65 research outputs found

    Robust speaker diarization for meetings

    Get PDF
    Aquesta tesi doctoral mostra la recerca feta en l'àrea de la diarització de locutor per a sales de reunions. En la present s'estudien els algorismes i la implementació d'un sistema en diferit de segmentació i aglomerat de locutor per a grabacions de reunions a on normalment es té accés a més d'un micròfon per al processat. El bloc més important de recerca s'ha fet durant una estada al International Computer Science Institute (ICSI, Berkeley, Caligornia) per un període de dos anys.La diarització de locutor s'ha estudiat força per al domini de grabacions de ràdio i televisió. La majoria dels sistemes proposats utilitzen algun tipus d'aglomerat jeràrquic de les dades en grups acústics a on de bon principi no se sap el número de locutors òptim ni tampoc la seva identitat. Un mètode molt comunment utilitzat s'anomena "bottom-up clustering" (aglomerat de baix-a-dalt), amb el qual inicialment es defineixen molts grups acústics de dades que es van ajuntant de manera iterativa fins a obtenir el nombre òptim de grups tot i acomplint un criteri de parada. Tots aquests sistemes es basen en l'anàlisi d'un canal d'entrada individual, el qual no permet la seva aplicació directa per a reunions. A més a més, molts d'aquests algorisms necessiten entrenar models o afinar els parameters del sistema usant dades externes, el qual dificulta l'aplicabilitat d'aquests sistemes per a dades diferents de les usades per a l'adaptació.La implementació proposada en aquesta tesi es dirigeix a solventar els problemes mencionats anteriorment. Aquesta pren com a punt de partida el sistema existent al ICSI de diarització de locutor basat en l'aglomerat de "baix-a-dalt". Primer es processen els canals de grabació disponibles per a obtindre un sol canal d'audio de qualitat major, a més dínformació sobre la posició dels locutors existents. Aleshores s'implementa un sistema de detecció de veu/silenci que no requereix de cap entrenament previ, i processa els segments de veu resultant amb una versió millorada del sistema mono-canal de diarització de locutor. Aquest sistema ha estat modificat per a l'ús de l'informació de posició dels locutors (quan es tingui) i s'han adaptat i creat nous algorismes per a que el sistema obtingui tanta informació com sigui possible directament del senyal acustic, fent-lo menys depenent de les dades de desenvolupament. El sistema resultant és flexible i es pot usar en qualsevol tipus de sala de reunions pel que fa al nombre de micròfons o la seva posició. El sistema, a més, no requereix en absolute dades d´entrenament, sent més senzill adaptar-lo a diferents tipus de dades o dominis d'aplicació. Finalment, fa un pas endavant en l'ús de parametres que siguin mes robusts als canvis en les dades acústiques. Dos versions del sistema es van presentar amb resultats excel.lents a les evaluacions de RT05s i RT06s del NIST en transcripció rica per a reunions, a on aquests es van avaluar amb dades de dos subdominis diferents (conferencies i reunions). A més a més, es fan experiments utilitzant totes les dades disponibles de les evaluacions RT per a demostrar la viabilitat dels algorisms proposats en aquesta tasca.This thesis shows research performed into the topic of speaker diarization for meeting rooms. It looks into the algorithms and the implementation of an offline speaker segmentation and clustering system for a meeting recording where usually more than one microphone is available. The main research and system implementation has been done while visiting the International Computes Science Institute (ICSI, Berkeley, California) for a period of two years. Speaker diarization is a well studied topic on the domain of broadcast news recordings. Most of the proposed systems involve some sort of hierarchical clustering of the data into clusters, where the optimum number of speakers of their identities are unknown a priory. A very commonly used method is called bottom-up clustering, where multiple initial clusters are iteratively merged until the optimum number of clusters is reached, according to some stopping criterion. Such systems are based on a single channel input, not allowing a direct application for the meetings domain. Although some efforts have been done to adapt such systems to multichannel data, at the start of this thesis no effective implementation had been proposed. Furthermore, many of these speaker diarization algorithms involve some sort of models training or parameter tuning using external data, which impedes its usability with data different from what they have been adapted to.The implementation proposed in this thesis works towards solving the aforementioned problems. Taking the existing hierarchical bottom-up mono-channel speaker diarization system from ICSI, it first uses a flexible acoustic beamforming to extract speaker location information and obtain a single enhanced signal from all available microphones. It then implements a train-free speech/non-speech detection on such signal and processes the resulting speech segments with an improved version of the mono-channel speaker diarization system. Such system has been modified to use speaker location information (then available) and several algorithms have been adapted or created new to adapt the system behavior to each particular recording by obtaining information directly from the acoustics, making it less dependent on the development data.The resulting system is flexible to any meetings room layout regarding the number of microphones and their placement. It is train-free making it easy to adapt to different sorts of data and domains of application. Finally, it takes a step forward into the use of parameters that are more robust to changes in the acoustic data. Two versions of the system were submitted with excellent results in RT05s and RT06s NIST Rich Transcription evaluations for meetings, where data from two different subdomains (lectures and conferences) was evaluated. Also, experiments using the RT datasets from all meetings evaluations were used to test the different proposed algorithms proving their suitability to the task.Postprint (published version

    Speech processing using digital MEMS microphones

    Get PDF
    The last few years have seen the start of a unique change in microphones for consumer devices such as smartphones or tablets. Almost all analogue capacitive microphones are being replaced by digital silicon microphones or MEMS microphones. MEMS microphones perform differently to conventional analogue microphones. Their greatest disadvantage is significantly increased self-noise or decreased SNR, while their most significant benefits are ease of design and manufacturing and improved sensitivity matching. This thesis presents research on speech processing, comparing conventional analogue microphones with the newly available digital MEMS microphones. Specifically, voice activity detection, speaker diarisation (who spoke when), speech separation and speech recognition are looked at in detail. In order to carry out this research different microphone arrays were built using digital MEMS microphones and corpora were recorded to test existing algorithms and devise new ones. Some corpora that were created for the purpose of this research will be released to the public in 2013. It was found that the most commonly used VAD algorithm in current state-of-theart diarisation systems is not the best-performing one, i.e. MLP-based voice activity detection consistently outperforms the more frequently used GMM-HMM-based VAD schemes. In addition, an algorithm was derived that can determine the number of active speakers in a meeting recording given audio data from a microphone array of known geometry, leading to improved diarisation results. Finally, speech separation experiments were carried out using different post-filtering algorithms, matching or exceeding current state-of-the art results. The performance of the algorithms and methods presented in this thesis was verified by comparing their output using speech recognition tools and simple MLLR adaptation and the results are presented as word error rates, an easily comprehensible scale. To summarise, using speech recognition and speech separation experiments, this thesis demonstrates that the significantly reduced SNR of the MEMS microphone can be compensated for with well established adaptation techniques such as MLLR. MEMS microphones do not affect voice activity detection and speaker diarisation performance

    Detection and handling of overlapping speech for speaker diarization

    Get PDF
    For the last several years, speaker diarization has been attracting substantial research attention as one of the spoken language technologies applied for the improvement, or enrichment, of recording transcriptions. Recordings of meetings, compared to other domains, exhibit an increased complexity due to the spontaneity of speech, reverberation effects, and also due to the presence of overlapping speech. Overlapping speech refers to situations when two or more speakers are speaking simultaneously. In meeting data, a substantial portion of errors of the conventional speaker diarization systems can be ascribed to speaker overlaps, since usually only one speaker label is assigned per segment. Furthermore, simultaneous speech included in training data can eventually lead to corrupt single-speaker models and thus to a worse segmentation. This thesis concerns the detection of overlapping speech segments and its further application for the improvement of speaker diarization performance. We propose the use of three spatial cross-correlationbased parameters for overlap detection on distant microphone channel data. Spatial features from different microphone pairs are fused by means of principal component analysis, linear discriminant analysis, or by a multi-layer perceptron. In addition, we also investigate the possibility of employing longterm prosodic information. The most suitable subset from a set of candidate prosodic features is determined in two steps. Firstly, a ranking according to mRMR criterion is obtained, and then, a standard hill-climbing wrapper approach is applied in order to determine the optimal number of features. The novel spatial as well as prosodic parameters are used in combination with spectral-based features suggested previously in the literature. In experiments conducted on AMI meeting data, we show that the newly proposed features do contribute to the detection of overlapping speech, especially on data originating from a single recording site. In speaker diarization, for segments including detected speaker overlap, a second speaker label is picked, and such segments are also discarded from the model training. The proposed overlap labeling technique is integrated in Viterbi decoding, a part of the diarization algorithm. During the system development it was discovered that it is favorable to do an independent optimization of overlap exclusion and labeling with respect to the overlap detection system. We report improvements over the baseline diarization system on both single- and multi-site AMI data. Preliminary experiments with NIST RT data show DER improvement on the RT ¿09 meeting recordings as well. The addition of beamforming and TDOA feature stream into the baseline diarization system, which was aimed at improving the clustering process, results in a bit higher effectiveness of the overlap labeling algorithm. A more detailed analysis on the overlap exclusion behavior reveals big improvement contrasts between individual meeting recordings as well as between various settings of the overlap detection operation point. However, a high performance variability across different recordings is also typical of the baseline diarization system, without any overlap handling

    Determining the number of speakers in a meeting using microphone array features

    Get PDF
    The accuracy of speaker diarisation in meetings relies heavily on determining the correct number of speakers. In this paper we present a novel algorithm based on time difference of arrival (TDOA) features that aims to find the correct number of active speakers in a meeting and thus aid the speaker segmentation and clustering process. With our proposed method the microphone array TDOA values and known geometry of the array are used to calculate a speaker matrix from which we determine the correct number of active speakers with the aid of the Bayesian information criterion (BIC). In addition, we analyse several well-known voice activity detection (VAD) algorithms and verified their fitness for meeting recordings. Experiments were performed using the NIST RT06, RT07 and RT09 data sets, and resulted in reduced error rates compared with BIC-based approaches. Index Terms — Speaker diarisation in meetings, microphone array, time difference of arrival (TDOA), speech segmentation and clustering, BIC, voice activity detection (VAD) 1

    Spatio-Temporal Analysis of Spontaneous Speech with Microphone Arrays

    Get PDF
    Accurate detection, localization and tracking of multiple moving speakers permits a wide spectrum of applications. Techniques are required that are versatile, robust to environmental variations, and not constraining for non-technical end-users. Based on distant recording of spontaneous multiparty conversations, this thesis focuses on the use of microphone arrays to address the question Who spoke where and when?. The speed, the versatility and the robustness of the proposed techniques are tested on a variety of real indoor recordings, including multiple moving speakers as well as seated speakers in meetings. Optimized implementations are provided in most cases. We propose to discretize the physical space into a few sectors, and for each time frame, to determine which sectors contain active acoustic sources (Where? When?). A topological interpretation of beamforming is proposed, which permits both to evaluate the average acoustic energy in a sector for a negligible cost, and to locate precisely a speaker within an active sector. One additional contribution that goes beyond the eld of microphone arrays is a generic, automatic threshold selection method, which does not require any training data. On the speaker detection task, the new approach is dramatically superior to the more classical approach where a threshold is set on training data. We use the new approach into an integrated system for multispeaker detection-localization. Another generic contribution is a principled, threshold-free, framework for short-term clustering of multispeaker location estimates, which also permits to detect where and when multiple trajectories intersect. On multi-party meeting recordings, using distant microphones only, short-term clustering yields a speaker segmentation performance similar to that of close-talking microphones. The resulting short speech segments are then grouped into speaker clusters (Who?), through an extension of the Bayesian Information Criterion to merge multiple modalities. On meeting recordings, the speaker clustering performance is signicantly improved by merging the classical mel-cepstrum information with the short-term speaker location information. Finally, a close analysis of the speaker clustering results suggests that future research should investigate the effect of human acoustic radiation characteristics on the overall transmission channel, when a speaker is a few meters away from a microphone

    An Information Theoretic Approach to Speaker Diarization of Meeting Recordings

    Get PDF
    In this thesis we investigate a non parametric approach to speaker diarization for meeting recordings based on an information theoretic framework. The problem is formulated using the Information Bottleneck (IB) principle. Unlike other approaches where the distance between speaker segments is arbitrarily introduced, the IB method seeks the partition that maximizes the mutual information between observations and variables relevant for the problem while minimizing the distortion between observations. The distance between speech segments is selected as the Jensen-Shannon divergence as it arises from the IB objective function optimization. In the first part of the thesis, we explore IB based diarization with Mel frequency cepstral coefficients (MFCC) as input features. We study issues related to IB based speaker diarization such as optimizing the IB objective function, criteria for inferring the number of speakers. Furthermore, we benchmark the proposed system against a state-of-the-art systemon the NIST RT06 (Rich Transcription) meeting data for speaker diarization. The IB based system achieves similar speaker error rates (16.8%) as compared to a baseline HMM/GMM system (17.0%). This approach being non parametric clustering, perform diarization six times faster than realtime while the baseline is slower than realtime. The second part of thesis proposes a novel feature combination system in the context of IB diarization. Both speaker clustering and speaker realignment steps are discussed. In contrary to current systems, the proposed method avoids the feature combination by averaging log-likelihood scores. Two different sets of features were considered – (a) combination of MFCC features with time delay of arrival features (b) a four feature stream combination that combines MFCC, TDOA, modulation spectrum and frequency domain linear prediction. Experiments show that the proposed system achieve 5% absolute improvement over the baseline in case of two feature combination, and 7% in case of four feature combination. The increase in algorithm complexity of the IB system is minimal with more features. The system with four feature input performs in real time that is ten times faster than the GMM based system

    Studies on noise robust automatic speech recognition

    Get PDF
    Noise in everyday acoustic environments such as cars, traffic environments, and cafeterias remains one of the main challenges in automatic speech recognition (ASR). As a research theme, it has received wide attention in conferences and scientific journals focused on speech technology. This article collection reviews both the classic and novel approaches suggested for noise robust ASR. The articles are literature reviews written for the spring 2009 seminar course on noise robust automatic speech recognition (course code T-61.6060) held at TKK
    corecore