1,847 research outputs found

    Development of a micromanipulation system with force sensing

    Get PDF
    This article provides in-depth knowledge about our undergoing effort to develop an open architecture micromanipulation system with force sensing capabilities. The major requirement to perform any micromanipulation task effectively is to ensure the controlled motion of actuators within nanometer accuracy with low overshoot even under the influence of disturbances. Moreover, to achieve high dexterity in manipulation, control of the interaction forces is required. In micromanipulation, control of interaction forces necessitates force sensing in milli-Newton range with nano-Newton resolution. In this paper, we present a position controller based on a discrete time sliding mode control architecture along with a disturbance observer. Experimental verifications for this controller are demonstrated for 100, 50 and 10 nanometer step inputs applied to PZT stages. Our results indicate that position tracking accuracies up to 10 nanometers, without any overshoot and low steady state error are achievable. Furthermore, the paper includes experimental verification of force sensing within nano-Newton resolution using a piezoresistive cantilever endeffector. Experimental results are compared to the theoretical estimates of the change in attractive forces as a function of decreasing distance and of the pull off force between a silicon tip and a glass surface, respectively. Good agreement among the experimental data and the theoretical estimates has been demonstrated

    Advances in Piezoelectric Systems: An Application-Based Approach.

    Get PDF

    Feedforward Compensation Analysis of Piezoelectric Actuators Using Artificial Neural Networks with Conventional PID Controller and Single-Neuron PID Based on Hebb Learning Rules

    Get PDF
    This paper presents a deep analysis of different feed-forward (FF) techniques combined with two different proportional-integral-derivative (PID) control to guide a real piezoelectric actuator (PEA). These devices are well known for a non-linear effect called “hysteresis” which generates an undesirable performance during the device operation. First, the PEA was analysed under real experiments to determine the response with different frequencies and voltages. Secondly, a voltage and frequency inputs were chosen and a study of different control approaches was performed using a conventional PID in close-loop, adding a linear compensation and a FF with the same PID and an artificial neural network (ANN). Finally, the best result was contrasted with an adaptive PID which used a single neuron (SNPID) combined with Hebbs rule to update its parameters. Results were analysed in terms of guidance, error and control signal whereas the performance was evaluated with the integral of the absolute error (IAE). Experiments showed that the FF-ANN compensation combined with an SNPID was the most efficient.The authors wish to express their gratitude to the Basque Government through the project SMAR3NAK (ELKARTEK KK-2019/00051), to the Diputación Foral de Álava (DFA) through the project CONAVAUTIN 2 and to the UPV/EHU for supporting this work

    Force Controlled Piezoelectric Fiber Press

    Get PDF
    The study of the properties of paper in in the micro scale requires the use of devices on the same dimensional order. Paper fiber bonds, the construction unit of paper sheets, can be manufactured, manipulated and tested thanks to a variety of micro actuators. In the manufacturing process of paper fiber bonds, a tool able to press the fibers together is paramount, along with a force control scheme that can guarantee an acceptable performance from the actuator in question. This thesis proposes an open-loop force control technique for a piezoelectric stack actuator, consisting of the compensation of the hysteresis and creep nonlinearities and vibrations. The hysteresis compensation is based on model inversion, resorting to the Prandtl-Ishlinskii method for modeling static hysteresis. Creep compensation, on the other hand, consists of an inverse multiplicative structure, meaning that no model inversion is required and therefore simplifying the process. Last, vibration is dealt with by means of an input shaping technique. The thesis starts with a literature study, followed by the discussion of the method to be implemented and the selection of the required software and hardware for the experiments, as well as the design of a custom-built test platform. The second half of the thesis begins with the characterization of the actuator and tackles the design and implementation of the control. The experimental results show that an open-loop control scheme is possible for force control of a piezoelectric actuator and proves its efficiency and convenience for micromanipulation tasks: hysteresis is reduced to less than 3 %, creep is kept under 1 % and overshoot is decreased to less than 10 % at low inputs and apparently eliminated at higher inputs. Also, the results suggest that this method can easily be extended to other types of actuators and applications, albeit certain additional issues might have to be taken into consideration

    Fluidic Proportional Thruster System Final Report

    Get PDF
    Fluidic proportional thrust control system with vortex valve

    Model reference control for ultra-high precision positioning systems

    Get PDF
    Due to the increasing demands of high-density semiconductors, molecular biology, optoelectronics, and MEMS/NEMS in the past decades, control of ultra-high precision positioning using piezoelectricity has become an important area because of its high displacement resolution, wide bandwidth, low power consumption, and potential low cost. However, the relatively small displacement range limits its application. This work proposed a practical ultra-high precision piezoelectric positioning system with a complementary high displacement range actuation technology. Solenoids are low cost, high speed electromagnetic actuators which are commonly used in on-off mode only because of the inherent high nonlinear force-stroke characteristics and unipolar forces (push/pull) generated by the magnetic fields. In this work, an integrated positioning system based on a monolithic piezoelectric positioner and a set of push-pull dual solenoid actuators is designed for high speed and high precision positioning applications. The overall resolution can be sub-nanometer while the moving range is in millimeters, a three order of magnitude increase from using piezoelectric positioner alone. The dynamic models of the dual solenoid actuator and piezoelectric nanopositioner are derived. The main challenge of designing such positioning systems is to maintain the accuracy and stability in the presence of un-modeled dynamics, plant variations, and parasitic nonlinearities, specifically in this work, the friction and forcestroke nonlinearities of the dual solenoid actuator, and the friction, hysteresis and coupling effects of piezoelectric actuator, which are impossible to be modeled accurately and even time-varying. A model reference design approach is presented to attenuate linear as well as nonlinear uncertainties, with a fixed order controller augmenting a reference model that embeds the nominal dynamics of the plant. To improve transient characteristics, a Variable Model Reference Zero Vibration (VMRZV) control is also proposed to stabilize the system and attenuate the adverse effect of parasitic nonlinearities of micro-/nano- positioning actuators and command-induced vibrations. The speed of the ultra-high precision system with VMRZV control can also be quantitatively adjusted by systematically varying the reference model. This novel control method improves the robustness and performance significantly. Preliminary experimental data on dual solenoid system confirm the feasibility of the proposed method

    Control of a Hysteretic Walking Piezo Actuator

    Get PDF

    Advanced Control of Piezoelectric Actuators.

    Get PDF
    168 p.A lo largo de las últimas décadas, la ingeniería de precisión ha tenido un papel importante como tecnología puntera donde la tendencia a la reducción de tamaño de las herramientas industriales ha sido clave. Los procesos industriales comenzaron a demandar precisión en el rango de nanómetros a micrómetros. Pese a que los actuadores convencionales no pueden reducirse lo suficiente ni lograr tal exactitud, los actuadores piezoeléctricos son una tecnología innovadora en este campo y su rendimiento aún está en estudio en la comunidad científica. Los actuadores piezoeléctricos se usan comúnmente en micro y nanomecatrónica para aplicaciones de posicionamiento debido a su alta resolución y fuerza de actuación (pueden llegar a soportar fuerzas de hasta 100 Newtons) en comparación con su tamaño. Todas estas características también se pueden combinar con una actuación rápida y rigidez, según los requisitos de la aplicación. Por lo tanto, con estas características, los actuadores piezoeléctricos pueden ser utilizados en una amplia variedad de aplicaciones industriales. Los efectos negativos, como la fluencia, vibraciones y la histéresis, se estudian comúnmente para mejorar el rendimiento cuando se requiere una alta precisión. Uno de los efectos que más reduce el rendimiento de los PEA es la histéresis. Esto se produce especialmente cuando el actuador está en una aplicación de guiado, por lo que la histéresis puede inducir errores que pueden alcanzar un valor de hasta 22%. Este fenómeno no lineal se puede definir como un efecto generado por la combinación de acciones mecánicas y eléctricas que depende de estados previos. La histéresis se puede reducir principalmente mediante dos estrategias: rediseño de materiales o algoritmos de control tipo feedback. El rediseño de material comprende varias desventajas por lo que el motivo principal de esta tesis está enfocado al diseño de algoritmos de control para reducir la histéresis. El objetivo principal de esta tesis es el desarrollo de estrategias de control avanzadas que puedan mejorar la precisión de seguimiento de los actuadores piezoeléctricos comerciale
    corecore