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Abstract

Speaker diarization can be considered to be one of the complex problems in speaker
recognition. A reliable diarization system should be able to accurately determine the variable
length utterances which a speaker contributes to multi-speaker conversations. This is a
difficult problem since text-independent speaker identification and verification is yet to be
improved for it to be applied reliably. While efficient speaker modelling is important for
diarization, the acoustical representation of speech is the basic entity that signifies a speaker.
This representation should be outstanding enough to prevent a speaker’s utterances from
being lost in the acoustical congestion that is imposed by the rest of the talkers.

For this purpose, it is proposed here, for the case of multiple-microphone diarization,
multiple speech signals are used in the acoustic feature extraction instead of combining
the signals beforehand. The reason is to make an optimal use of those signals in order to
enrich the quality of the acoustical representation of the speaker. To this end, and since not
all microphone signals (channels) may be desirable, two selection approaches are proposed
in this work. These are, a best quality channel selection method and a novel approach for
diverse channel selection. Furthermore, a novel method is proposed which retains the speech
spectrum from selected least reverberated subbands of the available channels’ spectrums.
A new model, referred to here as Averaged Joint Gradient (AJG), is introduced for this
purpose. The proposed approach reduces the Diarization Error Rate (DER) in both of
the diarization systems used in the evaluations. The first system is based on binary keys
and achieves a maximum relative reduction in DER of 14%. The second one is a Gaussian
Mixture Model-Bayesian Information Criterion (GMM-BIC) based system which achieves a
maximum relative reduction in DER of 20%.
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1. Introduction

Speaker diarization is the task of determining who spoke and when in an audio stream
of multiple speakers. It has applications in speech and speaker indexing as well as speech-
to-text transcription to name a few examples (Anguera et al., 2012). It is a challenging task
that can be deemed necessary for unsupervised speaker recognition. This is because it helps
in detecting the change points between speakers. Challenging computational science tasks
often benefit from increasing the number and variety of sources of data, see e.g. (Zhang
et al., 2020). Speaker diarization is no different and can benefit from additional audio signal
sources (Pardo et al., 2007a). In general, this is not particularly difficult to achieve, as
microphones are relatively inexpensive. This work focuses on the diarization of sessions that
are recorded by a set of distant stationary microphones (not attached to speakers). All of
the microphones are assumed to have recorded all of the speakers. However, no assumptions
are made about the number of speakers or their locations. The main body of the work is
developed on meeting data, but the outcome is also tested on dinner party sessions.

When a dialogue is recorded by multiple microphones, additional information becomes
available which helps the diarization task in two ways. Firstly, it is used to extract spatial
features such as Time Delay of Arrival Features (TDOA) (Parada et al., 2017) and Direction
of Arrival Features (DOA) (Ito et al., 2018). Secondly, the microphone signals can be com-
bined using beamforming, e.g. (Anguera et al., 2007), to produce a single signal, enhanced for
acoustic feature extraction (Mart́ınez-González et al., 2017). This is regarded as an efficient
solution. However, improvements in the diarization performance can be achieved by consid-
ering different frameworks. The aim of this work is to improve the way multiple microphone
signals are exploited for acoustic feature extraction. This is accomplished by extracting the
acoustic features from a number of selected microphones (or microphones’ sub-bands). A
number of factors may vary among recordings made by multiple microphones. The selection
in this work addresses the general quality, redundancy and potentially subband-dependent
undesirable effects.

A number of different speaker diarization approaches such as those presented by (Sun
et al., 2018; Dawalatabad et al., 2016; Madikeri et al., 2015) have adopted the aforementioned
beamforming technique of Anguera et al. (2007). This entails combining all of the channels’
signals into one signal using a weighted delay and sum technique.1 Then acoustic features,
usually Mel-Frequency Cepstral Coefficients (MFCC) (Davis and Mermelstein, 1980), are
extracted from the resultant signal. Recently in (Tu et al., 2017), alternative solutions were
proposed to overcome the imperfection of a number of beamforming techniques. One of the
problems was related to the direction of arrival mismatch. One of the proposed alternatives
to using one beamformed signal was to concatenate features extracted from multiple signals.
The signals were obtained using beamformed combinations of subsets of microphone signals.
The solution of (Tu et al., 2017) was found to improve speech recognition accuracy but it
still relied on creating and extraction of features from beamformed signals.

1The terms channel and microphone are used interchangeably here.

2



The use of beamformed signals for feature extraction can be useful for diarization be-
cause the beam of the formed signal is likely to be directed toward the talking speaker.
However, beamforming entails a series of operations, see (Anguera et al., 2007), after which
some genuine properties of microphone signals may become lost. Alternatively, if feature
extraction is applied directly on the signals, their genuine properties should propagate to
the extracted features and can help in diarization, see e.g. (Meignier and Merlin, 2010).
That work recommended preserving original conditions by avoiding further processes on the
features, such as normalisation. Furthermore, in the work on dimensionality reduction in
(Panday et al., 2018) and (Zhang et al., 2019), feature selection methods were favoured
because they do not alter the original features. Nonetheless, extracting features from all
available channels is computationally inefficient and some channels are less likely to be good
quality (Anguera et al., 2007).

Speech signal quality measures can be divided into intrusive and non-intrusive (see Falk
et al. (2010)). Intrusive measures require a reference (such as a clean signal) while non-
intrusive measures do not require a reference. The Signal to Noise Ratio (SNR) parameter
was used in (Pardo et al., 2007b) to identify a good quality channel to be used as a reference
in delay estimation. Although estimating the SNR is non-intrusive, it may not be feasible
because it is difficult to estimate accurately (Bosworth et al., 2008).

Speech recognition techniques can often be found to include the development of signal
quality measures. For instance, in Distant Speech Recognition (DSR), Wolf and Nadeu
(2014) introduced a number of decoder-based measures, like the variance of the speech
intensity envelope, for channel selection. However, the proposed measures were demanding
as they required a classification of the recognised speech then the selection is made and
the recognition is repeated using the selected channels. The modulation spectrum ratio
introduced in (Himawan et al., 2015) was also used for channel selection in distant speech
recognition. Original speech was convoluted with different rooms’ impulse responses. Then
the correlation between contaminated speech and the Word Error Rate (WER) was used to
predict the recognition performance. By assuming an exact knowledge of a real room impulse
response, the modulation spectrum ratio was used to select the best channel. Unfortunately,
the applicability of the proposed framework could be considered to be somewhat constrained
by the fact that it required an exact knowledge of a room’s impulse response. It also assumed
the speakers to be stationary.

Cepstral distance is another signal quality measure. This intrusive measure was in-
troduced by (Kitawaki et al., 1988) to assess the distortion presented by speech coding
techniques in reference to the original speech signal. Cepstral distance is long known for its
flexibility and effectiveness in different applications (Guerrero et al., 2016). It was recently
used for the selection of the least distorted channel by (Flores et al., 2018) for distant speech
recognition. As an intrusive measure, the use of the cepstral distance requires a reference
channel which is assumed to provide a clean speech signal in some sense.

In (Flores et al., 2018), the authors proposed to compute a reference signal from the
logarithm of the geometric mean of the signals of the available microphones. The geomet-
ric mean was calculated over the magnitude spectrums generated from each microphone.
Unfortunately, no distinction was made between the quality of the available signals. As a
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result, potentially good and bad quality signals contributed equally to the reference signal
computation because of the unweighted mean element of the method. It would be more
robust to assign preliminary quality-based weights in such an averaging process.

Other than signal quality, Meignier and Merlin (2010) recommended using unnormalised
acoustic features in the common segmentation and clustering processes of the diarization
system. The aim was to preserve the background environment which can help in differen-
tiating between speakers. It is considered here in this work that features extracted from
individual signals can better reflect the underlying condition of each signal. But, given a
plethora of signals, it is anticipated that groups of signals are subjected to similar condi-
tions. This indicates the necessity for a selection method which attempts to keep only the
channels that may provide different background information amongst other properties. This
is addressed in Section 2.1.

Reverberation, in particular, is a deteriorating effect on the quality of speech signals that
has been the focus of considerable research efforts (Kinoshita et al., 2016). Reverberated
speech develops when reflected speech is delayed and overlaps with the directly propagated
speech at the acquisition point. One way to tackle reverberation is to de-reverberate the
speech signal or features as in (Feng et al., 2014) for speech recognition where deep auto-
encoders were used for this purpose. However, de-reverberation is difficult and non-reliable
since it can introduce objectionable artefacts to the processed speech (Falk et al., 2010).
Alternatively, in (Giri et al., 2015), a feature vector that characterises reverberation was
extracted from the speech signal and input to a Deep Neural Network (DNN) in a room-
aware DNN training for speech recognition. A similar concept was presented in (Oo et al.,
2018) in a reverberation-aware DNN training.

Additionally, methods have been proposed to characterise the degree of reverberation,
e.g (Malik and Farid, 2010) and (Falk et al., 2010). The concept of modulation transfer
function (MTF) is one of the earliest approaches applied to evaluate the quality of speech
transmission (against reverberation and other effects) between the speaker and the listener
in an auditorium (Houtgast and Steeneken, 1985). In (Malik and Farid, 2010), reverberation
is detected by estimating a decay parameter that embodies the extent of reverberation. That
parameter is estimated from the speech signal using a maximum likelihood estimation. The
work in (Falk et al., 2010) introduced a measure termed speech-to-reverberation modulation
energy ratio for the diagnosis of de-reverberated speech to test for the feasibility of de-
reverberation algorithms. In (Jiang et al., 2014), binary classification using a DNN was
introduced for reverberant speech segregation. This required the extraction of binaural
features of the interaural time differences and interaural level differences which were used as
the main auditory features. Interestingly, reverberation is frequency dependent (Wen et al.,
2008; Li et al., 2019). This means that, depending on a room’s geometry, size and surface
material, the degree of reverberation varies between subbands of the speech spectrum (Ismail,
2013; Zhu et al., 2020). If this variety is to be distinguished, time-domain reverberation
measures, such as the one in (Malik and Farid, 2010), are not usable. Also, precise estimation
of the degree of reverberation as expected from the measures presented in (Falk et al., 2010)
and (Ismail, 2013) would not be necessary.

A method proposed here is designed for the purpose of assessing the degree of reverbera-
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tion over a subband in comparison to the rest of the channels. As such, the subband that is
least affected by reverberation is identified and used in feature extraction. For the purpose
of channel selection, this work proposes the use of a potentially reliable reference signal
for selecting good quality channels based on the cepstral distance. Moreover, it presents
the selection of diverse channel selection whose goal is to spare channels that may provide
redundant characteristics. Section 2 presents the channel selection methods proposed in
this work while Section 3 presents channels’ subband selection. Sections 4 and 5 report the
evaluation results in binary key based and GMM-BIC based diarization, respectively. These
are followed by the conclusions in Section 6.

2. Channel Selection

This section presents the methods that aim to select suitable channels to use their acous-
tic features in the diarization system. The goal of the first method is to find two sets of
microphones that are distant from each other. The second method aims to find the highest
quality channels.

2.1. Selection of Distant Microphones

The fundamental theory behind this selection method is that when many microphones
are available, then those that can deliver a diversity in information are favoured. This is
based on the assumption that each microphone record all of the speakers. Therefore, a
desired selection method could be one that identifies the microphones with the redundant
information. These should then be discarded. Selecting microphones that are distant from
each other would fulfil this goal. This is because of the proposition that variability in
microphones’ locations can cause the recorded speech to be subject to effects of different
natures due to the room impulse response. In other words, the difference in the effect of
the room impulse response on the speech recorded by each microphone is emphasised if the
recording microphones are not placed close to each other (Anguera et al., 2007).

Additionally, when microphones are in variable locations, the differences in the distances
between each microphone and each speaker will be broadened. The effect of this could be
duplicated through the energy pattern of the recorded speech signal. This in turn can help
in the diarization since a particular speaker’s speech would enclose different conditions from
other speakers. The diversity may also, but not necessarily, increase statistical indepen-
dence within the extracted features especially when Gaussian Mixture Models (GMM) with
diagonal covariance matrices are deployed in the diarization system. Note that diagonal
covariance matrices better describe the covariance if the variables (the features) are more
statistically independent (Deco and Obradovic, 2012).

Considering the aforementioned basis, features extracted from two distant microphones
would present an improvement in the performance which is actually the case as will be
shown in the results. In addition, it is found that using two groups of distant microphones
can present even better performance. The suitable number of selected microphones for each
group will be chosen empirically.
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Before beamforming became the common practice when multiple microphones’ speech is
available, the centrally located microphone was usually identified based on cross correlation
and was considered a good signal source for the extraction of speech features (Anguera et al.,
2007). A centrally located microphone is considered a ‘close’ microphone in the methodology
of this section. The spatial distribution of other microphones is decided based on signal time
delay of arrival at any of the available microphones in relation to the central one.

For this channel selection method, the delays between the signals are calculated using
the cross correlation method over segments of 250 ms length and 10 ms shift. The delays
are estimated over segments of the signal in order to accommodate for potential changes in
speakers’ locations. Assuming that microphones are stationary, the average of segments’ de-
lays is supposed to help approximate the distribution of the speakers and the microphones.
For two speech segments from one of the microphones, si, and the reference (central) micro-
phone, sref, the delay τ (the lag) in samples, is the one that maximises the following cross
correlation function

C(τ) =
N∑

n=1

si(n)sref(τ + n), (1)

where N is the total number of samples within the segment.
Let τm be the one that maximises (1). The average of the absolute delays over all of the

segments of one of the microphones i and the central ref microphone can then be expressed
as

τ̃i,ref =
1

S

S∑
j=1

τm(si(j), sref(j)), (2)

where S is the total number of segments.
For a total number of M microphones, the farthest microphone from the central ref one

is selected as the one with the highest τ̃i,ref

argmax
∀i

τ̃i,ref for i = 1, 2, ...,M − 1, (3)

and the closest microphone to the central ref microphone is the one with the lowest τ̃j,ref

argmin
∀j

τ̃i,ref for j = 1, 2, ...,M − 1. (4)

The first order coefficient of MFCC features reflects the distribution of speech spectral
energy between low and high frequencies of speech. It can be used to demonstrate the
diversity between distant microphones. Fig. 1 shows the distribution of this coefficient
extracted from signals of the central, the nearest and the farthest microphones of the IS1001a
AMI meeting corpus (Carletta et al., 2006). One can see that the distribution of this
coefficient is similar between the central and the nearest microphone and dissimilar to that of
the farthest microphone. Moreover, Kullback-Leibler (KL) divergence (Kullback and Leibler,
1951) is determined here between these distributions after fitting a five components GMM
to the first order MFCC of each microphone. The divergence is found to be 0.56 between
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the GMMs of the central and closest microphones while it is 1.49 between the GMMs of the
central and farthest microphones. Nonetheless, it might be difficult to argue that features
from distant microphones can enrich statistical independence despite the evident variation in
the distributions. The reason is that all microphones are simultaneously making observations
about the same event.

−5 0 5
0

0.5

1

·104

(a) Nearest.

−5 0 5
0

0.5

1

·104

(b) Central.

−5 0 5
0

0.5

1

·104

(c) Farthest.

Figure 1: Distribution of first order MFCC coefficient extracted from the speech signals recorded at a central,
near and a distant microphone.

Fig. 2 illustrates the correlations between the first order MFCC coefficient extracted
from the signal received at the central microphone and those of the rest of the microphones
individually. This is addressed for eight meeting excerpts 1 of the AMI data . Each meeting
has four participants and the conversation is recorded by two circular microphone arrays.
The first array has 8 microphones and is situated between the four participates. The second
array has 4 microphones and it is 1.09 meters away from the first array.

Fig. 2 shows the mean correlation over these eight meetings as well as the standard
deviation. It can be seen that the correlation decreases as the microphone distance from the
central microphone increases. This implies that the diversity in the characteristics of the
recorded speech signal seems to increase with distance. It must be noted that all coefficients
of MFCC provide similar correlation pattern. The sudden change in the correlation value
between the 7th and the 8th microphones indicates the transition in microphone selection
from one microphone array to another.

This selection method does not consider the quality of the selected channels. Hence, the
application of speech enhancement techniques to the microphone signals, as a pre-processing
step, is necessary before speech features are extracted. In this work, a form of Wiener
filtration called Two-Step Noise Reduction (TSNR) is used (Plapous et al., 2006).

2.2. Selection of Best Quality Channels

The theory behind this selection method is very different from the one behind the selec-
tion of distant microphones. This method aims to select one or more of the least distorted
channels among the available ones. Reverberation can be a considerable source of distortion

1These meetings are identified in Section 4.1.
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Figure 2: The correlation coefficient of channels’ 1st order MFCC cepstral coefficient as a function of
distance from the central microphone. The correlation coefficient is determined between the 1st order MFCC
coefficient obtained from the central microphone and the one obtained from the first closest microphone,
the second closest microphone and so on.

to the recorded speech in meeting rooms. The use of cepstral distance to identify good
quality channels requires a reference channel which is assumed to provide a relatively clean
speech signal. When information about the meeting room setting is provided, there might
be prior knowledge about a particular microphone which can provide a good quality signal
that can be used as a reference signal. It can be argued that there might be no need to
conduct channel selection in such a case. In practice, however, such information is usually
unavailable and the choice of a reference channel is a difficult task.

The beamformed signal obtained using the method of (Anguera et al., 2007) is proposed
to be used as a reference signal here for the following reasons:

1. The segments of the signals to be combined are aligned based on estimated delays
among them which strengthens the speech signal and weakens random noise effects;

2. In the final summation stage, signals’ segments are weighted according to their qualities
using the following equation (Anguera et al., 2007)

wi(j) =


1

M
j = 0

(1− α)wi(j − 1) + αRi(j) otherwise,
(5)

where Ri(j) is the average cross-correlation between segment j for channel i and the
relevant aligned (based on the pre-estimated delays) segments of the rest of the chan-
nels. M is the total number of channels and α is an adaptation ratio empirically set
to 0.05. One can notice that, except for j = 0, the calculation of the weight of any
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segment depends on the weight of the previous segment. However, the weight for the

first segment, or when j = 0, is assumed to be
1

M
for all of the channels.

The beamformed signal seems to be a good reference choice for the selection of the least
distorted channel using cepstral distance. The beamformed signal is an enhanced signal that
was found to provide better diarization performance in comparison to the signal received
at the most centrally located microphone (Anguera et al., 2007). It will be shown in the
results that the proposed cepstral distance based channel selection with the beamformed
signal as a reference provides channel selection that has better diarization performance than
the beamformed signal itself for the development data. MFCC features are used here as the
cepstral representation of the speech signal in the cepstral distance calculation. The cepstral
distance between two feature vectors is calculated as (Flores et al., 2018)

∆i,ref =
10

log10

√√√√2
C∑
c=1

|fi(c)− fref(c)|2, (6)

where fi(c) and fref(c) are MFCC cepstral coefficients of two feature vectors of channel i and
the beamformed signal ref, respectively. C is the total number of MFCC cepstral coefficients
(feature vector dimensionality). The term 10/log 10 in (6) is related to the definition of the
cepstral distance as the logarithmic spectrum envelop distance (Kitawaki et al., 1982).

Let Xi and Xref denote the entire set of feature vectors extracted from channel i and
the beamformed signal ref. The rows of Xi and Xref are the cepstral coefficients of MFCC
and the columns are the feature vectors. The average cepstral distance between all feature
vectors of channel i and those of the beamformed signal ref is determined as in the following

∆̃i,ref =
1

T

T∑
t=1

10

log 10

√√√√2
C∑
c=1

|Xi(c, t)−Xref(c, t)|2, (7)

where T is the number of feature vectors.
The average cepstral distance between all of the channels and the beamformed signal

is calculated. Then the best channel is selected as the one that produces minimal cepstral
distance from the beamformed signal ref

best channel = argmin
∀i

∆̃i,ref , (8)

where i = 1, 2, ...,M and M is the number of microphones. Fig. 3 depicts the FFT spectrum
of peer one second segments of speech from the beamformed signal as well as two channels
that are selected as the best and worst channels using the proposed method. The meeting
example under study is the IS1001a AMI meeting. Before making inferences about the
spectrums shown, it should be noted that the regions with the highest values represent
strong energy instances in speech phonemes. As such, empty (silent) regions in the spectrum
should present the lowest values. These (empty) instances may not have the lowest values in
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Figure 3: Spectrums of one second of speech extracted from the beamformed signal and two channels selected
as the best and worst ones. This figure presents quite an informative imaging of the quality of the spectrums.
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Figure 4: Insights on the filter bank decomposition of the spectrums of beast, beamformed and worst quality
signals.
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noisy channels, especially if the noise energy is affecting the general spectrum (for example,
white noise).

It can be seen in Fig. 3 that the channel selected as the worst one exhibits what can be
described as distorted speech spectrum compared to the spectrum of the beamformed signal.
The dispersion of higher energy regions (spectrum smearing) suggests that this channel
experiences a reverberation effect. On the other hand, the best selected channel provides a
more distinct speech spectrum than the beamformed signal and the worst selected channel.
It can be noticed that the beamformed signal presents higher phoneme energies than the
best selected channel likely due to the alignment of segments before summation. However,
it seems to have lighter coloured background than the best selected channel which indicates
the presence of noise. The probable reason is that the noise is not independent between
channels so that the combined effect is not fully cancelled by the weighted summation.

Additionally, Fig. 4 shows the filterbank decomposition of the spectrums selected in Fig.
3. It can be noticed that the spectrums of the best selected channel and the beamformed
signal are more alike in this case. The channel selected as the worst one continued to
show dispersion of high speech energy. It is evident that this selection method performs as
anticipated. The beamformed signal which is used as a reference signal clearly provides a
distinguishable factor between good and bad quality channels based on cepstral distance.

3. Acoustic Feature Extraction from Selected Channels’ Subbands

In this method, acoustic features will be extracted from subbands of channels that are
less affected by reverberation. A subband refers to a range of frequencies in the spectrum
of the signal. The speech spectrum is to be first divided into a number of subbands and
the reverberation effect on those subbands is characterised over all of the available channels.
The least reverberated subbands among the underlying channels are then chosen. In the
end, the entire speech spectrum is retained from different channels and MFCC coefficients
are extracted from the log-energies of the mel-filters that correspond to each subband.

3.1. Averaged Joined Gradient Estimation

Reverberation is known to cause smearing in the speech spectrum. This effect can be
visually observed when stacking together the spectral estimates of short speech frames. In
the speech spectrum represented by a sequence of frames, reflected speech signal causes
extensions in the speech energy from one frame to another. This is illustrated by the rever-
berated spectrum in Fig. 5a. On the other hand, the spectrum of clean (non reverberated)
speech signal has sharper transitions from one frame to the other. The latter is illustrated
in Fig. 5b.

It is proposed here, to estimate the gradients of the spectrum across the speech frames.
Then this is used it to characterise the degree of reverberation. It is assumed that the
smearing effect of reverberations minimises the gradient. Thus, less reverberated speech will
have higher gradient values.

In order to estimate the gradient, the speech signal is first divided into frames of 25 ms
length. Overlap is not allowed between frames. This is because it results in some continuity
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of the speech energy from one frame to another which would affect the gradient. The
spectrum is determined for each frame as log10 of the discrete Fourier transform (FFT). In
an attempt to equalise the gradient estimates over different channels; the mean and variance
of the spectrum is normalised across the speech frames.

Let k denote a fraction of the spectrum (one FFT bin). Let ηk(t) be k’s value at speech
frame t. For channel j, the mean of the absolute gradient of ηk(t) for T frames is determined
as

ξk,T,j =
1

T

T∑
t=1

|∇ηk| . (9)
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Figure 5: Speech sample of the YOHO data (Campbell and Higgins, 1994) for a female uttering the numbers
”35 79 81”. Artificial reverberation of 0.7s was added to produce the reverberated sample.

The average gradient of a specific subband of the spectrum is calculated as

ξk1,k2,j =
1

k2 − k1+1

k2∑
k=k1

ξk,T,j, (10)

where k1 and k2 are, respectively, the low frequency edge and the high frequency edge of the
subband.

Channels that exhibit high reverberation times can have similar ξk1,k2 values which could
make the degree of reverberation to be indistinguishable when measured by ξk1,k2 . For
example, it is possible that longer spread of the speech energy causes the value of ξk1,k2 to
increase which is the opposite to what was originally assumed here. The possibility of such
conditions can be tackled by introducing a threshold to discard overly extended smearing of
the spectrum.

The threshold is determined using all of the channels for which the reverberation to be
characterised over the subband k1 to k2. It is calculated as

ι =
1

M

M∑
j=1

ξk1,k2,j, (11)
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where M is the number of channels.
This threshold is basically the average of all channel’s ξk1,k2,j values obtained in (10).

The value of ι will be used to transform the gradient estimates into binary values. The new
gradient estimates, or the joined gradient, will be obtained by the following transformation

ξ̂k,t,j =

{
1 for ξk,t,j ≥ ι

0 for ξk,t,j < ι
, (12)

where ξk,t,j is the j
th channel gradient value for specific fraction of the spectrum k (equivalent

to an FFT bin) at frame t. Then, the new Average Joined Gradient (AJG) estimate of
channel j over T frames and for a subband that extends from k1 to k2 is determined as

ξ̂k1,k2,j =
1

k2 − k1

k2∑
k=k1

(
1

T

T∑
t=1

ξ̂k,t,j

)
. (13)

The higher the reverberation effect the higher the smearing it causes in the spectrum
which minimises the value of ξ̂k1,k2,j as assumed here. The channel that exhibits the lowest
reverberation at subband k1 to k2 is selected using the AJG estimate of (13) as

j
selected

= argmax
∀j

ξ̂k1,k2,j. (14)

The following section introduces a framework for acoustic feature extraction based on
subband selection.

3.2. Acoustic Feature Extraction Framework

As stated earlier, this selection method is designed to account for hypothetical variations
in the degree of reverberation across the speech spectrum of the available channels. Three
cases of subband selection will be investigated. In one case, the spectrum is divided into
two equal subbands each is to be presumably selected from a different channel. The second
case considers three equal subbands and the third case considers four equal subbands.

Acoustic feature extraction from selected subbands will be based on the MFCC frame-
work. Cepstral coefficients are obtained after applying DCT to the outputs of the filters
covering a particular subband. Then, cepstral coefficients of all subbands are simply concate-
nated. Fig. 6 illustrates the case where the spectrum is divided into three equal subbands.
The filters that cover the subbands’ edges will be included in the feature extraction for both
of the adjacent subbands.

The maximum number of channels that can be selected is equal to the number of sub-
bands. On the other hand, there is no restriction on having two or more subbands selected
from the same channel if they are found to experience the least reverberation effect. More-
over, when a subband is selected, it is considered over the entire length of the recording.
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Figure 6: The framework of feature extraction from selected subbands based on MFCC methodology. Cep-
stral coefficients are to be calculated separately from the filters that cover each subband. Dotted filters
indicate that they will be included in the feature extraction of both of the adjacent subbands.

3.3. Detection of Simulated Reverberation Effects

This subsection demonstrates the accuracy of the Average Joined Gradient (AJG) esti-
mates in detecting the degree of reverberation. Simulated reverberation effects are added
to a clean speech sample using the tool designed for the REVERB challenge by (Kinoshita
et al., 2013). The tool performs convolution between the speech sample and a designated
Room’s Impulse Response (RIR). Three different reverberation times are added and tested:

• 0.2s using the RIR of simulation room 1 recording angle A;

• 0.5s using the RIR of simulation room 2 recording angle A;

• 0.7s using the RIR of simulation room 3 recording angle A.

Added Reverberation ξk1,k2,j ξ̂k1,k2,j

0.0 s (Original Speech) 0.356 0.603

0.2 s 0.166 0.308

0.5 s 0.159 0.276

0.7 s 0.152 0.260

Standard Deviation 0.098 0.162

Table 1: Values of the average gradient (ξk1,k2,j) and average joined gradient (ξ̂k1,k2,j) in relation to different
added reverberation times as well as the original speech sample ”21 37 63” of the YOHO data (Campbell
and Higgins, 1994).

14



A speech sample from the YOHO data (Campbell and Higgins, 1994) for a male uttering
the numbers ”21 37 63” is selected. Then its convolution with the three rooms’ RIR is used
to test the gradient estimations. For the entire speech spectrum, Table 1 shows the values of
the average gradient (ξk1,k2,j) determined using (10) and the average joined gradient (ξ̂k1,k2,j)
estimated using (13).

One can notice from Table 1 that both ξk1,k2,j and ξ̂k1,k2,j decrease as the reverberation
time increases which accommodates the assumptions made here. The maximum values are
given for non-reverberated speech. More importantly, the values of ξ̂k1,k2,j have higher stan-
dard deviations which makes this measure more precise in distinguishing close reverberation
times. Note that the standard deviation is determined between average gradients of different
reverberation times for one sample of speech.

4. Experimental Evaluation in Binary Key based Diarization

The performance of binary key based diarization is evaluated here using the proposed
methodology as its front-end. This diarization approach is fast but has somewhat non-
competitive diarization accuracy which can be improved. Binary key based diarization was
introduced in (Anguera and Bonastre, 2011). It is an agglomerative diarization approach
where segments and clusters are modelled by fixed dimensional binary-valued vectors called
binary keys, see Fig. 7. From a conversation’s feature vectors, a Binary Key Background
Model (KBM) is obtained as a pool of single-Gaussian models fitted to 2s segments (over-
lapped by 0.5s). The 896 most dissimilar Gaussians are selected using the cosine similarity
among the means of the Gaussians’ pool (Delgado et al., 2015a). Using the feature vectors
of each segment and cluster, a binary key is obtained as follows. The log-likelihood is cal-
culated for the feature vectors to each of the 896 single-Gaussian models of the KBM. This
produces an 896 dimensional vector where each element has the log-likelihood value of the
feature vectors to one Gaussian of the KBM. The elements that have values higher than a
pre-defined threshold are set to 1, the rest are set to 0. This results in the binary key.

The initial clusters are obtained by flatly dividing the conversation’s feature vectors into
16 equal partitions. The Jaccard coefficient is used to measure the similarity between the
binary keys of each segment and each cluster. It is also used to measure the similarity
between the clusters for cluster merging. For two binary keys, vb1 and vb2, the Jaccard
coefficient is expressed as

J (vb1,vb2) =

∑L

i=1
vb1(i) ∧ vb2(i)∑L

i=1
vb1(i) ∨ vb2(i)

, (15)

where L is the binary key length, ∧ indicates the boolean AND operator and ∨ indicates
the boolean OR operator.

Starting from 16 initial clusters, similar segments are clustered then merging takes place.
The number of clusters gradually decreases by one. The Within Cluster Sum of Squares
(WCSS) is used to determine the best number of clusters (Delgado et al., 2015a). Then, a
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Figure 7: Descriptive diagram of the binary key based diarization system.
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final segmentation takes place where each cluster is modelled by a 128 components Gaussian
Mixture Model (GMM) fitted to its corresponding feature vectors. A 1s window is used to
smooth the log-likelihood values of the conversation feature vectors to each cluster’s GMM.
This produces the final speakers’ change points. This system configuration is fixed and only
the input features change as it will be shown shortly. The performance is evaluated in terms
of Diarization Error Rate (DER) and Speaker Error Rate (SER) as defined in (Anguera,
2006). Note that DERb and SERb in the following tables represent baseline DER and SER,
respectively.

4.1. Baseline System Performance

This subsection reports the baseline system performance for the corpora under inves-
tigation. The corpora consists of 16 meeting excerpts of the AMI corpus (Carletta et al.,
2006). The first eight meetings, referred to as the IS1000 set, include meetings: IS1001a,
IS1002d, IS1003a, IS1004a, IS1005a, IS1006a, IS1007a and IS1009a. Each meeting includes
four speakers and is recorded by 12 microphones. The second eight meetings, referred to
as the TS3000 set, include meetings: TS3004a, TS3005a, TS3006a, TS3007a, TS3008a,
TS3009a, TS3010a and TS3011a. Each meeting includes four speakers and is recorded by
18 microphones. The final evaluation will be carried on the RT-05S set (Fiscus et al., 2005)
and the evaluation subset of the CHiME-6 Track 2 dataset (Watanabe et al., 2020). The RT-
05S set consists of ten meetings recorded by different number of microphones and include
variable number of speakers. The CHiME-6 evaluation set consists of two dinner parties
each is recorded by 24 microphones and includes four participants. In all cases, the number
of speakers is estimated by the system and not provided as an input.

The system uses conventional MFCC features (Hamming window) extracted from the
beamformed signal of each meeting excerpt. All available channel signals are used in the
beamforming process. The first best delays selected by the Viterbi algorithm are used in
the alignment of the segments. Delays and channel weights are estimated every 250 ms
for 500 ms segment size. The MFCC features are extracted from the beamformed signal
for speech frames of 25 ms in size at 10 ms rate (every 10 ms). The number of filters in
the filter bank are 24 and the number of cepstral coefficients are 19 excluding the 0th order
coefficient. Non-speech feature vectors are identified using the reference files associated with
each excerpt in order to precisely evaluate the diarization performance as in (Delgado et al.,
2015a). The baseline performance is reported in Table 2.

Dataset DERb (%) SERb (%)
IS1000 Set 36.41 35.90
TS3000 Set 41.25 40.30
RT-05S Set 30.90 21.30

CHiME-6 Eval Set 63.84 49.20

Table 2: Baseline System Performance. By the end of this section, considerable relative improvements will
be shown compared to this baseline performance that only uses MFCC features extracted from beamformed
signals.
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4.2. System Performance for Acoustic Features Extracted from Selected Channels

This subsection presents a study of system performance in light of the proposed channel
selection methods. The extraction parameters of MFCC, as acoustic features, are the same
as those of the baseline system. Initially, for the IS1000 meetings used here as a develop-
ment set, Table 3 shows the effect of using a concatenation of features extracted from each
individual channel in comparison to those extracted from the beamformed signal.

Signal Feature Dim. DER (%) SER (%)
Beamformed (baseline) 19 36.41 35.90

All Channels 228 28.06 27.60

Table 3: Performance comparison between the case of MFCC features extracted from the beamformed signal
and a concatenation of MFCC features extracted from each channel for the IS1000 development set.

A considerable reduction in DER and SER can be noticed in Table 3 as an effect of
using a concatenation of all microphones MFCC features. However, as mentioned earlier,
concatenation of all features comes at the cost of increasing the dimensionality. For the
IS1000 development set, where each excerpt is recorded using 12 microphones, MFCC feature
dimensionality grew from 19 (of the single beamformed signal) to 228 which increases the
processing time. Accordingly, the channel selection methods proposed attempts to achieve
similar improvement in the performance but with a lower computational load.

4.2.1. Distant Channels

The IS1000 development set is used to approximate the suitable number of selected
channels that provide an improvement in the diarization accuracy. This channel selection
method cannot be evaluated on the RT-05S NIST evaluation set because there are four
meetings with three channels and less. However, the final outcome of the method is tested
on the CHiME-6 evaluation set in addition to the TS3000 set.

The diarization performance is investigated for two cases of this selection method. The
first case is the selection of the most centrally located microphone and then additional
channels are selected starting from the most distant one from the central microphone. The
second case is where two groups of distant channels are selected. One group includes the
central microphone and the ones close to it and the second group is one that is distant from
the first group. In this case, the selection also starts from concatenating the features from
the centrally located microphone and the most distant one. Then, features of two more
channels are added, one of them is the nearest to the central one and the other is the second
most distant one, and so on.

Fig. 8a demonstrates the system performance in terms of DER in relation to the first
case of this selection method. A trade off must be made between dimensionality growth and
system performance. It can be noticed that concatenating features of three distant channels
in addition to the central one (total of 4) provided equivalent performance to the one when
all channels’ features are used (Table 3). After that, an increase in the errors can be noticed
supposedly due to decrease in diversity. Then, as expected, the performance moves toward
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Figure 8: Effect of distant microphones selection (AMI IS1000 set) on DER. The figures contrast the
performance of the selection criteria (DER Selected) with the case of using randomly selected microphones
in addition to the centrally located one (indicated by DER Random). Case 1: microphone index 1 means
that only features of the central microphone are used. Then, features of the rest of the channels are added
starting from the most distant channel. Thus, the horizontal axis indicates the total number of microphones.
Case 2: features of two groups of distant channels are used. Index 1 means the pair of the central and the
most distant channels.

19



the one achieved when all channels’ features are used. One might notice that the lowest error
occurred at nine selected channels, however, it is not a favourable operation point given the
high dimensionality of features at that case. One may also notice from Fig. 8a that using
the most centrally located microphone alone provided better performance than the one when
the beamformed signal is used, refer to Table 2. This can be the case sometimes since the
most centrally located channel is also considered a good channel for feature extraction, see
(Anguera et al., 2007).

Fig. 8b demonstrates the second case of selecting two groups of distant microphones. It
can be observed that the choice of three pairs (distant groups of three microphones each)
provides an appealing trade off between the performance and the number of channels (six
in total). The DER at this point is also lower than the case of concatenating all channels’
features. The case of Fig. 8b, better demonstrates the achievement of the desirable diversity
using this selection criterion. Selecting two distant groups of microphones is assumed to
provide more diversity between the channels, compared to the case of Fig. 8a, hence, better
performance is achieved.

It is evident, from Fig. 8b, that using a concatenation of features of only one pair of
distant microphones provides a marginal 2% decrease in DER compared to the case of using
only features extracted from the beamformed signal (Table 2). This can also confirm the
basis of this selection method. For the AMI evaluation data (TS3000) there was a decrease
of about 4% in DER using features extracted from a central and one distant microphones.
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The theoretical behaviour of the plots of Fig. 8 was anticipated to be as in the following.
A concatenation of a few number of distant channels improves the performance as the
diversity is assumed to be high. By adding more channels, the errors are expected to increase
as a result of decrease in the diversity. Then the performance is supposed to improve again
by adding more channels as it approaches the case of concatenating all channels’ features.
The plots of Fig. 8 fairly accommodated the expectations. Sharp changes occurred due to
the fact that the DER and SER depend on the outcomes of three components within the
system: clustering, best clustering selection and the final re-segmentation. In the process of
changing the amount of features, a small variation in one component’s outcome can cause
non-smooth changes in the subsequent ones.

Tables 4 and 5 show system performance in light of both cases of the proposed channel
selection method at the points that gave the lowest errors based on the IS1000 development
set. By comparing the results in tables 4 and 5 to those of Table 2, one can notice that
there is a maximum relative improvement in DER of around 8% on the TS3000 evaluation
set. While the development set exhibited a maximum relative improvement in DER of about
25%. It is normal that the relative improvements on the IS1000 development set and TS3000
evaluation set are different because of the difference in meetings conditions. However, this
selection method provides a cost effective alternative to beamforming. Using features of only
one pair of distant microphones, this method presented relative improvements of 6.59% and
10.15% for the IS1000 development set and TS3000 evaluation set, respectively.

Dataset DER (%) SER (%) DERb (%) SERb (%)
IS1000 Dev Set 28.99 28.50 36.41 35.90
TS3000 Eval Set 38.03 37.10 41.25 40.30

Table 4: System performance for the IS1000 development set and TS3000 evaluation set as an effect of
features concatenation of one central channel and three distant channels.

Dataset DER (%) SER (%) DERb (%) SERb (%)
IS1000 Dev Set 26.95 26.50 36.41 35.90
TS3000 Eval Set 38.87 37.90 41.25 40.30
CHiME-6 Eval Set 61.75 47.10 63.84 49.20

Table 5: System performance for the IS1000 development set and the TS3000 and CHiME-6 evaluation sets
as an effect of features concatenation of two distant groups of channels. Each group has three microphones.

4.2.2. Best Quality Channels

The beamformed signal is used here as a reference to assess the quality of the channels
using the cepstral distance and based on 19 MFCC coefficients extracted from the available
speech signals.

The performance of speaker diarization based on acoustic features from channels selected
with this method is investigated using the IS1000 development data. The development data
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is used to estimate the sufficient number of best quality channels which the concatenation
of their features improves the performance. In this method, the channels’ signals are not
processed by any form of speech enhancement techniques. Therefore, the quality of the
channels is assessed using the proposed method without any speech enhancement.

Fig. 9a shows the changes in DER in relation to varying the number of best selected
channels. Concatenated features of these best selected channels are used in binary key based
diarization. In the figure, the diarization performance using features of the first selected best
channel is superior to that of the beamformed signal. This channel presented lower DER by
about 4%. Then concatenating additional features of more good quality channels decreased
the DER even further. The increase in DER at 4 channels is caused by a sudden increase in
the DER of meeting IS1001a. For this meeting, the DER was 39.94% for three channels, then
it jumped to 61.34% for four channels and then it returned to 39.00% with five channels.
When the DER was 61.34%, the system mistakenly estimated that the number of speakers
in meeting IS1001a is eight, while the actual number of speakers is only four.

The lowest DER is achieved with five channels. This best performance point is followed
by an increase in DER, possibly as a result of adding features from poor quality channels.
Then the error decreases again, potentially, because of the increased feature dimensionality
and diversity. The error continues to decrease as a result of approaching the performance
when all channels’ features are used, see Table 3. For comparison, Fig. 9a also presents
results on the concatenation of features of random channels in addition to a selection that
starts with worst quality channels. Worst quality channels are selected as the ones that have
the highest cepstral distance from the beamformed signal. One can notice from the figure
that the curve for worst quality channels provides degraded performance in the beginning.
Then, it improves when the number of channels increases. On the other hand, the curve of
the random selection has no particular trend. In all cases, the performance improves when
the number of channels increases. However, the relatively high increase in dimensionality
causes the processing time to increase.

Fig. 9b shows the standard deviation (SD) of the values of the curves in Fig. 9a. At the
beginning, high SD can be noticed due to the relatively high differences in the values of best
and worst quality channel selection. The situation in the case of four channels happened
because of the reasons explained above regarding the IS1001a meeting. SD then decreases
in the case of six channels and it was expected to continue decreasing until it reaches zero
at the case of twelve channels, which is almost the case. However, the case of seven channels
has higher SD than the case of six channels; nonetheless, it has less SD than the cases of
one, two, three and five channels. The relatively high SD in the case of seven channels is
partially caused by improvements in the cases of worst and random channel selection.

By using a concatenation of features in the diarization, it can be difficult to tell if
this selection method is performing as anticipated. It can be more informative to report
the system performance, for illustrative purposes, when features of the selected channels
are individually used in the diarization. Fig. 10 demonstrates the system performance in
relation to using features from individual channels, starting from the best quality channel as
selected by this method. The curve of Fig. 10 implies that the channel quality estimation
process is performing fairly as anticipated. In general, the DER increases as the quality of
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Figure 9: Effect of best quality microphones selection (IS1000 development set) on DER. In Fig. 9a,
DER-Best indicates the case when the concatenation start from the best channels. DER-Worst indicates
the opposite case. DER-Random indicates random selection. Fig. 9b represents the mean and standard
deviation of the values of DER-Best, DER-Worst and DER-Random.

the channel decreases. However, the concatenation of features from good quality channels
results in lower DER as reported in Fig. 9a.

Given the similar level of errors for the range of channels 7 to 11 (Fig. 10), it can
be inferred that the qualities of those channels are similar. Therefore, those low quality
channels were not optimally ranked by the selection method minimising the impact on the
final results. Thus, it appears that the method provides good selection performance, in
general, in addition to identifying the worst quality channel (channel 12) which provides the
highest error.

In the evaluation, features concatenated from up to five of the best channels are used
with the TS3000, the RT-05S NIST and the CHiME-6 evaluation sets. Table 6 shows the
results for these three sets in addition to the development set. The proposed method of
best quality channel selection presents a relative improvement in DER of about 20% for
the IS1000 development set and 8% for the CHiME-6 evaluation set in comparison to the
case of using MFCC features extracted from the beamformed signals. For the RT-05S NIST
evaluation set, the proposed method introduces a relative improvement of 14.43% in DER
and 20.65% in SER.

Dataset DER (%) SER (%) DERb (%) SERb (%)
IS1000 Dev Set 29.13 28.60 36.41 35.90
TS3000 Eval Set 38.84 37.90 41.25 40.30

RT-05S NIST Eval Set 26.44 16.90 30.90 21.30
CHiME-6 Eval Set 58.58 43.90 63.84 49.20

Table 6: System performance for the IS1000 development set and for the TS3000, RT-05S NIST and CHiME-
6 evaluation sets as an effect of features concatenation of a maximum of five best quality channels.
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Figure 10: Effect of microphones selection (IS1000 development set) on DER starting from the best quality
microphone. This plot demonstrates the efficiency of this selection method in distinguishing signals’ qualities,
specifically, for the range between 1 and 9.

4.3. Performance for Acoustic Features Extracted from Selected Channels Subbands

The three cases of subbands division to be investigated are summarised in Table 7.
Despite that the proposed subband selection method aims to account for possible differences
in reverberation effects over the subbands, the extent of reverberation over the spectrum is
unknown. In an attempt to tackle such uncertainty when examining a subband, the AJG
(ξ̂) will be estimated over the subband plus 50% extensions with the adjacent subbands as
described in the second column of Table 7.

The choice of the best subband division case will be made based on experiments per-
formed using the 16 meeting excerpts of the AMI corpus. In other words, both of the IS1000
and TS3000 sets will be used as development data. New baseline performance is produced
here using features extracted from beamformed signals. The reasons is to make the compari-
son consistent with the feature extraction setup of this method. In this method, the number
of cepstral coefficients that are kept after applying Discrete Cosine Transform (DCT) is the
number of filters minus 1, where only the 0th coefficients are discarded. Thus, 23 MFCC
coefficients are obtained after extraction with 24 mel-filters filter bank. The new baseline
results using these 23 MFCC coefficients, DERnb and SERnb, are shown in Table 8.

Table 9 shows the system performance using the combination of IS1000 & TS3000 sets
for the 2, 3 and 4 division cases of the subband selection and feature extraction process
describe here (as summarised in Table 7). Both of the 2 and 3 subband cases improve
the accuracy over the reference performance shown in Table 8. In theory, having smaller
sections of the spectrum selected from different channels is not expected to degrade the
performance. However, the case of 4 subbands has slightly degraded the performance which
can be a limitation of the feature extraction framework. In the case of 4 subbands, the
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No. of Spectrum Limits for Subbands for Mel-Filters

Subbands Estimating ξ̂k1,k2,j Feature Extraction Subset

2 51 - 3012.5 Hz, 51 - 2025 Hz, 1 - 17,

1037.5 - 4000 Hz. 2025 - 4000 Hz. 17 - 24.

3 51 - 2025 Hz, 51 - 1367.66 Hz, 1 - 14,

709.33 - 3342.65 Hz, 1367.66 - 2684.32 Hz, 14 - 20,

2025 - 4000 Hz. 2684.32 - 4000 Hz. 20 - 24.

4 51 - 1531.25 Hz, 51 - 1037.5 Hz, 1 - 11,

543.75 - 2518.75 Hz, 1037.5 - 2025 Hz, 11 - 17,

1531.25 - 3506.25 Hz, 2025 - 3012.5 Hz, 17 - 21,

2518.75 - 4000 Hz. 3012.5 - 4000 Hz. 21 - 24.

Table 7: Summary of the MFCC based feature extraction framework from selected channels’ subbands. The
third column shows the subbands to be selected from different channels. The exact subband of a channel
used in the feature extraction can be slightly extended as a result of the actual number of filters used, refer
to Fig. 6. The feature dimensionality is 23 for all cases.

Dataset DERnb (%) SERnb (%)
IS1000 34.66 34.20
TS3000 44.68 43.70

IS1000 & TS3000 39.99 39.20
RT-05S 32.13 22.60

CHiME-6 Eval 64.58 49.90

Table 8: Binary key based system performance for the datasets under investigation using 23 dimensional
MFCC features extracted from beamformed signals. These results are the baseline to which the subband
selection results are compared.

third subband (2025 - 3012.5 Hz) is decomposed using 5 mel-filters and the fourth subband
(3012.5 - 4000 Hz) is decomposed using 4 mel-filters. Since those are overlapped filters, they
can have poor transformation of the spectrum because they are expected to have relatively
high residual in the correlation matrix of their log-energies as discussed in (Ahmed et al.,
2019).

From Table 9, one can notice that the best results are obtained for the case of three
subbands. This finding is further investigated and evaluated on the RT-05S and CHiME-6
evaluation sets and the results are shown in Table 10. The same table also presents separate
results for each of the IS1000 and the TS3000 sets. The results of Table 10 appear to
show a noticeable relative improvement over the case of using MFCC features extracted
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No. of Subbands DER (%) SER (%)
2 38.87 38.10
3 35.02 34.30
4 40.61 39.90

Table 9: Binary key based system performance for the combination of IS1000 and TS3000 sets for the cases
of 2, 3 and 4 subbands.

from the beamformed signal (Table 8). The results appear to provide evidence that the
methodology presented in this section might considered to be a better practice than the
process of combining all channels’ signals into a single beamformed signal. Beamforming is
a time domain process that does not take into account the spectral properties for individual
microphones and in particular any deficiencies in specific ranges of a microphone’s signal
spectrum. These results appear to show that channels’ subbands selection discards channels
with spectrums that may have been distorted by reverberation effects or other degradation.

Dataset DER (%) SER (%) DERnb (%) SERnb (%)
IS1000 30.00 29.50 34.66 34.20
TS3000 39.45 38.50 44.68 43.70
RT-05S 28.21 18.60 32.13 22.60

CHiME-6 Eval 56.37 41.70 64.58 49.90

Table 10: The performance of the binary key based diarization system for each of the IS1000, TS3000,
RT-05S and CHiME-6 sets in the case of three equal subbands spectrum division.

5. Experimental Evaluation in GMM-BIC based Diarization

The purpose of the evaluations provided in this section is to robustly validate the methods
proposed in this work. This is achieved by assessing the performance of a different speaker
diarization framework using the front-ends presented here. The well-known diarization ap-
proach introduced by (Ajmera and Wooters, 2003) is deployed in this framework. This
diarization system is commonly used to obtain state-of-the-art performance as in (Mart́ınez-
González et al., 2017) and as a reference as in (Delgado et al., 2015b). It fundamentally
depends on the Bayesian Information Criterion (BIC) to make cluster merging and merging
stopping decisions, see (Ajmera and Wooters, 2003).

This system has been widely used and extensively described in the literature, see (Pardo
et al., 2007b). The underlying conception models an utterance (segment of the conversation)
using an ergodic Hidden Markov Model (HMM) whose number of states is equal to the
number of initial clusters. The substates in this HMM impose a fixed duration on the cluster
and they share a Probability Density Function (PDF) modelled by a Gaussian Mixture model
(GMM) with a diagonal covariance matrix. Practically, the system performs feature vector
based GMM segmentation and BIC clustering. The operation of this system as used here is
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described as follows. Feature vectors corresponding to silences are first removed. The rest
of the feature vectors are uniformly divided into K sections, each one represents an initial
cluster. Each cluster is modelled by a five components GMM.

The conversation feature vectors are also segmented into portions of 2.5 seconds which
is the fixed duration imposed here. Then, a number of GMM models training and segments
assignment are carried which involves the Viterbi decoding followed by a merging step. When
cluster merging takes place, the number of GMM components of the new cluster is the sum
of the number of components of the original clusters’ GMMs. Two clusters are merged if
they have the greatest ∆BIC, where ∆BIC = log p(D|θ)− log p(Da|θa)− log(Db|θb). θa and
θb are the GMMs of clusters a and b, respectively. Da and Db are the feature vectors that
are used to fit θa and θb, respectively. D is the union of Da and Db and it is used to fit the
model θ of the prospective newly merged cluster. Cluster merging stops when ∆BIC for all
remaining cluster pairs is less than zero. In that case, a final re-segmentation is carried using
Viterbi decoding where the segment size is reduced to 1.25 seconds. This is to allow the
detection of shorter change points between speakers. In the Viterbi decoding, the transition
matrix is always set manually, where α = β = 1 as in (Anguera, 2006). Thus, the values
of the elements of the transition matrix diagonal are equal to α, whereas the values of the

off-diagonal elements are equal to
β

K − 1
.

The pre-described configuration is used here to produce baseline performance. The
IS1000 dataset is used as a development set to optimise these parameters. The baseline
results, see Table 11, for the four datasets (IS1000, TS3000, RT-05S and CHiME-6) are
achieved using features (19 MFCCs) extracted from the beamformed signals. The front-
ends proposed are used as previously optimised in the binary key based approach. This
means the features of a maximum of five best channel selection, of two groups of three
distant microphones and of selected three least reverberated subbands.

However, a number of parameter optimisation are carried on the diarization system of
this section to achieve the best results. For this purpose, the IS1000 dataset is used as a
development set. In the new configuration, the number of initial clusters is K = 20. The
segment duration is 1 second in both of the iterative and final re-segmentation processes.
Moreover, the concatenation of multiple channels’ features, in the case of best and distant
channel selection, is found to harm the system performance. This is due to the increase
in feature dimensionality (up to 114) which resulted in poor cluster modelling using the
GMMs. This is because of the relatively small amount of data used to fit the GMMs.

Two different solutions are adopted to overcome this problem. In one case, Principal
Component Analysis (PCA) is used to reduce the dimensionality of the concatenated features
to only 19 coefficients as in the baseline case. In the other case, multiple sub-systems are
used where each sub-system operate on the features of one channel. Equal-weight score
fusion is used to relate the diarization process and final output. Table 11 reports all the
results of this section. Noticeable relative improvements can be seen in the table on the
datasets used in the experiments. Table 12 presents a comparison to the results reported in
the literature on the standard RT-05S dataset. The methods proposed in this work enabled
the GMM-BIC based system to outperform a number of diarization approaches from the
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System Configuration IS1000 (Dev. Set) RT-05S TS3000 CHiME-6 Eval
& Front-End Type DER SER DER SER DER SER DER SER

Baseline 30.80 30.30 27.44 17.90 38.28 37.30 59.75 45.10
Best Channels Selection

Multiple Sub-Systems 22.43 21.90 24.18 14.60 31.78 30.80 53.27 38.60
Single System 20.60 20.10 23.95 14.40 30.35 29.40 55.39 40.70

Distant Channels Selection
Multiple Sub-Systems 28.87 28.40 – – 37.20 36.20 53.43 38.70

Single System 22.85 22.40 – – 33.79 32.80 52.83 38.10
Channels Subband

Selection 23.94 23.40 25.00 15.40 33.19 32.20 54.04 39.40

Table 11: This table shows the performance of the GMM-BIC based diarization system subject to the front-
ends proposed in this work. The baseline performance of the standard MFCC coefficients that are extracted
from beamformed signals is also reported for comparison.

literature (see Table 12).

System Front-End DER (%) SER (%)

GMM-BIC based Acoustic 23.95 14.40
Multiple Sub-Systems (Best channel selection)
Information Bottleneck Acoustic + Spatial – 17.70

(Vijayasenan et al., 2008)
GMM-BIC based System Acoustic 24.96 –

(Anguera and Bonastre, 2011)
Online i-vector with Information Acoustic – 16.10
Bottleneck (Madikeri et al., 2015)
PLDA i-vector with Information Acoustic – 16.50
Bottleneck (Madikeri et al., 2015)

Robust GMM based Spatial – 17.00
Modelling (Peso, 2016)

Table 12: Summary of the performance of a number of diarization systems for the RT-05S NIST set compared
to the best result achieved in this work.

Moreover, the best result presented in our work using the CHiME-6 evaluation dataset is
achieved within the GMM-BIC based framework using MFCC features of six distant chan-
nels as a front-end. The recent work in (Medennikov et al., 2020) carried evaluations of
the performance of a number of diarization approaches using the CHiME-6 Track 2 eval-
uation set. Within a number of frameworks, the work considered various front-ends such
as MFCC, i-vectors, x-vectors and Wide ResNet (WRN) x-vectors. The diarization frame-
works included Agglomerative Hierarchical Clustering (AHC) based on Probabilistic Linear
Discriminant Analysis (PLDA) scoring as well as Spectral Clustering (SC) based on co-
sine similarity scoring. They also included End-to-End Neural Diarization (EEND) and a
novel Target-Speaker Voice Activity Detection (TS-VAD) approach that is based on a single
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channel (TS-VAD-1C) and multiple channels (TS-VAD-MC).
Table 13 provides a comparison of this result to those presented in (Medennikov et al.,

2020). It can be noticed that the DER in our framework is lower than most of those reported
in the table except for the DER of the TS-VAD approach. This is probably because TS-
VAD uses two different front-ends and that its configuration is based on the actual number
of speakers. More importantly, the TS-VAD approach is designed to address the problem of
overlapped speech which is a major issue in the CHiME-6 dataset.

System Front-End DER (%)

PLDA based AHC x-vectors 68.20
PLDA based AHC WRN x-vectors 63.79

Cosine Similarity based SC WRN x-vectors 60.10
EEND WRN x-vectors 56.01

GMM-BIC based AHC Distant Ch. MFCC 52.83
TS-VAD-1C MFCC + i-vectors 39.80
TS-VAD-MC MFCC + i-vectors 37.57

Table 13: Summary of the performance of a number of diarization systems (see (Medennikov et al., 2020))
for the CHiME-6 Track 2 evaluation set compared to the best result achieved in this work.

6. Conclusions

The binary key diarization framework is relatively fast. It can complete the diarization
process of an entire recording within 3.5% of its duration (Delgado et al., 2015b). Thus, it
is preferred here for the purpose of optimising the performance of the proposed methods.
Additionally, when feature dimensionality increases due to concatenation of channels, binary
key based diarization performance can still be considered fast. This is because acoustic
features are projected once on the KBM. Afterwards, the rest of the process is based on the
obtained binary keys which are compared against each other using the Jaccard coefficient.

The selection of distant microphones appears to be functional in achieving diversity
among the chosen channels. Variations in microphones locations can affect the underlying
physical phenomena governing the propagation of sound in a room. For example, the inter-
action of the speech wave-front with obstacles varies depending on the path of propagation.
Therefore, distant channel selection should introduce diversity in the conditions of the speech
recorded by microphones of different locations. It presents a best relative improvement in
the performance of the GMM-BIC based system of 25% and 11% for the development and
evaluation sets, respectively.

Channel selection is normally used to exclude degraded channels in speech processing.
The cepstral distance approximates the distance between the log-spectra of two speech
frames represented by the cepstral coefficients. Therefore, with the beamformed signal as
a reference, the cepstral distance provides the anticipated outcome of good quality channel
selection. It is found to successfully identify good quality channels. This selection provides a
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maximum relative improvement in the performance of the GMM-BIC based system of 33%
and 20% for the development and evaluation sets, respectively.

Furthermore, the subband selection introduced here targets degradation exhibited by a
channel across a specific range of its spectrum. Subband selection particularly addresses the
typical problematic effect of reverberation. The average joined gradient measure presented is
found to be successful in differentiating the amount of reverberation that affects the speech
spectrum. It is feasible in different recording conditions because it depends on a threshold
that is calculated from the signals to be compared. In comparison to good quality selection,
subband selection can ensure the exclusion of degraded subbands. Those subbands can
be more important for speaker discrimination and are otherwise selected from a different
channel. Subband selection presented a maximum relative improvement in the performance
of the GMM-BIC system of 22% and 13% for the development and and evaluation sets,
respectively.

The experimental results introduced in this paper shows that the presented approaches
outperform acoustic beamforming. This implies that a more efficient exploitation of micro-
phone signals is achieved here. Despite that subband selection can be more thorough than
good quality channel selection, it can be noticed that the latter presents better performance.
This can be attributed to the difference in feature dimensionality. However, when feature di-
mensionality is an issue in some scenarios, subband selection can provide an efficient solution
and satisfying improvement.

A future work may allow different channels to be used for acoustic feature extraction
at different times. Such paradigm would address the potential effect of speaker movements
on channel selection and, consequently, on the extracted features and system performance.
The effect of speaker movements can be more pronounced when channel subband selection
is engaged. Moreover, the system performance can be examined when selected channels are
combined using, for example, beamforming before feature extraction. This can be useful in
the case of GMM-BIC based system as an alternative to using multiple systems or to using
PCA on concatenated features.
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