2,383 research outputs found

    Learning Multimodal Latent Attributes

    Get PDF
    Abstract—The rapid development of social media sharing has created a huge demand for automatic media classification and annotation techniques. Attribute learning has emerged as a promising paradigm for bridging the semantic gap and addressing data sparsity via transferring attribute knowledge in object recognition and relatively simple action classification. In this paper, we address the task of attribute learning for understanding multimedia data with sparse and incomplete labels. In particular we focus on videos of social group activities, which are particularly challenging and topical examples of this task because of their multi-modal content and complex and unstructured nature relative to the density of annotations. To solve this problem, we (1) introduce a concept of semi-latent attribute space, expressing user-defined and latent attributes in a unified framework, and (2) propose a novel scalable probabilistic topic model for learning multi-modal semi-latent attributes, which dramatically reduces requirements for an exhaustive accurate attribute ontology and expensive annotation effort. We show that our framework is able to exploit latent attributes to outperform contemporary approaches for addressing a variety of realistic multimedia sparse data learning tasks including: multi-task learning, learning with label noise, N-shot transfer learning and importantly zero-shot learning

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    ImageCLEF 2014: Overview and analysis of the results

    Full text link
    This paper presents an overview of the ImageCLEF 2014 evaluation lab. Since its first edition in 2003, ImageCLEF has become one of the key initiatives promoting the benchmark evaluation of algorithms for the annotation and retrieval of images in various domains, such as public and personal images, to data acquired by mobile robot platforms and medical archives. Over the years, by providing new data collections and challenging tasks to the community of interest, the ImageCLEF lab has achieved an unique position in the image annotation and retrieval research landscape. The 2014 edition consists of four tasks: domain adaptation, scalable concept image annotation, liver CT image annotation and robot vision. This paper describes the tasks and the 2014 competition, giving a unifying perspective of the present activities of the lab while discussing future challenges and opportunities.This work has been partially supported by the tranScriptorium FP7 project under grant #600707 (M. V., R. P.).Caputo, B.; Müller, H.; Martinez-Gomez, J.; Villegas Santamaría, M.; Acar, B.; Patricia, N.; Marvasti, N.... (2014). ImageCLEF 2014: Overview and analysis of the results. En Information Access Evaluation. Multilinguality, Multimodality, and Interaction: 5th International Conference of the CLEF Initiative, CLEF 2014, Sheffield, UK, September 15-18, 2014. Proceedings. Springer Verlag (Germany). 192-211. https://doi.org/10.1007/978-3-319-11382-1_18S192211Bosch, A., Zisserman, A.: Image classification using random forests and ferns. In: Proc. CVPR (2007)Caputo, B., Müller, H., Martinez-Gomez, J., Villegas, M., Acar, B., Patricia, N., Marvasti, N., Üsküdarlı, S., Paredes, R., Cazorla, M., Garcia-Varea, I., Morell, V.: ImageCLEF 2014: Overview and analysis of the results. In: Kanoulas, E., et al. (eds.) CLEF 2014. LNCS, vol. 8685, Springer, Heidelberg (2014)Caputo, B., Patricia, N.: Overview of the ImageCLEF 2014 Domain Adaptation Task. In: CLEF 2014 Evaluation Labs and Workshop, Online Working Notes (2014)de Carvalho Gomes, R., Correia Ribas, L., Antnio de Castro Jr., A., Nunes Gonalves, W.: CPPP/UFMS at ImageCLEF 2014: Robot Vision Task. In: CLEF 2014 Evaluation Labs and Workshop, Online Working Notes (2014)Del Frate, F., Pacifici, F., Schiavon, G., Solimini, C.: Use of neural networks for automatic classification from high-resolution images. IEEE Transactions on Geoscience and Remote Sensing 45(4), 800–809 (2007)Feng, S.L., Manmatha, R., Lavrenko, V.: Multiple bernoulli relevance models for image and video annotation. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, p. II–1002. IEEE (2004)Friedl, M.A., Brodley, C.E.: Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment 61(3), 399–409 (1997)Goh, K.-S., Chang, E.Y., Li, B.: Using one-class and two-class svms for multiclass image annotation. IEEE Transactions on Knowledge and Data Engineering 17(10), 1333–1346 (2005)Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: Proc. CVPR. Extended Version Considering its Additional MaterialJie, L., Tommasi, T., Caputo, B.: Multiclass transfer learning from unconstrained priors. In: Proc. ICCV (2011)Kim, S., Park, S., Kim, M.: Image classification into object / non-object classes. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 393–400. Springer, Heidelberg (2004)Ko, B.C., Lee, J., Nam, J.Y.: Automatic medical image annotation and keyword-based image retrieval using relevance feedback. Journal of Digital Imaging 25(4), 454–465 (2012)Kökciyan, N., Türkay, R., Üsküdarlı, S., Yolum, P., Bakır, B., Acar, B.: Semantic Description of Liver CT Images: An Ontological Approach. IEEE Journal of Biomedical and Health Informatics (2014)Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.  2, pp. 2169–2178. IEEE (2006)Martinez-Gomez, J., Garcia-Varea, I., Caputo, B.: Overview of the imageclef 2012 robot vision task. In: CLEF (Online Working Notes/Labs/Workshop) (2012)Martinez-Gomez, J., Garcia-Varea, I., Cazorla, M., Caputo, B.: Overview of the imageclef 2013 robot vision task. In: CLEF 2013 Evaluation Labs and Workshop, Online Working Notes (2013)Martinez-Gomez, J., Cazorla, M., Garcia-Varea, I., Morell, V.: Overview of the ImageCLEF 2014 Robot Vision Task. In: CLEF 2014 Evaluation Labs and Workshop, Online Working Notes (2014)Mueen, A., Zainuddin, R., Baba, M.S.: Automatic multilevel medical image annotation and retrieval. Journal of Digital Imaging 21(3), 290–295 (2008)Muller, H., Clough, P., Deselaers, T., Caputo, B.: ImageCLEF: experimental evaluation in visual information retrieval. Springer (2010)Park, S.B., Lee, J.W., Kim, S.K.: Content-based image classification using a neural network. Pattern Recognition Letters 25(3), 287–300 (2004)Patricia, N., Caputo, B.: Learning to learn, from transfer learning to domain adaptation: a unifying perspective. In: Proc. CVPR (2014)Pronobis, A., Caputo, B.: The robot vision task. In: Muller, H., Clough, P., Deselaers, T., Caputo, B. (eds.) ImageCLEF. The Information Retrieval Series, vol. 32, pp. 185–198. Springer, Heidelberg (2010)Pronobis, A., Christensen, H., Caputo, B.: Overview of the imageclef@ icpr 2010 robot vision track. In: Recognizing Patterns in Signals, Speech, Images and Videos, pp. 171–179 (2010)Qi, X., Han, Y.: Incorporating multiple svms for automatic image annotation. Pattern Recognition 40(2), 728–741 (2007)Reshma, I.A., Ullah, M.Z., Aono, M.: KDEVIR at ImageCLEF 2014 Scalable Concept Image Annotation Task: Ontology based Automatic Image Annotation. In: CLEF 2014 Evaluation Labs and Workshop, Online Working Notes. Sheffield, UK, September 15-18 (2014)Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010)Sahbi, H.: CNRS - TELECOM ParisTech at ImageCLEF 2013 Scalable Concept Image Annotation Task: Winning Annotations with Context Dependent SVMs. In: CLEF 2013 Evaluation Labs and Workshop, Online Working Notes, Valencia, Spain, September 23-26 (2013)Sethi, I.K., Coman, I.L., Stan, D.: Mining association rules between low-level image features and high-level concepts. In: Aerospace/Defense Sensing, Simulation, and Controls, pp. 279–290. International Society for Optics and Photonics (2001)Shi, R., Feng, H., Chua, T.-S., Lee, C.-H.: An adaptive image content representation and segmentation approach to automatic image annotation. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 545–554. Springer, Heidelberg (2004)Tommasi, T., Caputo, B.: Frustratingly easy nbnn domain adaptation. In: Proc. ICCV (2013)Tommasi, T., Quadrianto, N., Caputo, B., Lampert, C.H.: Beyond dataset bias: Multi-task unaligned shared knowledge transfer. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part I. LNCS, vol. 7724, pp. 1–15. Springer, Heidelberg (2013)Tsikrika, T., de Herrera, A.G.S., Müller, H.: Assessing the scholarly impact of imageCLEF. In: Forner, P., Gonzalo, J., Kekäläinen, J., Lalmas, M., de Rijke, M. (eds.) CLEF 2011. LNCS, vol. 6941, pp. 95–106. Springer, Heidelberg (2011)Ünay, D., Soldea, O., Akyüz, S., Çetin, M., Erçil, A.: Medical image retrieval and automatic annotation: Vpa-sabanci at imageclef 2009. In: The Cross-Language Evaluation Forum (CLEF) (2009)Vailaya, A., Figueiredo, M.A., Jain, A.K., Zhang, H.J.: Image classification for content-based indexing. IEEE Transactions on Image Processing 10(1), 117–130 (2001)Villegas, M., Paredes, R.: Overview of the ImageCLEF 2012 Scalable Web Image Annotation Task. In: Forner, P., Karlgren, J., Womser-Hacker, C. (eds.) CLEF 2012 Evaluation Labs and Workshop, Online Working Notes, Rome, Italy, September 17-20 (2012), http://mvillegas.info/pub/Villegas12_CLEF_Annotation-Overview.pdfVillegas, M., Paredes, R.: Overview of the ImageCLEF 2014 Scalable Concept Image Annotation Task. In: CLEF 2014 Evaluation Labs and Workshop, Online Working Notes, Sheffield, UK, September 15-18 (2014), http://mvillegas.info/pub/Villegas14_CLEF_Annotation-Overview.pdfVillegas, M., Paredes, R., Thomee, B.: Overview of the ImageCLEF 2013 Scalable Concept Image Annotation Subtask. In: CLEF 2013 Evaluation Labs and Workshop, Online Working Notes, Valencia, Spain, September 23-26 (2013), http://mvillegas.info/pub/Villegas13_CLEF_Annotation-Overview.pdfVillena Román, J., González Cristóbal, J.C., Goñi Menoyo, J.M., Martínez Fernández, J.L.: MIRACLE’s naive approach to medical images annotation. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(7), 1088–1099 (2005)Wong, R.C., Leung, C.H.: Automatic semantic annotation of real-world web images. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(11), 1933–1944 (2008)Yang, C., Dong, M., Fotouhi, F.: Image content annotation using bayesian framework and complement components analysis. In: IEEE International Conference on Image Processing, ICIP 2005, vol. 1, pp. I–1193. IEEE (2005)Yılmaz, K.Y., Cemgil, A.T., Simsekli, U.: Generalised coupled tensor factorisation. In: Advances in Neural Information Processing Systems, pp. 2151–2159 (2011)Zhang, Y., Qin, J., Chen, F., Hu, D.: NUDTs Participation in ImageCLEF Robot Vision Challenge 2014. In: CLEF 2014 Evaluation Labs and Workshop, Online Working Notes (2014

    Semantic multimedia modelling & interpretation for annotation

    Get PDF
    The emergence of multimedia enabled devices, particularly the incorporation of cameras in mobile phones, and the accelerated revolutions in the low cost storage devices, boosts the multimedia data production rate drastically. Witnessing such an iniquitousness of digital images and videos, the research community has been projecting the issue of its significant utilization and management. Stored in monumental multimedia corpora, digital data need to be retrieved and organized in an intelligent way, leaning on the rich semantics involved. The utilization of these image and video collections demands proficient image and video annotation and retrieval techniques. Recently, the multimedia research community is progressively veering its emphasis to the personalization of these media. The main impediment in the image and video analysis is the semantic gap, which is the discrepancy among a user’s high-level interpretation of an image and the video and the low level computational interpretation of it. Content-based image and video annotation systems are remarkably susceptible to the semantic gap due to their reliance on low-level visual features for delineating semantically rich image and video contents. However, the fact is that the visual similarity is not semantic similarity, so there is a demand to break through this dilemma through an alternative way. The semantic gap can be narrowed by counting high-level and user-generated information in the annotation. High-level descriptions of images and or videos are more proficient of capturing the semantic meaning of multimedia content, but it is not always applicable to collect this information. It is commonly agreed that the problem of high level semantic annotation of multimedia is still far from being answered. This dissertation puts forward approaches for intelligent multimedia semantic extraction for high level annotation. This dissertation intends to bridge the gap between the visual features and semantics. It proposes a framework for annotation enhancement and refinement for the object/concept annotated images and videos datasets. The entire theme is to first purify the datasets from noisy keyword and then expand the concepts lexically and commonsensical to fill the vocabulary and lexical gap to achieve high level semantics for the corpus. This dissertation also explored a novel approach for high level semantic (HLS) propagation through the images corpora. The HLS propagation takes the advantages of the semantic intensity (SI), which is the concept dominancy factor in the image and annotation based semantic similarity of the images. As we are aware of the fact that the image is the combination of various concepts and among the list of concepts some of them are more dominant then the other, while semantic similarity of the images are based on the SI and concept semantic similarity among the pair of images. Moreover, the HLS exploits the clustering techniques to group similar images, where a single effort of the human experts to assign high level semantic to a randomly selected image and propagate to other images through clustering. The investigation has been made on the LabelMe image and LabelMe video dataset. Experiments exhibit that the proposed approaches perform a noticeable improvement towards bridging the semantic gap and reveal that our proposed system outperforms the traditional systems

    Utilising semantic technologies for intelligent indexing and retrieval of digital images

    Get PDF
    The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they in principle rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this paper we present a semantically-enabled image annotation and retrieval engine that is designed to satisfy the requirements of the commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as the exploitation of lexical databases for explicit semantic-based query expansion

    Applying semantic web technologies to knowledge sharing in aerospace engineering

    Get PDF
    This paper details an integrated methodology to optimise Knowledge reuse and sharing, illustrated with a use case in the aeronautics domain. It uses Ontologies as a central modelling strategy for the Capture of Knowledge from legacy docu-ments via automated means, or directly in systems interfacing with Knowledge workers, via user-defined, web-based forms. The domain ontologies used for Knowledge Capture also guide the retrieval of the Knowledge extracted from the data using a Semantic Search System that provides support for multiple modalities during search. This approach has been applied and evaluated successfully within the aerospace domain, and is currently being extended for use in other domains on an increasingly large scale
    corecore