1,063 research outputs found

    Proceedings of the International Workshop on Vocabularies, Ontologies and Rules for The Enterprise (VORTE 2005)

    Get PDF

    Workshop proceedings of the 1st workshop on quality in modeling

    Get PDF
    Quality assessment and assurance constitute an important part of software engineering. The issues of software quality management are widely researched and approached from multiple perspectives and viewpoints. The introduction of a new paradigm in software development – namely Model Driven Development (MDD) and its variations (e.g., MDA [Model Driven Architecture], MDE [Model Driven Engineering], MBD [Model Based Development], MIC [Model Integrated Computing]) – raises new challenges in software quality management, and as such should be given a special attention. In particular, the issues of early quality assessment, based on models at a high abstraction level, and building (or customizing the existing) prediction models for software quality based on model metrics are of central importance for the software engineering community. The workshop is continuation of a series of workshops on consistency that have taken place during the subsequent annual UML conferences and recently MDA-FA. The idea behind this workshop is to extend the scope of interests and address a wide spectrum of problems related to MDD. It is also in line with the overall initiative of the shift from UML to MoDELS. The goal of this workshop is to gather researchers and practitioners interested in the emerging issues of quality in the context of MDD. The workshop is intended to provide a premier forum for discussions related to software quality and MDD. And the aims of the workshop are: - Presenting ongoing research related to quality in modeling in the context of MDD, - Defining and organizing issues related to quality in the MDD. The format of the workshop consists of two parts: presentation and discussion. The presentation part is aimed at reporting research results related to quality aspects in modeling. Seven papers were selected for the presentation out of 16 submissions; the selected papers are included in these proceedings. The discussion part is intended to be a forum for exchange of ideas related to understanding of quality and approaching it in a systematic way

    Workshop proceedings of the 1st workshop on quality in modeling

    Get PDF
    Quality assessment and assurance constitute an important part of software engineering. The issues of software quality management are widely researched and approached from multiple perspectives and viewpoints. The introduction of a new paradigm in software development – namely Model Driven Development (MDD) and its variations (e.g., MDA [Model Driven Architecture], MDE [Model Driven Engineering], MBD [Model Based Development], MIC [Model Integrated Computing]) – raises new challenges in software quality management, and as such should be given a special attention. In particular, the issues of early quality assessment, based on models at a high abstraction level, and building (or customizing the existing) prediction models for software quality based on model metrics are of central importance for the software engineering community. The workshop is continuation of a series of workshops on consistency that have taken place during the subsequent annual UML conferences and recently MDA-FA. The idea behind this workshop is to extend the scope of interests and address a wide spectrum of problems related to MDD. It is also in line with the overall initiative of the shift from UML to MoDELS. The goal of this workshop is to gather researchers and practitioners interested in the emerging issues of quality in the context of MDD. The workshop is intended to provide a premier forum for discussions related to software quality and MDD. And the aims of the workshop are: - Presenting ongoing research related to quality in modeling in the context of MDD, - Defining and organizing issues related to quality in the MDD. The format of the workshop consists of two parts: presentation and discussion. The presentation part is aimed at reporting research results related to quality aspects in modeling. Seven papers were selected for the presentation out of 16 submissions; the selected papers are included in these proceedings. The discussion part is intended to be a forum for exchange of ideas related to understanding of quality and approaching it in a systematic way

    Web application for reliability analysis within civil aviation domain

    Get PDF
    Analýzy spolehlivosti jsou klíčovými složkami při hodnocení posouzení rizik během fáze návrhu v leteckém průmyslu. Analýza stromu poruch (FTA) a analýza poruchových režimů a efektů (FMEA) se běžně kombinují při analýze systému a vyhodnocování možných poruch. Kombinování metodik vyžaduje sjednocení struktury dat tak, aby byla použitelná pro všechny analytické metody zároveň. Existující aplikace poskytují nástroje samostatně, což vede k nekonzistenci dat, duplikátům a překlepům při migraci napříč aplikacemi. Tato práce si klade za cíl vytvořit rozšiřitelné řešení, které by poskytlo nástroje k provedení jedné z technik FTA a FMEA a přitom se spoléhalo na ontologický model použitelný pro obě techniky zároveň. Diplomová práce analyzuje existující řešení a ontologie a na základě těchto vstupů navrhuje nezbytné požadavky, které jsou ve spolupráci se zúčastněnými doménovými odborníky prioritizovány. Výsledné řešení implementuje aplikaci zaměřenou primárně na FTA, která nabízí definování partonomie systému, konstrukci FTA a automatický převod stromů do FMEA vzhledem k jednotnému ontologickému modelu. Aplikace je na závěr otestována doménovými odborníky na základě skutečných leteckých dat.Reliability analyses are key components in a risk assessment evaluation during the design phase in an aviation industry. Fault Tree Analysis (FTA) and Failure Modes and Effects Analysis (FMEA) are commonly combined together to review the system and to evaluate possible failures. The combination of methodologies requires a unified data usable for all the analyses. Existing applications provide the tools separately which introduces inconsistencies, duplicates and typos when the data are migrated across the applications. This thesis thus aims to create an extensible solution that would provide tools to perform one of FTA and FMEA techniques and yet rely on an ontological model usable for both. The thesis analyses existing solutions and ontologies and given these inputs proposes necessary requirements that are prioritized in cooperation with involved domain experts. The resulting solution implements an application focusing primarily on FTA which offers possibilities for system partonomy definition, FTA construction and an automatic conversion of the trees to FMEA tables given the unified ontological model. The application is finally reviewed by the domain experts on real aviation data

    at the 14th Conference of the Spanish Association for Artificial Intelligence (CAEPIA 2011)

    Get PDF
    Technical Report TR-2011/1, Department of Languages and Computation. University of Almeria November 2011. Joaquín Cañadas, Grzegorz J. Nalepa, Joachim Baumeister (Editors)The seventh workshop on Knowledge Engineering and Software Engineering (KESE7) was held at the Conference of the Spanish Association for Artificial Intelligence (CAEPIA-2011) in La Laguna (Tenerife), Spain, and brought together researchers and practitioners from both fields of software engineering and artificial intelligence. The intention was to give ample space for exchanging latest research results as well as knowledge about practical experience.University of Almería, Almería, Spain. AGH University of Science and Technology, Kraków, Poland. University of Würzburg, Würzburg, Germany

    Reuse of terminological resources for efficient ontological engineering in Life Sciences

    Get PDF
    This paper is intended to explore how to use terminological resources for ontology engineering. Nowadays there are several biomedical ontologies describing overlapping domains, but there is not a clear correspondence between the concepts that are supposed to be equivalent or just similar. These resources are quite precious but their integration and further development are expensive. Terminologies may support the ontological development in several stages of the lifecycle of the ontology; e.g. ontology integration. In this paper we investigate the use of terminological resources during the ontology lifecycle. We claim that the proper creation and use of a shared thesaurus is a cornerstone for the successful application of the Semantic Web technology within life sciences. Moreover, we have applied our approach to a real scenario, the Health-e-Child (HeC) project, and we have evaluated the impact of filtering and re-organizing several resources. As a result, we have created a reference thesaurus for this project, named HeCTh

    Consortium Proposal NFDI-MatWerk

    Get PDF
    This is the official proposal the NFDI-consortium NFDI-MatWerk submitted to the DFG within the request for funding the project. Visit www.dfg.de/nfdi for more infos on the German National Research Data Infrastructure (Nationale Forschungsdateninfrastruktur - NFDI) initiative. Visit www.nfdi-matwerk.de for last infos about the project NFDI-MatWerk

    Methodological approaches and techniques for designing ontologies in information systems requirements engineering

    Get PDF
    Programa doutoral em Information Systems and TechnologyThe way we interact with the world around us is changing as new challenges arise, embracing innovative business models, rethinking the organization and processes to maximize results, and evolving change management. Currently, and considering the projects executed, the methodologies used do not fully respond to the companies' needs. On the one hand, organizations are not familiar with the languages used in Information Systems, and on the other hand, they are often unable to validate requirements or business models. These are some of the difficulties encountered that lead us to think about formulating a new approach. Thus, the state of the art presented in this paper includes a study of the models involved in the software development process, where traditional methods and the rivalry of agile methods are present. In addition, a survey is made about Ontologies and what methods exist to conceive, transform, and represent them. Thus, after analyzing some of the various possibilities currently available, we began the process of evolving a method and developing an approach that would allow us to design ontologies. The method we evolved and adapted will allow us to derive terminologies from a specific domain, aggregating them in order to facilitate the construction of a catalog of terminologies. Next, the definition of an approach to designing ontologies will allow the construction of a domain-specific ontology. This approach allows in the first instance to integrate and store the data from different information systems of a given organization. In a second instance, the rules for mapping and building the ontology database are defined. Finally, a technological architecture is also proposed that will allow the mapping of an ontology through the construction of complex networks, allowing mapping and relating terminologies. This doctoral work encompasses numerous Research & Development (R&D) projects belonging to different domains such as Software Industry, Textile Industry, Robotic Industry and Smart Cities. Finally, a critical and descriptive analysis of the work done is performed, and we also point out perspectives for possible future work.A forma como interagimos com o mundo à nossa volta está a mudar à medida que novos desafios surgem, abraçando modelos empresariais inovadores, repensando a organização e os processos para maximizar os resultados, e evoluindo a gestão da mudança. Atualmente, e considerando os projetos executados, as metodologias utilizadas não respondem na totalidade às necessidades das empresas. Por um lado, as organizações não estão familiarizadas com as linguagens utilizadas nos Sistemas de Informação, por outro lado, são muitas vezes incapazes de validar requisitos ou modelos de negócio. Estas são algumas das dificuldades encontradas que nos levam a pensar na formulação de uma nova abordagem. Assim, o estado da arte apresentado neste documento inclui um estudo dos modelos envolvidos no processo de desenvolvimento de software, onde os métodos tradicionais e a rivalidade de métodos ágeis estão presentes. Além disso, é efetuado um levantamento sobre Ontologias e quais os métodos existentes para as conceber, transformar e representar. Assim, e após analisarmos algumas das várias possibilidades atualmente disponíveis, iniciou-se o processo de evolução de um método e desenvolvimento de uma abordagem que nos permitisse conceber ontologias. O método que evoluímos e adaptamos permitirá derivar terminologias de um domínio específico, agregando-as de forma a facilitar a construção de um catálogo de terminologias. Em seguida, a definição de uma abordagem para conceber ontologias permitirá a construção de uma ontologia de um domínio específico. Esta abordagem permite em primeira instância, integrar e armazenar os dados de diferentes sistemas de informação de uma determinada organização. Num segundo momento, são definidas as regras para o mapeamento e construção da base de dados ontológica. Finalmente, é também proposta uma arquitetura tecnológica que permitirá efetuar o mapeamento de uma ontologia através da construção de redes complexas, permitindo mapear e relacionar terminologias. Este trabalho de doutoramento engloba inúmeros projetos de Investigação & Desenvolvimento (I&D) pertencentes a diferentes domínios como por exemplo Indústria de Software, Indústria Têxtil, Indústria Robótica e Smart Cities. Finalmente, é realizada uma análise critica e descritiva do trabalho realizado, sendo que apontamos ainda perspetivas de possíveis trabalhos futuros

    Relationship analysis : improving the systems analysis process

    Get PDF
    A significant aspect of systems analysis involves discovering and representing entities and their inter-relationships. Guidelines exist to identify entities but do not provide a rigorous and comprehensive process to explicitly capture the relationship structure of the problem domain. Whereas, other analysis techniques lightly address the relationship discovery process, Relationship Analysis is the only systematic, domain-independent analysis technique focusing exclusively on a domain\u27s relationship structure. The quality of design artifacts, such as class diagrams, and development time necessary to generate these artifacts can be improved by first representing the complete relationship structure of the problem domain. The Relationship Analysis Model is the first theory-based taxonomy to classify relationships. A rigorous evaluation was conducted, including a formal experiment comparing novice and experienced analysts with and without Relationship Analysis. It was shown that the Relationship Analysis Process based on the model does provide a fuller and richer systems analysis, resulting in improved quality of and reduced time in generating class diagrams. It also was shown that Relationship Analysis enables analysts of varying experience levels to achieve a similar level of quality of class diagrams. Relationship Analysis significantly enhances the systems analyst\u27s effectiveness, especially in the area of relationship discovery and documentation resulting in improved analysis and design artifacts
    corecore