1,286 research outputs found

    Onset detection to study muscle activity in reaching and grasping movements in rats

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.EMG signals reflect the neuromuscular activation patterns related to the execution of a certain movement or task. In this work, we focus on reaching and grasping (R&G) movements in rats. Our objective is to develop an automatic algorithm to detect the onsets and offsets of muscle activity and use it to study muscle latencies in R&G maneuvers. We had a dataset of intramuscular EMG signals containing 51 R&G attempts from 2 different animals. Simultaneous video recordings were used for segmentation and comparison. We developed an automatic onset/offset detector based on the ratio of local maxima of Teager-Kaiser Energy (TKE). Then, we applied it to compute muscle latencies and other features related to the muscle activation pattern during R&G cycles. The automatic onsets that we found were consistent with visual inspection and video labels. Despite the variability between attempts and animals, the two rats shared a sequential pattern of muscle activations. Statistical tests confirmed the differences between the latencies of the studied muscles during R&G tasks. This work provides an automatic tool to detect EMG onsets and offsets and conducts a preliminary characterization of muscle activation during R&G movements in rats. This kind of approaches and data processing algorithms can facilitate the studies on upper limb motor control and motor impairment after spinal cord injury or stroke.Postprint (published version

    Brain-controlled neuromuscular stimulation to drive neural plasticity and functional recovery

    Get PDF
    There is mounting evidence that appropriately timed neuromuscular stimulation can induce neural plasticity and generate functional recovery from motor disorders. This review addresses the idea that coordinating stimulation with a patient's voluntary effort might further enhance neurorehabilitation. Studies in cell cultures and behaving animals have delineated the rules underlying neural plasticity when single neurons are used as triggers. However, the rules governing more complex stimuli and larger networks are less well understood. We argue that functional recovery might be optimized if stimulation were modulated by a brain machine interface, to match the details of the patient's voluntary intent. The potential of this novel approach highlights the need for a better understanding of the complex rules underlying this form of plasticity.Grant #NS053603 from the National Institute of Neurological Disorder and Stroke. Grant #FP7-PEOPLE-2013-IOF-627384 from the European Commission.Peer reviewe

    Brainstem circuits involved in skilled forelimb movements

    Get PDF
    Movement is the main output of the nervous system as well as the fundamental form of interaction animals have with their environment. Due to its function and scope, movement has to be characterized by both stability and flexibility. Such apparently conflicting attributes are reflected in the complex organization of the motor system, composed of a vast network of widely distributed circuits interacting with each other to generate an appropriate motor output. Different neuronal structures, located throughout the brain, are responsible for producing a broad spectrum of actions, ranging from simple locomotion to complex goal directed movements such as reaching for food or playing a musical instrument. The brainstem is one of such structures, holding considerable importance in the generation of the motor output, but also largely unexplored, due to its less-than-accessible anatomic location, functional intricacies and the lack of appropriate techniques to investigate its complexity. Despite recent advances, a deeper understanding of the role of brainstem neuronal circuits in skilled movements is still missing. In this dissertation, we investigated the involvement of the lateral rostral medulla (LatRM) in the construction of skilled forelimb behaviors. The focus of my work was centered on elucidating the anatomical and functional relationships between LatRM and the caudal brainstem, and specifically on the interactions with the medullary reticular formation, considering both its ventral (MdV) and dorsal subdivisions (MdD). In summary, we reveal the existence of anatomically segregated subpopulations of neurons in the lower brainstem which encode different aspects of skilled forelimb movements. Moreover, we show that LatRM neurons are necessary for the correct execution of skilled motor programs and their activation produces complex coordinated actions. All this evidence suggests that LatRM may be a key orchestrator for skilled movements by functioning as integration center for upstream signals as well as coordinator by selecting the appropriate effectors in the lower medulla and the spinal cord

    Sensorimotor content of multi-unit activity in the paramedian lobule of the cerebellum

    Get PDF
    Based on Center for Disease Control and Prevention report 2016, around 39.5 million people in the United States suffer from motor disabilities. These disabilities are due to traumatic conditions like traumatic brain injury (TBI), neurological diseases such as amyotrophic lateral sclerosis (ALS), or congenital conditions. One of the approaches for restoring the lost motor function is to extract the volitional information from the central nervous system (CNS) and control a mechanical device that can replace the function of a paralyzed limb through systems called Brain-Computer Interfaces (BCI). One of the major challenges being faced in BCIs and also in general neural recording field is the limitations of the microelectrodes. In this study, as the first aim, a custom-made micro-electrode array (MEA) using carbon fibers is developed. After ex vivo testing, they are implanted into the paramedian lobule (PML) of the rat cerebellum to record the multi-unit activity from its cortex. Following animal termination, tissue samples are examined with histological techniques for the assessment of tissue damage caused by the electrodes. Another challenge in the BCI field is extracting the control information regarding the intended motor function from the CNS. The way the cerebellar cortex encodes sensorimotor information and contributes to motor coordination has been a topic of discussion for decades. Recent studies have revealed high correlations between Purkinje cell simple spikes and the forelimb kinematics in experimental animals. However, tracking single spike activity in long-term implants with multi-channel electrodes has well-known challenges. Therefore, as the second aim of this study, the correlation of multi-unit neural signals from the paramedian lobule (PML) of the cerebellar cortex to the forelimb muscle activities (EMG) in rats during behavior was investigated. Linear regression is performed to predict the EMG signal envelopes using the cerebellar activity for various time shifts of the data (±10, ±50, ±100, and ±200 ms) to determine if the neural signals are primarily motor or sensory. The highest correlations (~0.6 on average) between neural and EMG envelopes are observed when the EMG signals are either shifted only about ±10 ms or not shifted at all with respect to the neural signals. There were however still correlations above the chance level for larger shifts in time. The results suggest that PML cortex contains both motor and sensory information in relation to the forelimb activity, and also that the extraction of motor information is feasible from multi-unit neural recordings from the cerebellar cortex. Increased prediction success was observed in reaching and retrieval phases compared to grasping phase when predictions were tested on three phases of the behavior separately. When EMG and neural signal envelopes were clustered, they showed patterns of surges of activity in all three phases. The neural signals showed higher activity in the reaching phase. The 300-1000Hz components of neural signals contributed to the predictions more than the other frequency bands. The results of this study supports the feasibility of a BCI based on MUA extracted from the cerebellar cortex using MEAs

    Development of a Unique Whole-Brain Model for Upper Extremity Neuroprosthetic Control

    Get PDF
    Neuroprostheses are at the forefront of upper extremity function restoration. However, contemporary controllers of these neuroprostheses do not adequately address the natural brain strategies related to planning, execution and mediation of upper extremity movements. These lead to restrictions in providing complete and lasting restoration of function. This dissertation develops a novel whole-brain model of neuronal activation with the goal of providing a robust platform for an improved upper extremity neuroprosthetic controller. Experiments (N=36 total) used goal-oriented upper extremity movements with real-world objects in an MRI scanner while measuring brain activation during functional magnetic resonance imaging (fMRI). The resulting data was used to understand neuromotor strategies using brain anatomical and temporal activation patterns. The study\u27s fMRI paradigm is unique and the use of goal-oriented movements and real-world objects are crucial to providing accurate information about motor task strategy and cortical representation of reaching and grasping. Results are used to develop a novel whole-brain model using a machine learning algorithm. When tested on human subject data, it was determined that the model was able to accurately distinguish functional motor tasks with no prior knowledge. The proof of concept model created in this work should lead to improved prostheses for the treatment of chronic upper extremity physical dysfunction

    Kinematic analysis of bimanual movements during food handling by head-fixed rats

    Get PDF
    Bimanual coordination, in which both hands work together to achieve a goal, is crucial for the basic needs of life, such as gathering and feeding. Such coordinated motor skill is highly developed in primates, where it has been most extensively studied. Rodents also exhibit remarkable dexterity and coordination of forelimbs during food handling and consumption. However, rodents have been less commonly used in the study of bimanual coordination because of limited quantitative measuring techniques. In this article we describe a high-resolution tracking system that enables kinematic analysis of rat forelimb movement. The system is used to quantify forelimb movements bilaterally in head-fixed rats during food handling and consumption. Forelimb movements occurring naturally during feeding were encoded as continuous three-dimensional trajectories. The trajectories were then automatically segmented and analyzed, using a novel algorithm, according to the laterality of movement speed or the asymmetry of movement direction across the forelimbs. Bilateral forelimb movements were frequently observed during spontaneous food handling. Both symmetry and asymmetry in movement direction were frequently observed, with symmetric bilateral movements quantitatively more common. The proposed method overcomes a limitation in the precise quantification of bimanual coordination in rodents. This enables the use of powerful rodent-based research tools such as optogenetics and chemogenetics in the further investigation of neural mechanisms of bimanual coordination

    Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury.

    Get PDF
    Although axonal regeneration after CNS injury is limited, partial injury is frequently accompanied by extensive functional recovery. To investigate mechanisms underlying spontaneous recovery after incomplete spinal cord injury, we administered C7 spinal cord hemisections to adult rhesus monkeys and analyzed behavioral, electrophysiological and anatomical adaptations. We found marked spontaneous plasticity of corticospinal projections, with reconstitution of fully 60% of pre-lesion axon density arising from sprouting of spinal cord midline-crossing axons. This extensive anatomical recovery was associated with improvement in coordinated muscle recruitment, hand function and locomotion. These findings identify what may be the most extensive natural recovery of mammalian axonal projections after nervous system injury observed to date, highlighting an important role for primate models in translational disease research

    The Head-fixed Behaving Rat—Procedures and Pitfalls

    Get PDF
    This paper describes experimental techniques with head-fixed, operantly conditioned rodents that allow the control of stimulus presentation and tracking of motor output at hitherto unprecedented levels of spatio-temporal precision. Experimental procedures for the surgery and behavioral training are presented. We place particular emphasis on potential pitfalls using these procedures in order to assist investigators who intend to engage in this type of experiment. We argue that head-fixed rodent models, by allowing the combination of methodologies from molecular manipulations, intracellular electrophysiology, and imaging to behavioral measurements, will be instrumental in combining insights into the functional neuronal organization at different levels of observation. Provided viable behavioral methods are implemented, model systems based on rodents will be complementary to current primate models—the latter providing highest comparability with the human brain, while the former offer hugely advanced methodologies on the lower levels of organization, for example, genetic alterations, intracellular electrophysiology, and imaging

    Aging enhances serum cytokine response but not task-induced grip strength declines in a rat model of work-related musculoskeletal disorders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously reported early tissue injury, increased serum and tissue inflammatory cytokines and decreased grip in young rats performing a moderate demand repetitive task. The tissue cytokine response was transient, the serum response and decreased grip were still evident by 8 weeks. Thus, here, we examined their levels at 12 weeks in young rats. Since aging is known to enhance serum cytokine levels, we also examined aged rats.</p> <p>Methods</p> <p>Aged and young rats, 14 mo and 2.5 mo of age at onset, respectfully, were trained 15 min/day for 4 weeks, and then performed a high repetition, low force (HRLF) reaching and grasping task for 2 hours/day, for 12 weeks. Serum was assayed for 6 cytokines: IL-1alpha, IL-6, IFN-gamma, TNF-alpha, MIP2, IL-10. Grip strength was assayed, since we have previously shown an inverse correlation between grip strength and serum inflammatory cytokines. Results were compared to naïve (grip), and normal, food-restricted and trained-only controls.</p> <p>Results</p> <p>Serum cytokines were higher overall in aged than young rats, with increases in IL-1alpha, IFN-gamma and IL-6 in aged Trained and 12-week HRLF rats, compared to young Trained and HRLF rats (p < 0.05 and p < 0.001, respectively, each). IL-6 was also increased in aged 12-week HRLF versus aged normal controls (p < 0.05). Serum IFN-gamma and MIP2 levels were also increased in young 6-week HRLF rats, but no cytokines were above baseline levels in young 12-week HRLF rats. Grip strength declined in both young and aged 12-week HRLF rats, compared to naïve and normal controls (p < 0.05 each), but these declines correlated only with IL-6 levels in aged rats (r = -0.39).</p> <p>Conclusion</p> <p>Aging enhanced a serum cytokine response in general, a response that was even greater with repetitive task performance. Grip strength was adversely affected by task performance in both age groups, but was apparently influenced by factors other than serum cytokine levels in young rats.</p
    corecore