 

only the TPSR on the leading edge of the pulse was degraded due to the small intraband 

gain magnitude. Characterisations also showed that shorter pulses (2 ps in comparison to 

8 ps pulses) displayed a higher degree of gain saturation due to the larger contribution of 

intraband effects and thus an increase in generated chirp components. This in-depth 

characterisation of the effects of SOA amplification on picosecond pulses is vital in the 

design of high-speed systems that employ SOAs as amplifiers and as optical processing 

elements. In particular these results are significant as they are the first detailed report of 

the dependence of TPSR on ultrafast gain recovery.  

 

Chapter 5 examines the benefits of an SOA as an all-optical wavelength converter, and 

introduces the three nonlinear processes which enable the process of wavelength 

conversion (cross gain modulation (XGM), cross phase modulation (XPM), and four 

wave missing (FWM)). The most significant limiting factor of SOA wavelength 

conversion at high bit rates is its interband gain recovery time (55 ps for the Kamelian 

SOA) which introduces detrimental patterning effects. One popular method to overcome 

the patterning effects induced by the long interband gain recovery time is to use 

XGM/XPM in conjunction with shifted filtering. We focus in detail on XPM and shifted 

filtering because this scheme has the benefits of simple configuration, high extinction 
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ratio (ER), polarity preserved operation and polarisation independence (unlike the XGM 

shifted filtering scheme no complicated interferometric set-up is required). Large 

differences in the shape and performance of the wavelength conversion scheme can be 

achieved by placing the filter to retain either the red or blue-shifted spectral components 

of the wavelength converted probe. We presented for the first time 80 Gb/s error-free 

performance for XPM in conjunction with blue-shifted filtering (BSF). We also show 

that error-free performance for red-shifted filtering (RSF) is limited to 40 Gb/s. 

Although initial characterisation presented RSF wavelength conversion as the optimum 

process (high output power and short wavelength converted pulse width), RSF has a 

large gain-saturation dependence resulting in patterning effects. High bit rate operation is 

achievable by BSF because the blue-shifted spectral components relate to gain recovery 

rather than gain depletion. The related magnitude and time frame of phase recovery 

remains approximately constant (therefore so does the generated blue-chirped 

components) as it does not have a large dependence on the previous input data signal. A 

relatively modest 5 dB power penalty is introduced by this wavelength conversion 

scheme.  

 

A full temporal characterisation of the RSF and BSF wavelength converted pulses is an 

important analysis to characterise the effect and contribution the gain and phase 

dynamics and the filter shape have on the shape and chirp. This type of characterisation 

has not yet been provided to the best of our knowledge. The wavelength converted 

pulses are characterised using the FROG technique as a function of repetition rate. In 

general the output pulse shapes for both RSF and RSF are determined by a combination 

of the generated chirp and filter profile. A combination of intraband gain and chirp 

effects lead to some structure on the converted pulses. Although the filter converts the 

phase modulation of the probe into intensity modulation, some linear chirp remains on 

the wavelength converted pulses. The power penalty introduced by the BSF wavelength 

converter can be reduced by using the FROG results to design an enhanced filter. The 

measured chirp can be compensated for to compress the converted pulse and a designed 

spectral transmission profile can provide spectral optimisation. Enhancement of the filter 

would make this BSF XPM wavelength converter an ideal candidate for use in future 

high-speed photonic systems. 

 

As outlined in the first chapter, research and development of components and sub-

systems suitable for high-speed transparent networks are required so that the bandwidth 

capabilities of optical fibre can be fully exploited in a cost-efficient manner. This thesis 

presents novel and original research on optical pulse processing techniques towards 
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enabling terabit per second photonic systems. Particular focus is given to optimising 

pulse generation schemes and realising a high-speed SOA-based wavelength converter. 

80 Gb/s operation is achieved and simple and cost-effective methods are proposed with 

high commercial potential.  
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 APPENDIX I – MATHEMATICAL DESCRIPTION OF A 

PULSE 
 

The temporal dependence of the pulse electric field (ignoring the spatial portion of the 

field) can be described as i: 

)]}([exp{)()( 02
1 ttitIt φωε −=                                   Equation I-1 

 

Where t is the time in the reference frame of the pulse, ω0 is a carrier angular frequency, 

I(t) and φ(t) are the time dependent intensity and phase of the pulse. The rapidly varying 

carrier wave and the complex conjugate are not included to simplify the equation. The 

complex amplitude, E(t) of this wave is: 

)](exp[)()( titItE φ−=                                            Equation I-2 
 

The temporal intensity of the pulse is found by: 
2)()( tEtI =                                                    Equation I-3 

 

When the electric field is given in Cartesian Coordinates, the phase, φ(t) is found by: 
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tEtφ                                           Equation I-4 

 

The instantaneous frequency, or chirp, vinst is given by:  

πφ 2/]/[)( 0 dtdvtvinst −=                                  Equation I-5 
 

Generally, the instantaneous frequency is measured in Hertz (Hz) rather than radians/sec, 

thus the phase which is measured in angular coordinates is divided by 2π.  Figure I-1 (a) 

and (b) illustrates the fast varying component of the electric field i.e. the carrier wave, 

the real amplitude of the electric field and the temporal intensity of the pulse for a non-

chirped and chirped pulse respectively. Figure I-1 (c) and (d) show the resultant phase 

and chirp of the pulses displayed in (a) and (b).      

 

                                                      
iR. Trebino, “Frequency Resolved Optical Gating: The Measurement of Ultrashort Laser 
Pulses,” Kluwer, Norwell, MA, 2000. 
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Figure I-1 The electric field intensity, (real) amplitude, and intensity of a Gaussian Pulse. The 
intensity distribution of a Gaussian Pulse is 2 narrower than its real amplitude. The phase of (a) 
is zero and (b) is quadratic (-1t2), as shown in corresponding graphs of (c) and (d) displaying the 
phase and chirp.  
 

The pulse field in the frequency domain is the Fourier transform of the time-domain 

field. To convert the spectrum measured in the frequency domain into the wavelength 

domain the following relation is used:  

)/2()( λπϕλϕ ωλ c=                                        Equation I-6 
Since,   

   
λ
πω c2

=                                                      Equation I-7 

 

Where φ is the spectral phase measured in radians, c is the speed of light, and λ is the 

centre wavelength of the field, and ω is the angular frequency measured in radians/sec. 

The subscripts indicate the phase represented in the wavelength and frequency domains.  

 

While the temporal phase contains frequency vs. time information, the spectral phase 

contains time vs. frequency information. Thus the group delay vs. frequency as tgroup(ω) 

is: 

ωϕω ddtgroup /)( =                                                Equation I-8 
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 APPENDIX II –  DATA SHEETS 
 

The following pages contain data sheets for the following devices: 

o DFB NEL Laser – 108998 

o Redfern Nonlinearly Chirped FBG 

o Kamelian Bulk SOA – 39-03-020377 

o CIP Nonlinear Quantum Well SOA – 02895 
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Grating type: Non-Linear Chirp 

Center Wavelength at 25degC, 10g (nm): 1550.065 

Reflection bandwidth @ -3dB (nm): 5 

Peak Reflectivity (%): 71 

Fibre Type: Photosensitive 

Storage and operating temperature: -40 to +85 degC 

 

Reflection and Transmission Spectrum 

 

 
 

FBG position in relation to color marks on fiber 
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The measurement data has been shifted -0.65nm in order to maximize the fit between the 

Target GD profile and the Measured GD profile 
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Generation of Widely Tunable Picosecond Pulses
With Large SMSR by Externally Injecting a

Gain-Switched Dual Laser Source
A. M. Clarke, P. M. Anandarajah, and L. P. Barry

Abstract—The authors demonstrate a procedure of generating
picosecond optical pulses that are tunable over a wide wavelength
range (65 nm) and have very high spectral purity side-mode sup-
pression ratio [(SMSR) 60 dB]. The large tuning range is ob-
tained by employing external injection into a gain-switched source
containing two Fabry–Pérot lasers. The use of a widely tunable
Bragg grating at the output improves the SMSR such that it ex-
ceeds 60 dB over the entire tuning range.

Index Terms—External injection, optical fiber communications,
optical pulse generation, semiconductor laser, wavelength tunable
source.

I. INTRODUCTION

AS THE demand for high-speed communications applica-
tions such as wavelength-division multiplexing (WDM)

and optical time-division multiplexing (OTDM) continues to
grow, there will be an increasing need to develop optical pulse
sources suitable for these systems. Current trends may result
in the operation of optical communication systems at line rates
of 40 Gb/s and beyond, thereby making it more likely that re-
turn-to-zero coding be used for data transmission, as it is easier
to compensate for dispersion and nonlinear effects in the fiber
[1]. Furthermore, next-generation WDM systems that employ
dynamic provisioning with the use of wavelength tunability are
attracting a lot of interest. Thus, the key requirements on pi-
cosecond pulse sources to be used in high-speed communica-
tions applications will include broad wavelength tuning range,
a high side-mode suppression ratio (SMSR), variable repetition
rates, low timing jitter, and small frequency chirp [2]–[4].

Picosecond pulse generation can be accomplished through
various methods, such as external modulation of a contin-
uous-wave (CW) light signal [4], mode locking [5], and gain
switching [6]. Gain switching of a semiconductor laser diode is
probably one of the most reliable methods to generate optical
pulses, and by employing self seeding [7] of a gain-switched
Fabry–Pérot (FP) laser, it is possible to obtain high-quality
wavelength tunable single-mode pulses which have low timing
jitter and good spectral purity. Nonetheless, a major disadvan-
tage with the self-seeded gain-switched (SSGS) scheme is that
the length of the external cavity has to be continuously tuned so
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Fig. 1. Experimental setup for the generation of widely tunable externally
injected gain-switched pulses.

that the pulse repetition frequency is an integer multiple of the
cavity round-trip frequency. An alternative technique entails ex-
ternal injection of light from a CW source into a gain-switched
laser [8]–[10]. No adjustment of the repetition frequency or
external cavity length is required in this case. Thus, external
injection provides a more stable operation, even though a
CW tunable laser is commonly required. Recent work has
established that as the number of channels in a WDM system
using SSGS pulse sources increases, the specifications on the
required SMSR due to cross-channel interference may become
very stringent [3]. Thus, if externally injected gain-switched
lasers are to be used in future high-speed systems, it will be
necessary to improve the SMSR of these sources to beyond
30 dB.

In this letter, we build on recent research we have under-
taken which involved self-seeding of a gain-switched dual laser
source [11]. This article demonstrates the use of external in-
jection into a gain-switched transmitter comprising of two FP
lasers to generate picosecond pulses that are tunable over 65 nm,
with SMSRs in excess of 60 dB over the entire tuning range.
This is the largest tuning range and SMSR that has ever been
achieved for an optical pulse source based on gain-switched
laser diodes.

II. EXPERIMENTAL SETUP

The experimental setup is illustrated in Fig. 1. The lasers
FP1 and FP2 are commercial 1.5- m InGaAsP devices, with
threshold currents of 19 and 26 mA, respectively. The lasers
were chosen so that their gain profiles provided only a small
overlap, which corresponds to the maximum wavelength of FP1,
and the minimum wavelength of FP2, at which we can achieve

1041-1135/04$20.00 © 2004 IEEE
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suitable SMSRs using the external injection configuration. Con-
tinuous wavelength tuning of the laser modes over the gain pro-
files of the two devices can be achieved by temperature control-
ling the diodes. The gain-switching process involves applying a
sinusoidal modulation signal (peak-to-peak current 200 mA;
frequency 2.5 GHz) to both lasers, in addition to dc bias cur-
rents of 15 and 26 mA for FP1 and FP2, respectively. The op-
tical signal from both lasers is then coupled into fiber using
a GRIN lens fiber pigtail. External injection requires injecting
CW light from a tunable external cavity laser (ECL) into one
of modes of the two FP lasers via an isolator, a 3-dB coupler,
and a polarization controller (PC). The PC is varied in order
to ensure optimum coupling of the injected light from the ECL
into the selected FP laser cavity, which in turn optimizes the
SMSR of the laser output. The output power of the CW source
is set at 3 dBm, however, taking into account various losses,
we estimate the injection level into the gain-switched sources to
be about 13 dBm. The resulting single-mode output obtained
after external injection into one of the FP lasers, together with
the gain-switched signal from the FP laser that is not affected
by the external injection (because the signal injected from the
ECL does not lie within the gain curve of this FP diode), is
then passed through a tunable Bragg grating (TBG) filter. The
TBG has a bandwidth of 0.23 nm, a wavelength tuning range of
1460–1575 nm, and an insertion loss of 5 dB. The filter is used
to eliminate the optical output from the gain-switched FP laser
that is not influenced by the external injection, and also to en-
hance the SMSR of the generated pulses. The output pulses are
characterized using a 50-GHz photodiode in conjunction with a
50-GHz oscilloscope, and an optical spectrum analyzer (OSA)
with a 0.05-nm (6 GHz) resolution.

III. RESULTS AND DISCUSSION

The optical spectrum of the dual wavelength signal from the
gain-switched lasers, without external injection, is shown in
Fig. 2(a). It can clearly be seen that by combining the output
of the gain-switched lasers in the wavelength domain, the
composite span of the laser profiles that could be used for
seeding has been greatly increased. The peak of the spectrum
for FP1 is at 1524 nm, while the peak of the spectrum for FP2
is at 1561 nm. As we can see from the composite spectra of
the two gain-switched lasers, the spectra from the individual
gain-switched devices overlap at about 16 dB down from the
peak of the spectra.

Different longitudinal modes of each FP laser were selec-
tively excited when the seeding wavelength from the ECL was
tuned near the center of any desired mode. Fig. 2(b) displays the
resulting spectral output before the optical filter showing good
SMSR for the seeded gain-switched diode. With the addition of
the filter, the optical output from the unseeded FP laser is elimi-
nated, and the SMSR of the output pulses is improved such that
it becomes almost impossible to detect the side-modes above
the noise floor of the OSA. The resulting SMSR is around 60 dB
for the entire wavelength tuning range that can be achieved with
this setup. Examples of the temporal (nonaveraged) and spectral
profile of the output pulse (at 1520 nm) are shown in Fig. 2(c)

Fig. 2. (a) Optical spectrum of dual gain-switched source, (b) spectrum before
the filter at 1519.9 nm, (c) pulse at 1519.9 nm (with inset showing extinction
ratio), and (d) spectrum after the filter at 1519.9 nm.

and (d), and we can clearly see the excellent temporal and spec-
tral purity of the pulse source. The pulse duration was about
28 ps while the spectral width was approximately 20 GHz (this
spectral width is clearly not limited by the bandwidth, 29 GHz,
of the optical filter), resulting in a time-bandwidth product of
0.56 (slightly larger than that for transform-limited Gaussian
pulses). The extinction ratio of the generated pulses was mea-
sured to be 25 dB, and the timing jitter was estimated to be less
than 1 ps. The timing jitter was measured to be 1 ps by using
histogram analysis on an Agilent Digital Communications An-
alyzer, however, given that 1 ps is the lower limit on this mea-
surement, we conclude that the jitter is actually less than 1 ps.

Fig. 3 illustrates the SMSR as a function of wavelength,
across the tuning range of the pulse source. We obtain values
greater than 60 dB over the complete wavelength span. It is im-
portant to note that the use of the filter in this setup is dependent
on achieving a suitably high SMSR from the gain-switched ex-
ternally injected laser before the filter (we have verified that this
value remains above 30 dB in our work). If this is not the case
then mode-partition-noise could seriously affect the temporal
quality of the pulse source (from Fig. 2(c), this is clearly not the
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Fig. 3. SMSR of output pulses as a function of wavelength.

Fig. 4. Pulsewidths of optical output pulses as a function of wavelength tuning
range.

case). Fig. 4 shows the variation in pulsewidth over the tuning
range. The variation in pulsewidth around 1545 nm is due to
the external injection from the ECL changing from seeding
FP1 to seeding FP2. Differences in various physical parameters
(e.g., gain) of the two lasers are responsible for the variation
in output pulsewidth. In addition, the output spectral width
from the higher wavelength laser (FP2) is slightly increased
(from 20 to 29 GHz), and in this case, does become limited
by the bandwidth of the output filter. Our experimental results
exhibited very stable operation even at the crossover section
from operation with FP1 to FP2. This is achieved because there
is no overlap between the modes from the two different FP
lasers, and thus, we never inject light into the same mode of
both FP lasers at the same time.

IV. CONCLUSION

This experiment has demonstrated a simple and effective pro-
cedure of generating widely tunable ( 65 nm) pulses with im-
pressive SMSR ( 60 dB) by using external injection into a
source consisting of two gain-switched FP lasers. Such a source
could play a vital part in ensuring the optimal performance of
high-speed hybrid WDM/OTDM optical communication net-
works. It should also be noted that the tuning range could be
expanded further by introducing a third FP laser with an appro-
priate spectral profile, and that by simultaneously injecting light
into the FP lasers used, it may also be possible to develop a mul-
tiwavelength pulse source.
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Enhancement of Pulse Pedestal Suppression
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Abstract—In future high-speed optical time-division-
multiplexed (OTDM) systems, an important factor that needs
to be considered for optical pulse generation schemes is the im-
pact of pulse pedestals on the overall system performance. The
results presented in this letter are two-fold; first, the impact due
to the height of pulse pedestals in an 80-Gb/s OTDM system are
established. Second, a solution is provided to overcome these high
pedestal levels through the use of a vertical microcavity saturable
absorber, which can significantly reduce the pulse pedestal level
and give enhanced system performance.

Index Terms—Optical pulse shaping, optical time-division
multiplexing (OTDM), pulse generation, saturable absorber (SA).

I. INTRODUCTION

FUTURE high-speed communications systems are likely to
employ optical time-division multiplexing (OTDM) due to

simpler system configuration at increasing bit rates, relating to
more cost-efficient systems [1]. One of the key components in
such high-capacity OTDM systems is the picosecond optical
pulse source, which should exhibit excellent temporal and spec-
tral purity. One particular parameter of the optical pulse source
which is important in OTDM systems is the extinction ratio (ER)
[or temporal pedestal suppression ratio (TPSR)]. It has been
shown in previous work that a 40-Gb/s OTDM system requires
a TPSR of 30 dB [2] to prevent power penalties due to coherent
interactions between the individual OTDM channels. The actual
ER or TPSR required to prevent degradation of system perfor-
mance will depend on the number of return-to-zero channels
multiplexed together to obtain the overall OTDM signal, which
in turn will be determined by the pulsewidth and repetition rate
of the optical pulse source employed at the transmitter.

Considering the main pulse generation techniques available,
namely, mode-locking, gain-switching, and use of electroab-
sorption modulators (EAMs), it is extremely difficult to achieve
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a TPSR in excess of 30 dB. In order to overcome this limita-
tion of these sources, a number of techniques have been de-
veloped to improve the TPSR of optical pulses. These tech-
niques include the use of an EAM [3], a nonlinear amplifying
loop mirror (NALM) [4], or self-phase modulation in a semi-
conductor optical amplifier (SOA) in conjunction with shifted
filtering [5]. The EAM can provide high TPSR values; how-
ever, it is an active and expensive component which may sig-
nificantly increase the cost of the pulse source. The NALM
is fiber-based, which makes it bulky, and suffers from insta-
bility problems, and the SOA scheme exhibits limited TPSR
improvement ( 7 dB). The limitation of these three ER en-
hancement techniques may be overcome by the use of a ver-
tical microcavity-based saturable absorber (SA). This is a pas-
sive device that can be monolithically integrated with semicon-
ductor laser sources. The SA is very efficient for ER enhance-
ment and “space” noise attenuation. Furthermore, the efficiency
of SA coupled with fiber or semiconductor techniques allowing
“mark” fluctuations reduction has been demonstrated at 10 and
40 Gb/s [6], [7]. In [8], the authors have shown the enhancement
of the ER of a 160-GHz optical pulse train by employing the mi-
crocavity-based SA. This improvement in ER is vital for OTDM
systems. In this letter, we simulate and experimentally char-
acterize the power penalties introduced by optical pulses with
varying levels of TPSR in an 80-Gb/s OTDM system. We then
present the TPSR improvement obtained using the SA ( 15 dB)
for different input TPSR levels, and subsequently demonstrate
the improvement in system performance (3.3 dB), which is ob-
tained as a result of the increased TPSR, in an 80-Gb/s OTDM
system using bit-error-rate (BER) measurements.

II. EXPERIMENTAL SETUP

A. Characterization of the Pulses Before and After the SA

The experimental setup used to introduce the pulse pedestals
with varying levels, and subsequently reduce the pedestal height
using the SA, is shown in Fig. 1. An actively mode-locked
semiconductor laser that generates 2.1-ps pulses with a
time-bandwidth-product (TBP) of 0.35. These pulses were
split by a 3-dB coupler; one arm (for pedestal generation)
was delayed by around 8 ps with respect to the main pulse,
and attenuated via a variable optical attenuator (VOA). The
pedestal delay of 8 ps was chosen as this delay corresponded
to the point where the penalty due to the introduced pedestal
level becomes significant. As the delay is increased, the penalty
correspondingly increases for the same TPSR as the power

1041-1135/$25.00 © 2007 IEEE



322 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 19, NO. 5, MARCH 1, 2007

Fig. 1. Experimental setup used to introduce pedestals and SA to the pulse
source.

Fig. 2. Graph of input and output TPSR to the SA measured at Point A and B,
respectively, by the FROG. The TPSR values are extrapolated at values greater
than 40 dB (represented by a dashed line) as the FROG is limited by the noise
floor of the system.

overlap between the next pulse and pedestal increases until it
reaches the bit slot duration (12.5 ps). The increase in pulse and
pedestal overlap leads to a larger generation of interferometric
noise. The main pulse and pedestal were then recombined via
a second coupler. A polarization controller and a polarizer
were used to match the polarization of the main pulse with the
pedestal so that an accurate measurement of the TPSR could
be taken by using the technique of frequency-resolved optical
gating (FROG) [9].

An SA was then introduced via a circulator. The SA used
is a seven-quantum-well structure (InGaAs–InAlAs) in a reso-
nant microcavity with a dielectric mirror (2x[TiO –SiO ])
as the front mirror, and a broadband high-reflectivity
metallic-based mirror (Ag SiO ) as the back mirror [10].
A heavy-ion-irradiation shortens the absorption recovery time
down to 1.5 ps, which is short enough for the SAs to be em-
ployed in 160-Gb/s OTDM systems.

By varying the VOA, the height of the pedestal can be set
to different values, and then measured using the FROG before
(Point A) and after the SA (Point B), as shown in Fig. 2. The
TPSR is improved by around 10 dB (to 20 dB) when its input
value to the SA is 10 dB. As the input pedestal level decreases,
the improvement in TPSR at the SA output increases due to the
nonlinear transmission curve of the SA (Fig. 2). The FROG ac-
curately measured TPSR values up to 40 dB for pulses with high
signal-to-noise ratio (SNR). Thus, to demonstrate the nonlinear
response of the SA, TPSR values greater than 40 dB were ex-
trapolated and are represented by the dashed line in the figure.

Fig. 3. Temporal and chirp profile of the pulse with 20-dB pedestal before and
after the SA.

Fig. 4. An 80-Gb/s OTDM test-bed to characterize the performance of pi-
cosecond pulses with varying TPSR before and after the SA.

Fig. 3 displays the intensity and chirp profile of the pulse be-
fore and after the SA, with an input TPSR of 20 dB. This figure
demonstrates that the SA reduces the pedestal level to greater
than 40 dB, and also has very little effect on the frequency chirp
of the pulse, an additional benefit of the device. Furthermore, it
can be seen that the nonlinear response of the SA slightly com-
presses the pulse to 1.8 ps, with a corresponding TBP to 0.33.

B. 80-Gb/s OTDM System Performance Experiment and
Simulation

To test the back-to-back performance of the optical pulse
source with and without the SA, and with varying TPSR levels,
in an 80-Gb/s OTDM system, we used the experimental test-bed
presented in Fig. 4. The pulses as generated in Fig. 1 are mod-
ulated using a 10-Gb/s modulator and passively multiplexed up
to 80 Gb/s. BER measurements were taken by initially demulti-
plexing down to 20 Gb/s using an EAM, and then by electrically
demultiplexing from 20 to 10 Gb/s.

We initially examined the effect of pulses with varying input
TPSR values and measured the power penalties introduced,
which are displayed in Fig. 5. This plot clearly displays the ef-
fect of TPSR on the performance of an 80-Gb/s OTDM system.
TPSR values of 15 and 20 dB exhibit power penalties of 3 and
1 dB, respectively, at a BER , compared to a TPSR of
30 dB (which results in negligible system degradation).

To verify the experimental results, we simulated the above
system using Virtual Photonics Incorporated (VPI) software,
and measured the power penalties as a function of varying TPSR
values. In the simulation, a sech squared pulse source was used.
The pedestal was introduced in a similar manner to the experi-
mental setup as were the demultiplexing stages. As can be seen
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Fig. 5. Experimental and simulated results displaying induced power penalties
by varying pulse TPSR values in an 80-Gb/s OTDM system.

Fig. 6. BER versus received power for 1) pulse source with 15-dB TPSR, 2) this
pulse source after the SA, showing TPSR improvement to 30 dB, and 3) a mode-
locked pulse source.

from Fig. 5, the simulation results (grey line) match the exper-
imental results reasonably well, confirming that pulse sources
designed for high-speed OTDM systems require a high TPSR.

We then investigated how the introduction of the SA to in-
crease the TPSR of the pulse source improved the performance
of the 80-Gb/s OTDM system. For this work, we used a pulse
source with an initial TPSR of 15 dB (which is improved to
30 dB after the SA). Fig. 6 displays the BER versus received
power when using 1) the pulse source with TPSR of 15 dB,
2) this pulse source followed by SA, which improves TPSR to
30 dB, and 3) a mode-locked pulse source with TPSR set to
30 dB. Our results show how the SA improves the system perfor-
mance by 3.3 dB. It is also important to note that the introduction
of the SA improves the performance by 0.3 dB greater than what
would be expected due to the increase in TPSR alone. This ad-
ditional improvement is due to the narrowing of the main pulse
which improves the overall sensitivity of the OTDM system.

III. CONCLUSION

We have presented the importance for pulse sources to have
a high TPSR when used in high-speed OTDM systems. A 3-dB
improvement in performance was obtained when the TPSR
values were improved from 15 to 30 dB. For pulse sources
that display poor pedestal suppression, the detrimental effects
of poor TPSR values can be overcome by the introduction of
a vertical microcavity-based SA, which has the potential to
be integrated with a semiconductor-based pulse source. We
demonstrated that with an initial TPSR of 15 dB, the SA can
increase this level to 30 dB, and improve the overall system
performance by 3.3 dB when these pulses are used in an
80-Gb/s OTDM system.
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Optimized Pulse Source for 40-Gb/s Systems Based
on a Gain-Switched Laser Diode in Conjunction

With a Nonlinearly Chirped Grating
A. Clarke, P. M. Anandarajah, D. Reid, G. Edvell, L. P. Barry, and J. D. Harvey

Abstract—The authors demonstrate the generation of short op-
tical pulses, which display spectral sidemode suppression ratio, and
temporal pedestal suppression ratio, well in excess of 30 dB. The ex-
ceptional spectral and temporal characteristics exhibited by these
pulses are attained by employing a novel technology, based on an
externally injected gain-switched laser in conjunction with a non-
linearly chirped grating. Using this technique, near transform lim-
ited 7-ps optical pulses, exhibiting a time bandwidth product of
0.49, are generated.

Index Terms—Gratings, optical fiber communication, optical
pulse compression, optical pulse generation, semiconductor lasers.

I. INTRODUCTION

WITH THE massive growth in demand for bandwidth
showing no sign of declining in the coming decade,

it will be necessary to further increase the overall capacity
of the existing telecommunication networks. This goal of
developing future terabit all-optical communication systems
may be achieved by a reduction in channel spacing of wave-
length-division-multiplexed (WDM) systems, an increase in
the per-channel data rate by exploiting optical time-division
multiplexing (OTDM) or by using a combination of these two
methods as in hybrid WDM/OTDM systems.

The base data rate in high-speed optical networks for several
years has been 10 Gb/s. Generally, such systems have tended
to employ nonreturn-to-zero (NRZ) coding at the transmitter.
However, current research has brought tremendous advances in
the development of optical systems operating at 40 Gb/s and be-
yond [1]. In order to achieve line rates of 40 Gb/s and higher,
it may become necessary to use return-to-zero (RZ) coding. RZ
(pulse) modulation formats offer a number of advantages over
NRZ modulation schemes [2]. First, for high-speed long-haul
systems, RZ modulation maintains signal integrity over longer
distances as it travels through the network. Moreover, RZ for-
matting has a lower bit-error rate and is far less susceptible to
nonlinearity and dispersion effects in the transmission fiber that
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can cause the signal to spread (thus, rendering it unintelligible
at the receiver) [3].

One of the major problems associated with the reduced
channel spacing and increased line rate is the more stringent
measures that are imposed on the transmitter performance.
Hence, the design of an optical transmitter capable of gener-
ating pulses with adequate temporal and spectral purity for
acceptable operation in high-speed optical communication
systems is crucial. There are many techniques available to
generate picosecond optical pulses [4], and it is readily recog-
nized that the gain-switching technique is among the simplest
of these. While the advantages in employing this technique
are numerous, one of its major drawbacks is the spectral
purity of the generated pulses. The direct modulation of the
laser diode causes a time-varying carrier density in the active
region of the device, which in turn causes a variation in the
output wavelength from the laser during the emission of the
optical pulse. This results in a frequency chirp across the pulse,
which degrades the performance of these pulses when used in
practical optical communication systems. It has been reported
how this chirp can be used to compress the pulses using dis-
persion-compensating fiber [5] or linearly chirped gratings
[6] to obtain near transform limited pulses. However, due to
the chirp being nonlinear across the pulse, this compression
typically results in pedestals on either side of the pulses that
make them unsuitable for use in practical systems. By using
more complex arrangements involving nonlinear loop mirrors
or external modulators, after the linearly compressed pulse, it
is possible to greatly reduce the pedestal [7].

In this letter, we report a simple yet systematic approach to
design an optimized source of picosecond optical pulses, which
exhibit excellent temporal and spectral purity. The procedure is
based on an initial complete intensity and chirp characterization
of pulses, from an externally injected gain-switched laser, using
the technique of frequency-resolved optical gating (FROG).
This characterization yields the parameters that are required
for the design of a nonlinearly chirped fiber Bragg grating (NC
FBG) with a chirp profile that is opposite to that measured
across the pulse. By employing the tailor-made NC FBG after
the gain-switched laser, we can achieve direct compression of
the gain-switched pulses to obtain pedestal-free, near trans-
form-limited, 7-ps pulses.

II. EXPERIMENTAL SETUP

The experimental setup employed in this work is shown
in Fig. 1. A 2.5-GHz sine wave is amplified with the aid of
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Fig. 1. Experimental setup for the generation of compressed externally
injected gain-switched optical pulses.

Fig. 2. Intensity and chirp of optical pulses from the externally injected
gain-switched laser.

a high-power radio-frequency amplifier. A bias tee was then
used to combine the electrical signal ( 25 dBm) with a dc
bias (11.3 mA) to enable gain switching of a commercially
available distributed feedback (DFB) laser contained within a
hermetically sealed high-speed package. The resulting pulses
generated were at a wavelength of 1549.35 nm. Wavelength
tunablility of the laser mode could be achieved by temperature
controlling the diode.

To overcome the poor sidemode suppression ratio (SMSR
15 dB) and timing jitter (4 ps) of the gain-switched pulses, we

use external injection from a second DFB (2) laser (via an optical
circulator) biased at 23.5 mA. A polarization controller was also
used to ensure that the light being fed back was aligned with the
optical axis of the laser. The injected power was measured to be
about 13 dBm after taking into account the losses incurred in
the optical injection path. The external light injection improves
the SMSR to around 30 dB and reduces the timing jitter to

1 ps (as measured using an Agilent Digital Communications
Analyzer). The generated pulses can then be characterized
using an optical spectrum analyzer, a high-speed oscilloscope
in conjunction with a 50-GHz p-i-n detector, and also a FROG
measurement system [8]. From the FROG measurement, we
can accurately characterize the intensity and chirp profile across
the optical pulses from the gain-switched laser with external

Fig. 3. Reflection and group delay profiles of nonlinearly chirped fiber grating.

injection (as shown in Fig. 2). We can clearly see how the
frequency chirp becomes nonlinear in the wings of the 16-ps
pulse generated, due to the gain-switching mechanism.

We subsequently use the measured nonlinear chirp across the
pulse to design and fabricate an NC FBG with a chirp profile
opposite to that measured across the pulse. The reflective and
group delay profiles of the fabricated filter are shown in Fig. 3.
We also fabricated a linearly chirped fiber grating which had
a chirp profile that was opposite to a linear approximation of
the chirp across the gain-switched pulse. By placing the fiber
gratings after the gain-switched laser (with external injection),
we subsequently characterize the pulse compression in the fiber
gratings using the FROG measurement technique.

III. RESULTS AND DISCUSSION

Fig. 4(a) and (b), respectively, shows the measured intensity
and chirp profile of the gain-switched optical pulses after com-
pression with the linearly and nonlinearly chirped fiber gratings.
In both cases, we can see that the gratings have eliminated any
frequency chirp across the center of the pulses. However, when
the linearly chirped grating is used, we can clearly see how the
nonlinearity of the chirp directly from the gain-switched laser
results in significant pedestals on the leading and trailing edge of
the pulse. These pedestals, which are around 23 dB down from
the peak of the pulse, would clearly pose significant problems
(through intersymbol interference) for the use of these pulses in
40-Gb/s OTDM systems [9].

When the nonlinearly chirped fiber grating is employed, the
pedestal is completely eliminated on one side of the pulse and
reduced to around 32 dB down from the peak of the pulse on
the other side. The slight imperfection in the compression can be
attributed to the fabricated nonlinearly chirped grating not being
a perfect match to compensate the chirp of the gain-switched
pulse. In both cases (linear and nonlinear grating), the duration
of the compressed pulse is around 7 ps, compared with 16-ps
pulsewidth directly from the gain-switched source. However,
the nonlinearly chirped grating is vital for ensuring a high level
of pedestal suppression.

The spectrum of the generated optical pulses as measured
using an optical spectrum analyzer, in addition to the nonaver-
aged oscilloscope trace of the detected pulse (after the nonlinear
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Fig. 4. Intensity and chirp of externally injected gain-switched pulses after
(a) linearly chirped and (b) nonlinearly chirped gratings.

Fig. 5. (a) Optical spectrum and (b) oscilloscope trace of compressed pulse
after nonlinearly chirped gratings.

grating), are shown in Fig. 5(a) and (b), respectively. The spec-
trum, which is in excellent agreement with the pulse spectrum
obtained from the FROG measurement, shows that the spectral
width is around 0.56 nm (70 GHz), thus giving a time bandwidth

product of around 0.49. The low temporal jitter on the generated
pulses is clear from the nonaveraged oscilloscope trace, and the
ringing in the detected pulse is due to the pulse duration being
a lot shorter than the response time of the detector ( 10 ps).

This pulse generation/compression scheme exhibits excellent
repeatability and stability over long periods of time, within
laboratory conditions. This could be mainly attributed to the
bias current and temperature of the two DFB (modulated and
seeding) lasers being controlled with the aid of profile cur-
rent/temperature controllers. Hence, drifts in wavelength of the
lasers, due to current or temperature variations, were negligible.
Furthermore the wavelength variation with temperature of the
fabricated FBGs being relatively small ( 0.009 nm/ C) also
leads to the stable generation of optimized pulses over very
long periods in time.

IV. CONCLUSION

We have demonstrated the use of nonlinearly chirped fiber
gratings for optimum compression of optical pulses generated
from a gain-switched laser diode. A nonlinearly chirped fiber
grating is required to correctly compensate for the nonlinear
chirp across the gain-switched pulse. This is vital for ensuring
sufficient temporal pedestal suppression of the compressed
gain-switched pulses. The resulting 7-ps pulse source com-
prising of gain-switched laser followed by nonlinearly chirped
fiber grating would be suitable for use in 40-Gb/s transmission
systems.
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Abstract The authors demonstrate near transform limited 3.5 ps pulse generation with pedestal suppression 
around 35 dB suitable for use in 80-Gb/s systems. The novel technology is based on an externally injected gain-
switched laser in conjunction with a nonlinearly chirped grating.  
 
 
Introduction 
The development of picosecond optical pulse sources 
with excellent temporal and spectral properties is vital 
for future implementation of high capacity optical 
communications systems using OTDM and hybrid 
WDM/OTDM technologies [1]. These sources will be 
important for enabling optical communication systems 
operating at line rates of 40, 80, and 160 Gb/s, 
employing Return to Zero (RZ) coding. The RZ coding 
is far less susceptible to nonlinearity and dispersion 
effects in the transmission fibre [2]. The work we 
present here is a development on previous work, 
which exhibited 2.5 GHz pulse source using a 
Nonlinearly Chirped Fibre Bragg Grating (NC FBG) 
[3]. In this paper, the technique is improved, such that 
3.5 ps pulses at a repetition rate of 10 GHz are 
generated and the technique optimises the output 
spectrum of the pulse. The output pulses generated 
are near transform limited and have pulse pedestals 
that are virtually eliminated to around 35 dB below the 
peak of the pulse. These pulse sources would be 
suitable for use in 80 Gb/s OTDM systems or in 
hybrid WDM/OTDM systems. 
 
The pulse generation method involves gain-switching 
which has been readily recognised as one of the 
simplest techniques available. A disadvantage of 
gain-switching technique is that a large nonlinear 
frequency chirp is present across the wings of the 
pulse that could degrade the performance of systems 
that employ them. It has been reported how this chirp 
can be used to compress the pulses using dispersion 
compensating fibre [4] or linearly chirped gratings [5], 
to obtain near transform limited pulses. However, due 
to the chirp being nonlinear this compression typically 
results in pedestals on either side (wings) of the 
pulses thus rendering them unsuitable for use in 
practical systems. Hence we propose a simple and 
effective method, with the use of NC FBGs, which 
compensates for the chirp entirely across the pulse 
thus eliminating the pedestals and generating 
transform limited pulses. 
 
 

Experiment 
The experimental set-up employed in this work is 
shown in Figure 1. A high-speed 1550 nm DFB (1) 
laser is gain-switched at 10 GHz using a signal 
generator and a high power RF amplifier. External 
injection is provided to improve the side mode 
suppression ratio (SMSR) and temporal jitter of the 
gain-switched pulse from a second DFB (2) laser via 
the circulator. The temporal jitter of the resulting 
pulses is measured to be < 1ps and the SMSR is 
improved from 15 dB to 30 dB. The generated pulses 
before and after the grating were characterised using 
an optical spectrum analyser (OSA), a high-speed 
oscilloscope in conjunction with a 50 GHz pin 
detector, and also a Frequency Resolved Optical 
Gating (FROG) measurement scheme [6]. The FROG 
allows complete characterisation of the temporal and 
spectral characteristics of the pulse, including the 
chirp and group delay profiles. 
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Fig .1 Experimental Set-up 

 
With the external injection, the gain-switched pulses 
have a nonlinear chirp profile in the wings of the pulse 
as is shown in Figure 3. The gain-switched (input) 
pulse is characterised by the FROG and these 
parameters are used to design the NC FBG with a 
group delay profile that is opposite to that measured 
across the pulse. In addition, the reflection profile of 
the grating is made to ensure equalization in such a 
way that an optimised output Gaussian spectrum is 



achieved (as shown in the reflection profile of the 
Bragg grating in Figure 2). 
 

 
Fig. 2 Reflection profile of the NC FBG 

 
Results and Discussion 
The input and output pulses, and their corresponding 
chirp profiles are shown in Figure 3. The input pulse 
has a FWHM pulse width of about 10 ps. The 
nonlinear chirp has a large magnitude, thus resulting 
in the pulse having a time bandwidth product (TBP) of 
1.5. The pulse is then passed to the grating via one 
arm of the coupler and the reflected output is 
characterised at the other arm of the coupler. The 
compression in the fibre grating results in a 3.5 ps 
FWHM pulse. The resultant chirp is very flat and has 
a very small order of magnitude across the pulse thus 
giving a TBP of 0.45. Also, an excellent Temporal 
Suppression Ratio (TSR >35 dB) is exhibited as can 
be seen in Figure 3 where the pedestals have almost 
been eliminated. Previous work has shown that the 
use of a linearly chirped FBG (fabricated by using a 
linear approximation of the pulse chirp profile) results 
in a TSR of about 23 dB that could lead to inter 
symbol interference in high-speed OTDM systems [7].  

 
Fig. 3 Input and output pulse profile and their 
corresponding chirp profile to the NC FBG. 

 
The spectra and the group delay of the input and 
output pulses are shown in Figure 4. It is clear that 
the group delay has been compensated for entirely by 
the NC FBG. The output spectrum is more Gaussian 
shaped and symmetric in comparison to the input, 
which is due to the compensation by the nonlinear 
reflection profile of the NC FBG. 

 
Fig. 4 Spectra and group delay of the input and 

output pulses to the nonlinear grating. 
 
This pulse generation/compression scheme exhibits 
excellent repeatability and stability over long periods 
of time, within laboratory conditions. This could mainly 
be attributed to bias current and temperature of the 
two DFB lasers being controlled with the aid of 
current/temperature controllers. Hence, drifts in 
wavelength of the lasers, due to current or 
temperature variations, were negligible. Furthermore, 
the wavelength variation with temperature of the 
fabricated NC FGB being relatively small (~0.009 
nm/±C) also leads to the stable generation of 
optimised pulses over long periods of time. 
 
Conclusions 
We have demonstrated the generation of near 
transform limited 3.5 ps gain switched pulses that 
exhibit an excellent TSR by using a NC FBG. The 
initial gain-switched pulses display a large nonlinear 
chirp across the wings of the pulse. The gratings are 
designed with a nonlinear group delay profile that is 
opposite to the group delay of the input pulse to 
compensate for the chirp, and the spectrum is 
optimised using a nonlinear reflection profile. The 
resultant output pulses display excellent temporal and 
spectral purity, which would make this pulse source 
ideal for use in 80 Gb/s OTDM systems. 
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Abstract—The development of ultrashort optical pulse sources,
exhibiting excellent temporal and spectral profiles, will play a
crucial role in the performance of future optical time division
multiplexed (OTDM) systems. In this paper, we demonstrate the
difference in performance in 40- and 80-Gb/s OTDM systems be-
tween optical pulse sources based on a gain-switched laser whose
pulses are compressed by a nonlinearly and linearly chirped fiber
Bragg grating. The results achieved show that nonlinear chirp in
the wings of the pulse leads to temporal pedestals formed on either
side of the pulse when using the linearly chirped grating, whereas
with the nonlinearly chirped grating, pedestals are essentially
eliminated. In an OTDM system, these pedestals cause coherent
interaction between neighboring channels, resulting in intensity
fluctuations that lead to a power penalty of 1.5 dB (40 Gb/s) and
3.5 dB (80 Gb/s) in comparison to the case where the nonlinearly
chirped grating is used. Simulations carried out with the aid of
Virtual Photonics Inc. verify the results achieved.

Index Terms—Grating, optical communication, optical pulse
generation, pulse compression.

I. INTRODUCTION

ENHANCING the capacity of long-haul and metro-network
photonic communication systems, without increasing the

cost (by avoiding high-speed electronics), can be achieved
by the use of optical time division multiplexing (OTDM) or
hybrid wavelength division multiplexing/OTDM [1]. A key
requirement in such high-capacity systems is a stable, compact,
and low-cost source of picosecond optical pulses. However,
the increased line rate and the reduced channel spacing place
stringent requirements, such as a high repetition rate, nar-
row pulsewidth, low jitter, high side mode suppression ratio
(SMSR), high temporal pedestal suppression ratio (TPSR), and
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small chirp, on the pulse source. For instance, a return-to-
zero (RZ) optical transmitter designed to achieve satisfactory
performance in a ≥ 40-Gb/s photonic communication system
needs to be capable of generating pulses with repetition rates
of at least 10 GHz [2], pulsewidths of < 8 ps (duty cycle of
∼1/3) [3], SMSR of at least 30 dB [4], TPSR > 30 dB [5],
and a negligible chirp (transform-limited) [6]. Therefore, the
design of an optical transmitter has to be optimized, in that it
has to be capable of generating pulses with adequate temporal
and spectral purity, for acceptable operation in high-speed
lightwave communication systems.

The main types of picosecond optical pulse sources that have
been used in recent OTDM-system demonstrations are mode-
locked fiber ring lasers [7], tunable mode-locked semiconductor
lasers (TMLL) [8], pulse shaping using external modulators [9],
and gain-switched semiconductor laser diodes [10]. Relative
to the rest of the aforementioned techniques, gain switching
of a DFB laser is readily recognized to be an uncomplicated,
robust, and reliable technique [11], [12]. Furthermore, the
inherent simplicity brought about by being a direct modulation
technique results in the gain-switched pulse source being cost-
efficient, which proves to be of great practical significance with
regard to market adoption. While the advantages in employing
this method are numerous, it suffers from a few drawbacks
such as a degraded SMSR and a relatively large temporal jitter
exhibited by the generated pulses. However, these shortcomings
could be overcome by externally injecting into a gain-switched
laser [13], [14]. Yet, another problem associated with this
technique is the spectral purity portrayed by the generated
pulses. The large signal modulation applied directly to the
laser diode causes a time varying carrier density in the active
region of the device, which in turn causes a variation in the
output wavelength from the laser during the emission of the
optical pulse. This results in a frequency chirp across the pulse,
which degrades the performance of these pulses when used
in practical optical communication systems [15]. It has been
reported how this chirp can be used to compress the pulses
using dispersion compensating fiber [16] or linearly chirped
fiber Bragg gratings (LC FBGs) [17] to obtain near transform-
limited pulses. However, due to the chirp being nonlinear in the
wings of the pulse, this compression typically results in pedestal
formation on either side of the pulse [18]. By using more elabo-
rate arrangements involving nonlinear amplifying loop mirrors
[19], [20], external modulators [21], spectral windowing [22],
or semiconductor optical amplifiers in conjunction with shifted

0733-8724/$25.00 © 2007 IEEE
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filtering [23] after the linearly compressed pulse, it is possible
to greatly reduce the pedestal. The above-listed methods, to
optimize the TPSR of the pulse source, leads to the source
becoming more complex, bulky, and expensive. In previous
work, we reported a simple, yet systematic approach to design
a pulse source exhibiting excellent temporal and spectral purity
with the aid of a nonlinearly chirped FBG (NC FBG) placed
after an externally injected gain-switched laser diode [24]. This
approach of using a tailor-made grating has an additional bonus
in that it has the potential to be integrated with the gain-
switched laser diode [25].

In this paper, we advance on our previous work by charac-
terizing the performances of 40- and 80-Gb/s OTDM systems
employing two gain-switched pulse sources: one compressed
with an NC FBG that achieves an excellent TPSR (> 40 dB)
and the other with an LC FBG that achieves a poor TPSR
(∼20 dB). The degraded performance, in the case of the latter
(power penalty of 1.5 dB in 40-Gb/s system and 3.5 dB in
80-Gb/s system), even though both sources generate pulses
that are transform-limited, exhibit widths < 30% of the
80-Gb/s bit slot and portray SMSRs of > 30 dB, is attributed to
the presence of pulse pedestals which cause coherent interac-
tions between individual OTDM channels, thereby resulting in
severe intensity fluctuations [19]. We define the TPSR (P1/P2)
as the difference in power between the peak of the pulse (P1)
and the peak of the next highest pedestal (P2). A commercially
available TMLL pulse source was also used to benchmark the
experimental system-performance characterization.

This paper is organized as follows. Section II describes
the experimental realization of the two different pulse sources
used in this paper. Section III focuses on the experimental
performance characterization of 40- and 80-Gb/s OTDM test
bed by employing the externally injected gain-switched pulse
source followed by the NC FBG/LC FBG. In Section IV, we
concentrate on the verification of the obtained experimental
results by looking at simulations that were performed using a
photonic design automation tool called Virtual Photonics Inc.
(VPI). Finally, Section V presents a brief discussion on the
achieved results.

II. PULSE GENERATION AND COMPRESSION

The essential element in our proposed pulse source is an
externally injected gain-switched DFB laser diode (EI GSLD).
With the aid of the frequency-resolved optical gating (FROG)
technique [26], [27], an accurate characterization of the inten-
sity and chirp profile across the optical pulses generated from
the EI GSLD is carried out. Fig. 1 shows that the generated
pulses have a duration [full-width-half-maximum (FWHM)]
of about 10.5 ps and that the frequency chirp (dashed line in
the figure) becomes nonlinear in the wings, due to the gain-
switching mechanism. The measured spectral width of the
signal is about 140 GHz, yielding a time bandwidth product
(TBP) of 1.5. We subsequently use the measured nonlinear
chirp across the pulse to design and fabricate an NC FBG. This
process involves the initial creation of the group-delay response
for the FBG based on the group-delay data derived from the
FROG measurements of the externally injected gain-switched
pulse.

Fig. 1. Intensity (solid line) and chirp (dashed line) of optical pulses from the
externally injected gain-switched laser. Inset: Corresponding pulse spectrum.

The FBG target group-delay response is simply selected as
the inverse to the pulse group-delay response, which should
result in the pulse having a constant group-delay profile over
the pulse bandwidth after it has been reflected from the FBG.
In addition to a constant group-delay profile across the pulse
bandwidth, for an optimized pulse source, we also require the
pulse to exhibit a Gaussian spectrum. Generally, gain-switched
spectra tend to be more rectangular than Gaussian in shape. The
reflection profile of the NC FBG is constructed as the difference
between the spectral amplitude of the gain-switched output and
a Gaussian profile, which should result in the compressed pulse
portraying a Gaussian spectrum. Fig. 2 shows the reflection and
group-delay profiles of the fabricated NC FBG. Since we aim to
alter the group-delay profile only over the spectral range of the
pulse, the group delay outside this spectral range rapidly falls
off to zero.

Once the FBG target spectrum and group-delay profile are
obtained, it is relatively straightforward to calculate an FBG
design that can be implemented into the optical fiber by using
an inverse scattering algorithm [28]–[30]. We also fabricated an
LC FBG which had a chirp profile that was opposite to a linear
approximation of the chirp across the gain-switched pulse.
By employing the tailor-made NC FBG/LC FBG after the
externally injected gain-switched laser (as shown schematically
in Fig. 3), we achieve direct compression of the gain-switched
pulses.

The pulse source consists of a commercially available high-
speed 1550-nm DFB (1) laser that is gain-switched at a repeti-
tion rate of 10 GHz. External injection, from a second DFB (2)
laser operating in continuous wave (CW) mode, is carried out to
improve the SMSR and the temporal jitter of the gain-switched
laser via a circulator. The temporal jitter is measured (with the
aid of an oscilloscope characterized by a temporal resolution
of 1 ps) to be < 1 ps, and the SMSR is improved from 15
to 30 dB. The generated pulses are then spectrally shaped and
temporally compressed by the specially fabricated gratings via
another circulator.

Fig. 4 shows the compressed pulses after the NC FBG (bold
black line) and the LC FBG (faint gray line). The measured
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Fig. 2. Reflection (solid line) and group-delay (dashed line) profiles of the NC FBG.

Fig. 3. Experimental setup for pulse generation.

Fig. 4. Intensity of externally injected gain-switched pulses after (bold) NC
FBG, (faint) LC FBG, and (dotted line) TMLL.

pulse widths (FWHM), which are characterized using FROG,
are 3.5 and 3.6 ps respectively, while their associated TBPs
are 0.45 and 0.47, respectively. The same figure also shows the

Fig. 5. The 40-Gb/s OTDM test bed.

pulses generated by the TMLL (commercial pulse source) that
exhibited widths of about 2.1 ps (FWHM). The associated TBP
of this pulse source is about 0.35.

As can be seen, the pulses compressed by the NC FBG
exhibits a TPSR > 40 dB, while that compressed by the LC
FBG portray a TPSR of about 20 dB. The excellent TPSR, in
the case of the NC FBG, is achieved by a combination of the
fiber grating having the following: 1) a nonlinear group-delay
profile that is the inverse of that across the gain-switched pulse
directly from the laser and 2) a specially adapted reflection
profile (transfer characteristic). However, when the LC FBG is
used, the uncompensated nonlinear chirp directly from the gain-
switched laser results in significant pedestals on the leading and
trailing edges of the pulse.

III. PERFORMANCE CHARACTERIZATION OF

40- AND 80-Gb/s OTDM SYSTEMS

The experimental set-up employed to realize the 40-Gb/s
OTDM test bed is shown in Fig. 5. Three different pulse
sources were employed alternatively as the RZ transmitter
block (as in Fig. 4) in the 40-Gb/s OTDM test bed. In the first
instance of system-performance characterization, the EI GSLD
employing an NC FBG was used, after which, it was replaced
by the LC FBG. They both gave out near transform-limited
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Fig. 6. BER versus received optical power for TMLL, NC FBG, and LC FBG
employed in a 40-Gb/s OTDM test bed.

pulses with widths of 3.5 and 3.6 ps, depending on whether the
NC FBG or LC FBG, respectively, is used for the compression.
Once both versions of compression of the externally injected
gain-switched pulses were characterized, the TMLL pulse
source was used to replace them, mainly to act as a reference.

A pseudorandom binary sequence of length 27 − 1 from a
pulse pattern generator was used to modulate the 10-GHz pulse
train with the aid of a Mach–Zehnder modulator. The resultant
10-Gb/s RZ optical signal is then passed into a passive fiber-
based interleaver and multiplexed up to 40 Gb/s. The same state
of polarization is maintained on all the tributaries by initially
ensuring that the PC is optimized to maximize the amplitude
of the 10-Gb/s signal passing through the multiplexer and the
polarizer (all stages of the mux shut). Subsequently, as each
stage of multiplexing is opened, the PC (available at each stage
on the mux) is optimized to ensure copolarization by equalizing
the power in all the tributaries.

In order to test the performance of the two sources when
employed in the 40-Gb/s OTDM test bed, the signal is initially
demultiplexed (stage 1) down to 20 Gb/s with the aid of
an electroabsorption modulator (EAM) that is driven with a
20-GHz sinewave to yield an 8 ps switching window. The
20-Gb/s signal after the EAM is then optically preamplified
prior to being received with the aid of a photodetector, after
which, it is demultiplexed (stage 2) back down to 10 Gb/s using
an electrical demultiplexer. Bit-error-rate (BER) measurements
are performed for a range of received optical powers (Prec

measured before the 20-Gb/s preamplified receiver stage). Each
of the four tributaries can be selected using electrical delay
lines (EDLs) in the setup. The total variation in performance,
between these channels, was observed to be about 0.4 dB.
Signal analysis is carried out with the aid of an error detector
(ED) and a high-speed oscilloscope.

Fig. 6 displays the BER versus received power plots for
one of the demultiplexed channels. It can be observed that to
achieve a BER of 10−9, a power penalty of 1.5 dB is incurred
when the pulse source with the LC FBG is employed, compared
with the case where the NC FBG is used. This degraded
performance is due to the presence of the pedestals about
20 dB below the peak of the pulse. These pedestals deteriorate
the extinction between the adjacent timeslots of the temporally
multiplexed signal, thereby leading to intensity fluctuations that
cause the BER degradation.

Fig. 7. The 80-Gb/s OTDM test bed.

Fig. 8. BER versus received optical power for TMLL, NC FBG, and LC FBG
employed in an 80-Gb/s OTDM test bed.

A difference of 0.5 dB was noticed in the case of the com-
mercial TMLL and the optimized gain-switched pulse source
employing an NC FBG. This variation could be attributed to the
difference in pulsewidth, with the narrower pulsewidth leading
to a slightly better sensitivity at the receiver.

The experimental setup used to realize the 80-Gb/s OTDM
test bed is also shown in Fig. 7. Essentially, the setup and
the sequence of performance characterization were the same
as in the 40-Gb/s OTDM-system characterization. However, in
this case, the modulated data at a base rate of 10 Gb/s were
passively multiplexed up to an aggregate bit rate of 80 Gb/s. The
demultiplexing was carried out in the same manner as described
with the EAM used to demultiplex from 80 to 20 Gb/s prior
to employing an electrical demultiplexer to go from 20 to the
base rate of 10 Gb/s. Using the EDLs attached to the demux
drive, each of the eight tributaries is selected (one at a time),
and signal analysis is carried out with the aid of an ED and a
high-speed oscilloscope.

Fig. 8 displays the BER versus received power curves for
one of the demultiplexed channels. It can be observed that
to achieve a BER of 10−9, a power penalty of 3.5 dB is
incurred in the case of the LC FBG when compared to the
NC FBG. The degraded performance is once again due to the
presence of the pedestals (poor TPSR), which results in ISI
between the adjacent channels. Yet again, a difference of 0.5 dB
was noticed in the case of the commercial TMLL and the
optimized gain-switched pulse source employing an NC FBG.
The slight difference in pulsewidth, as explained earlier, causes
the marginal difference in the sensitivity at the receiver (shorter
pulse exhibits better sensitivity).

The detected eye diagrams (shown at 20 Gb/s after the
EAM demux stage) corresponding to received powers of −30.8
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Fig. 9. Received eye diagrams at 20 Gb/s corresponding to the EI GSLD
pulses compressed with the (a) NC FBG and (b) LC FBG when employed in an
80-Gb/s OTDM test bed.

Fig. 10. Schematic of VPI simulation model used to realize EI GSLD pulse
source.

and −29.7 dBm for the NC FBG and LC FBG are shown in
Fig. 9(a) and (b), respectively. The increased level of noise
(reflecting poorer performance) can be noticed in the case of
the LC FBG [Fig. 9(b)], even though the received power level
is higher than in the case where the NC FBG was used.

IV. SIMULATIONS

The system penalties introduced by a poor TPSR were char-
acterized by carrying out simulations using VPI.

A. Pulse Generation and Compression

A schematic of the simulation model used to realize the
externally injected gain-switched pulse source in conjunction
with the NC FBG and LC FBG is shown in Fig. 10. A

Fig. 11. Intensity and chirp profile of the EI GSLD pulse source employing
an NC FBG for spectral shaping and temporal compression.

multiquantum-well DFB laser is gain-switched and subjected
to external injection from another DFB laser that is operated in
CW mode. The resulting pulses from the EI GSLD show widths
(FWHM) of 9.8 ps, an SMSR of about 35 dB, and a TBP of
about 1.27. The intensity and group-delay parameters are then
extracted from the generated pulses and written to an output file.

Temporal compressions using both the NC FBG and the
LC FBG were simulated by using a measured optical filter in
conjunction with the externally injected gain-switched laser. As
in the experiment, the target reflection profile of these filters
was set as the difference between the spectral amplitudes of
a Gaussian profile and the EI GSLD output. Again, as in the
experiment, the final group delay of the NC FBG and the LC
FBG was obtained by selecting the following: 1) a group-
delay response that is inverse to that measured across the EI
GSLD pulse and 2) a group-delay profile opposite to a linear
approximation of the pulse group-delay response, respectively.

Fig. 11 shows the pulse intensity and corresponding chirp
when the EI GSLD pulses are compressed by the NC FBG.
The resulting pulses portray a width of 2.9 ps (FWHM).
Furthermore, it can be clearly seen that the resultant chirp
has a negligible magnitude, thereby ensuing in an enhanced
TPSR of about 35 dB. Fig. 12 shows the compressed pulses
(3.1-ps width) and its corresponding chirp when the LC FBG
is used. Here, the chirp in the central portion of the pulse can
be seen to be flat and, hence, been compensated. However, the
uncompensated nonlinear chirp in the wings of the pulse causes
the formation of pedestals on the leading and trailing edges
of the pulse and results in the pulses, exhibiting a TPSR of
about 23 dB. The pulses from the TMLL pulse source were
modeled by using a transform-limited Sech2 pulse source that
generated pulses with widths of 2.1 ps. The generated pulses
and its equivalent chirp are shown in Fig. 13.

B. System-Performance Analysis of 80-Gb/s OTDM

Performance characterization of an 80-Gb/s OTDM system
is carried out with each of these three different pulse sources
employed alternatively.



1500 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 25, NO. 6, JUNE 2007

Fig. 12. Intensity and chirp profile of the EI GSLD pulse source employing
an LC FBG for compression.

Fig. 13. Intensity and chirp profile of the TMLL pulse source.

Fig. 14. BER versus received optical power for TMLL, NC FBG, and LC
FBG employed in an 80-Gb/s OTDM test bed.

Fig. 14 displays the BER versus received power plots for
one of the demultiplexed channels. It can be observed that to
achieve a BER of 10−9, a power penalty of 4 dB is incurred
when the pulse source with the LC FBG is employed in com-

Fig. 15. Received eye diagrams at 10 Gb/s corresponding to the EI GSLD
pulses compressed with the (a) NC FBG and (b) LC FBG when employed in an
80-Gb/s OTDM test bed.

parison to the case where the NC FBG is used. This degraded
performance is due to the presence of the pedestals about
23 dB below the peak of the pulse, as previously explained in
the experimental case. In terms of the power penalty incurred,
these simulation results achieved show a very good agreement
with the experimental 80-Gb/s OTDM-system-performance
characterization. The small difference in pulse width could be
attributed to the minor difference (0.5 dB) in the sensitivi-
ties between the gain-switched pulses compressed by the NC
FBG and the sech2 pulses, as was noticed in the experimental
section.

The 10-Gb/s eye diagrams, corresponding to a power level of
−23.24 dBm, are shown (Fig. 15) for the case of the EI GSLD
pulses compressed by the NC FBG [Fig. 15(a)] and LC FBG
[Fig. 15(b)]. The error free performance achieved by the pulses
compressed by the NC FBG is reflected by the clean and open
eye in the case of Fig. 15(a). On the other hand, the closed eye
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[Fig. 15(b)] shows the degraded BER in the case of the pulses
compressed by the LC FBG.

V. DISCUSSION AND CONCLUSION

OTDM is one of the techniques that could be used to realize
high-capacity photonic communication systems. However, the
fundamental component required to build such high-capacity
OTDM systems is a cost-efficient source of short optical pulses
that exhibits excellent temporal and spectral purity. An at-
tractive solution to build such sources involves the use of
a technique known as gain switching essentially due to its
simplicity and reliability. The disadvantages that this technique
suffers from could easily be overcome by employing external
injection. The possibility of integrating the device used for
external injection with a DFB laser [31] reduces the cost and
footprint of the chosen solution.

Experiments performed show that pulses from an exter-
nally injected gain-switched source compressed by an LC
FBG results in the formation of pedestals at a level of about
23 dB below the peak of the pulse. These pedestals occur as
a result of the uncompensated nonlinear chirp in the wings
of externally injected gain-switched pulse. BER measurements
carried out show that these pedestals have a detrimental impact
on the performance (1.5 dB) of a 40-Gb/s OTDM system. The
penalty incurred goes up to 3.5 dB as the aggregate bit rate is
doubled from 40 to 80 Gb/s. The increased interleaved bit rate
leads to a reduction of the temporal slot allocated to each bit
(25 ps for 40 Gb/s and 12.5 ps for 80 Gb/s). Hence, the coherent
interactions between the adjacent OTDM channels (with poor
TPSR) result in severe intensity fluctuations which in turn
lead to the worsening system performance. Optimum system
performance can be achieved by employing the tailor-made NC
FBC. This grating not only portrays a nonlinear group delay
(to compensate for the group delay of the gain-switched pulse)
but also exhibits a nonlinear reflective profile (to compensate
for the asymmetry of the pulse spectrum). These characteristics
enable the compensation of the entire chirp across the pulse,
thereby suppressing the pedestals to a level of about 40 dB
below the peak of the pulse. The experimental results achieved
demonstrate the importance of optimizing all the vital param-
eters of a gain-switched pulse source to yield pulses with
excellent temporal and spectral purity. The simulations carried
out with the aid of VPI transmission maker software verify the
experimental result achieved.

In conclusion, we have presented a cost-efficient technique
of generating pulses and provided a simple yet systematic way
of optimizing such a source. We have also demonstrated its
excellent performance in 40- and 80-Gb/s OTDM systems.
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Investigation of Pulse Pedestal and Dynamic
Chirp Formation on Picosecond Pulses After

Propagation Through an SOA
A. M. Clarke, M. J. Connelly, P. Anandarajah, L. P. Barry, and D. Reid

Abstract—The authors investigate the propagation of pi-
cosecond pulses through semiconductor optical amplifiers using
the measurement technique of frequency resolved optical gating.
The work shows the generation of significant pulse pedestals and
frequency chirp across the optical pulses, which initially have a
duration of 2 ps. As the input peak power of the optical pulses
is increased from 2.4 to 80 mW, the pulse pedestals increased by
20 dB and the chirp became significantly more nonlinear. The gen-
erated pedestals and the nonlinear output chirp may cause serious
degradation in high-speed communications systems employing
wavelength-division-multiplexing and optical time-division-mul-
tiplexing techniques.

Index Terms—Frequency chirp, optical communications, optical
pulse measurements, semiconductor optical amplifier (SOA).

I. INTRODUCTION

SEMICONDUCTOR optical amplifiers (SOAs) are at-
tracting a lot of interest in the field of telecommunications

due to their high gain, small size, and opportunities for inte-
gration and low cost [1]. As telecommunication systems move
toward higher capacities, it is essential to examine the operation
of SOAs in high bit rate communication systems. Specifically,
it is vital to investigate the effect of SOAs on picosecond optical
pulses that may be employed in photonic systems operating
at line rates of 40, 80, and 160 Gb/s. Presently, picosecond
pulse sources [2] can generate high-quality pulses that have
minimal chirp and jitter, and high ( 30 dB) temporal and
spectral purity as determined by the temporal extinction ratio,
and the sidemode suppression ratio, respectively. These are
required parameters for the practical use of these pulse sources
in high-speed optical time-division-multiplexed (OTDM) trans-
mission systems [2]. If future OTDM communication systems
are going to employ SOAs, it is, thus, necessary to investigate
the effects on picosecond pulses as they propagate through
SOAs. This work focuses on the effects of SOA propagation
and amplification on 2-ps pulses generated by a mode-locked
laser source that may be suitable for OTDM systems operating
at data rates from 40 to 160 Gb/s. We also explore the temporal
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shape of the induced chirp by the SOA, which will also be
of vast importance for SOA-based interferometers used as
all-optical switches.

Pulse propagation through SOAs has been experimentally
investigated previously by traditional methods of autocorrela-
tion, cross correlation, and optical spectrum analysis [3], [4].
However, the relatively new measurement scheme of frequency
resolved optical gating (FROG) [5] may be used to overcome
the limitations of traditional methods and provides complete
characterization in the spectral and temporal domains with
corresponding phase information. Previous work using FROG
to characterize pulse propagation in SOAs has examined pulse
distortion for pulsewidths around 200–300 fs in the absorption,
transparency and gain regimes [6], and has examined nonlinear
gain dynamics in the picosecond regime [7]. However, the
pulse sources used in these works are not suitable for practical
high-speed communications systems based on OTDM. In this
letter, we present a complete analysis of the effect of SOA am-
plification on 2-ps mode-locked pulses generated at repetition
rates of 10 GHz, which would be suitable for multiplexing to
40–160-Gb/s data rates. Our results are concerned primarily
with the frequency chirp induced on the pulses by the SOA (an
area that has seen extensive theoretical studies [8], [9]), and
the introduction of temporal pedestals after pulse amplifica-
tion in the SOA. We have characterized both of these effects
(frequency chirp and temporal pedestals) for input pulse peak
powers to the SOA ranging from 2.4 to 80 mW. Our results
show the exact profile of the frequency chirp induced by the
SOA for the range of optical input powers, and also an increase
in the temporal pulse pedestal, induced by the SOA, of 20 dB as
the input pulse peak power is increased. We also present results
showing how a filter can be used to enhance the performance
of SOAs for use in an OTDM system.

II. EXPERIMENT

The experimental setup is shown in Fig. 1. The pulses were
generated using a commercially available mode-locked laser
generating 5-ps pulses at a repetition rate of 10 GHz, and
operating at a wavelength of 1534 nm. The pulses from the
mode-locked laser have a significant linear frequency chirp,
which is used to compress the pulses down to duration of 1.8 ps
using dispersion-compensating fiber. The resultant Gaussian
optical pulses are nearly transform limited, exhibiting a time
bandwidth product of 0.5. A variable optical attenuator is then
used to vary the input power of the optical pulses injected
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Fig. 1. Experimental setup.

Fig. 2. Temporal profile of the input pulse and the pulse after the SOA with an
input peak power of 2.4, 7.7, and 80 mW.

into the SOA. The SOA (from Kamelian) has an unsaturated
fiber-to-fiber gain of 25 dB at an operating current of 250 mA.

Analysis of the pulses is carried out before and after am-
plification using a second-harmonic generation FROG with a
spectral resolution of 0.05 nm (6 GHz). The FROG generates a
spectrogram, which is a three-dimensional plot of intensity as
a function of wavelength and time. A phase retrieval program
is then applied to the generated spectrogram to reconstruct the
electric field of the optical pulse giving complete spectral and
temporal characterization of the measured pulse. To obtain good
signal-to-noise ratio (SNR) in the FROG measurements, and to
minimize the time taken to acquire the results, an erbium-doped
fiber amplifier (EDFA) is employed to amplify the input pulses
to the FROG to a peak power of around 500 mW. The EDFA
used is designed specially for operation with 2-ps optical pulses,
and it is operated in the linear gain regime such that it does
not alter the phase of the optical pulses being characterized by
the FROG. Frog errors below 0.004 were recorded for the re-
trieved pulses indicating accurate retrievals [5].

III. RESULTS AND DISCUSSION

In this work, we initially analyze the physical effects on the
pulse as it propagates through the SOA. The pulse pedestals and
the frequency chirp induced on the optical pulses after amplifi-
cation with the Kamelian SOA were examined as a function of
input peak power to the amplifier. Fig. 2 displays the intensity
profile of the input optical pulse and the temporal profile of the
pulse after amplification by the SOA as the input peak power is
varied from 2.4 to 80 mW, at a bias current of 200 mA. Fig. 2
shows that the pulsewidth increases from 1.8 to 4.2 ps. We can
also see a dramatic increase in the pedestals on the leading and
trailing edge of the pulse. For the pulses at the input to the SOA,
the pedestals cannot be seen as they are below the noise level of
our measurement system. At the output of the SOA, the pulse
pedestals increase from approximately 40–15 dB below the peak
of the pulse, as the input pulse peak power is increased. The

Fig. 3. (a) Chirp before and after the SOA and (b) the chirp induced by the
SOA across the temporal profile of the pulse for input peak powers of 2.4, 7.7,
and 80 mW.

reason for the decrease in the pulse pedestal suppression ratio is
that the pulse pedestal present on the leading edge of the input
pulse is amplified by the SOA as it sees a high linear gain. This
partially saturates the amplifier gain leading to a reduced am-
plification of the main pulse. The high power main pulse then
drives the SOA further into saturation. This is the reason for the
asymmetric shape of the pulse outputted from the SOA, as the
leading edge saturates the amplifier and the gain available for
the trailing edge is reduced [8], [9]. The gain partially recovers
for the trailing pedestal and it is, thus, also amplified relative
to the main pulse. The central component of the 80-mW input
pulse experiences higher gain saturation than is the case for the
lower input power pulses. This implies that the relative inten-
sity differences between the leading and trailing pedestals, and
the main pulse, is less than is the case for lower power input
pulses, which is shown from our results. For all of the input
pulse powers, there is partial recovery of the gain after the main
pulse but not as much as for the leading edge. This explains
the observation that the relative effect of changing from 7.7 to
80 mW is larger than the effect of changing from 2.4 to 7.7 mW
in the case of the leading pedestal. It should be noted that for
the FROG measurements of the weak pedestals ( 35 dB below
pulse peak), the SNR of these pulses is such that there will be
uncertainty as to the exact level of the weak pedestals. There is,
however, no uncertainty in the large increase in these pedestals,
which would clearly pose significant problems (through inter-
symbol interference) for the use of these pulses in high-speed
OTDM systems [10].

Pulse chirp is an essential parameter used in the analysis of
pulses in transmission systems as it determines the propagation
distance of the pulse and it can give information about the pulse
structure. It is important not only to know its peak-to-peak value
but also its profile across the pulse, especially SOA-induced
chirp as it has a nonlinear structure. Fig. 3(a) displays the profile
of the frequency chirp across the pulses at the input and output
of the SOA (for a range of input powers), and it is clear that the
chirp becomes more nonlinear as the input power to the SOA is
increased. The chirp ends abruptly close to the edges of the main
pulse, as when the intensity level is close to zero, it is not pos-
sible to correctly measure the chirp (thus, it is set to zero at these
levels). Fig. 3(b) displays the actual chirp induced by the SOA
across the pulse. This chirp can be calculated by subtracting the
input chirp of the compressed mode-locked laser pulses, from
chirp at the output of the SOA [8]. The associated spectra of
the optical pulses are illustrated in Fig. 4. Fig. 4(b) displays the
spectrum of the amplified pulses from the FROG measurement,
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Fig. 4. (a) Spectra generated by the FROG for the input and output at input
peak powers of 2.4, 7.7, and 80 mW and (b) a comparison of the spectrum
generated by the FROG and the OSA at 80-mW input pulse peak power.

and that measured using an optical spectrum analyzer (OSA)
when the input peak power to the SOA is 80 mW. These traces
show reasonably good agreement, indicating the accuracy of the
FROG technique.

The chirp across the leading edge of the pulse has a negative
slope, which corresponds to the main peak of the spectrum
shifting to longer wavelengths (often referred to as red-shifting).
The chirp across the trailing edge has a positive slope. The
second less dominant peak in the spectrum corresponds to the
wings of the pulse and the pulse pedestals. The increase in
the blue-shifted peak of the spectrum increases in line with
the increases in pulse pedestals. These effects in the chirp
are caused by self-phase modulation (SPM) induced by gain
saturation caused by carrier depletion and carrier heating due
to effects of stimulated emission, free carrier absorption, and
in particular two-photon absorption [9], [11]. An additional
contribution to SPM originates from the instantaneous nonlinear
index [9]. The nonlinear effects are particularly important for
pulsewidths below 2 ps [9]. Together all these effects result in
gain suppression and a corresponding change in phase through
the process of SPM.

It has been shown that by filtering out the unwanted
blue-shifted component of the spectrum, the pulse from the
SOA can be recovered to nearly its original form and the
extinction ratio can be improved [12]. To demonstrate this, we
used a theoretical simulation to apply an ideal bandpass filter
with a bandwidth of 4 nm to the electric field produced by
the FROG to remove the short wavelength components. The
results illustrated in Fig. 5 show the reduction of the pulse
pedestals to 30 dB below the peak and the pulsewidth reduced
to a full-width at half-maximum of 2 ps. The nonlinear chirp is
reduced, however there is some residual nonlinear chirp on the
filtered pulse.

IV. CONCLUSION

This letter has investigated the effect of SOA amplification
on 2-ps optical pulses using the FROG measurement technique.
We have investigated in detail the reduction in pulse pedestal
suppression ratio as the input power to the SOA is increased.
We have also accurately measured the chirp after the SOA and

Fig. 5. Comparison of the temporal profile and the chirp output from the SOA
(a) before and (b) after the simulated filter.

the chirp induced by the SOA. Our results show that if SOAs are
to be employed in high-speed optical communication systems,
then it will be vital to optimize their operating characteristics in
order to minimize the degradation in system performance that
they may cause.
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Semiconductor Optical Amplifiers (SOAs) are ideal candidates for use as all-optical processing devices such as 
wavelength conversion [1]. Their attraction comes from their small size, low energy consumption, highly nonlinear 
response and possibilities for monolithic integration. The work we present here builds on recent work where we 
obtained 80 Gb/s error free performance using cross phase modulation (XPM) in an SOA in conjunction with a blue 
shifted bandpass filter [2]. Here we present a detailed characterisation of this wavelength conversion scheme using a 
Frequency Resolved Optical Gating (FROG) measurement scheme for both red and blue shifted filtering. This 
characterisation is important as it measures the exact temporal profile of the wavelength converted pulses and its 
corresponding output chirp as a function of input line rate from 10-80 GHz. Thus the patterning effect and the gain 
dynamics resulting from red and blue shifted filtering can be examined in detail. The FROG measurement scheme is 
advantageous over other pulse measurement schemes such as bandwidth limited oscilloscopes and traditional 
autocorrelation methods as it retrieves intensity and corresponding phase information [3]. 
 
The wavelength conversion scheme presented here uses a very simple technique, which exhibits low polarisation 
dependence and retains the polarity of the input pulse in comparison to other similarly published wavelength 
conversion schemes [4]. The experimental set-up is shown in Figure 1. Mode-locked pulses with a FWHM of 2.3 ps 
were generated at a repetition rate of 10 GHz at a wavelength of 1545 nm. The pulses were amplified and passively 
multiplexed at rates ranging from 10-80 GHz. This pulse train was coupled with a continuous wave (CW) probe 
signal and were injected into a commercially available SOA. The measured slow gain recovery time of this SOA 
was 50 ps. The pulse energy was kept constant for each line rate at 12 fJ and the probe average power was 2.5 dBm. 
To obtain optimised red and blue shifted filtering the probe signal was set at a wavelength of 1551.91 nm and 
1558.6 nm respectively. The probe signal was tuned as a fixed Fibre Bragg Grating Filter was used following the 
SOA. This filter had a 3dB bandwidth of 5 nm and a sharp band edge, which was used to reject the original pump 
signal and to significantly reduce the CW portion of the probe. A second 3 nm tunable Gaussian filter was used to 
suppress further the CW signal and thus give an improved extinction ratio (ER). The intermediate EDFA (EDFA2) 
was used to overcome the high insertion loss due to the shifted filters. The wavelength converted pulses were then 
analysed using the FROG at line rates of 10, 20, 40, and 80 GHz. An EDFA was required before the FROG to obtain 
the maximum SNR of the measurement scheme. 

 
Figure 1: Experimental set up for the bandpass shifted filtering wavelength conversion scheme 

 
The intensity profiles of the wavelength converted pulses for red and blue shifted filtering are shown in Figure 2. By 
placing the filter on the red shifted side of the original probe spectrum we obtain very short pulses as shown in 
Figure 2(a). This is due to the very fast response caused by the depletion of carriers which induces an equally fast 
red chirp. A small portion of blue chirped spectral components, which are not fully rejected by the filters, is the 
cause of the tail present on the trailing edge of the pulses. As is clearly evident, patterning effects are very prominent 
in red shifted wavelength conversion schemes, as the amount of carriers depleted dictates the size of the chirp and as 
the bit rates increase, fewer carriers have recovered. This leads to a reduction in red chirp and thus a reduction in 
output power. However, for the blue shifted filtering we can obtain error free performance up to 80 Gb/s [2] as the 
patterning effects are not as substantial as displayed in Figure 2(b), as blue shifted filtering is less dependent on the 



 

 

input line rate. The leading edges of the blue shifted wavelength converted pulses have a very sharp slope. This is 
the result of the fast gain recovery of the SOA, which is related to intraband effects occurring on a timescale of 
approx 1-2ps. The structure at the centre of the pulse is due to a combination of the filter shape and the point where 
the slow gain recovery begins to take effect. The trailing edge of the pulse is determined by the shape of the filter 
profile.  
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Figure 2 (a) and (b): Intensity profiles for red and blue shifted filtering respectively in conjunction with XPM in an SOA at line rates of 

10, 20, 40 and 80 GHz.  

In Figure 3 we show the wavelength converted pulses normalised and their corresponding output chirp. The output 
pulses have a pulse width of 2.5-3.6 ps and 7-6.3 ps for respective red and blue shifted converted pulses. The chirp 
in particular for the blue shifted pulses is approximately linear across the pulse. This is to be expected as the induced 
phase by the SOA is converted into amplitude modulation by the shifted filter. This linear chirp with an approximate 
magnitude of 200 GHz could be used to compress the blue-shifted converted pulses to 3.5 ps. The small ripple on 
the output chirp is due to an uneven filter profile. Enhanced performance could be achieved by using a filter with a 
smoother profile and pulse compression could be obtained with a filter that has a linear chirp opposite to the 
wavelength converted pulses.    
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Figure 3 (a) and (b): Intensity and corresponding chirp profiles for red and blue shifted filtering respectively in conjunction with XPM in 

an SOA at line rates of 10, 20, 40 and 80 GHz. 

In conclusion a full characterisation of a popular wavelength conversion scheme which uses XPM in an SOA in 
conjunction with bandpass shifted filtering is provided. This type of characterisation has not been provided before to 
the best of the authors knowledge and is an important analysis firstly to achieve a full understanding of the gain and 
phase dynamics exploited by the wavelength conversion scheme presented and secondly to design a filter so that an 
optimum performance can be obtained.  
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
Abstract— This paper provides a full analysis of a

semiconductor optical amplifier (SOA)-based wavelength 
conversion scheme, which exploits cross phase modulation (XPM) 
in an SOA in conjunction with shifted filtering. The analysis 
includes an experimental measurement of the back-to-back 
system performance as well as a frequency-resolved optical gating 
(FROG) characterisation for both red and blue shifted filtering. 
The placement of the filter to undertake blue shifted filtering 
(BSF) shows optimum performance in comparison to red shifted 
filtering (RSF). Simulation work is carried out to examine the 
performance of this wavelength conversion scheme following 
transmission in 50 km of dispersion compensated fiber span.

Index Terms—All-optical switch, Frequency-resolved optical 
gating, Semiconductor optical amplifier, Shifted bandpass 
filtering, Wavelength conversion, Ultrafast.

I. INTRODUCTION

ith ever increasing demand for high-bandwidth 
applications, the growth towards implementing Tbit/s 

optical networks continues. Wavelength division multiplexing 
(WDM) is currently the optical multiplexing technique of 
choice in order to exploit the large bandwidth capabilities 
provided by optical fiber. As individual line rates increase, all-
optical processing techniques will be required, to provide 
simple network management.

In particular, wavelength converters will be key elements of
optical networks, in that they enable simpler network operation 
and provide dynamic provisioning in order to make full use of 
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the available bandwidth [1], [2]. Presently individual channel 
rates are operating up to line rates of 40 Gbit/s, limited 
typically by the speed of electronics. However the bit rate of 
each individual line rate is set to increase to even greater
capacities. Therefore there is a need to design and develop all-
optical wavelength converters that can perform at line rates
greater than 40 Gbit/s.

Future all-optical wavelength converters must meet certain 
criteria such as simple and stable operation, cost effectiveness 
and low energy consumption. A semiconductor optical 
amplifier (SOA) is one such candidate which meets all of the 
above criteria [3]. In addition these components have a small 
footprint, hold possibilities for monolithic integration [4], 
polarisation insensitivity [5], and exhibit high nonlinearities
for low input powers (compared to nonlinearities in fibers).
Thus SOAs are ideal candidates for use as ultrafast wavelength 
converters [6], [7].

One method of implementing wavelength conversion with 
SOAs is to use cross gain modulation (XGM). However the 
main disadvantages of this process are the polarity inversion of 
the output data in comparison to the input signal, the poor 
output extinction ratio and the bit rate limitation due to the 
SOA gain recovery time which can typically vary from 40-
100’s ps for different SOAs [8]. A solution to overcome these
disadvantages is to use cross phase modulation (XPM) in a 
SOA in conjunction with an interferometer [9]-[11]. However 
such schemes are often complicated and generally display 
problems with stability for example due to polarisation 
sensitivity. A more simple technique is to use a shifted 
bandpass filter (BPF) following the SOA which was first 
proposed by Ellis et al. [12] and which has recently shown to 
operate at very high bit rates by Liu et al. [13]. This solution 
overcomes the limitation due to the slow gain recovery time of 
SOAs and improves the extinction ratio in comparison with 
simple XGM. However the output data polarity is still inverted 
and the extinction ratio is insufficient. Cho et al. [14] have
presented a similar scheme but the proposed scheme retains 
the polarity of the input data by spectrally shifting the filter 
further from the continuous wave probe signal, thus primarily 
exploiting XPM in the SOA, in the same way as using phase 
modulation in a fiber associated with a shifted filter [15], [16]. 
This kind of device gives an enhanced extinction ratio and has 
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enabled operation at high data rates [17]. Fu et al. [18] have
experimentally characterised the evolution of the wavelength 
converted pulse shape as the filter is shifted from blue to red 
wavelengths at a data rate of 10 Gbit/s. At this bit rate, Chayet
et al. [19] have demonstrated the regenerative properties of 
such a scheme based on a high wavelength (red shifted) 
filtering. Vázquez et al. [20] have proposed the use of genetic 
algorithms to achieve the optimum filter shape. However these 
papers do not consider the changing shape of the wavelength 
converted pulses as a function of the input data pattern to the 
SOA and transmission of the wavelength converted signal at 
very high bit rates has not yet been examined. 

In this paper we present an analysis of a wavelength 
converter which primarily exploits XPM in an SOA in 
conjunction with a shifted BPF. This scheme offers the 
advantages of simplicity, polarisation insensitivity, stability, 
polarity preservation and large output extinction ratio. The 
analysis investigates the scheme in terms of performance up to
line rates of 80 Gbit/s and examines the output pulse and chirp 
profiles dependent on the repetition rate of the wavelength 
converted pulses. The analysis examines placement of the 
shifted filter to conserve either red or blue spectral 
components. 

The paper is organized as follow: Section II describes the 
principle of the studied wavelength converter. Section III 
presents the back-to-back bit error rate (BER) performance of 
the wavelength conversion scheme and analyses their temporal 
and chirp output profiles using frequency-resolved optical 
gating (FROG) measurements at increasing line rates up to 
80 GHz. Finally, in Section IV a numerical study is 
implemented to investigate the behaviour of the converted 
pulses in a transmission link.

II. PRINCIPLE OF THE WAVELENGTH CONVERTER

The principle of the SOA and filter-based wavelength 
converter, which is illustrated in Fig. 1, consists of injecting 
two signals into the SOA: The data signal and a simple 
continuous wave (CW), called a “probe”, at the required 
conversion wavelength. 

 2

 2

Fig. 1. Principle of wavelength converter based on cross phase modulation 
(XPM) in a SOA associated with a shifted bandpass filter (BPF).

The input data signal modulates the gain in the SOA due to 
gain saturation. In the same way the refractive index and thus 

the phase of the probe are also modulated. This process of 
XPM causes a shift of the probe spectral components firstly to 
longer wavelengths, known as red-shifting and then to lower 
wavelengths known as blue-shifting. Fig. 2 is an illustrative 
view of the corresponding temporal effects between an input 
pump pulse, the dynamic SOA gain compression and the 
frequency shift induced in the SOA, i.e. the SOA ‘chirp’.

Pump pulse

Gain 
compression

chirp

time
Red

chirp
Blue chirp

Pump pulse

Gain 
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chirp

time
Red

chirp
Blue chirp

Fig. 2. Time correspondences between input pump pulse, SOA gain 
compression and induced SOA chirp.

Generally a BPF is placed after the SOA, to reject the 
original input data signal. By shifting this filter off centre to 
retain the lower wavelengths or the blue-shifted spectral 
components of the probe signal, the limitations typically 
governed by the slow gain recovery time of the SOA can be 
overcome, taking advantage of the short time scale on which 
the chirp occurs [21]. If the filter is placed further to longer or 
shorter wavelengths so as to suppress the DC component of the 
probe, the phase modulation of the probe signal can be 
converted to intensity modulation and thus the polarity of the 
input signal can be preserved [15],[17]. This can be explained 
in further detail: When a ‘0’ is input to the SOA, there is no 
saturation of the SOA gain and thus there is no corresponding 
wavelength shift of the probe spectral components. Thus the 
filter rejects the CW signal. On the contrary when a ‘1’ is input 
to the SOA, there is a shift of the probe spectral components to 
first the longer wavelengths (red shift) and then to lower 
wavelengths (blue shift). Thus depending on the placement of 
the filter either the red or blue shifted spectral components are 
maintained while the remaining probe signal (including the DC 
component) is suppressed.
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Fig. 3. Experimental set-up

The power efficiency of this technique increases as the 
amount of induced spectral broadening (i.e. ‘chirp’) becomes 
larger. Therefore the shorter and more energetic the input 
pulses are, the more efficient the process is, particularly thanks 
to intra-band effects [22]. In addition the more suppressed the 
DC component of the probe is, the larger the output extinction 
ratio.

III. EXPERIMENTAL ANALYSIS

The aim of the following experimental study is the analysis 
of the behaviour of such a wavelength converter in the case of 
both blue-shifted filtering (BSF) and red-shifted filtering 
(RSF). The analysis consists of BER measurements as a 
function of power received and a pulse and chirp 
characterisation of the wavelength converted pulses at 
different line rates up to 80 GHz (10, 20, 40 and 80 GHz) to 
explore the wavelength converted signal dependence on its 
preceding pattern.

A. Experimental set up

The experimental set up is shown in Fig. 3. Mode-locked 
pulses with a full width half maximum (FWHM) of 2.3 ps are 
generated at a repetition rate of 10 GHz and at a wavelength of 
1545 nm. The pulses are amplified using an erbium doped 
fiber amplifier (EDFA) and passed through a Mach-Zehnder 
intensity modulator to obtain a RZ-PRBS of 27-1. The data 
signal was then passively multiplexed to the required line rate 
of 10, 20, 40, or 80 Gbit/s. At 80 Gbit/s the average pulse 
power is 0 dBm (energy = 12.5 fJ,) and was reduced by 3 dB 
as the data rate was decreased by half to maintain a constant 
pulse energy. The wavelength conversion scheme consists of 
injecting a CW signal coupled with the pump signal into an 
SOA. The probe power measured at the input to the SOA is 
2.5 dBm.
The measured slow gain recovery time of this SOA is 55 ps at 
a bias current of 250 mA. Two filters and an EDFA were 
employed after the SOA. The first filter is a fixed filter, so to 
implement either RSF or BSF we change the probe wavelength 
rather than the position of the filter. Therefore to obtain 
optimised red and blue shifted filtering the probe signal is set 

at a wavelength of 1551.91 nm and 1558.6 nm respectively. 
This first filter has a sharp band edge, which is used to reject 
the original pump signal and to significantly reduce the CW 
portion of the probe. The second 3 nm tunable Gaussian filter 
is used to suppress further the CW signal and thus give an 
improved extinction ratio. An intermediate EDFA between the 
two filters is required to overcome the high insertion loss due 
to the shifted filtering. The average power at the output of the 
wavelength converter is measured at approximately -2 dBm at 
80 Gbit/s. Fig. 4 shows the signal spectra at the input of the 
wavelength converter, at the output of the SOA and after RSF 
and BSF.
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Fig. 4. Signal spectra at different points of the wavelength conversion process
at 80 GHz: at the SOA input (a), at the SOA output (b), wavelength converted 
signal after RSF (c), wavelength converted signal after BSF (d).

B. Bit Error Rate Measurements

To measure the BER the signal was demultiplexed from 
80 Gbit/s to 20 Gbit/s optically via two electro-absorption 
modulators and was then electrically demultiplexed to 
10 Gbit/s. The power received level was measured at 20 Gbit/s 
just before the photodiode preceding the electrical 
demultiplexer. The BER measurements for both BSF and RSF 
at 80 Gbit/s are displayed in Fig. 5, in addition to a back-to-
back measurement without wavelength conversion.
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Fig. 5. BER measurements at 80 Gbit/s versus the received power for each 
case of filtering (BSF or RSF) and associated oscilloscope traces for a pattern 
of 00001010 (only the four last symbols are displayed).

Error free performance has been obtained at 80 Gbit/s with 
BSF as previously presented in [23]. By comparison with the 
back-to-back curve, a penalty of 2.5dB has been measured. 
However for the RSF technique error free performance has 
only been achieved at 40 Gbit/s. As can be seen in Fig. 5 an 
error floor is observed at a BER of 10-7 for 80 Gbit/s. 

The error floor present for the RSF technique is due to 
patterning effects as a consequence of the incomplete gain 
recovery of the SOA. These patterning effects are clearly seen 
in the oscilloscope trace shown in Fig. 5. These oscilloscope 
traces were measured by applying a pattern of 00001010 to the 
wavelength conversion scheme which shows that in the RSF 
case patterning effects lead to a significant reduction in the 
power of the second ‘1’. This is because the magnitude of the 
red chirp corresponds to the gain saturation by the pulse as 
shown in Fig. 2. Thus the amount of chirp in RSF technique is
dependent on how well the gain has recovered. We can note 
that these patterning effects are significantly reduced (almost 
negligible) in the case of BSF as observed in Fig. 5. This is 
explained in more detail in section C with the aid of FROG 
characterisation.

As shown in Fig. 6, these patterning effects lead to a small 
eye opening for the RSF case, while the BSF case retains a 
large eye opening, thus 80 Gbit/s error free performance is 
obtainable.

Fig. 6. Eye diagrams of the wavelength converted signal at 80 Gbit/s 
following (a) RSF and (b) BSF for a power received of -7.5 dBm relating to a 
BER of ~10-7 and 10-9 for RSF and BSF respectively.

C. FROG characterisation

The converted pulses after each type of filtering and at each 
line rate of 10, 20, 40 and 80 GHz are now analyzed by the 

FROG technique [24]. The FROG setup is comprised of a 
second harmonic generation (SHG) autocorrelator followed by 
a high resolution spectrometer. For SHG, we used a LiNbO3 
crystal with an estimated interaction length of 250 µm. The 
SHG signal was spectrally resolved using a spectrometer with 
a charged coupled detector (CCD) array mounted on the 
output. The resulting spectrograms, which were obtained from 
the experimental FROG set-up, were then used to retrieve the 
pulse intensity and phase using the FROG phase retrieval 
algorithm of generalized projections (GP) [25]. For all the 
experimental results reported below, the standard checks on 
the quality of the data were made, including inspection of the 
FROG frequency and delay marginals, and comparing the 
spectrum and autocorrelation derived from the retrieved field 
with those directly measured. Pulse retrieval for the 
characterisation carried out in this work, routinely gave low 
retrieval errors < 0.005 [25] with a 128x128 grid (i.e. 128 
spectral and temporal points). This FROG measurement 
scheme overcomes the limitations of other pulse measurement 
schemes (such as autocorrelation or a photodiode in 
conjunction with an oscilloscope) which must make 
assumptions about the pulse shape and render no phase 
information.

The experimental set-up remained the same as described 
above (in Fig. 3) however no data was applied to the intensity 
modulator, to obtain optimum pulse characterisation using the 
FROG technique. The FROG characterisation was carried out
before any demultiplexing stage. Thus the analysis block
comprises the SHG FROG preceded by an EDFA in order to 
obtain maximum sensitivity of the measurement scheme. This 
EDFA is designed specifically for short pulse amplification 
such that it does not introduce any chirp or alter the pulse 
shape.

The temporal profile of the pulses as measured by the 
FROG after red and blue shifted filtering at line rates of 10, 
20, 40, and 80 GHz are displayed on Fig. 7, to examine how 
the preceding pattern can affect the output pulse shape and 
chirp of the two wavelength conversion schemes [26].

Fig. 7. Temporal pulse profiles at different line rates after (a) RSF and (b) 
BSF.

While these four pulses do not represent all the possible 
pulse variations that may be generated by patterning, it is a 
reasonable assumption that all the wavelength converted 
pulses will be the same as or lie somewhere in-between these 
four pulses. This is because the 80 GHz pulse represents the 
case when the SOA’s gain is maximally depleted, the 10 GHz 

(a) (b)

(a) (b)
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pulse represents the case where the gain has sufficient time to 
completely recover between pulses while both 20 GHz and 
40 GHz pulse represent two cases between these extremes.

RSF pulses depend on the fast gain saturation effect that 
occurs approximately over the pulse width of the input pulse 
(2 ps). Due to this fast depletion of carriers the corresponding 
red chirp, which occurs over the same time scale, causes the 
spectral components of the wavelength converted probe signal
to shift to longer wavelengths. This allows only these spectral 
components to pass through the filter thus outputting a very 
short pulse as can be seen in Fig. 7(a). This short pulse width
looks promising and in Ref. [18], it has been shown that RSF 
gives optimum performance. However, this study does not take 
into account the red chirp dependence on the carrier density 
and thus on the carrier lifetime. Consequently, if there is not 
complete gain recovery before the onset of the next pulse there 
is a smaller red shift of the probe and thus there is less power 
output from the filter. Therefore the major drawback of RSF is 
the patterning effects resulting from going to higher bit rates as 
is evident from the FROG traces taken with different input 
repetition rates and the previous BER measurements. 

Furthermore one can note a double slope in the trailing edge 
of the RSF pulses. This is a consequence of two factors which 
determine the output pulse intensity; firstly the proportion of 
the probe transmitted through the shifted filter which is a 
function of the chirp imparted on probe by the SOA and 
secondly the level of gain saturation in the SOA. From Fig. 2 it 
can be seen that at the point of greatest red chirp the gain has 
only been depleted by half. After this point the output pulse 
intensity falls because the decreasing red chirp reduces filter 
transmission and also due to the gain saturating further. This 
corresponds to the initial fast fall of the trailing edge. When 
the gain saturates to its greatest extent and starts to recover the 
frequency chirp is still shifting towards the blue. At this point 
the filter transmission is still decreasing but the gain is 
recovering. This leads to the second slower fall-off in the 
trailing edge of the pulse. It can also be noted that the change 
of slope appears earlier as the bit rate increases. This can be 
explained because generation of red-chirped components is 
reduced as the bit rate increases, therefore the probe 
component returns earlier to its original wavelength which 
reduces the first part of the trailing edge of the pulses. There is 
the possibility that this double sloping could be removed by 
using an optimized filter, especially designed for this 
application.

In the case of BSF, illustrated in Fig. 7(b) the wavelength 
converted pulses are much broader, however the impact of 
patterning effects is far less evident as shown by the pulses 
being more independent of repetition rate. BSF takes 
advantages of intra-band effects which decrease nonlinear 
patterning dependence [22]. Furthermore the blue chirp is 
smaller than the red chirp, because the phase recovers over a 
longer timescale. The dominant parameters in determining the 
pulse shape are, as for the RSF case, the gain recovery slope
and, in this BSF case, the filter shape instead of the SOA chirp 

profile. The leading edge of the pulse has a sharp edge due to 
the initial fast gain recovery and associated increase in the 
filter transmission. The probe wavelength returns much more 
slowly to its original wavelength as the gain recovers, resulting 
in a pulse with a long trailing edge. The structure at the top of 
the pulses is due to a combination between the filter 
transmission and ultrafast gain phenomena such as intraband 
effects (for example carrier heating).

Due to the processes involved in each configuration, pulses 
after RSF are shorter than after BSF. The large pulse width 
around 7 ps after BSF may limit this type of wavelength 
conversion. Shorter pulses could be achieved by using a filter 
with a narrower bandwidth, however this would significantly 
deteriorate the optical signal to noise (OSNR) and thus could 
prevent from obtaining error free performance at bit rates 
greater than 80 Gbit/s.

The chirp following RSF and BSF is displayed in Fig. 8 and 
is overlaid on a normalized intensity profile (10 GHz). As 
expected, the resultant chirp is approximately linear as the 
changes in chirp after the SOA are converted into amplitude 
changes by the filtering. This is particularly evident for BSF 
where the magnitude of chirp is 200 GHz. This would allow 
for the pulses to be compressed by using linear dispersion 
compensating techniques.

Fig. 8. Normalized intensity profile (10 GHz) and chirp profiles at different 
line rates in case of (a) RSF and (b) BSF.

Although we have shown 80 Gbit/s error free performance 
in a back-to-back measurement an analysis is required to show 
how well these BSF pulses will perform following further 
propagation in a transmission link. In particular, it is important 
to establish how the distorted pulse shape and its 
corresponding chirp could be detrimental to its overall 
performance. For the back-to-back measurements in (Section 
III-B) we believe that this pulse distortion does not add any 
induced penalty as the bandwidth resolution of the photodiode 
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placed before the error detector would lead to smoothing of 
the overall pulse shape. To investigate the impact of this pulse 
shape as it propagates in a transmission link, we simulate a 
simple 80 Gbit/s transmission system using Virtual Photonics 
Interface (VPI) software as is now discussed in Section IV.

IV. NUMERICAL ANALYSIS OF WAVELENGTH CONVERTED 

PULSES FOLLOWING FIBER TRANSMISSION

The FROG characterisation of the wavelength converted 
pulses has shown that while much better than the RSF case, the 
shape of the BSF wavelength converted pulses has a small 
dependence on the preceding data pattern. Thus in this section 
we simulate the propagation of each of these pulse shapes in a 
dispersion compensated fiber length of 50 km using VPI. The 
model used is shown in Fig. 9. 

The FROG traces of the wavelength converted pulses at 
each channel rate from 10-80 GHz were interleaved to form an 
approximation to a pattern dependent PRBS signal of 27-1. If a 
pulse was directly preceded by another pulse then the 80 GHz 
measurement was used. If the most recent pulse was two bit 
slots earlier then the 40 GHz measurement was used and so on.
The 10 GHz FROG trace was used to represent all pulses 
preceded by greater than 7 zeros as the SOA gain will have 
fully recovered in this time, thus the wavelength converted 
pulse shape will remain unchanged. This is an approximation 
because only four of the number of possible pulse shapes have 
been used. However the four pulses are a good representation 
of the range of possible pulses and by interleaving them in this 
way they appear in the correct proportion. It is a reasonable 
assumption that all the wavelength converted pulses will be the 
same as or lie somewhere in-between these four pulses, as 
explained previously. Noise and 300 fs of jitter were added to 
the system model to obtain an OSNR as measured in the 
experimental set-up which generates an eye diagram as shown 
in Fig. 6 (b). The wavelength converted eye directly following 
the BSF wavelength conversion scheme is shown in Fig. 10 (a) 
and has a quality of Q = 9.46. This eye diagram is a 
combination of the wavelength converted signals obtained 
using the wavelength converted pulse shapes measured by the 

FROG at 10, 20, 40 and 80 GHz. The noise seen in the one 
level is due largely to the patterning effects in the wavelength 
converter.

These pulses were initially transmitted over 50 km of single 
mode fiber (SMF), which has a chromatic dispersion 
coefficient of -16 ps/km.nm, an attenuation parameter of 
0.2 dB/km, a dispersion slope of -0.086 ps/nm2/km and a 
polarization mode dispersion parameter of zero. The nonlinear 
refractive index of the fiber was 2.6x10-20 m2/W. Before the 
receiver an ideal amplifier was added to overcome fiber loss 
and a fixed dispersion compensating module (DCM) to 
overcome the transmission fiber dispersion was included. The 
DCM had a chromatic dispersion coefficient of 800 ps/km and 
a dispersion slope of 2.8 ps/nm2.
The wavelength converted eye following propagation is shown 
in Fig. 10(b) and has a quality of Q = 8.13. Nonlinear effects 
were also found to be negligible when the pulses were 
launched with 1mW of average power. Although the residual 
dispersion (third order) leads to a small amount of eye closure, 
overall a large eye opening is still retained. The system’s 
tolerance to uncompensated dispersion was evaluated by 
addition of a tunable dispersion compensation module before 
the receiver. The Q factor as a function of uncompensated 
dispersion is shown in Fig. 10(c). A Q factor above 6 was 
obtainable for dispersions from -4 ps/nm to +9 ps/nm. The 
slight bias to positive dispersion can be explained by the initial 
chirp on the pulses before transmission. This is seen in the 
optimal Q being obtained at +2 ps/nm of tunable dispersion 
and not 0 ps/nm.
While the different pulse shapes in the pattern are each 
affected differently by the residual dispersion, there is no large 
increase in noise due to patterning with propagation. Therefore 
this wavelength conversion scheme has the potential to be used 
in a real network as the structure evident on the measurements 
taken by the FROG technique does not lead to large distortions 
of the signal following transmission.

Fig. 9. The VPI model used to investigate the transmission properties of the wavelength converted pulses.
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Fig.10. The 80 Gbit/s wavelength converted eye with BSF technique using FROG measurement and modelled by VPI simulation tool (a) before propagation and 
(b) following 50 km of dispersion compensated fiber span. The Q factor’s dependence on residual dispersion (c).

V. CONCLUSION

In conclusion, we have presented a full analysis of an SOA-
based shifted filtering wavelength conversion scheme. By 
placing a filter so as to suppress the CW signal of the probe 
following the SOA, polarity preserved wavelength conversion
can be achieved. Back-to-back system performance was 
analyzed and it showed that placing the filter to retain the blue 
spectral components can give error free performance up to 
80 Gbit/s. Characterisation of both the RSF and BSF was 
carried out using the FROG measurement technique, which 
showed that the pulse shape is largely dependent on the input 
data pattern. In the case of the RSF there is a large patterning 
due to the slow gain recovery time of the SOA, however for 
the BSF case patterning effects are reduced significantly. 
However the FROG results show that the BSF converted pulse 
shape is dependent on the input pattern, thus a simulation was 
carried out to determine the effect of this pattern dependent 
pulse shape following transmission. The simulation has shown 
that the eye remains open after a 50 km SMF transmission link 
which includes dispersion compensation.
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Abstract The FROG technique is used to characterise output pulses from a Turbo-Switch wavelength converter 
in different configurations. Results show low chip on the output pulses, a vital requirement in high-speed optical 
transmission systems.

Introduction
Wavelength converters will be important components
in future optical networks, as they will be required to 
avoid wavelength contention at nodes and render 
wavelength division multiplexed (WDM) systems 
more flexible [1]. Consequently, there is much interest 
in all-optical approaches to wavelength conversion for 
high bit rates. In this paper we characterise the all-
optical Turbo-Switch wavelength converter, which has 
already shown error free performance up to 170Gb/s 
[2]. In particular the pulse shape and chirp of the 
wavelength converted signal are measured using the 
frequency-resolved optical gating (FROG)
measurement scheme. We employ the FROG 
technique to optimise the Turbo-Switch configuration, 
including the position of the PM fibre of the 
interferometer, to obtain the best intensity and chirp 
profile of the output pulses. The optimised pulse has 
very low chirp, which is important for propagation 
through subsequent fibre transmission links

Experimental Set-up
The Turbo-Switch provides a much faster gain 
recovery in comparison to that of a single 
semiconductor optical amplifier (SOA), which helps to 
mitigate the nonlinear patterning effects associated 
with wavelength conversion schemes which exploit 
cross-phase modulation in one SOA alone [2]. An 
asymmetric Mach-Zehnder interferometer (AMZI) acts 
as a shaping filter for the wavelength converted 
pulses, and optimisation of the AMZI can lead to 
improvement of the extinction ratio and cancellation of
the chirp of such pulses.

The wavelength conversion experimental set-up is 
shown in Fig. 1. The pump signal was generated by 
a 10.65 GHz tuneable mode-locked laser (TMLL),
giving 3ps pulse trains at 1540nm. A modulator and 
passive multiplexer (up to x16) were used to give
PRBS data rates ranging between 10.65Gb/s and
170.4Gb/s, with pattern length 27-1. The continuous
wave (CW) probe signal was set at 1558nm. The two 
(Kamelian) SOAs both had 1490nm gain peaks at 
operating bias currents of 400mA. The filter employed
was 4.5nm wide and blocked the pump pulses. A 

length of PM fibre, having a relative time-of-flight 
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Fig. 1 Experimental Set-up

delay between fast and slow axes of ~3ps, and a 
polariser, were used to form the AMZI. The PM fibre 
was placed either in the position shown in Fig 1, or
after SOA2, in order to compare the wavelength 
conversion performance. 

FROG Characterisation Results
The FROG scheme measures the temporal shape 
and phase profile of a pulse. The characteristics of 
the wavelength-converted pulse at data rates 10 -
170Gb/s and for different Turbo-Switch configurations 
were recorded using second harmonic generation 
FROG. The error for all FROG measurements was
less than 10-5 for a 128x128 grid [3].

Fig.2 Intensity (solid) and phase (dashed) of the 
wavelength converted pulses, showing comparison 
between use of a single SOA and a Turbo-Switch. 

Here we investigate the effects of the Turbo-Switch 
on the pulse shape and phase. Initially the 
wavelength converted pulses were measured directly 



after just one SOA and AMZI, and then measured 
using the complete Turbo-Switch and AMZI, and the 
results are shown in Fig. 2. Note that although there 
are large phase variations in the wings of the pulses, 
they occur when the AMZI output is close to a null 
and the pulse energy is negligible. Whilst the AMZI 
primarily dictates the pulse width, this FROG 
characterisation shows that the improved phase 
cancellation in the interferometer due to the very high 
speed response of the Turbo-Switch leads to a pulse 
width reduction of ~0.5ps. It also results in a very 
small chirp across the pulse, and gives nearly 
transform limited pulses (time bandwidth product =
0.59).

In addition, changing the placement of the PM fibre of 
the AMZI results in a further optimisation of the pulse 
shape and chirp as displayed in Fig. 3.

Fig. 3 Intensity (solid) and chirp (dashed) of 
wavelength converted pulses, showing comparison of 
configurations with PM fibre placed before and after
SOA2.

If the PM fibre is placed in between the two SOAs of 
the Turbo-Switch as shown in Fig. 1, a more 
symmetric pulse and a near zero level of chirp can be 
achieved in comparison to placing the PM fibre after
the second SOA.
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Fig.4. BER measurements of wavelength-converted 
output at 85Gbit/s, compared to back-to-back (B2B), 
when PM fibre is placed before and after SOA2.

This improvement in pulse quality is reflected in the 

corresponding bit error rates for the two 
configurations, as shown in Fig 4 for 85Gbit/s data,
which indicate a 1dB penalty if the PM fibre is placed 
after the second SOA.

Fig. 5 (a) Intensity and (b) frequency chirp of 
wavelength converted pulses for input data rates 10 -
170Gb/s. 

Finally we characterised the pulse shape and chirp as 
a function of data rate. Fig. 5 (a) shows that the pulse 
shape does not change for input data signal rates 
between 10-170Gb/s. Fig. 5 (b) shows the chirp for 
the same range of input data rates together with a 
theoretical curve, illustrating that the chirp across the 
wavelength converted pulses varies by less than 
60GHz for all data rates up to 160 Gb/s. The pulses 
would therefore be suitable for propagation through 
fibre transmission links.

Conclusions
We have shown that wavelength converted pulses 
from the Turbo-Switch have very low chirp and are
nearly transform limited. Placement of the PM fibre 
between SOAs is advantageous.
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