
  

  

Abstract—EMG signals reflect the neuromuscular activation 

patterns related to the execution of a certain movement or task. 

In this work, we focus on reaching and grasping (R&G) 

movements in rats. Our objective is to develop an automatic 

algorithm to detect the onsets and offsets of muscle activity and 

use it to study muscle latencies in R&G maneuvers. 

We had a dataset of intramuscular EMG signals containing 

51 R&G attempts from 2 different animals. Simultaneous video 

recordings were used for segmentation and comparison. We 

developed an automatic onset/offset detector based on the ratio 

of local maxima of Teager-Kaiser Energy (TKE). Then, we 

applied it to compute muscle latencies and other features 

related to the muscle activation pattern during R&G cycles. 

The automatic onsets that we found were consistent with visual 

inspection and video labels. Despite the variability between 

attempts and animals, the two rats shared a sequential pattern 

of muscle activations. Statistical tests confirmed the differences 

between the latencies of the studied muscles during R&G tasks. 

This work provides an automatic tool to detect EMG onsets 

and offsets and conducts a preliminary characterization of 

muscle activation during R&G movements in rats. This kind of 

approaches and data processing algorithms can facilitate the 

studies on upper limb motor control and motor impairment 

after spinal cord injury or stroke. 

I. INTRODUCTION 

Electromyographic signals (EMG) measure the electrical 
activity generated during muscle contraction. Studying EMG 
recordings during the execution of voluntary movements 
helps to understand the neuromuscular activation patterns 
related to this task. This can elucidate the movement control 
structure directed by the central nervous system (CNS), and 
how it can be affected by neuromuscular disorders. 

In this work, we study the reaching and grasping (R&G) 
movement in rats. This upper limb ability allows reaching 
external objects and interacting with them. Therefore, it 
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constitutes a fundamental motor skill for the survival of many 
animal species. On the other hand, R&G movement is highly 
stereotyped and conserved in mammals, what makes it an 
interesting translational model for therapy research [1]. One 
of its applications is the study of upper limb motor 
impairment and recovery after a cerebrovascular accident, 
spinal cord injury (SCI) or other neuromuscular disorders. 
However, there is little research on EMG patterns during 
upper limb movements. Just a few studies have recently 
started focusing on this field, proposing some tools to analyze 
and categorize the EMG activity during R&G [2], or pointing 
to alterations in the EMG activity of forelimb muscles after 
SCI in rats [3]. This work is aimed to be the first proof of 
concept to define the R&G cycle in rats using EMG. 

The study of EMG is complex due to its stochastic nature 
and susceptibility to interferences [4], which results in a low 
signal-to-noise ratio (SNR). A major challenge when 
working with EMG signals is onset and offset detection, i.e. 
to determine the start and end instants of muscular activity. 
This topic has great interest in many research and clinical 
fields. It has long been studied but remains an open question. 
In fact, many different algorithms have been published for 
this purpose, but there is no unique solution. It rather 
depends on the specific application. 

The most simplistic way to label onsets and offsets is 
through visual inspection. However, this is prone to human 
errors, time-consuming and unfeasible for large data 
analysis. Moreover, apart from the intrinsic subjectivity of 
this method, it is not an easy task to manually identify 
muscle activity regions, as EMG is a weak and noisy signal. 
Common automatic approaches use EMG energy 
information (e.g. RMS – root mean square) and apply a 
single or double threshold, estimated from the signal. Other 
approaches include the use of sample entropy or statistical 
criterion determination, but these require a priori knowledge 
of the signal [4]. 

The Teager-Kaiser Energy (TKE) [5-6] is a non-linear 
operator which may improve the accuracy of onset detection. 
It has been tested in both surface [7] and intramuscular EMG 
[4]. Its advantage is that it is proportional to the 
instantaneous amplitude and frequency of the signal, thus 
emphasizing motor unit action potentials (MUAPs) and 
improving SNR [7]. After applying the TKE operator to the 
signal, the onset is usually computed as the instant when the 
TKE exceeds a certain value, as in conventional thresholding 
methods. This value is calculated from the mean and 
standard deviation of background noise in TKE domain. 

Here we present a method for onset detection based on 
the TKE. However, instead of using a threshold, we propose 
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an alternative algorithm, based on the ratios of consecutive 
local maxima in TKE domain, which highlight amplitude 
variations. The second part of this work is aimed at using the 
automatically detected onsets to characterize muscle 
latencies during reaching and grasping movements in rats. 

II.  MATERIALS AND METHODS 

A. Experiments and Data Acquisition 

All experimental procedures were performed in 
compliance with the University’s Chancellor's Animal 
Research Committee and complied with the guidelines of the 
National Institutes of Health. We worked with a database of 
intramuscular EMG signals from two Long Evans rats. 
Electrodes were implanted in five muscles of the rats 
preferred paw to reach and grasp: middle deltoid, biceps 
brachii, pronator teres, extensor digitorum communis (EDC) 
and flexor digitorum superficialis (FDS). 

During the experiments, the animals were individually 
placed inside a cage with a small window. Food pellets were 
presented, and the rats had to extend their paw through the 
window and take the pellet, thus completing a R&G cycle. 

EMG signals were acquired at a sampling frequency of 10 
kHz and gain 1000, using a multi-channel analog amplifier. 
A video was recorded simultaneously at 30 frames/second. It 
was used to manually segment the signals, by selecting the 
frames where the R&G cycles started (when the animal paw 
was lifted) and ended (when the pellet was released in the 
mouth). The fast movements complicated this detection, so a 
tolerance of two frames was used to ensure that the actual 
start and end of the R&G cycle were inside these windows 
[2]. A 4-frames segment (~ 130 ms) before the start of each 
cycle was taken as a measure of background noise. 

B. Signal Processing 

Initially, we had 60 attempts of R&G (30 from each rat). 
Poor-quality signals and attempts where the EMG of some 
muscle had not been correctly recorded were discarded after 
visual inspection. A total number of 51 attempts remained 
(25 from rat 1 and 26 from rat 2). The duration of these 
cycles was 0.6±0.2 s (mean ± standard deviation). 

Signals were imported to Matlab (r2018a, Mathworks 
Inc.), where they were processed and analyzed through 
custom-made algorithms. Signals were resampled to 3 kHz, 
using an anti-aliasing low-pass filter. Then, they were band-
pass filtered (20-1000 Hz) with an 8th order Butterworth 
filter, in both forward and reverse directions. A comb-notch 
filter was applied to remove power-line noise and harmonics. 

EMG signals were rectified and TKE was computed and 
used as a signal envelope, as explained below. 

C. Onset/Offset Detection 

The TKE operator was applied to the signals of each 
R&G attempt. For a given signal, x(n), the TKE, Ψ, can be 
calculated as: 

Ψ(n) = x2(n) – x(n+1)x(n-1)      (1) 

The obtained Ψ(n) was low-pass filtered using a 2nd order 
Butterworth filter with a cut-off frequency of 15 Hz. We used 
this filtered signal to work in the TKE domain. 

We identified TKE local maxima and computed the 
amplitude ratios of consecutive peaks, to highlight amplitude 
variations. The highest ratios should correspond to EMG 
onsets, due to the sharp transitions between baseline and 
muscle activity. Therefore, we sorted the ratios in descending 
order, keeping a maximum of 5 ratios, but discarding those  
<2. Onsets were defined as the instant corresponding to the 
local minima between the two peaks of the remaining ratios. 

For each onset, the corresponding offset was the next 
point where the signal went below the amplitude level of the 
onset. If an offset was not found before the next onset, this 
next onset was removed. If there was no offset before the end 
of the signal, it was set to the last time point. Finally, to avoid 
the effect of short impulsive artifacts, activities shorter than a 
certain length (we used 50 ms) were removed. 

Several activity regions can be defined if more than one 
onset is found by the detector. Regions which are very close 
to each other could be combined, but we preferred to keep 
this information of muscle activation / inactivation. In 
subsequent analysis we only use the first onset and last offset, 
so it does not matter for this application. 

D. Feature Extraction and Statistical Analysis 

After detecting the onsets of the 5 muscles for each 
attempt, the first onset was selected and considered as the 
beginning of the R&G cycle. The end of the cycle was set at 
the last offset of the 5 muscles, although it always coincides 
with the video label. These automatic estimations of the start 
and end points of the R&G cycle were compared with the 
actual events, indicated by the 2-frame windows in the video. 

A time normalization was applied to bring all the attempts 
to an equivalent domain. From that moment, the time scale 
was no longer in seconds, but in percentage of the R&G 
cycle. Thus, it went from 0% (the time when the R&G cycle 
started, i.e. the first muscle onset) to 100% (the time when 
the R&G finished, i.e. the last muscle offset). 

Muscle latencies were calculated as the distance from the 
beginning of the R&G cycle to the onset of each muscle 
EMG (in % cycle). On the other hand, we computed the 
cumulative energy curve of each muscle as the cumulative 
sum of its TKE envelope at each time point. The last value 
corresponds to the total energy of this muscle in the R&G 
cycle, which depends on the amplitude and duration of 
muscle activity. We calculated the so-called “center of 
gravity” (CoG) of the cumulative energy curve, as the time 
point accumulating 50% of the energy (i.e. the time when the 
energy curve reaches or exceeds 50% of the total energy). 

Nonparametric statistical tests (Wilcoxon-Mann-Whitney 
two-sample rank-sum test) were used to compare latencies 
and CoGs between different muscles and between the two 
animals. 

III. RESULTS & DISCUSSION 

A. Onset/Offset Detection 

We implemented our algorithm to detect the onsets and 
offsets of all the muscles at each attempt. An example can be 
seen in Fig. 1, showing the EMG of the five muscles during a 
R&G cycle, together with the calculated onsets and offsets. 



  

 

Figure 1.  Example of a reaching and grasping attempt (rat 1), showing the 
rectified EMG of the five muscles (blue), the TKE envelopes (green) and 

automatic labels of onsets (red) and offsets (purple). 

At each attempt, the onset of the first muscle to be 
activated was taken as the start of the R&G cycle. In all cases 
(51 attempts), this point was inside the window from the 
video indicating when the rat lifted its paw. Therefore, the 
error of the automatic method is lower than the window 
length, set a priori to 1/15 s ≈ 67 ms, although it represents 
around 10% of the R&G cycle. 

The same happened when comparing the last automatic 
offset to the window in the video indicating the end of the 
movement. Nevertheless, it is important to notice that, in all 
the attempts, the last offset found by the automatic algorithm 
was at the end of the segment, since some of the muscles 
remain active even after the R&G movement is over. This 
happens because the animal’s upper limb is not at rest after 
the pellet retrieval. For instance, in Fig. 1 we can see that the 
last offsets of biceps, deltoid and FDS are at the end of the 
segment, since these muscles remain activated. Thus, further 
characterization of the EMG patterns would be required to 
determine whether it is possible to automatically establish the 
end of the R&G cycle using other features and methods. 

While we can define the start and end times of the R&G 
using the video, EMG analysis allows us to go further and 
detect the specific activation times of each muscle. We had 
no standard measure to test the performance of our algorithm 
in this regard, but results were manually reviewed, and they 

largely agreed with visual inspection. On the other hand, our 
method avoids certain problems of classical approaches, such 
as the need for a threshold or adaption to each muscle [8]. 

Small inaccuracies could be attributed to the smoothing 
effects introduced by filters, or to residual activities (either 
artifacts or MUAPs). In these cases, onset detection is 
complex, even by visual inspection. An example can be seen 
in Fig. 1 with the spike-like EMG of pronator. This muscle 
commonly shows shorter and less dense activity regions, so 
the smoothed TKE envelope does not fit the muscle activity 
pattern as properly as in other muscles. 

Our sample is limited to two rats, so the performance of 
the algorithm should be accurately tested with more examples 
and different conditions, including noisier or pathological 
signals. Nonetheless, the set of tools we developed to detect 
the onsets of muscular activity can be a first step to enable an 
automatic definition of R&G cycles in large EMG databases. 

B. Muscle Latencies 

Muscle latencies show when each muscle is activated 
during a certain movement or task. Therefore, they indicate 
the sequence of muscles activation and reflect co-activations 
(i.e. simultaneous activation of several muscles). This 
information about muscular temporal activation can help to 
understand the movement and the functional role of each 
anatomical component. 

We used the automatically detected onsets of each muscle 
to study their latencies from the beginning of R&G 
maneuvers. A boxplot of the five muscles latencies can be 
seen in Fig. 2, separately for the two animals. Circles inside 
the boxes indicate mean values. It shows that biceps, deltoid 
and pronator are always the first muscles to be activated, 
followed by EDC, and finally FDS. Specifically, pronator is 
the muscle with less variability and a lower mean value, 
starting the R&G movement in most attempts. Although there 
are clear differences between the two animals, this sequence 
of activation is conserved. 

Statistically significant differences were found between 
all the muscles latencies in both rats (p-values < 0.01). When 
comparing the two animals, statistical tests indicate 
differences in the latencies of biceps, deltoid, pronator and 
FDS, but not in the EDC (Fig. 2). 

We also computed the times when each muscle 
accumulated 50% of its total energy (CoGs) (Fig. 3). This 
shows similar information than muscle latencies, but instead 
of measuring just the first time point when the muscle is 
activated, it provides information about its energy 
distribution, i.e. its evolution along the R&G cycle. 

Fig. 3 shows that CoGs do not exactly follow the same 
organization than muscle latencies. This suggests that, 
although muscles are firstly activated in a certain sequence, 
their activity distribution is more variable. Nevertheless, in 
both animals, pronator tends to reach its CoG before EDC, 
and EDC before FDS. It is an evidence of this sequential 
pattern (pronator-EDC-FDS), which could already be 
guessed from Fig. 1 and emerges again in Fig. 2-3. A visual 
examination of all the attempts agrees with this fact, as 
already described in [2]. While biceps and deltoid have a 
variable and spread activity pattern along the entire R&G 



  

cycle, the other muscles behavior is much more delimited and 
repeatable: pronator is the first to be activated, followed by 
EDC and finally FDS. This suggests that the differences 
between these two animals lie in the recruitment of proximal 
muscles (biceps and deltoid, whose activities are 
compensated), while they share a common temporal 
recruitment pattern of the three distal muscles (pronator, 
EDC and FDS). 

Statistics indicate significant differences between the two 
rats in biceps and EDC muscles (both had a lower CoG in rat 
1). Regarding intra-subject comparisons, significant 
differences were found between each pair of muscles, except 
for those pointed by yellow and orange brackets in Fig. 3. 
Differences between muscles were expected, since each one 
has its own function as part of the movement, so they are 
activated or reach the 50% of their total energy in different 
times of the R&G cycle. These times are very repetitive, and 
they are characteristic of each muscle. Of course, there is a 
natural variability across the results, both between animals 
and between attempts of the same animal. These attempts 
included both successes and failures in grasping the pellet (it 
sometimes fell from the animal’s hand). Although the 
movement sequence was visually the same, this is clearly a 
source of variability. However, variability can also be 
attributed to the different strategies that the animals can adopt 
to perform the same movement, according to their previous 
experience and the specific situation. 

IV. CONCLUSION 

This work provides automatic tools to study onset and 

offset of muscular activity in EMG signals, muscle latencies 

and muscle activity patterns. On the one hand, we proposed 

a novel method to detect muscular activity onsets and 

offsets; on the other, we computed some features to start 

characterizing muscular activity patterns during R&G 

movements in rats. These solutions are scalable to other 

movements and applications. 

 

 

 

Figure 2.  Boxplot of muscle latencies during R&G for the 5 muscles and 

the 2 animals. Red crosses are outliers. Brackets indicate muscles with NO 

significant differences between the 2 rats (p-values>0.01). 

Sample size should be increased to optimize data 

processing algorithms and study whether it is possible to 

generalize the muscle patterns found for these two animals 

or, on the contrary, inter-subject variability plays a key role 

and the movement is highly subject-specific. 

Intramuscular EMG signals analysis has allowed us to 

study neuromuscular circuits in vivo in freely moving 

animals. Furthermore, these techniques could potentially be 

transferred to surface EMG in human subjects. Future work 

may help to understand the motor control structure related to 

R&G movements in healthy animals, but also in injured rats 

with hemiplegia produced by spinal cord injury, stroke or 

other neuromuscular disorders. Such information will be of 

great clinical value to understand neural plasticity and motor 

recovery and develop new neurorehabilitation strategies. 
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Figure 3.  Boxplot of times accumulating the 50% of the total muscular 
energy during R&G, for the 5 muscles and the 2 animals. Blue brackets 

indicate NO significant differences between the 2 rats, while orange and 

yellow brackets indicate NO significant differences between these muscles 

in rat 1 or 2, respectively (p-values>0.01). 


