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Bonithon, Saúl Armendáriz Puente, Murtadha Al-Maliki, Tim Wigger and all the friends and
colleagues whom their companionship has eased the workload of this journey.

I am very grateful to my wife, Aya Mohammed Najeeb, for her continuous encouragement
and support along this study. I owe her a lot for taking care of our children and myself and
for bearing many responsibilities so that I can spend a lot of time working on this research.
I would like to express my profound appreciation to my father, Dr Isam Ahmed, and my
mother, Mrs Sabah Ahmed, for their support, encouragement and continuous prayer for me
and my family during this journey. I owe my daughter, Yusur, and my son, Alhasan, a lot for
me being very busy with my work. Thanks also go to my sister Zahraa Ahmed, her husband
Ahmed Mohammed Najeeb and my brother Abdullah Ahmed.



Abstract

A number of enhancements on the front-end of i-vector based speaker verification and binary
key based speaker diarization are introduced. This is achieved by tackling the methods of
acoustic feature extraction and feature combination and by proposing a source selection of
the speech signal and spatial feature transformation for speaker diarization. A new paradigm
for the extraction of the Mel-Frequency Cepstral Coefficients (MFCC) speech features is
introduced and it is based on determining the cepstral coefficients from suitably selected
subsets of the filters in the filter bank. The extraction of the Linear Predictive Cepstral
Coefficients (LPCC) is also tackled by having the required estimation of the autocorrelation
function approximated as the inverse of the smoothened multitaper spectral estimates.

A Recurrent Neural Network (RNN) based weighted Principal Component Analysis
(PCA) approach is introduced for feature fusion in addition to dimensionality reduction.
This RNN based approach provides an eigendecomposition of weighted correlation and
covariance matrices. This weighted PCA is found to provide a solution that can be robust to
outliers and to be an efficient method for weighted-feature fusion.

Two selection approaches of multiple microphones’ signals (channel selection) are
proposed for speaker diarization in a meeting scenario. One method selects the most diverse
signals based on the spatial diversity of the microphones. The second method selects the
best quality signals with reference to a signal obtained by combining all of the signals using
the beamforming technique. Additionally, a selection of the least reverberated subbands (of
microphones’ signals) is proposed and it is based on the estimation of the mean gradient of
the spectrum of the speech frames. This is found to provide comparable improvements to the
case when features are extracted from selected channels but at a lower feature dimensionality.

An analysis is conducted to identify the reasons preventing the binary key based diariza-
tion system from operating on spatial features. Depending on the analysis results, a nonlinear
transformation of these features is found to be required to enable their integration into this
system which noticeably improves the diarization accuracy. Additionally, as opposed to
the uniform initialisation method usually used by this diarization system, six non-uniform
initialisation methods are proposed and investigated.
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Chapter 1

Introduction

Technological advancements have focused on reducing mundane tasks performed by humans
or on overcoming human limitations. One of the earliest attempts to utilise a computer in
‘talker recognition’ was in (Pruzansky, 1963) by programmatically matching time-frequency
energy patterns of speech. In (Atal, 1976), it was anticipated that the advances in digital
computing would provide the greatest impetus to research on speaker recognition. Today,
voice recognition has become a fundamental component of Artificial Intelligence (AI) where
leading technology bodies, like Google (Chiu et al., 2018) and Amazon (Purington et al.,
2017), are engaging their resources in speech processing research. Speech processing
technologies have even found uses in home robots such as the recently introduced social
robots, Jibo (Fan & Wang, 2013) and Anki’s Vector (Guizzo, 2018), which have the capability
to perform human-like verbal interaction with a person.

The ability to recognise individual speakers can help in personalising speech processing
based technologies and to ensure a satisfactory level of individuals’ privacy and security. The
work of this thesis focuses on this particular field of speech processing which is referred to
as speaker recognition. This introductory chapter starts by familiarising the reader with the
different forms of speaker recognition with highlights on the ones that are the focus of this
study. It describes the context of this research as well as the problem to be tackled. Then, it
summarises the objectives, the achievements as well as the contributions of this research. It
also presents an outline of the thesis structure.
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1.1 Background

Speech recognition technologies translate the words uttered by a speaker into a form that is
perceivable by a machine. Since voice is a unique bio-characteristic of the speaker, speaker
recognition techniques can, for example, secure human-machine interaction by making the
machine accept communications from particular speaker(s) only. Speech recognition and
speaker recognition have a lot in common but speech recognition is focused on the content of
a speaker’s speech while speaker recognition focuses on speaker identification, verification
and classification, see Fig. 1.1. Other topics that are usually seen as extensions of speaker
recognition include speaker detection, segmentation, clustering and tracking (Beigi, 2011).

Fig. 1.1 Aspects of Speech Processing. The topics of speaker diarization and verification
are the particular applications considered here to demonstrate the benefits of the front-end
enhancements. Note that the proposed front-end enhancements could also be used in many
other aspects of speaker recognition.

The task of speaker identification aims to decide if a claimed identity is true by comparing
the model of the speech presented (to the system) to the speech models of a pre-enrolled
group of speakers which are stored in the system. Speaker verification considers the model
of the speech provided and contrasts it to both the speech model of the claimed identity and
a universal model of speech. Thus it can be used to verify the decision made by a speaker
identification module by making sure that the presented speech model did not only happen to
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be the closest match to a model in a closed-set of pre-enrolled speakers. On the other hand,
speaker classification includes, but is not limited to, the detection of a speaker’s age, gender
and emotions.

The combination of segmentation and clustering is commonly referred to as speaker
diarization. This task attempts to answer the question of ‘who spoke when?’ in an audio
excerpt that involves multiple speakers, see Fig. 1.2. Hence, it also includes speaker detection.
Speaker recognition can be generally categorised into text-dependent and text-independent
(Campbell, 1997), see Fig. 1.1. A text-dependent system attempts to recognise a speaker
who is expected to provide a pre-defined phrase. A text-independent recognition system does
not expect the speaker to provide a particular phrase. Speaker diarization strictly falls under
this latter category. Text-independent speaker recognition is a challenging research problem
for which the National Institute of Standards and Technology (NIST) has been holding a
series of yearly evaluations of evolving techniques (Przybocki, 2011 accessed December 13,
2018).

Fig. 1.2 Illustration of the speaker diarization task where the system is supposed to identify
speakers’ segments within an audio stream.

Text-independent speaker recognition is more versatile in comparison to text-dependent
speaker recognition which mostly applies to the task of speaker verification. This is because
it is difficult to configure other tasks to work with specific phrases. All of the different tasks
require the extraction of suitable features from frames of the speech signal. Text-dependent
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systems usually exploit speech recognition technologies like a Hidden Markov Models
(HMM) based speech recogniser (Reynolds & Rose, 1995). Since the speaker is expected to
provide a specific sentence, an HMM models the temporal sequencing of the speech sounds
from one feature frame to another where those were extracted from the sentence. On the
contrary, speaker modelling in text-independent speaker recognition attempts to surpass
phonetic variations by, for example, averaging across the feature frames as the simplest form
of a model.

Text-independent speaker recognition is the scope of this research where the work focuses
on speaker verification and diarization. The interest in these particular tasks comes from
the fact that they are often desired in many practical applications, see e.g (Kinnunen et al.,
2012; Moattar & Homayounpour, 2012; Rosenberg, 1976). Speaker recognition can make
use of someone’s voice as a biometric measure in access control (security) and forensic
applications to name a few. Speaker diarization is particularly useful in audio indexing where
it can be used to automatically transcribe an audio recording of mixed speakers. The aim
and objectives of this research are set to improve the performance of the widely recognised
i-vector based speaker verification system (Dehak et al., 2011) and the fast binary key based
speaker diarization system (Anguera & Bonastre, 2011).

1.2 Problem Definition and Context

This work focuses on the problem of the front-end performance in providing a reliable
representation of speakers’ speech for text-independent speaker recognition in the contexts of
speaker verification and speaker diarization. Text-independent speaker-modelling techniques
have attracted a considerable amount of research and witnessed a number of advancements as
in the i-vector speaker-modelling presented in (Dehak et al., 2011) to compensate for channel
variability. On the other hand, it appears that, recently, there have been fewer research works
specifically targeting the front-end processes, such as, the feature extraction process that is
designed to reflect speech production and perceptual mechanisms.

Although a system’s front-end is commonly considered to include feature extraction, this
work considers a number of issues that can also be considered to be part of the front-end.
Those include: speech signal sourcing, speech feature qualities, the techniques by which they
can be combined as well as the statistical condition of the features.

A system’s front-end can also influence the effective complexity of the overall system
which can sometimes prevent the system from operating within realistic computational
bounds. This is to be simultaneously addressed when presenting solutions to enhance the
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performance of the front-end. For example, the binary key based diarization system to be
studied here is a very fast system that can perform in real-time but it suffers from somewhat
limited performance. Such a system can benefit from a well designed front-end that does not
considerably affect its appealing speed.

1.3 Aim and Motivation

This research aims at providing robust and efficient enhancements for the front-end of speaker
verification and diarization systems. The outcomes of this research could also provide a
positive impact on other speaker recognition techniques and applications. Although it should
be noted that some aspects are more related to the speaker diarization task, nevertheless, the
achievements of this work are not necessarily limited to binary key based diarization.

Speaker recognition systems can have different configurations and modelling techniques
depending on the task to be performed but they usually share similar types of front-ends.
This has motivated this research to specifically focus on the front-end given the expectation
that the outcomes can be useful to a range of tasks in the speaker recognition field.

1.4 Objectives

This section summaries the objectives of this research. They include the following:

• Study existing research in speaker recognition systems and their front-end processes.

• Identify and address the limitations of the extraction methods of speech features that
are deemed reliable by most speaker recognition systems.

• Review existing feature fusion techniques and develop a robust and efficient fusion
methodology.

• Identify important features for speaker diarization and enable the binary key based di-
arization system to integrate multiple sources of information as done by other systems.

• Improve acoustic feature sourcing for speaker diarization when a conversation is
recorded by multiple microphones.

• Develop suitable methods for the initialisation of the binary key based diarization
system.
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1.5 Achievements

This section summarises the outcomes of this research. This work:

• Introduced a new paradigm for MFCC extraction based on odd and even subsets of
filter banks.

• Fitted the multitaper spectrum estimation method in the extraction of LPCC features.

• Introduced a weighted PCA technique based on a recurrent neural network for feature
fusion.

• Presented a data augmentation method based on adding simulated Gaussian channel
effect to enable the establishment of the i-vector verification system for the evaluation
of feature extraction and fusion methodologies.

• Introduced non-linearly transformed Time Delay of Arrival (TDOA) features using the
Box-Cox power transformation which enables the integration of spatial features in the
binary keys diarization system.

• Presented two channel selection methods to provide suitable signals for the extraction of
acoustic (MFCC) features. This is related to speaker diarization where a concatenation
of features extracted from selected channels is used.

• Introduced a new framework of acoustic feature extraction from selected least rever-
berated channels’ subbands.

• Introduced an initial cluster purification method combined with the k-means algorithm
for the initialisation of the binary keys diarization systems. Binary keys and cumulative
vectors are used together with Jaccard coefficient and cosine similarity metrics.

1.6 Thesis Outline

This section describes the structure of the thesis and directs the reader to the chapters where
the pre-described objectives are addressed. For convenience, results and evaluations of the
proposed methodologies are reported separately in the relevant chapters.

• Chapter 2: this chapter presents a review of previous work on acoustic and spatial
features, feature fusion with PCA, channel selection, speaker verification systems as
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well as speaker diarization systems and their initialisation. It also includes the technical
background about the algorithms and systems that this research builds on.

• Chapter 3: the proposed paradigm for odd-even MFCC feature extraction is presented
in this chapter. This is followed by describing the methodology for multitaper-fitted
LPCC feature extraction. The methodology of data augmentation for the establishment
of the i-vector speaker verification system is also described which makes it possible to
evaluate its performance with the proposed features.

• Chapter 4: this chapter introduces the framework of RNN-based PCA. It highlights a
number of critical aspects that should be considered when performing the principal
component analysis. Then, it describes the RNN solution for the eigenvalue problem. It
also presents the weighting criterion of the feature vectors which aims to down-weight
the contribution of noisy and outlying feature vectors to the extraction of the principal
components. Weighted RNN-based PCA is used for dimensionality reduction and
fusion of the features presented in Chapter 3. This chapter reports the evaluation of the
i-vector speaker verification system using the features obtained using weighted PCA.

• Chapter 5: the speaker diarization problem is specified in this chapter whose ob-
jectives target the performance of binary key based diarization. It focuses on two
issues: the selection of suitable channels for the extraction of acoustic features and
the statistical condition of TDOA (spatial) features. It presents two channel selection
methods one is based on channels’ spatial diversity and the other is based on channels’
quality. It then presents an analysis of the behaviour of the binary key based system to
identify the requirements for integrating TDOA features. Accordingly, it identifies a
suitable non-linear transformation of TDOA features. The performance of binary key
based diarization is evaluated using acoustic features extracted from selected channels,
transformed TDOA features and their integration with acoustic features in a systems’
score fusion fashion.

• Chapter 6: this chapter comprises two distinct parts. The first is related to channel
selection where it presents the methodology for identifying the least reverberated
subband across the available channels. Then it describes the feature extraction frame-
work from selected subbands. This is evaluated using binary key based diarization.
The second part introduces six initialisation methods specific to the binary key based
diarization framework. Then, it performs thorough evaluations to identify the most
robust initialisation method.
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• Chapter 7: the conclusions and future work are introduced in this chapter. The
methodologies presented in the previous chapters are discussed in groups according to
the technical relations amongst them.

1.7 Thesis Contributions

This work makes the following contributions to the field of speaker recognition:

• Unlike the commonly used overlapped filters bank in MFCC extraction, non-overlapped
filters subsets are proposed consisting of the odd and even filters which exhibit a lower
residual correlation in their covariance matrices. This is found to enhance MFCC
features as indicated by the performance of speaker verification and diarization systems
investigated here.

• The estimation of the autocorrelation function in LPCC extraction is achieved by
calculating the inverse Fourier transform of the smoothed multitaper spectrum; based
on the Wiener-Khinchin theorem. This is found to enhance these features as indicated
by the performance of the i-vector based verification system.

• PCA may no longer be simply seen as a dimensionality reduction technique in the field
of speaker recognition. Weighted PCA is found to be a more robust solution. It can be
very useful in feature fusion as it provides the possibility of assigning different weights
to different features.

• Other than for the purpose of data augmentation, added Gaussian channel effect can
help in modelling general mismatch between enrolment and test data that can be caused
by transmission channels.

• Spatial (TDOA) features have skewed distribution and their normalisation by a non-
linear transformation is proposed here which enables their integration in the binary
keys system. The normalisation can also equally be used in other diarization systems
consisting of modelling techniques that assume normality.

• Although signals combination using beamforming is successful, it makes somewhat
limited use of a rich resource. As shown in this work, extracting acoustic features
from selected channels and channels’ subbands is more efficient and presents higher
diarization accuracy.
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• Binary key based diarization can efficiently benefit from non-uniform initialisation
methods that are compatible with its fast performance.

The following diagram illustrates where each of the contributions are made in the thesis.

Chapter 3 
 

• Data Augmentation 

• Extraction of Odd-Even Mel 
Frequency Cepstral Coefficients 
Features 

• Extraction of Multitaper Fitted 
Linear Predictive  Cepstral 
Coefficients Features 

Chapter 4 
 

Recurrent Neural Network  based 
Weighted Principal Component Analysis 
for Feature Fusion and Dimensionality 
Reduction 

Chapter 5 
 

• Spatial Feature Transformation and 
Integration in Binary Key based 
Diarization 

• Channel Selection  for Acoustic 
Feature Extraction 

Chapter 6 
 

• Channels’ Subband Selection for 
Acoustic Feature Extraction 

• Non-Uniform Initialisation of Binary 
Key based Diarization 

Fig. 1.3 Illustrative diagram of thesis contributions in each chapter.

1.8 Summary

This chapter defined the problem, aim and objectives of this research and summarised the
achievements and contributions of the work conducted in this thesis. The description of the
thesis structure highlighted the achievements of each chapter. The background given in this
chapter identified the scope of this research in the filed of speaker recognition. The next
chapter expands on the technical aspects related to this scope and reviews the related works.



Chapter 2

Literature review

This chapter is a review of the literature surrounding the scope of this research. It identifies
research questions to be addressed and the enhancements needed. It also attempts to cover
the technologies that have found most success to date with a particular focus on the front-end
of speaker recognition systems. The front-end is of particular interest as it influences the
performance of the later stages of a system.

The review starts with a ‘low level’ representation of the speaker: the features. This is
followed by details of feature fusion techniques. The enhancements that can be achieved in
these aspects are transferable to the performance of speaker recognition systems in general.
Afterwards, the chapter reviews a higher level representation of speakers, i.e. speaker
modelling. It then covers aspects of the research that resulted in the development of the
widely recognised i-vector based verification system.

Finally, speaker diarization approaches are reviewed with special focus on binary key
based diarization because of its fast performance potentially making it suitable for a large
number of applications. However, existing binary key based diarization systems do not
possess very competitive diarization accuracy. Therefore, innovative approaches are needed
to improve its performance. In the framework of speaker diarization, multiple sources of the
speech signal are usually available. The work here shows how these are currently being used
and draws the attention to alternatives that are feasible and also possible modifications that
can make better use of such resources.
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2.1 Feature Representation of the Speaker

The main processing module at the front-end of speaker recognition systems extracts features
from appropriate observations made about the speakers. Feature extraction can be described
as a number of signal processing procedures, based on some theory or theories, to capture
particular aspects of information from a raw measurement. Acoustic features extracted from
speech signals are probably used in all speaker recognition systems, see e.g Kinnunen &
Li (2010) and Anguera et al. (2012). Spatial features, mainly the difference between the
arrival of the speech signal at different acquisition points, are also used in speaker diarization
systems as an indicator of speakers’ locations in, for example, a meeting room. This section
presents a review about these two categories of features.

2.1.1 Acoustic Features

Since the sampled and quantized speech signal is an acoustic measurement, the extracted
features are known as acoustic features. In speaker recognition, the main objectives of the
extraction algorithms according to Wolf (1972) should be to produce features that

• Provide high discrimination between speakers and low sensitivity to inter-speaker
variations;

• Are robust to noise and other distorting effects, for example, channel distortions;

• Are easy and fast to extract;

• Are difficult to synthesise for impersonation purposes;

• Capture unique characteristics about the speaker’s voice, especially, in the case of
combinations of features.

In acoustic feature extraction, physiological characteristics (such as the shape of the
vocal tract) of the speaker can be seen as the major piece of information to be captured from
the speech signal as stated in Beigi (2011). Additionally, behavioural aspects (such as the
speaking style) of speakers which are delivered in their speech can also be transformed into
features. Physiological and behavioural properties of speakers were the basis of categories
of features as presented in Tirumala et al. (2017). Kinnunen & Li (2010) divided acoustic
features into five categories based on their physical interpretation. For the purposes of
the work here, acoustic features can also be divided into three classes according to their
discrimination capability and computation complexity as illustrated in Fig. 2.1.
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Fig. 2.1 Acoustic feature classes.

• Class A: low Complexity Features

The main downside in the features of this class is their sensitivity to noise Tirumala
et al. (2017).

1. Short-term spectral features are a relatively discriminative category of features
which are fast to compute. They are extracted from very short segments of speech
in the range of 20 ms to 30 ms. In this range, the speech signal is considered
stationary because the speed of articulation movements does not change within
such a short duration. These features represent the colour of speech in addition to
the resonance of the supra-laryngeal vocal tract Benesty et al. (2007), Kinnunen
& Li (2010).

2. Spectro-temporal features are another type of features which are not as discrim-
inative as short-term spectral features but are even computationally simpler to
achieve. They are almost always used with short-term spectral features. These
features are the first and second derivatives of short-term spectral features, hence,
they represent formant transitions and can span larger temporal ranges. They are
called suprasegmental features as the information they represent exceeds phone
and phoneme limits which are the smallest linguistic segments, see e.g Lehiste
(1976) .

• Class B: high Complexity Features

The main downside of these features is that they are easy to mimic, see Beigi (2011)
and Kinnunen & Li (2010).
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1. Prosodic features are suprasegmental types of features that involve pitch or
loudness and their variations. These features are not very reliable to distinguish
between individual speakers because they are easy to impersonate. In this regard,
they can be more appropriate for categorical detection as in Kumar et al. (2011)
where they were used for gender classification.

2. High-Level features are features that attempt to capture information about the
attitude of the speaker Doddington (2001). This type of information is called
lexicon which can be defined as the type of words used by the speakers. The
extraction of such features is computationally demanding where it can involve the
use of other systems like a speech recogniser. These features were first introduced
in Doddington (2001).

• Class C: medium Complexity Features

Other than the features of classes A & B, voice source features is a feature category
that characterises the source of voice, for example, the glottal pulse shape. They are
more reliable than the features of class B as they carry speaker-specific information.
They are, however, less discriminative than short-term spectral features. The methods
proposed for the acquisition of these ‘glottal features’ are more demanding than the
extraction methods of short-term spectral features. However, they are less complicated
than the extraction of high-level features, such as the so called idiolect introduced in
Doddington (2001).

Compared to other feature types, short-term spectral features exhibit appealing properties
which made them the focus of a high volume of research, see Tirumala et al. (2017). These
features are difficult to control and mimic because their extraction do not involve capturing
any information about the attitude of the speaker. The common signal processing condition
that is shared between the extraction methodologies of this category of features is the spectral
estimate that is forced to be carried over short segments of speech. This is because the speech
signal is non-periodic and non-stationary but it is assumed to be periodic and stationary over
short temporal ranges.

Short-term spectral features mainly differ in the manner of the spectral decomposition
they use. This decomposition could either be adaptive as in linear prediction analysis where
the analysis filter poles are distributed on the peaks of the spectrum Dautrich et al. (1983).
Alternatively it could be fixed where a pre-designed set of filters (filter bank) are used to
perform the spectral decomposition. The sizes and spacing of filters in the filter banks can
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differ according to the theory behind the scale used in their design, see Beigi (2011). The
mel-scale is one of the most common scales where the filter bank has more emphasis on lower
frequencies similar to the human auditory system Makhoul & Cosell (1976). Different shapes
of filters can be used in the mel-scale, for example, triangular, rectangular and Gaussian.

The most popular types of short-term spectral features are: Linear Predictive Cepstral
Coefficients (LPCC) given by Rabiner & Juang (1990), Mel-Frequency Cepstral Coefficients
(MFCC) proposed by Davis & Mermelstein (1980) and Perceptual Linear Prediction (PLP)
features introduced in Hermansky (1990). The extraction of LPCC features is based on a
theory of the speech production mechanism while the extraction of MFCC features is based
on speech perception by the human auditory system. The fundamentals behind the extraction
of PLP features can be viewed as a combination of the concepts behind both LPCC and
MFCC.

MFCC features and its variations form 97% of the feature extraction methods used in
the recent literature as studied by Tirumala et al. (2017). This is because, experimentally, it
was found to be successful. Hence, works on its improvement are ongoing and it will also
be the focus of a part of this work. One of the recent works on MFCC is the combination
of a Gammatone filter bank and multitaper spectrum estimation in its extraction Meriem
et al. (2017). The work coupled the advantages of low variance multitaper spectral estimates
with the robustness to noise of the auditory Gammatone filter banks. Hence, improved
performance was obtained for speaker verification under white, babble and factory noise
sources.

Feature combination (fusion) is a common method to improve the front-end of speaker
recognition systems, see e.g Neustein & Patil (2012). Features that are different but somehow
complementary can be combined so that they provide a richer set of information about the
speaker. As stated earlier, PLP shares similarity in its extraction with LPCC and MFCC
features. For example, PLP also uses filter banks for spectral decomposition. Accordingly,
MFCC and LPCC features are a reasonable choice for combination and an improvement in
the extraction of LPCC features is also presented in this work.

2.1.1.1 Mel-Frequency Cepstral Coefficients (MFCC)

The theory of speech perception-based spectral decomposition (using the mel filter bank) is
the fundamental concept behind MFCC proposed by Davis & Mermelstein (1980). These
features are extracted for short frames of the speech signal. The frame size is usually 25 ms
with an overlap of 60%. In conventional MFCC, the frames are smoothed using a Hamming
window then the Discrete Fourier Transform (DFT) is used for spectrum estimation. In the
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literature of MFCC, DFT is usually referred to as the Fast Fourier Transform (FFT) given the
fact that this is how it is implemented. In Kinnunen et al. (2010), the multitaper spectrum
estimation method presented in Thomson (1982) was first included in the extraction of MFCC
features. In multitaper spectrum estimation, the speech frame is simultaneously windowed
by multiple orthogonal windows instead of just a single window and the outputs are averaged
resulting in a smooth spectral estimate. After spectrum estimation, the magnitude of the
spectrum is calculated. The filter bank is then used to concentrate the spectrum energy into a
set of frequency bands (defined by the filters). A bank of triangular filters is defined on a
scale referred to as the mel-scale. An illustration of the filter bank is provided in Chapter 3
(Fig 3.3).

The mel-scale is defined as a logarithmic mapping of the frequencies of the linear scale
κ f using the following approximate transformation originally given by Makhoul & Cosell
(1976)

ζ f = 2595× log10

(
1+

κ f

700

)
, (2.1)

where this transformation and the associated constants are obtained from empirical studies
that attempt to measure the psychological sensation of pitch (a perceptual property of sound)
Hartmann (2004).

Let M be the total number of overlapping filters. The filters are linearly spaced on the
mel-scale and the spacing, ∆, is determined with

∆ =
ζ f max −ζ f min

M+1
, (2.2)

where ζ f max and ζ f min correspond to κ f max and κ f min which are the range of the frequency
band of interest: 50Hz to 4KHz for telephone speech1. Filters’ centres on the mel-scale are
given by

ζ fc(m) = m∆ where m = 1 , ... , M. (2.3)

Let (2.1) be inverse transformed by a function ψ̂ such that

κ f = ψ̂(ζ f )= 700(10ζ f /2595−1). (2.4)

A bank of overlapping triangular filters H (m,κ f ) with the centres of (2.3) can then be

1The lowest audible frequency is 20Hz. However, the low cut-off frequency of wideband transmission
systems is around 50Hz, see (Valin & Lefebvre, 2000).
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determined in the linear frequency scale as:

H (m,κ f )=



ψ̂(ζ f )− ψ̂(ζ fc(m−1))
ψ̂(ζ fc(m))− ψ̂(ζ fc(m−1))

for ψ̂(ζ fc(m−1))≤ ψ̂(ζ f )< ψ̂(ζ fc(m));

ψ̂(ζ f )− ψ̂(ζ fc(m+1))
ψ̂(ζ fc(m))− ψ̂(ζ fc(m+1))

for ψ̂(ζ fc(m))< ψ̂(ζ f )≤ ψ̂(ζ fc(m+1));

0 elsewhere.
(2.5)

By definition, the cepstrum is obtained by taking the inverse DFT of the log of the speech
spectrum, see e.g Benesty et al. (2007). The filter bank log-energies are determined as in the
following

HE (m) = loge

{
K f

∑
κ f=1

H (m,κ f )|s f (κ f )|

}
(2.6)

where |s f (κ f )| is the speech spectrum magnitude and κ f is the higher limit of the speech
spectrum.

Fig. 2.2 Illustrative diagram of MFCC feature extraction.

The cepstral coefficients (comprising the cepstrum) are calculated by applying the Dis-
crete Cosine Transform (DCT) to the log of the filter bank outputs (for MFCC). Cepstral
coefficients are preferred as speech features in speaker recognition because of their inherent
invariance to linear spectral distortions, see e.g Beigi (2011). The DCT is especially useful
due to its decorrelating properties enabling it to help separate out the important information
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contained in the log-energies of filter bank outputs as they are highly correlated. The cepstral
coefficients are obtained using the DCT as follows

MFCCr =
M

∑
m=1

HE (m,κ f )cos

[
r
(

m− 1
2

)
π

M

]
for r = 1, 2, ... , R (2.7)

where R is the number of MFCC cepstral coefficients.
The DCT is applied to all the filter bank output log-energies together. As such, narrow-

band noise affects the entire set of DCT coefficients because the log-energy of each filter’s
output contributes to all of the coefficients, see Sahidullah & Saha (2012). Mostly for this
reason, a number of works are found in the literature where speech features are extracted
separately from individual subbands of the speech spectrum as discussed below.

Subband feature extraction has been used for noisy speech recognition by e.g Tibrewala
& Hermansky (1997). The features were obtained from the power spectrum values of the
PLP filter bank followed by cube-root compression and then further processed for loudness
equalisation. The recognition output was achieved by merging the results of classifiers acting
separately on each subband. The scheme of the system aimed to allow selective de-emphasis
of unreliable subbands given the assumption that the speech signal can be partially degraded
by frequency-selective noise. The number of subbands of the full spectrum was 2,4 and 7.
The frequency range for each subband is given in Table 2.1. This work provided improved
system performance for speech corrupted with a variety of different noise sources including
destroyer-engine, factory, pink, babble and car engine noise sources. However, for clean
speech, the performance was similar to full band feature extraction.

No. of Subbands Frequency Range for each Subband
2 0-1140 Hz & 1046-4000 Hz.
4 0-765 Hz, 700-1640 Hz, 1515-2700 Hz & 2100-4000 Hz.
7 0-360 Hz, 330-640 Hz, 580-950 Hz, 860-1360 Hz,

1265-1920 Hz, 1800-2700 Hz & 2515-4000 Hz.
Table 2.1 The frequency ranges for the subbands considered by Tibrewala & Hermansky
(1997).

Also for noisy speech recognition, Chen et al. (2000) presented a cosine transformation
for blocks of the mel filter bank outputs as opposed to applying the DCT to all the outputs
at once. The resultant features were referred to as Block Discrete Cosine Transform based
MFCC (BMFCC). Subband features were concatenated and used in one recognition system.
The test data used were contaminated with several types of noise including voice babble,
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factory and car engine noise sources. The training data, however, was kept clean. Two
spectrum subbands were chosen with the ranges of 0-1257 Hz and 1104-4000 Hz. BMFCC
was found to outperform conventional MFCC under noisy conditions and to provide slight
improvements for clean test data.

In speaker recognition, Besacier & Bonastre (2000) also addressed distortions caused by
noisy environments that partially affect the speech spectrum. That work was motivated by the
success of subband feature extraction in speech recognition. The spectrum considered ranged
from 47 Hz to 7597 Hz and it was decomposed using a bank of 24 filters of the mel scale.
Twenty-one subbands were chosen, each containing a subset of 4 filters which are highly
overlapped such that the first subband had the filters 1-4 and the second had the filters 2-5 and
so on. For each subband, the extracted feature vectors of a training sample were modelled by
a single Gaussian and the scoring was achieved by determining the log-likelihood value of
the test sample’s corresponding feature vectors from the Gaussian model. The identification
system had 21 sub-systems where the log-likelihood values were combined for a global
score. It was centred on the identification task and given the target of subband feature
extraction it could be considered difficult to scale to other recognition systems. Also, the
approach provided similar performance compared to full band feature extraction for clean and
telephone speech. However, it performed better for speech recorded in noisy environments.

Chakroborty et al. (2007) extracted MFCC features separately from two sets of filter
banks. One was designed according to the conventional distribution of filters on the mel-scale
and the other was an inverted copy of the first one. Hence, while the first put more emphasis
on lower frequencies, the latter put more emphasis on higher frequencies. The aim of the
idea was to capture complementary information by using the separately extracted features
together in a speaker identification system. The methodology improved speaker identification
performance when the features of each set were used in separate sub-systems with score
fusion.

For speaker identification and verification, Kim et al. (2008) presented a similar approach
to Besacier & Bonastre (2000) that additionally shown improvements on clean speech.
The features of the subbands were used together or separately in sub-recognition systems.
Experiments included full band cepstral coefficients extracted from the outputs of mel filter
bank of 33 filters and from 2,3 and 4 subbands that roughly contained equal numbers of
filters. The evaluation included clean speech contaminated with eight types of noise such
as airport, restaurant and car noise sources. The work also included a feature selection to
prevent noisy speech frames from contributing to the recognition scores. The proposed
methodology outperformed conventional MFCC under noisy conditions. For clean speech,
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the improvement in the performance was given by using sub-systems each dealing with
features extracted from one of the subbands.

In Sahidullah & Saha (2012), block based MFCC was proposed for the extraction of
the cepstral coefficients. In addition to tackling the problem of narrow band noise, the
methodology also aimed to prevent the three peaks associated with the formants of speech
from affecting each other when extracting the cepstral coefficients. The work considered two
subbands, one ranging from 0 to 883.17 Hz and the other ranging from 745.93 to 4000 Hz.
Blocks of subsets of a bank of 20 filters distributed on the mel scale were used to extract
subband cepstral coefficients. Experiments included non-overlapping blocks (of filters) and
blocks overlapping by no more than two filters. The extracted features were concatenated
and used for speaker verification where the performance exhibited improvements for clean
and noisy speech. For the purpose of spoofing countermeasures, Paul et al. (2017) extracted
cepstral coefficients from overlapping blocks of the inverted mel-scale filter bank introduced
by Chakroborty et al. (2007).

It can be observed that previous work in subband feature extraction mostly aimed at
tackling the problem of the presence of narrow band noise in the speech signal. The
methodologies presented provided slight improvements or similar performance to the case
of using full band feature extraction of speech not contaminated with artificial noise. The
performance improved further when sub-systems dealt with subband features and the scores
were fused, even for non-noisy speech. However, this might be difficult to scale to other or
all recognition systems and can be impractical as in the case of Besacier & Bonastre (2000).

The performance of block-transformation for the extraction of MFCC in Chen et al.
(2000) and Sahidullah & Saha (2012) was compared to full band application of the DCT in
terms of the residual correlation. For a set of cepstral coefficients, the residual correlation 1

in the associated correlation matrix was used in (Sahidullah & Saha, 2012) to indicate how
well the DCT transformation compacted the output of the filter bank, where the lower the
residual correlation the better transformation.

The work proposed here focuses on the selection of particular subsets of filter banks’ in
light of their associated correlation matrices. As filter bank based spectral-decomposition
is a transformation of the speech spectrum, it is argued in this work, that the lower the
residual correlation of the filter bank’s correlation matrix the better the performance of this
transformation; as strictly related to the concept behind MFCC. Subband DCT works referred
to earlier, had subsets of filter banks that caused the residual correlation of their correlation

1Residual correlation is the mean of the absolute values of all the off diagonal elements of the correlation
matrix, see e.g Sahidullah & Saha (2012).
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matrix to increase. This is caused by the following: the filters are overlapped and the subsets
have a lower number of adjacent filters than those of the full set. These points are addressed
in the methodology presented here in Chapter 3 for extracting MFCC coefficients from
subsets of a filter bank.

2.1.1.2 Linear Predictive Cepstral Coefficients (LPCC)

Linear Predictive Cepstral Coefficients (LPCC) features are based on Linear Prediction
Coding (LPC) which models speech production mechanism. This makes LPCC a good
feature candidate for combination with MFCC since it adds knowledge from a different
perspective. Linear prediction models speech production as an autoregressive process where
a speech frame can be predicted from past frames (delayed versions of the frame). This
process is fitted to an all-pole digital filter model where the coefficients of the filter represent
the vocal tract (the spectral envelop). Hence, the goal is to find the filter coefficients that
minimise the error between the speech frame and its predicted version. This in turn is realised
using autocorrelation, see e.g Broersen (2006).

In the all-pole filter model, a speech sample sn is assumed to be a linear combination of
R past samples and an input un Makhoul (1975)

sn =−
R

∑
r=1

ar sn−r +G un, (2.8)

where G is the filter gain and ar is a filter coefficient (LPC coefficient) of order r. The
transfer function of the filter is expressed as

H(z) =
G

1+
R
∑

r=1
ar z−r

. (2.9)

The problem is to find the coefficients of this filter model. It is assumed that sn can be

predicted from previous samples. Denote this predicted signal by s̃n =−
R
∑

r=1
ar sn−r , then

the error between this signal and the actual signal is

en = sn − s̃n = sn +
R

∑
r=1

ar sn−r, (2.10)
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and the sum of the squares error is

E =
+∞

∑
n=−∞

e2
n. (2.11)

In the practical case, the signal length is limited and the sum of squares error is determined
as follows

E =
N−1

∑
n=0

(
sn +

R

∑
r=1

ar sn−r

)2

. (2.12)

This problem can be solved using the method of the least squares where the parameters can
be achieved by minimising the error with respect to each parameter ar by taking the derivative
∂E
∂ar

. This minimisation problem can also be expressed in terms of the autocorrelation

function of the signal, for frame l, in the form of R linear equations (see e.g Beigi (2011))

R

∑
r=1

ar r̂l(|i− r|) = r̂l(i), (2.13)

where i = {1,2, ...,R}. The autoregressive model of LPC uses the assumption that the signal
is stationary, hence the autocorrelation function is determined for speech frames of short
length (25 - 40 ms). The autocorrelation function of frame l is

r̂l(i) =
N−1−R

∑
n=0

sl,nsl,n+i. (2.14)

Equation (2.13) can be expressed in matrix form (known as the Yule-Walker equations
Kendall (1949)) as

Rlal = rl, (2.15)

where Rl is the autocorrelation matrix and rl is the autocorrelation vector. Thus the vector of
LPC coefficients is al = Rl

−1rl .
Rl is a Toeplitz matrix which makes it simpler to solve for al by applying Levinson-

Durbin algorithm Durbin (1960) to rl without needing to compute R−1
l (Beigi, 2011). This

is because rl comprises the same elements as Rl Makhoul (1975) as illustrated below
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
rl(0) rl(1) rl(2) . . . rl(p−1)
rl(1) rl(0) rl(1) . . . rl(p−2)

...
...

...
...

rl(p−1) rl(p−2) rl(p−3) . . . rl(0)




al(1)
al(2)

...
al(p)

=


rl(1)
rl(2)

...
rl(p)

 , (2.16)

where p is the order of the linear prediction coefficients.
Rabiner et al. (1993) explained how the Durbin algorithm can be applied to solve (2.16).

Furthermore, Beigi (2011) provided a pseudo-code for solving (2.16) to calculate the predictor
coefficients (al). Once the predictor coefficients are calculated, the following recursion is
used to extract the cepstral coefficients (LPCC)

LPCCr = ar +
r−1

∑
j=1

(
j
r

)
LPCC j ar− j , (2.17)

for 1 ≤ r ≤ R.
In speaker and speech recognition fields, different efforts have been put to improve linear

prediction based feature extraction, like LPCC, as will be now discussed. For example,
samples selection for linear prediction (LP) analysis of voiced speech (like vowels) was
presented in Ma et al. (1993). A weighted linear prediction framework was proposed where
speech samples were selectively weighted based on their match to the speech production
model. The method emphasised the contribution of high amplitude samples that are assumed
to be less likely affected by noise. The work reported better accuracy in the estimation of the
LPC coefficients obtained by the weighted analysis than the accuracy of the ones obtained by
the conventional analysis.

An orthogonal framework was presented in Hu (1998) for robust LP analysis. It facilitated
the use of a number of error minimisation criteria and it included a weighting as a function
of the prediction residual. It was noted that for voiced speech, the prediction residual often
comprises of impulsive innovations and random noise. In comparison to analysis criteria
that focus on either of those types of residuals, the weighting function adapted the proposed
framework for both and it was found to be successful in that regard.

A general formulation of weighed LP methods was introduced in Pohjalainen & Alku
(2013). Various temporal weighting functions were included for the optimisation of the
all-pole filter coefficients. The work addressed the problem of having a speech spectrum
corrupted by effects, like noise which was tackled by proposing a generic spectrum analysis
framework which can be adjusted in relation to the corruptions encountered. It was oriented



2.1 Feature Representation of the Speaker 23

around speech-based emotion recognition as a classification problem and the methodology
outperformed standard LP in that task.

For speaker verification under noisy conditions, Hanilci et al. (2012) investigated the
robustness of speech features extracted with spectral estimates based on regularised linear
prediction. The work included regularisation of some of the weighted linear prediction
methods. For speaker verification under factory and babble noise, regularised weighted linear
prediction outperformed conventional and weighted linear prediction methods. However, it
provided similar performance for non-noisy speech. Regularisation was assumed to reduce
the mismatch between training and test data by providing smooth spectral estimates. The idea
was motivated by the regularised linear prediction presented earlier in Ekman et al. (2008).

In the work of Ekman et al. (2008), regularised LP was presented as a parametric
spectral modelling method. The methodology tackled the problem of over-sharpening of the
formants by penalising rapid changes in the spectral envelop of high-pitch speakers. High
pitch frequencies cause standard LP envelop estimation to fail in separating the short-term
dependency (the envelop) from the log-term dependency (the pitch), resulting in an envelop
estimate that is contaminated with harmonics. The regularisation is based on the inclusion of
a penalty measure that increases as the spectral envelop gets more peaky. It was shown that
regularised LP provided a smoother spectral envelop than the conventional LP method.

The use of higher-lag autocorrelation coefficients in the autoregressive model was intro-
duced and investigated in Shannon & Paliwal (2006). The method was based on the fact
that the autocorrelation function of white random noise is zero everywhere except for zero
time lag. Such autocorrelation function values are confined to low-time lags for broadband
noise and are very small for higher time lags. The extracted speech features provided higher
accuracy for noisy speech recognition.

From the same perspective of Shannon & Paliwal (2006), Alku & Saeidi (2017) used
linear predictive spectral estimates based on higher-lag autocorrelation coefficients to extract
robust speech features for noise-robust speaker verification. They further introduced a
combined higher-lag linear prediction which takes advantage of both zero-lag and higher-lag
predictions. The methodology provided the same performance compared to conventional LP
for clean speech and better performance in the presence of additive noise.

In summary, the works reviewed above aimed to have LP based spectral estimates that are
smooth and robust to noise. A simple method that will be presented here can address those
issues together. According to the Wiener-Khinchin theorem, the autocorrelation function can
be determined by taking the inverse Fourier transform of an FFT spectral estimate. Using
that criterion, one can avoid the use of autocorrelation function estimates which at low-time



2.1 Feature Representation of the Speaker 24

lags can be affected by the presence of noise as addressed in Shannon & Paliwal (2006).
Also, if the FFT spectral estimate can be smoothed in some way, sharp peaks in the spectrum
will be implicitly penalised which was the issue addressed in Ekman et al. (2008).

2.1.2 Spatial Features

In the field of speaker diarization, the speakers normally exist in the same enclosed space (e.g
a meeting room) and conversations are sometimes recorded with multiple distant microphones
(MDM). A speaker location in the spatial space is a useful property which was utilised for
speaker segmentation in Ellis & Liu (2004). Locations of the speakers can be estimated
by measuring the difference in the time of arrival of the speech signal at pairs of available
microphones, see Fig. 2.3. These measurements, commonly known as Time Delay of
Arrival (TDOA), were used as spatial features for speaker diarization alone in Pardo et al.
(2006) and combined with acoustic features in Pardo et al. (2007) . They are extracted
using the Generalised Cross Correlation with Phase Transformation (GCC-PHAT or GPHAT)
algorithm Knapp & Carter (1976) which computes the normalised cross correlation between
two signals in the frequency domain.

Fig. 2.3 A meeting room layout illustrating how delay features can indicate speakers’ location
which is helpful in speaker diarization. One can observe that the two speakers have noticeably
different distances to Mic 2. When calculating the delays with the reference to a specific
microphone, let it be Mic 1, the delay in speech signals arrival to Mic 2 would vary depending
on speakers locations.
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Denote the Fourier transforms of the speech signal arriving at microphones i and j by s f ,i

and s f , j, respectively, then TDOA features are determined as follows

GPHATi, j( f ) =
s f ,i[s f , j]

∗

|s f ,i[s f , j]∗|
(2.18)

TDOAi, j = d(i, j) = argmax
d

(RPHAT(d)), (2.19)

where d(i, j) is the delay between channels i and j, [ ]∗ denotes the complex conjugate and
RPHAT(d) is the inverse Fourier transform of GPHATi, j( f ). In (2.18). the complex spectrum
of one of the signals is multiplied by the conjugate of the other signal. This corresponds
to correlation in the time domain. The whitening function, 1/|s f ,i[s f , j]

∗|, normalises the
numerator of (2.18) so that the correlation peak is not confused with frequency components
of high magnitudes. After taking the inverse Fourier transform, in (2.19), the peak in the
time domain indicates the delay between the two signals.

TDOA features are calculated in segments of the speech signal for some segment rate.
The size of segment should not be too large as otherwise it will degrade the resolution of
the estimation or if it is too small, it will affect the robustness of the features Anguera et al.
(2007). These features are usually estimated in segments of 250 ms Vijayasenan et al. (2011b)
while the segment rate may vary.

Delays (TDOA features) are usually estimated between a microphone selected to be
the reference microphone and the rest of the microphones. Alternatively, the channel
(microphone) with the highest SNR is sometimes used as the reference one Pardo et al.
(2007). However, the central microphone is more often used as a reference. The central
microphone is selected as the one that has the maximum average cross-correlation with the
rest of the microphones Anguera et al. (2007).

Vijayasenan & Valente (2012) proposed the extraction of high dimensional TDOA fea-
tures where the delays were estimated between every possible pair of microphones such that
no information was missed. This method was found to be superior to estimating the delays in
relation to the reference channel only. TDOA features were also estimated from microphone
pairs selected with methods that are based on dynamic margin and cross correlation to name
a few González et al. (2012); Martínez-González et al. (2017). Those methods also provided
better performance, compared to TDOA features estimated in reference to a single channel;
in addition, to a lower computational complexity compared to using high dimensional TDOA
features. The work of Martínez-González et al. (2017) also proposed the estimation of high
dimensional TDOA features in combination with PCA to reduce the dimensionality. The use
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of PCA was necessary because in cases of high number of microphones, for example 16, the
feature dimension will be 120 when the delays are estimated between all possible pairs of
microphones.

A different prospective was taken by Anguera et al. (2007), who introduced an improve-
ment in the estimation of TDOA features. Instead of choosing the TDOA as the maximum
value of RPHAT(d) as in (2.19), a number of maximum values are kept for each segment.
Then the most reliable delay value for each segment is selected in two steps of the Viterbi
decoding algorithm. That should let the estimated values of TDOA to follow the talking
speaker and not to be disturbed by sudden noisy events like a door closing.

Another spatial feature that can be estimated when multiple microphones are available is
the Direction of Arrival (DOA) of the speech signal Brandstein & Silverman (1997). These
features were also used in speaker diarization as in Koh et al. (2008). For a microphone
array, DOA features can be obtained by mapping the TDOA features after taking the array
geometry into account Dmochowski et al. (2007). The estimation of the DOA degrades as
the effect of noise and reverberation increases as addressed and tackled in Dmochowski et al.
(2007); Evers et al. (2017).

Fig. 2.4 Distribution of raw TDOA features.

TDOA features are more popular and are relatively quick to estimate. The improvement in
their extraction that was introduced in Anguera et al. (2007) also addressed the reverberation
problem. The work in this thesis addresses an issue of TDOA features that comes after their
estimation. During an inference in the Binary Keys diarization system conducted here, it was
found that these features have a skewed distribution, Fig. 2.4. This indicates that they may
not be appropriately modelled by a Gaussian model or a Gaussian Mixture Model (GMM)
as in Martínez-González et al. (2017); Pardo et al. (2007). Part of this work will focus on
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identifying a suitable normalisation of the distribution of these features and the impact on the
binary key based diarization approach.

2.1.3 Feature Fusion

As mentioned earlier, using more than one type of feature in a recognition system can improve
the performance. The reason is that when some aspect of information about the speaker is
not appropriately or completely covered by a particular feature type, it can be captured by
the other feature(s). In most cases multiple features are fused at feature level (commonly by
feature concatenation) or at the score level.

• Feature-level fusion

Features extracted from speech signals at the same frame-rate can be concatenated and
used in speaker recognition systems as if they were one feature. MFCC and LPCC
features were concatenated to improve speaker identification in Omar & El-Hawary
(2017). In Zeinali et al. (2017a), i-vectors were calculated for text-dependent speaker
verification using a concatenation of MFCC and bottleneck features. Bottleneck
features is the term used to describe features that are extracted from acoustic features
using a DNN as first done by Yu & Deng (2014).

• Score-level fusion

In other cases, separate systems have dealt with a combination of different features
independently and the recognition scores were then fused. This method can present
better performance compared to feature-level fusion but it increases the overall system
complexity because it comprises as many sub-systems as the number of feature types.
Bottleneck, short-term spectral and modulation spectral features were fused at the
score-level for speaker verification in Sarria-Paja & Falk (2018). MFCC and TDOA
features were also fused at score-level for speaker diarization by Martínez-González
et al. (2017).

Using either of these fusion criteria come at the cost of increasing the number of compu-
tations. Score-level fusion is particularly rigid in the sense that an increase in the number of
computations is not possible to avoid because of the need to establish more than one system.
For feature concatenation, the possible gain in the accuracy obtained by combining different
features may not be as considerable in relation to the increased complexity as a result of the
growth in dimensionality.
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The increase in dimensionality can also present other issues. For example, if the features
of interest are used to fit to a Gaussian Mixture Model (GMM), the growth in dimensionality
causes the required amount of data to increase exponentially for reliable density estimates
of the GMM, see Kinnunen & Li (2010). Dimensionality reduction techniques, such as
Principal Component Analysis (PCA), can be used to overcome such shortcomings. When
PCA is performed on concatenated features it can be regarded as feature-level fusion since
the principal components can be seen as a linear combination of the input features, see
e.g Jolliffe (2002). In Chibelushi et al. (1997), PCA was used to fuse audio and visual
information in speaker identification. MFCC features were used for the audio information
while outer lip-margin features represented the visual aspect. Lee & Narayanan (2005)
used covariance matrix-based PCA to fuse a large number (up to 15) of different features in
emotion recognition from spoken dialogues.

For speaker verification using Support Vector Machines (SVM)s, Kajarekar (2005)
used covariance PCA to reduce the dimensionality of polynomial coefficients (of 11479
dimensions) which were a transformation of MFCC features. In synthetic speech detection,
Wu et al. (2013) used PCA to fuse phase modulation features and phase features as well
as phase and MFCC features. However, despite that it was conducted on a combination of
different features, PCA was viewed as a dimensionality reduction tool and the work did not
report results that might help in distinguishing the effect of PCA. In speech recognition using
Deep Neural Networks (DNN)s as a feature extractor, a bottleneck layer (a narrow hidden
layer) is placed in the middle of a network trained for phoneme classification, then bottleneck
features are extracted from that layer (Zhang et al., 2014). However, it was stated that such
a narrow layer degrades the efficiency of the DNN training. Among other modifications, a
relatively large bottleneck layer was incorporated and the dimensionality was reduced using
PCA. This was then found to outperform the conventional bottleneck features for speech
recognition.

In speaker identification using a probabilistic neural network, Ahmad et al. (2015) used
PCA to reduce the dimensionality of MFCC features separately for each speaker and it was
based on the covariance matrix. McLaren & Lei (2015), introduced 2D-DCT coefficients
as speech features and used PCA to reduce their dimension in a speaker verification system.
The system was based on the i-vectors of Dehak et al. (2011) (to be described shortly) and
the lower dimensional features showed improvements over the original features in a number
of cases. In Liu et al. (2015), outputs from hidden layers of various network models were
used to provide high dimensional deep features for text-dependent speaker verification in a
number of systems. That work used PCA to reduce the dimensionality of those deep features
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and also used a concatenation of the reduced dimensional deep features and spectral features.
The work did not report results where original deep features were used, hence, the effect of
using PCA on the performance cannot be inferred. In i-vector based speaker verification with
whispered and normal speech, Sarria-Paja et al. (2016) used PCA for the fusion of MFCC
and Weighted Instantaneous Frequencies (WIF) features; but it also did not report results
without PCA fusion.

As the principal components are orthogonal, the new attributes of speech are uncorrelated
which is important for GMMs with diagonal covariance matrices. Another advantage of
PCA-based feature fusion is the reduction in system complexity as an effect of the reduced
feature dimensionality. However, performing PCA separately for each speech sample, for
example in (Ahmad et al., 2015), in the training or testing phase is undesirable: it adds
another level of computations to the system. In addition, it will result in having speech
features in different spaces which can be more appropriate for individual speaker modelling
Kwok et al. (2004).

An alternative methodology works by defining one set of ‘universal’ principal components
such that the analysis of PCA is performed once and all speech samples’ features are projected
to a unified reduced dimensional space as in (Sarria-Paja et al., 2016). This method of
defining global principal components was proposed for dimensionality reduction in speaker
identification using the Gaussian Mixture Model-Universal Background Model (GMM-UBM)
recognition system in Seo et al. (2009). A global covariance matrix was estimated from the
features of speech samples for a relatively large number of speakers. This method was found
to outperform concatenation of features by Sarkar et al. (2014), where it was used to combine
cepstral features and phonetically discriminant features for speaker verification. A similar
technique in Zhang et al. (2016) also used global covariance PCA for feature fusion in an
i-vector system.

From the works reviewed above, one can notice that PCA is not carefully tuned when
used to describe speech features. For example, many works did not mention the technique
used to extract the principal components. It is therefore assumed to be the classical eigen-
decomposition or the singular value decomposition (SVD). Except for a few works which
mentioned that PCA was based on the covariance matrix, others did not provide information
regarding this aspect which implies that such a factor was not deemed important.

In So & Paliwal (2008), it was reported that the variances of MFCC coefficients largely
differ from each other. Fig. 2.5 includes the plots of the variances of different orders of the
static cepstral coefficients of MFCC as well as LPCC. The training samples of the NIST 2002
SRE telephone data (Martin & Mark, 2004) were used to produce these plots. The relatively
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high differences in the coefficients’ variances strongly suggests that the analysis for PCA
must be based on the correlation matrix; or equivalently a normalisation of variances must be
made beforehand. Otherwise, the attributes with higher variances will dominate the first few
principal components (Rencher, 1992). These high variance features may not have superior
importance over the others. For example, lower order coefficients of MFCC are considered
to be more sensitive to undesirable effects caused by factors such as the transmission channel
So & Paliwal (2008), yet they have relatively high variances.

(a) MFCC

(b) LPCC

Fig. 2.5 Variances of MFCC and LPCC cepstral coefficients.

This work will extract the principal components from speech features of many speakers’
utterances. This is time saving as the analysis for PCA will be performed once. It is also more
compatible with the concept of a universal background model (to be described shortly in
Section 2.2.1) where all utterances are transformed by the same global principal components.
Hence, PCA will be based on a global correlation matrix (or a global covariance matrix).
In such a case, there will be a plethora of feature vectors and they must not be allowed to
equally contribute in the analysis that will eventually produce the principal components. That
is because there might be outliers or underlying noise variance which PCA cannot distinguish
from the variance of the features Bailey (2012); Delchambre (2014). This suggests the
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necessity of adopting PCA methods that are more robust than the traditional techniques as
will be discussed now.

For dimensionality reduction or feature fusion, robust methods of PCA do not appear to
have attracted much attention in the literature. A study in the field of voice conversion, (Rao
et al., 2016), used robust PCA of (Hubert et al., 2005) to remove the effect of outliers when
performing dimensionality reduction. The method combines projection pursuit techniques
(Jones & Sibson, 1987) and minimum covariance determinant estimators (Rousseeuw, 1984).
That robust PCA starts by obtaining the projections of the original feature vectors on a
particular number of principal components extracted using the SVD technique. Then a subset
of the new feature vectors are selected and the determinant of their overall covariance matrix
is determined. For various subsets of the new feature vectors, an iterative process is followed
to find the subset with the lowest determinant of its covariance matrix which is a slow process
as reported in (Hubert et al., 2005). A similar robust PCA approach based on minimum
determinant covariance estimators was used in (Lee et al., 2002) for robustness to outliers in
feature dimensionality reduction for speaker identification.

These methods are not suitable for extracting global principal components for two
reasons. First, the projection pursuit technique is clearly meant to optimise the extraction of
the principal components using the projections of the feature vectors on those components.
The framework of PCA in this work requires the principal components to be retained before
any projection is made. Second, they are based on iterative estimations of covariance matrix
determinants which was reported to be slow and is therefore not feasible to deal with a large
number of feature vectors.

Additionally, in comparison to classical eigendecomposition and SVD, there are alterna-
tive methods that can retain the principal components more precisely and efficiently. This
was indicated in Roweis (1998) where an Expectation-Maximisation (EM) based method
was introduced for PCA. A number of extensions of the EM method were introduced for
PCA in the case of noisy or missing data, see e.g Bailey (2012). In Delchambre (2014), a
power iteration method was introduced as an improvement over the EM algorithm of Bailey
(2012), and it was faster and superior in finding the principal components in the order of
variance they represent. However, this method suffers from a low convergence rate under
particular conditions as shown by Delchambre (2014).

To tackle those observations about PCA, a weighted correlation PCA is introduced in
this work where the principal components are iteratively estimated using a Recurrent Neural
Network (RNN). One of the earliest works that used neural networks for PCA can be found in
Oja (1982), where a class of unconstrained Hebbian-type learning rules were derived for this
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purpose. In that work, the dominant eigenvector is directly estimated from the input sequence
not from a correlation or covariance matrix. In Oja (1992), a Stochastic Gradient Ascent
(SGA) neural network was proposed to extract the less dominant eigenvectors. Since these
methods, of Oja (1982) and Oja (1992), can only retain the principal components directly
from a sequence of feature vectors, it is not straight forward to modify them to deal with a
weighted correlation matrix (or weighted covariance matrix).

In Rajasekaran & Pai (2002), a Recurrent Neural Network (RNN) was introduced to
find the largest eigenvalue and the associated eigenvector of a real symmetric matrix. Yi
et al. (2004) proposed a similar method to additionally find the smallest eigenvalue and
the associated eigenvector. This latter work also provided a comprehensive analysis of the
dynamic behaviours of the RNN model which justified its use in the solution of the eigende-
composition problem. The framework of Rajasekaran & Pai (2002) is only constrained by
the condition that the matrix to be decomposed must be real and symmetric. Therefore, it
is extended here to solve the eigendecomposition problem of a weighted correlation matrix
(and a weighted covariance matrix) and retain the entire set of principal components.

2.2 Speaker Modelling and Verification

The past decade and a half witnessed the development of sophisticated modelling techniques
in the field of speaker recognition. The achievements in this regard have helped in developing
successful speaker recognition systems. This section describes speaker modelling, the
i-vector speaker verification system and its development.

2.2.1 Overview

Recall that short-term spectral features are estimated from short speech frames usually at
a frame rate of 10 ms as in (Dehak et al., 2011). This results in having a hundred feature
vectors for only one second of speech. The simplest method to assess the similarity between
two utterances could be to determine, for example, the Euclidean distance between each
feature vector of one utterance and all the feature vectors of the other utterance. Feature
modelling (i.e. speaker modelling) was first focused on having the feature vectors of a
speakers’ utterances represented by a lower number of vectors. Template models were first
used in this case to build a speaker model from enrolment (reference) utterances. Vector
quantization was one of the approaches used to build a template model of the speaker see
e.g Soong et al. (1985). To test if the utterance of an unknown speaker matches the template
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model of a known speaker, deterministic measures like Euclidean distance or Mahalanobis
distance were used see e.g Campbell (1997).

Later, stochastic models were used for speaker modelling such as Gaussian Mixture
Models (GMM) introduced for speaker identification by Reynolds & Rose (1995). The
enrolment feature vectors were fitted to a GMM. Probabilistic measures, usually the log-
likelihood value, were used in this case to determine if a test utterance matches a speaker’s
GMM model. According to the enrolment (training) criterion, template and stochastic models
are seen as generative models since they characterise the distribution of speech features.
Artificial Neural Networks (ANN) (e.g Yegnanarayana & Kishore (2002)) and Support
Vector Machines (SVM) (e.g Campbell et al. (2006a)), have also been used for speaker
recognition except by modelling the boundaries between speakers and so they are regarded
as discriminative models (see e.g Kinnunen & Li (2010)).

A suitable speaker model is important to have an efficient speaker recognition system.
The following few paragraphs may briefly summarise the main issues addressed in the
literature towards meeting that goal.

Instead of modelling each speaker independently, Reynolds et al. (2000) proposed coupled
speaker modelling for speaker verification. In that method, a GMM was fitted to feature
vectors of a relatively large number of speakers and is referred to as the Universal Background
Model (UBM) usually abbreviated to GMM-UBM. The GMM-UBM represents a broad
acoustic space of speech sounds. A particular speaker GMM is then obtained by adapting
the GMM-UBM parameters to that speaker’s enrolment feature vectors using Maximum
a Posteriori (MAP) optimisation. Hence, the speaker’s GMM is assumed to retain the
GMM-UBM acoustics for speech sounds not seen in the speaker’s feature vectors. This
is important because it helps to indirectly address the issue that a reliable speaker model
requires collecting as much speech as possible from individual speakers. Adaptive vector
quantization presented in Zhou & Mikhael (2006) is another form of coupled modelling that
was used for speaker identification. It presented better performance than conventional (not
coupled) vector quantization based identification. Nonetheless, GMM based models have
attracted more attention and have been adopted in further developments in speaker modelling.

It is feasible to have a simple model of the speaker so that the use of a number of
techniques can be facilitated. The simplest speaker model is probably the one presented
in Markel et al. (1977) which is a vector obtained by time-averaging an utterance’s feature
vectors. However, it provided poor recognition performance. The speaker GMM, on the
other hand, presents a good performance but it comprises a mean vector, a covariance matrix
and a weight for each mixture component. In contrast, another robust and relatively simple
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model called the supervector can be formed by stacking the means of the speaker’s GMMs.
This relatively high dimensional vector was introduced in Campbell et al. (2006b) where
it enabled effective usage of the SVM for speaker verification. Supervectors were widely
used in speaker recognition as in the supervector-based SVM classifier presented for age and
gender recognition in Li et al. (2013). Binary keys by Anguera & Bonastre (2010), identity
vectors (i-vectors) from Dehak et al. (2011) and x-vectors proposed by Snyder et al. (2017)
and more are other developments of simple vector models.

In practice, it is very likely that the enrolment and detection utterances are recorded over
different channels. This channel mismatch negatively affects the recognition performance
Beigi (2011). To address this problem, Kenny (2006) presented a theory and proposed Joint
Factor Analysis (JFA) based algorithms to model channel variability in addition to speaker
variability and considered the supervectors as speakers’ models. The development that
followed in Kenny et al. (2007) namely, eigenchannels, reduced the computational resources
required to perform the modelling. Further studies in Kenny et al. (2008) and Dehak (2009)
eventually led to the introduction of the i-vectors in Dehak et al. (2011).

The i-vector is a simple low dimensional representation of a speaker’s utterance which
enabled the use of a number of techniques such as Linear Discriminant Analysis (LDA). The
estimation of i-vectors, which will be described shortly, accounts for speaker-and-session
variability and coupled modelling, using a GMM-UBM, is a fundamental element of the
process.

In Dehak et al. (2011), the similarity between the i-vectors was determined using the
cosine similarity metric or an SVM classifier. Later, a Probabilistic LDA (PLDA) model
(presented in Garcia-Romero & Espy-Wilson (2011)) became the standard scoring criterion.
In the recent literature, i-vector based speaker recognition systems are found to provide
state-of-the-art performance in many related applications and further enhancements have
been presented mostly for the i-vector/PLDA framework as discussed now.

Kenny et al. (2013) addressed the issue that i-vectors extracted from long utterances are
more reliable than those extracted from shorter utterances. Considering an arbitrary utterance
length, a methodology was proposed to quantify this uncertainty by propagating it to the
PLDA model. Rajan et al. (2014) presented the idea of using the average of multiple i-vectors
to enrol a speaker. Novoselov et al. (2015) used a Deep Neural Network to estimate two
different nonlinear PLDA models that outperformed the linear PLDA model (introduced
in Garcia-Romero & Espy-Wilson (2011)), especially, when both of the nonlinear PLDA
models were combined.
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Kheder et al. (2016) introduced a joint probabilistic model of short and long utterances
i-vectors. The Stereo Stochastic Mapping (SSM) algorithm was used to map short utterances i-
vectors to, supposedly, their long utterance i-vectors which provided noticeable improvement
for short utterances. Cumani & Laface (2017) proposed a non-linear transformation of the
i-vectors to normalise their distribution as assumed by the PLDA model (as will be explained
shortly). Most recently, Khosravani & Homayounpour (2018) proposed a non-parametric
training of the PLDA model.

Speech modelling using i-vectors have also found use in many speech processing related
tasks see Table 2.2. Pal & Saha (2017) proposed a new voice conversion (VC) method
using i-vectors. Zeinali et al. (2017b) presented a state-of-the-art i-vector based approach for
text-dependent speaker verification. Safavi et al. (2018) studied speaker recognition, gender
and age-group classification of children for a number of systems where the i-vector system
presented the best recognition performance.

Task Example
Text-Independent Speaker Verification Dehak et al. (2011)

Language Identification Song et al. (2013)
Voice Conversion Pal & Saha (2017)

Text-Dependent Speaker Verification Zeinali et al. (2017b)
Age and Gender Classification Safavi et al. (2018)

Table 2.2 A number of different speech processing related tasks that use the i-vector mod-
elling.

In order to establish the i-vector system, a set of development data is required. Develop-
ment data is a large amount of speakers’ utterances recorded over different channels and are
used to learn model parameters. Regarding the evaluation set, a speaker’s utterance(s) that
is used as a reference is called the enrolment utterance and the one used at the recognition
(verification, etc.) phase is called the test utterance. These utterances are not used in the
system establishment (development).

The i-vector speaker recognition system has become a standard in speaker recognition
and it is used here in this work to evaluate the performance of the proposed methodologies
for acoustic feature extraction and fusion. The x-vectors recently introduced in Snyder et al.
(2017) are similar to the i-vectors and their performance was better for short utterances but
comparable for long utterances. x-vectors are Deep Neural Network (DNN) embeddings and
they also represent variable length speech samples by a fixed length vector. However, they do
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not include channel variability modelling and also there is a requirement for a relatively large
amount of development data as will be clarified at the end of the following section (2.2.2).

2.2.2 Development of the i-vector Based Verification System

The Joint Factor Analysis (JFA) model presented by Kenny (2006) is expressed, according to
the definition of Rubin & Thayer (1982), as

mu = m+Vy+Ux+Dz, (2.20)

where mu is a speaker-and-channel dependent supervector of a particular utterance (u)
comprised of the components of speaker and channel subspaces combined. These components
are: m is a global speaker-and-channel independent supervector (the Universal Background
Model (UBM) supervector); V and D define the speaker subspace, where V is the eigenvoice
matrix and D is a diagonal residual term which represents inter-speaker variability not
captured in V, and U defines a session subspace (eigenchannel matrix). The vectors x, y
and z are the speaker-and-channel dependent factors in their respective subspaces; each is
assumed to be a normally distributed random variable.

It was observed by Dehak (2009) that the channel factors in (2.20) which are only
expected to model channel effects also contain information about the speaker. That motivated
the definition of the total variability space which simultaneously contains speaker and channel
variabilities. Hence, the Joint Factor Analysis (JFA) of (2.20) became a simple factor analysis
expressed as (Dehak et al., 2011)

mu = m+Twu, (2.21)

where T is a rectangular low-rank total variability matrix of the eigenvectors with the highest
eigenvalues of total variability covariance matrix and wu is the i-vector.

In order to extract the i-vectors, the system initially requires the estimation of a GMM-
UBM (Λ) mainly to obtain the supervector m of (2.21). This speaker-and-channel indepen-
dent supervector is obtained by concatenating the means of all mixture components C of
Λ. For a set of feature vectors, Y = (y1,y2, ...,yL), the parameters of Λ (means, covariance
matrices and weights) are estimated using the Expectation-Maximisation (EM) algorithm
see e.g Reynolds & Rose (1995). Y can vectors set of, for example, MFCC features. Each
component Gc, where 1 ≤ c ≤ C and C is the total number of mixture components, has
an associated probability that is expressed by the following multivariate Gaussian density
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function
Gc(yl) =

wc

(2π)D/2|ΣΣΣc|1/2 exp
[
− 1

2
(yl −µµµc)

′
ΣΣΣc

−1(yl −µµµc)

]
, (2.22)

where wc, µµµc and ΣΣΣc are the weight, mean and covariance matrix of component c, respectively.
Note that this is a D variate function, where D is the feature dimension.

The speaker-and-channel dependent supervector mu of (2.21) is an ‘adaptation’ of m
for the utterance feature vectors of a particular session of a particular speaker. In the factor
analysis model of the i-vector, a statistical alignment for an utterance’s feature vectors is
made by estimating the Baum-Welch1 statistics instead of a supervector adaptation with
Maximum a Posteriori (MAP) estimation which was suggested by Kenny et al. (2004). This
alignment is the posterior probability of a mixture component c for the feature vector yt .
It provides latent information on how the feature vectors react to each mixture component.
In i-vector based systems, the alignment is met by the determination of the Baum-Welch
statistics for the utterance feature vectors given the GMM, Λ see Dehak et al. (2011). For
component c of Λ and utterance feature vectors for T frames, with Y = (y1,y2, ...,yT ), the
0th order Baum-Welch statistics are calculated as follows (Dehak et al., 2011)

nc =
T

∑
t=1

P(c|yt ,Λ), (2.23)

and the 1st order Baum-Welch statistics are calculated as

fc =
T

∑
t=1

P(c|yt ,Λ)yt , (2.24)

where P(c|yt ,Λ) is the posterior probability of the mixture component c generating the
feature vector yt .

Now the extraction of the i-vector requires the 1st order Baum-Welch statistics of a speech
utterance u centralised based on Λ, such that

f̃c =
T

∑
t=1

P(c|yt ,Λ)(yt −µµµc), (2.25)

where µµµc is the mean of mixture component c of the GMM-UBM (Λ). It can be noticed
from (2.25) that the size of f̃c depends on the feature dimensionality. The supervector f̃u of
a speech utterance u has the size C×D as it is a concatenation of the centralised 1st order

1Refer to Appendix A.1 for the definition of Baum-Welch Statistics.
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Baum-Welch statistics of the feature vectors of the speech utterance for all the components
1 ≤ c ≤C.

The total variability subspace T is learned from the supervectors of many development
utterances using the EM algorithm. The process is the same as the one used for learning the
eigenvoice matrix as with Kenny et al. (2005) except that all the supervectors are pooled
together without speakers’ labels. The complexity of the process depends on the size and
number of the supervectors. The resultant T is a low-rank matrix where the number of rows
corresponds to the number of total factors (the dimension of the i-vector) and the number of
columns is equal to the size of the supervectors.

The extraction of the i-vector, wu, is based on the computation of the posterior distribution
of a speaker’s supervector, mu of (2.21), which was achieved by calculating Baum-Welch
statistics for the feature vectors of the speaker see Dehak (2009). This posterior distribution
is assumed to be Gaussian, its mean, also the latent variable in the JFA model of (2.21), is
determined as1

wu = (I+TT
ΣΣΣ
−1NuT)−1.TT

ΣΣΣ
−1f̃u, (2.26)

where (I+TT
ΣΣΣ
−1NuT)−1 is the covariance matrix of the i-vector (wu). I is an identity matrix

with the size of the total factors of T, Nu is a diagonal matrix of dimension C×D by C×D

with diagonal blocks ncI, and c = 1,2, ...,C. f̃u is a supervector of dimension C×D by 1
obtained by concatenating all 1st order Baum-Welch statistics (f̃c). The residual variability
not captured in T is modelled by the diagonal covariance ΣΣΣ of size C×D by C×D. The fixed
length of the i-vectors enabled the application of LDA to minimise within class variance
caused by channel effects as well as reducing the i-vectors’ dimensionality, typically from
400 to 150. The development data required to perform LDA must contain more than one
utterance for each speaker.

The Probabilistic LDA (PLDA) model was first presented in Prince & Elder (2007) in
order to address the problem of different pose and lighting of test and enrolment data in face
recognition, thus it assumes the data is resulting from a generative model which incorporates
within and between class variance. It was later introduced for speaker recognition to perform i-
vector scoring by Garcia-Romero & Espy-Wilson (2011). According to the PLDA generative
model, the i-vector of a speaker utterance u over a particular channel can be decomposed
with

wu = w+ΦΦΦβββ +ΓΓΓαααu +E u (2.27)

1The derivation of (2.26) is provided in Appendix A.2.
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where w+ΦΦΦβ is a speaker term and, ΓΓΓαu +E u is a channel term which depends on the
utterance u . These terms describe the between-speaker variability Φ (eigenvoices) and
within-speaker variability ΓΓΓ (eigenchannels). The statistically independent latent vectors βββ

and αααu have standard normal distribution. The global offset (the mean of the development
i-vectors) is w and E u is a residual term assumed to be Gaussian with zero mean and
diagonal covariance. A full covariance matrix ΣΣΣ of E u can compensate for ΓΓΓαααu +E u as
proposed in Kenny (2010), hence the PLDA generative model of (2.27) was modified to
wu = w+ΦΦΦβββ +E u.

The PLDA model training is simple and computationally efficient, however, it assumes
that the input observations (i-vectors) are Gaussian distributed. It was reported in Garcia-
Romero & Espy-Wilson (2011) that Gaussian PLDA gives inferior performance compared to
Heavy-Tailed PLDA Kenny (2010) unless a transformation is applied to the i-vectors, where
the Radial Gaussianisation (RG) technique was used for this purpose. The model parameters
{w,ΦΦΦ,ΣΣΣ} are obtained using the EM algorithm as described in Prince & Elder (2007) with a
large collection of development i-vectors that are associated with the corresponding speakers’
labels.

The scoring criterion is based on the log-likelihood ratio of the same Hs versus different
Hd speaker hypotheses which aims to determine if the i-vectors of two utterances (test and
enrolment) belong to the same speaker or to different speakers

score = log
P(wt ,we|Hs)

P(wt |Hd)P(we|Hd)
, (2.28)

where we is the i-vector of an enrolment utterance and wt is the i-vector of a test utterance.
This log-likelihood ratio is easily computed in a closed-form since the marginal likeli-

hoods (i.e., the evidence) are Gaussian. According to Garcia-Romero & Espy-Wilson (2011),
each i-vector length is normalised to unity and the scores are determined as

score = logN

([
wt

we

]
;

[
w
w

]
,
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,
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T +ΣΣΣ

])
.

(2.29)

The development phase of the i-vector based verification system is illustrated in the
diagram of Fig. 3.1 following the description provided here.

The establishment of the i-vector/PLDA framework requires large development data
which can be difficult to obtain. This motivated the introduction of a suitable data augmenta-
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tion method here to overcome such a problem by adding noise to copies of the available data.
A similar strategy has been used before to adapt the system parameters (during development)
to specific conditions related to the test utterances. It works by either of the following:
incurring particular effects on the development data that are related to those ones embedded
in the test utterances or using a development data that is already contaminated with such
effects. It is usually referred to this strategy as multi-condition training and it has mostly
been considered in training the PLDA model.

Garcia-Romero et al. (2012) proposed multi-condition training for the PLDA model
where a number of effects were added to the development speech signals to match similar
noise embedded in the test samples. The added effects comprised one of reverberation plus
babble, car and helicopter noise. The effect of multi-condition training of PLDA has been
studied in Rajan et al. (2013). It was found to be important for the system performance under
noisy conditions. For the development and evaluation data, the study included ventilation, air-
condition and crowd noise sources. Then it tested the cases of using the original development
data with original evaluation data and noisy development data with noisy evaluation data. It
was shown that the performance improved when the noise added to the development data
had similar power to the noise added to the evaluation data. However, the performance was
found to be degraded when the development data was contaminated with noise and original
evaluation data was used in the testing.

A number of works appear to have been built on the idea of (Garcia-Romero et al., 2012).
In Villalba & Lleida (2013), a mixture of channel-dependent PLDA models were trained
to take into account the channel conditions of each test utterance presented at the detection
phase. In Mak et al. (2016), another mixture of PLDA models was trained and the presented
test speech was directed to the PLDA model that best matched the test sample’s signal-to-
noise ratio. The work in Martinez et al. (2014) investigated one channel feature-domain
noise compensation combined with multi-condition training. A full multi-condition training
approach was presented in Ribas et al. (2015) where all the development stages of the i-vector
based system included various types of noise added to otherwise clean speech samples.

These aforementioned systems all sought to attempt to model different sources of back-
ground noise. Unfortunately, the positive effects in terms of improved performance that can
be brought by the frameworks of those systems do not generalise to both non-noisy and noisy
evaluation data as found by (Rajan et al., 2013).

The Deep Neural Network (DNN) based x-vector system requires even larger amounts
of development data than the ones required for i-vector based systems. The work in Snyder
et al. (2018) used data augmentation to increase the amount of development data in order to



2.3 Speaker Diarization 41

improve the recognition performance using DNN based x-vectors over the system described
by Snyder et al. (2017). Reverberation effect as well as some types of noise like bubble
noise and music were randomly added to clean speech samples to produce condition-variable
samples which increased the amount of data used to train the DNN. However, that method
was not as helpful for the i-vector system (as reported in the same study) possibly because of
the types of effects added. Also, the power of noise added is somehow arbitrary in the sense
that it was not fine tuned by observing the system performance.

2.3 Speaker Diarization

The configuration of a speaker diarization system is fundamentally different and more
complicated than that of a verification system. Diarization systems generally use similar
speaker modelling techniques as other recognition systems. However, speaker diarization
aims to determine ‘who spoke when?’ in an audio stream where the number of speakers is
one of the desired outcomes see Tranter & Reynolds (2006).

Usually, in an unsupervised manner, a diarization system performs speech segmentation
and clustering with one for each speaker. By doing that, the system automatically attributes
spoken words (or their representations) to individual speakers and delivers the outcome
for further processes. Those processes may include speech reconstruction from the MFCC
feature vectors as in the method introduced in Milner & Shao (2007). The method estimated
the fundamental frequency and voicing information from the MFCC feature vectors and used
those parameters together with MFCC feature vectors to reconstruct the time-domain speech
signal. This implies that it is important that a diarization system is fast enough to allow the
time required for other necessary processes.

There are a number of modalities in speaker diarization which can be classified into two
groups of categories. In the first group, the modalities can be categorised according to the
recording method of a conversation see Fig. 2.6. In the second group, the modalities can be
categorised according to the number of conversations a diarization system is concerned with
see Fig. 2.7. For example, in cross-show diarization, the system looks up the existance of
a speaker in more than one recording. The different diarization modalities share the same
fundamentals. The work here focuses on single show diarization of meetings recorded with
multiple distant microphones. Nonetheless, some of the achievements can be applied to IHM
and SDM diarization modalities.
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Fig. 2.6 Speaker diarization modalities categorised according to the method used to record a
conversation.

Fig. 2.7 Speaker diarization modalities categorised according to the number of conversations
that the diarization system is concerned with.

The performance of diarization systems is mainly evaluated based on the Diarization Error
Rate (DER) introduced in Fiscus et al. (2006), for example, as done by Martínez-González
et al. (2017). DER is defined as the fraction of speaker time that is not attributed correctly
to a speaker. DER comprises of Speaker Error Rate (SER), False Alarm speech EFA and
Missed Speech EMISS. All of these measures, are usually determined, as in Anguera (2006)
and also in this work, using a script named MD-eval-v21.pl developed by NIST see Fiscus
et al. (2006). The DER is expressed as (Anguera, 2006)

DER(%) =
1

Tscore

S

∑
s=1

ζ (s)(max(Nre f (s),Nhyp(s))−Ncorrect(s)), (2.30)

where Tscore = ∑
S
s=1 ζ (s)Nre f is the amount of speech time scored. Nre f is the number of

reference speakers, S is the total number of speech segments and ζ (s) is the duration of a
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speech segment. Within a segment s, Nre f is the total number of speakers, Nhyp is the number
of hypothesised speakers detected by the system and Ncorrect is the number of speakers
correctly matched between the Nre f and Nhyp.

SER is the speaker time attributed to a wrong speaker and it is determined as

SER(%) =
1

Tscore

S

∑
s=1

ζ (s)((min(Nre f (s),Nhyp(s))−Ncorrect(s)). (2.31)

EFA is the percentage of scored time that a hypothesised speaker is labelled as a non-
speech in the reference. It is calculated, only over segments where the reference segment is
labelled as non-speech, as in the following

EFA(%) =
1

Tscore

S

∑
s=1

ζ (s)(Nhyp(s)−Nre f (s)) ∀(Nhyp(s)−Nre f (s))> 0. (2.32)

EMISS is percentage of scored time that a hypothesised non-speech segment correponds
to a reference speaker segment. It is determined, only over segments where the hypothesis
segment is labelled as non-speech, as in the following

EMISS(%) =
1

Tscore

S

∑
s=1

ζ (s)(Nre f (s)−Nhyp(s)) ∀(Nre f (s)−Nhyp(s))> 0. (2.33)

EFA and EMISS mainly indicate the performance of the clustering phase in detecting the
correct number of speakers. Equation (2.30) can now be re-written as

DER = SER+EFA +EMISS. (2.34)

2.3.1 Diarization Approaches and Systems

There are two main approaches in speaker diarization according to Anguera et al. (2012) and
Moattar & Homayounpour (2012). The bottom-up approach, also known as Agglomerative
Hierarchical Clustering (AHC), starts with a relatively high number of clusters and iteratively
merges similar clusters until, in the ideal case, the correct number of clusters have been
reached see e.g Siegler et al. (1997). The top-down approach, on the other hand, usually
starts with one cluster and iteratively partitions until the correct number of clusters have been
reached see e.g Fredouille & Senay (2006).
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There are a number of other approaches that , in some sense, differ from the aforemen-
tioned approaches. The information-theoretic approach introduced in Vijayasenan et al.
(2007) aims to minimise the loss in mutual information between subsequent clustering whilst
preserving the mutual information in terms of a relevance variable. Another approach is
binary key based diarization proposed by Anguera & Bonastre (2011) where segments of
feature vectors are converted to single binary vectors and the clustering and re-segmentation
are performed in the binary domain. An approach introduced by Rouvier & Meignier (2012)
formulated the clustering part of diarization as an Integer Linear Programming (ILP) problem
with the aim of minimising the number of clusters in addition to the dispersion within them.

The bottom-up approach is widely used mostly because of the algorithm presented in
Ajmera & Wooters (2003) that became a standard system. It is based on an ergodic Hidden
Markov Model (HMM) formalism where the number of states is equal to the initial number
of clusters. The probability density function (PDF) of each state is assumed to be a GMM.
An Information Bayesian Criterion (BIC) is used to assess the similarity between clusters and
also as stopping criteria. For any two clusters, one GMM is fitted to the feature vectors of
each and a third GMM is fitted to the feature vectors of both. The BIC based method depends
on the log-likelihoods values for cluster merging. After each merging, a re-segmentation
(refinement) step occurs where short segments (1-2 seconds) of speech feature vectors are
reassigned to the clusters (GMMs) using the log-likelihood value in combination with the
Viterbi algorithm to determine the best segmentation path. Cluster merging stops when the
change in the BIC values becomes less than zero where at that stage each cluster is assumed
to represent one speaker. The diarization system based on this algorithm is referred to here
as BIC based.

The BIC based diarization system presents good performance at the cost of computation
duration that exceeds Real Time (RT) in the standard form of the system as in (Anguera
& Bonastre, 2011) where it was 1.19 ×RT. Probably the best achievement in speeding
this system up is by Gonina et al. (2011) which provided (0.004-0.02) ×RT performance.
This was achieved by parallelising the training of the GMMs using a GPU thus incurs an
additional hardware cost. Some of the alternative approaches presented in the literature
achieved comparable performance to the BIC based system but also with a cost-effective
reduction in computational complexity.

The information-theoretic approach (Vijayasenan et al., 2007) gave 3-6 times faster
performance than BIC based diarization and the binary keys approach performed at 0.103
×RT (see Anguera & Bonastre (2011)). These alternative approaches have attracted attention
because of their appealing performance in terms of speed. They have also been the target
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of research that aimed to increase their diarization accuracy. Vijayasenan et al. (2011a)
integrated acoustic (MFCC) and TDOA features in the information-theoretic approach to
improve the system performance with a minimum of 0.34 ×RT speed Vijayasenan et al.
(2008). Delgado et al. (2015a) introduced several improvements on the binary keys diarization
system including a speed boost of up to 0.0354 ×RT making it the fastest diarization system
as found by Joshi et al. (2016).

Integer Linear Programming (ILP) uses i-vectors as inputs where the i-vector extraction
requires a large amount of external development data as explained earlier. In i-vector
extraction, total variability modelling was made possible, so that this method could be
suitably applied to the problem of cross-show speaker diarization as investigated by Dupuy
et al. (2012). It was noticed in this latter study that the computation time for the ILP approach
increases when speech duration increases. For 5, 10 and 15 hours of speech the computation
time was 0.06 ×RT, 0.19 ×RT and 0.26 ×RT, respectively. Further improvement on the ILP
approach was introduced by Dupuy et al. (2014) that enabled competitive performance to the
BIC based system in the diarization of Broadcast News. Before the ILP approach, i-vectors
have also been used for telephone speech diarization with the cosine similarity metric in
Shum et al. (2011). Sell & Garcia-Romero (2014) used the Probabilistic LDA (PLDA) model
for i-vector scoring in the diarization system.

Recent research efforts in speaker diarization include: microphone pair selection for
the extraction of TDOA features in Multiple Distant Microphone (MDM) based diarization
using the BIC based system Martínez-González et al. (2017). Garcia-Romero et al. (2017)
presented a method similar to the one of Sell & Garcia-Romero (2014) but it replaced the
i-vectors with the DNN embeddings (x-vectors) introduced by Snyder et al. (2017) which
provided comparable performance for telephone speech diarization. A GMM modelling of
TDOA features with the expectation-conditional maximisation algorithm and minorisation-
maximisation approach was introduced in Parada et al. (2017). Given prior knowledge of the
correct number of speakers, that method achieved comparable performance to the BIC based
system in MDM diarization. A recent review of practical challenges in speaker diarization
Church et al. (2017) included the computational complexity as one of the issues where a low
complexity can deliver a real-time performance.

The binary keys diarization system is probably the most efficient in terms of speed and
it does not need any prior modelling (e.g extensive external data as in the case for i-vector
and x-vector based diarization systems). However, the performance of this system is not
satisfactory. The work in Delgado et al. (2015b) improved the system performance for cross-
show diarization by introducing intra-session and intra-speaker variability compensation. It
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was then expanded in Delgado et al. (2015a) where further improvements were introduced
for the cases of single and cross show diarization. Nonetheless, this latter work mostly
improved the speed of single show diarization but its accuracy remained somewhat limited.
The work here focuses on improving the system performance for the Multiple Distant
Microphones (MDM) single show diarization. The existing approaches to binary key based
diarization (see e.g Delgado et al. (2015a) and Anguera & Bonastre (2011)) make limited use
of the availability of multiple microphones and the main challenge here is to integrate spatial
(TDOA) features. Using these features in addition to acoustic can improve the performance of
binary key based diarization as was the case with other systems, see e.g (Martínez-González
et al., 2017).

2.3.2 Binary Key Based Diarization

This section reviews the work that lead to the development of the binary key based diarization
system that will be investigated in this research. It describes the underlying concept and the
system operation.

Binary keys were first introduced for speaker modelling in Anguera & Bonastre (2010).
A binary key is a relatively low dimensional vector of binary values and it is derived from
anchor models. The basic concept of anchor modelling is to represent a speaker’s utterance
with information gained from a set of models (anchor models) pre-trained from a defined set
of speakers (anchor speakers), see Sturim et al. (2001). A binary key also models a speaker
based on the concept of anchor modelling. For speaker identification in Anguera & Bonastre
(2010), the anchor models were GMMs fitted to speech features of selected speakers. The
speech features (in the enrolment or test phase) of the speakers were projected onto these
models to yield the speaker representation. Although the selection of particular speakers’
models as anchor models is important, the size of the anchor models is also important and
it was the focus of Anguera & Bonastre (2010) in the process of deriving the binary keys.
A model that represents the global acoustic space, similar to the Universal Background
Model (UBM), is required to be obtained and it is termed the binary Key Background Model
(KBM). The KBM consists of a collection of anchor speaker models and the overall number
of mixture components determines the size of the binary keys. Anchor speakers’ GMMs can
be obtained by the Expectation-Maximisation (EM) algorithm or by Maximum a Posteriori
adaptation (MAP) of the UBM to speakers’ feature vectors as suggested by Anguera &
Bonastre (2010).
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In order to obtain a binary key v = (v1,v2, ...,vB), vi ∈ {0,1} for 1 ≤ i ≤ B, to represent
an utterance, a cumulative vector, υυυ = (υ1,υ2, ...,υB), υi ∈ N for 1 ≤ i ≤ B, with the same
size of the binary key is required to be initialised with zeros. B indicates the size of the
KBM which is also the size of the binary key and cumulative vector. Given the feature
vectors of an utterance, the log-likelihood of each feature vector is determined for each
Gaussian component of the KBM. In the cumulative vector, a ratio of Ω1 of the positions of
top Gaussian components with the highest log-likelihood is incremented by one. Then, to
derive the binary key, the positions of a different ratio of Ω2 of top Gaussians component
with highest accumulated scores in the cumulative vector are set to one. The rest of the
positions are set to zeros. This process is also illustrated in Fig. 2.8.

Fig. 2.8 This figure illustrates how the cumulative vector and then the binary key are derived
from a speech utterance.

A value of 1 in the binary key indicates that the speech utterance coexists in the same
acoustic region as the KBM’s Gaussian component of that position. Speakers’ speech features
are represented according to their relative occupancy in the acoustic space represented by the
KBM. Hence, theoretically speaking, two utterances of the same speaker should result in
similar binary keys for the same KBM.
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For the task of speaker diarization, the KBM was obtained from the meeting speech itself
by Anguera & Bonastre (2011). Thus, the KBM training spared the need for a separate
development data which also adds the advantage of avoiding mismatch between possible
development data and the speech of the conversation of interest.

For diarization, the KBM training also includes the selection of discriminant anchor
models which is one of the underlying concepts for binary keys. A meeting speech is divided
into segments of 2 seconds with 75% overlap ratio. Then, a single Gaussian is trained for
each segment where the segment size and the overlapping ratio guarantee that each Gaussian
would be acoustically centred in a speaker (not on an uttered sound). Then, a process is
conducted to select the subset of Gaussians that form the KBM. The first Gaussian is selected
as the one that best models the segment it was trained on. The log-likelihood value was
used for this purpose. Then, symmetrised Kullback-Leibler divergence was used in Anguera
& Bonastre (2011) to select the most dissimilar Gaussian with the one selected first. This
process proceeds until the desired size of the KBM is reached.

Some of the components of the system were later improved in Delgado et al. (2015a)
and the work here follows this latest advancement. As the goal of the system was to present
fast diarization, the symmetrised Kullback-Leibler divergence was replaced with the cosine
similarity for the Gaussians means in the anchor models selection for obtaining the KBM.

The diagram in Fig 2.9 illustrates the system operation described here. Although it might
not be apparent from Fig. 2.9, the system is considered to be composed of two main stages:
a clustering stage and a re-segmentation stage. In a preliminary step of the clustering stage,
all feature vectors are projected onto the KBM and the top Gaussians (specified number
of top Gaussians) are determined for each feature vector. Let the projected feature vectors
be called frames hereafter. The system commonly uses a uniform initialisation where the
meeting frames stream is divided into uniform clusters (with some initial number of clusters,
commonly 16). Then the binary keys of these clusters are derived from the frames initially
assigned to them. The same meeting frames stream is divided into relatively small segments
of 1 seconds size. As in Anguera & Bonastre (2011), these segments are extended by 1
second of frames on both sides such that the segment size becomes 3 seconds.

Binary keys are also derived for these segments using the relevant frames. After that, an
agglomerative process is used to merge homogeneous clusters and segment re-assignment
is performed given the new clusters. These processes are described as follows. A segment
binary key is scored against all clusters binary keys. Each cluster is assigned particular
segments that show more similarity to that cluster. Then, cluster binary keys are re-estimated
using the newly assigned segments’ frames. Any two clusters with the highest similarity
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Fig. 2.9 Descriptive diagram of the binary key based diarization system.
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between them are merged and the clusters number decreases by one. The process is continued
until the number of clusters becomes one. However, the clustering structure at each iteration
is saved for best clustering selection. The metric used for measuring the similarity between
two binary keys is the Jaccard similarity coefficient expressed as follows

J (v,v′) = ∑
B
i=1 (v(i)∧v′(i))

∑
B
i=1 (v(i)∨v′(i))

. (2.35)

where ∧ indicates the boolean AND operator and ∨ indicates the boolean OR operator. The
Jaccard coefficient is known as the intersection over union ratio and it is a more suitable
metric for binary values (Boesch et al., 1977).

In Delgado et al. (2015a), the cumulative vectors υυυ themselves were also used instead of
the binary keys with the cosine similarity as a metric. At each iteration of the agglomerative
clustering process, there is a different number of clusters and different segments assigned
to those clusters. The selection of the best clustering structure among others is what dis-
tinguishes this approach. In Anguera & Bonastre (2011), the best clustering was indicated
by a maximum T-test value determined for the distributions of within cluster and between
cluster similarities. Delgado et al. (2015a) improved clustering selection by introducing a
technique based on Within Cluster Sum of Squares (WCSS). For any clustering structure C
of Θ clusters, θ1,θ2, ...,θΘ, the WCSS is given by

W (C) =
Θ

∑
i=1

∑
g∈θi

||g− g̃i||2 (2.36)

where g̃i is the mean (centroid) of cluster θi. || || indicate vector normalisation. Good
clustering structures result in low values of W . Clustered structures with a relatively low
number of clusters compared to the correct number of speakers have a high value of W with
the highest value resulting at the cluster structure of Θ = 1. The best clustered structure is
selected using a graphical approach as illustrated in Fig. 2.10. The lowest and highest values
of W are connected by a straight line. Then, all the values of W are plotted which forms a
curve under that straight line. The clustering structure with the W value that forms the so
called ‘elbow’ of the curve is selected as the best one. The elbow point is the one with the
highest distance from the straight line.

The final step in this binary key based system is the re-segmentation process. The best
cluster structure provides segments’ labels in relation to the clusters. The feature vectors for
those segments are used to train a GMM for each cluster. Finally, the log-likelihood of the
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Fig. 2.10 Best clustering selection based on Within Cluster Sum of Squares (WCSS) (Delgado
et al., 2015a).

feature vectors to the GMMs, with a log-likelihood smoothing window, is used to finely label
corresponding speech for each speaker.

2.3.3 Acoustic Feature Extraction in MDM Diarization

If Multiple Distant Microphones (MDM) are available in a meeting then acoustic features
can be extracted from a random or central microphone (van Leeuwen, 2006; van Leeuwen
& Huijbregts, 2006). Alternatively, an independent diarization system can be set for the
features extracted from each channel and then the results are combined Anguera et al. (2005).
A more practical solution was presented in Anguera et al. (2005) which combines all the
channels’ signals in a weighted delay and sum fashion to produce an enhanced signal. This
was later expanded and an acoustic beamforming algorithm was introduced in Anguera
et al. (2007) and it became common practice in MDM diarization and used until recently in
Martínez-González et al. (2017).

This beamforming algorithm works as follows. A Wiener filter is first applied to each
channel’s signal in order to reduce noise. Next, the central microphone is identified as the
one that has the maximum cross-correlation with the rest of the channels and it is used
as a reference (Anguera et al., 2007). As the channels’ amplitudes are not consistent, an
overall channels weighting factor is estimated for all channels in order to normalise the
amplitudes. This normalising factor is estimated by finding the average of the absolute
maximum amplitude over the segments of the speech signal. Then, the delays are calculated
in segments of 250 ms between each channel and the reference channel. The best delays are
selected as explained in Section 2.1.2. The delays are used to align the relevant segments
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from all the channels to be summed. In the summation step, the channels are given weights
according to their qualities and a triangular window is used to eliminate discontinuities in
the resulting beamformed signal. Similar to delay estimation and channels summation, the
weights are also estimated for each segment of the signals. The weight for segment j of
channel i is given by (see Anguera et al. (2007))

ωi( j) =


1
M̃

j = 0

(1−αa)ωi( j−1)+αaR̃i( j) otherwise,
(2.37)

where R̃i( j) is the average cross-correlation between segment j for channel i and the relevant
aligned (based on the pre-estimated delays) segments of the rest of the channels. M̃ is the
total number of channels and αa is an adaptation ratio empirically set to 0.05.

This algorithm clearly has a number of dependencies such as the normalising factor, the
selection of the best delays and the channel weights. Recently in Tu et al. (2017), alternative
solutions were presented to overcome the imperfection of some beamforming techniques
such as the problem of direction of arrival mismatch. One of the solutions proposed was
the concatenation of features extracted from multiple signals which was found to introduce
better recognition accuracy. Subsets of channels were used to obtain several beamformed
signals and a concatenation of the speech features extracted from these beamformed signals
was used.

Despite the enhanced performance in speech recognition, this method did not avoid
beamforming. However, it motivated an idea presented here to use a concatenation of
features extracted from individual channels instead of a beamformed signal. On the other
hand, extracting features from all available channels is computationally inefficient and some
channels are less likely to be of good quality. Therefore, a channel selection is established
that aims to meet the plausible objective of identifying good quality channels.

In general, speech signal quality measures can be divided into intrusive and non-intrusive
(see Falk et al. (2010)). Intrusive measures require a reference (such as a clean signal) while
non-intrusive measures do not require a reference. The SNR parameter was used in Pardo
et al. (2007) to identify a good quality channel to be used as a reference in delay estimation.
Although estimating the SNR is non-intrusive, it may not be feasible since it is difficult to
estimate (Bosworth et al., 2008).

Speech recognition research appears to have more interest in developing signal quality
measures than speaker recognition research. In Distant Speech Recognition (DSR), Wolf
& Nadeu (2014) introduced a number of decoder-based measures, like the variance of
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the speech intensity envelope, for channel selection. Those measures are demanding as
they require a classification of the recognised speech then the selection is made and the
recognition is repeated using the selected channels. The modulation spectrum ratio introduced
in Himawan et al. (2015) was also used for channel selection in distant speech recognition
within a somewhat complicated framework. Original speech was convolved with different
rooms’ impulse responses. Then the correlation between contaminated speech and the Word
Error Rate (WER) was used to predict the recognition performance. By assuming an exact
knowledge of a real room impulse response, that measure was used to select the best channel.

Cepstral distance is an efficient signal quality measure. This intrusive measure was
initially introduced by Kitawaki et al. (1988) to assess the distortion presented by speech
coding techniques in reference to the original speech signal. Cepstral distance was long
known for its flexibility and effectiveness in different applications (Guerrero et al., 2016). It
was recently used for the selection of the least distorted channel by Flores et al. (2018) for
distant speech recognition. As an intrusive measure, the use of the cepstral distance requires a
reference channel which is assumed to provide a clean speech signal in some sense. In Flores
et al. (2018), the authors proposed to compute a reference signal as the logarithm of the
geometric mean of the signals from the available microphones calculated in the magnitude
spectrum domain.

This method makes no distinction between the quality of the signals used in the computa-
tion of the reference signal. As a result, good and bad quality signals similarly contribute in
the computation because of the unweighted mean element of the method. It would be more
robust to assign preliminary quality-based weights in such an averaging process. A more
reliable reference signal is used in this work for selecting good quality channels.

In comparison to the case of detecting the quality of a channel in general, the selection
of the least reverberated channel in a non-intrusive way is further addressed in this work.
The reverberation problem has been the focus of considerable research efforts. One way to
tackle this problem is to de-reverberate the speech signal or features as in Feng et al. (2014)
for speech recognition where a deep auto-encoders was used for this purpose. However,
de-reverberation is difficult and non-reliable since it can introduce objectionable artefacts to
the processed speech Falk et al. (2010). Alternatively, in Giri et al. (2015), a feature vector
that characterises reverberation was extracted from the speech signal and input to a DNN in
a room-aware DNN training for speech recognition. A similar concept was presented in Oo
et al. (2018) in a reverberation-aware DNN training.

As of the channel selection target here, a method that characterises the degree of reverber-
ation is required. The concept of modulation transfer function (MTF) is one of the earliest
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approaches applied to evaluate the quality of speech transmission (against reverberation and
other effects) between the speaker and the listener in an auditorium Houtgast & Steeneken
(1985). In Malik & Farid (2010), reverberation is detected by estimating a decay parameter
that embodies the extent of reverberation. That parameter is estimated from the speech signal
using a maximum likelihood estimation. Falk et al. (2010) introduced a measure termed
speech-to-reverberation modulation energy ratio for the diagnosis of de-reverberated speech
to test for the feasibility of de-reverberation algorithms. In Jiang et al. (2014), binary classifi-
cation using a DNN was introduced for reverberant speech segregation. That required the
extraction of binaural features of the intraural time differences and intraural level differences
that were used as the main auditory features.

Depending on the room characteristics, the degree of reverberation varies between
subbands of the speech spectrum Ismail (2013). This will be tackled here hence time-
domain reverberation measures, such as that of Malik & Farid (2010), are not applicable.
Reverberation variability between subbands will be accounted for here by the selection of
the least reverberated channel-subband. This selection does not require precise estimation of
the degree of reverberation as expected from the measures presented in (Falk et al., 2010)
and Ismail (2013). The method proposed here characterises the degree of reverberation in
relation to the rest of the channels. While reverberation can be observed over the pitch period,
at the frame level or long segments Wolf & Nadeu (2010), the new method characterises
reverberation by considering spectrum subbands over the entire speech signal.

2.3.4 Diarization Systems Initialisation

Initialisation of diarization systems refers to the manner by which the process starts. More
specifically, the way in which the conversation segments are obtained to produce initial
models of the clusters. A carefully designed initialisation method that can improve the perfor-
mance of the binary key diarization approach will be very useful. Unsupervised diarization
systems, including the binary key based, commonly start with uniform clusters obtained by
dividing the underlying conversation into large equal segments Tranter & Reynolds (2006).
However, tuning of parameters such as the number of initial clusters and the number of
Gaussian mixtures in Agglomerative Hierarchical Clustering (AHC) systems, like the BIC
based, is often important Moattar & Homayounpour (2012).

A suitable initialisation method for binary key based diarization would be one that
improves the performance and only adds a small computational complexity such that the
appealing system’s speed is approximately maintained. As discussed below, the initialisation
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methods proposed in the literature may not be particularly suitable for the binary key based
system since they can add a considerable computational load. This is because they depend
on the acquisition of additional information or their application would require additional
modelling.

In Anguera et al. (2006b), within the GMM-BIC framework, a preliminary speaker
change points estimation is carried out, then the segments are classified into ‘friend’ and
‘enemy’ groups to finally create an initial set of clusters. Anguera (2006) presented a Cluster
Complexity Ratio (CCR) to adapt the number of initial clusters and Gaussian mixtures.
The CCR was optimised on a development dataset and then used for the evaluation set.
A similar complexity measure that relates the number of feature vectors to the number of
Gaussian mixtures was used in Woubie et al. (2015). A parameter called Constant Seconds
Per Gaussian (CSPG) was used in van Leeuwen & Konečnỳ (2008) also to adapt the number
of Gaussian mixtures and it was later further developed to Adaptive Seconds Per Gaussian
(ASPG) by Imseng & Friedland (2009).

An initialisation method introduced in Luque et al. (2008) was based on clustering of
TDOA features. A type of pre-clustering and a technique to estimate the number of initial
clusters based on prosodic features was presented in Imseng & Friedland (2010). The work in
Garau & Bourlard (2010) integrated visual cues in the initialisation process by using Visual
Focus of Attention (VFoA) features and motion intensities.

The K-means algorithm has also been used for initialisation. However, in BIC based
diarization, it was reported in Ajmera & Wooters (2003) that K-means operating on feature
vectors did not have a significant impact on the performance compared to using uniform
clusters. In Shum et al. (2011), K-means was used to perform first pass clustering (initial
clustering) on i-vectors as well as the final segmentation refinement. That final refinement
was, however, not precisely k-means based as the cluster ‘means’ were estimated using
new clusters’ i-vectors estimated from speech feature vectors assigned to them according to
Dehak et al. (2011). Also, that work focused on telephone conversations where the number
of speakers is normally two which is relatively low.

For the binary key based system, suitable methods, such as K-means, are proposed and
investigated in this work. These methods are more appropriate since they largely depend on
parameters that are already estimated within the system’s framework.
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2.4 Summary

This review has covered many of the important techniques for the field of speaker recognition.
It has been found that there are a number of gaps that should be investigated. In the extraction
of the most widely used speech feature, MFCC, the use of a subset of a bank of overlapping
filters increases the residual correlation in the correlation matrix of the filters’ outputs.
That can affect the efficiency of the mel-scale filter bank analysis of the speech spectrum,
especially considering that the analysis is based on the human perception of sound unlike the
DCT which is data independent. In the extraction of LPCC, determining the autocorrelation
function as the inverse Fourier transform of an FFT based smooth spectral estimate can
address two problems together. On the one hand, it can avoid the occurrences of corrupted
autocorrelation estimates under noisy conditions. On the other hand, it can address the case
of having the conventional LP-based spectrum containing sharp peaks for speakers with a
higher voice pitch.

PCA was shown to be a commonly used technique for dimensionality reduction and
feature fusion. The estimation of the principal components can be influenced by differences in
the variances of the speech features unless it is based on the correlation matrix or proceeded
by variance normalisation. Also, when global principal components are estimated from
feature frames of many speakers, those frames must be suitably weighted to decrease the
contribution of the undesired ones and the outliers. Also, non-classical, iterative approaches
for PCA can be more efficient. The recently developed techniques may, however, be slow or
suffer from a low convergence rate.

It is necessary to demonstrate that any positive impact, that would result from the
methodologies proposed here for acoustic feature extraction and fusion, can generalise
to other speaker recognition tasks (frameworks). In addition to the diarization system,
evaluations will be carried on the well recognised i-vector based verification system which
required relatively large amount of development data. When data augmentation (by adding
effects like noise) is used to increase the amount of available data, effects that simulate speech
transmission channels could be useful. The use of such an effect has not been investigated.
Also, in the literature, the amount of power for any added effects can be seen to be somewhat
arbitrary given that it was not calibrated in any way or relation to observations of system
performance.

Another important speaker recognition problem is speaker diarization. Diarization
systems can benefit from the integration of TDOA features. Those systems usually use
modelling approaches that assume normality in the distribution of the underlying features.
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However, GCC-PHAT delay estimates (TDOA features) has a positively skewed distribution.
Especially for the binary key based system (as will be analysed in Chapter 5), the distribution
of these features must be normalised by a suitable transformation.

Binary key based diarization is fast but its accuracy is not particularly competitive.
Besides the integration of TDOA features, when a conversation is recorded over multiple
microphones, alternative techniques that can outperform beamforming are necessary for the
performance. A concatenation of acoustic features extracted from all of the channels (micro-
phones) can be advantageous as opposed to features extracted from a single beamformed
signal. However, it is expensive when many channels are available, hence, a selection of
channels is mandatory. Most diverse or best quality channels can be selected. Addition-
ally, the selection of the best quality channels requires an appropriate choice of a reference
channel.

Another issue, that may be overlooked by channel selection and certainly by beamforming,
will also be addressed in this work. Due to a meeting room’s impulse response, reverberation
effect may vary across the speech spectrum. Selection of the least reverberated channel’s
subbands can tackle this issue. In such a case, acoustic features will only be extracted from
the selected subbands.

Finally, it was observed that non-uniform initialisation methods have been the focus
of a number of works. Non-uniform approaches proposed in the literature can outperform
uniform initialisation. However, they can consume processing time that may exceed the
overall diarization time of the binary key based approach. This does not appear to have
been addressed before and so this work proposes a number of fast non-uniform initialisation
methods that can be seen to be more appropriate.



Chapter 3

Data Augmentation and Acoustic
Feature Extraction

The methodology presented in this chapter addresses two distinct aspects of the front-
end of speaker recognition systems. The first is specific to the i-vector based verification
system where a data augmentation method is presented to tackle the problem of insufficient
development data for the establishment of the system. The second is a modification in the
extraction of MFCC features and an extension to the extraction of LPCC features. This latter
part tackles the quality of features generally used in speaker recognition systems. However,
speaker recognition performance using these new features is evaluated in the framework of
i-vector based verification. The modification of MFCC feature extraction essentially lies in
the calculation of the cepstral coefficients separately from subsets of a filter bank. In LPCC,
the extension is based on the idea of fitting a multitaper spectrum estimation in the extraction
of LPCC features.

The effect of using data augmentation on each component of the i-vector system is
separately demonstrated. In the new MFCC, the performance is evaluated for a number of
parameter variations including the number of filters in the filter bank and cepstral coefficients.
Also, the effect of using a Hamming window and multitaper spectrum smoothing in the new
MFCC is investigated. The appropriate type of multitaper and number of tapers for the new
LPCC is identified empirically based on the experimental results presented.
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3.1 Data Augmentation

The i-vector based speaker recognition system, first introduced by Dehak et al. (2011), models
inter-speakers and intra-speaker variability (total variability) simultaneously. As explained
in the literature review, the goal of intra-speaker variability (session/channel variability)
modelling is to reduce the effect of session or channel mismatch between enrolment and test
speech in speaker recognition. For that purpose, the establishment of the system requires
special development data that contains speech samples recorded over different channels
for the development speakers. This is specifically required for learning the total variability
subspace, conducting Linear Discriminant Analysis (LDA) and for training the Probabilistic
Linear Discriminant Analysis (PLDA) model used for scoring in the recognition phase.

When the development data is not sufficient, the i-vector system cannot perform appro-
priately because it will not be able to model session and channel variability for speakers
(intra-speaker variability). Such development data is not widely available to researchers
hence a data augmentation technique is introduced here to tackle the problem. The goal of
this technique is to produce additional channel-variable recording by incurring simulated
channel effect on a recording in hand.

3.1.1 Theory Behind Data Augmentation

The data augmentation in this work is theoretically based on a speaker model synthesis
suggested by Teunen et al. (2000) which is flipped here as will be explained shortly. The
model of Teunen et al. (2000) tackled the problem of channel mismatch between enrolment
and test samples. According to that work, when there exists two (enrolment and test)
utterances of the same speaker with ‘speaker and channel’-dependent supervectors mu and
m̃u (expressed by (2.21)), the model uses the assumption that m̃u was synthesised from mu

by adding a supervector c̃ that depends only on the channel conditions of the two utterances

m̃u = mu + c̃, (3.1)

where c̃ is assumed to be a channel compensation supervector. This assumption is flipped
here by passing the speech signal through a Gaussian channel in order to incur a different
channel effect on the signal, see equation (3.6). Hence, any available recording becomes
two recordings, one of them is the original and the other is with an added Gaussian channel
effect.
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The reason for using a Gaussian channel is that, in information theory, Gaussian noise is a
basic statistical model used to mimic the effect of random processes that occur in nature (see
e.g Houdré et al. (2016)). It is also used to model many practical channels such as wired and
wireless telephone channels. The additive noise in such channels are due to a combination of
causes. By the central limit theorem, the cumulative effect of a number of random effects
will be approximately normal thus the Gaussian assumption becomes valid (see e.g Cover &
Thomas (2012)).

Fig. 3.1 Diagram of the i-vector based system with data augmentation. MFCC features are
used as an example.

The development data that was available for this work has one utterance for each speaker.
The pre-described data augmentation can increase this number by one. This is because only
one type of noise (Gaussian) is used here for the purpose of data agumentation by noise
addition. However, two utterances per speaker are still not sufficient for the development of
the i-vector system. In Rao & Mak (2013), it was observed that in LDA and Within-Class
Covariance Normalisation (WCCN), the system performance is more influenced (degraded)
by utterance length of less than 1 minute. Hence, it was suggested that sub-utterances of a
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long utterance can help produce more i-vectors for each speaker which was found to enhance
speaker verification performance. The conclusion of that study is used here in this work by
splitting the previously achieved two utterances to make them four. This is found to enable
reasonable performance of the i-vector system as used here in this work.

The diagram in Fig. 3.1 illustrates how data augmentation is performed and the number of
utterances delivered to the system per each development speaker. Note that data augmentation
is not used for the enrolment and test samples.

3.1.2 Gaussian Noise Power Determination

The power of the additive Gaussian noise is controlled such that the produced speech signals
maintain a fixed signal-to-noise ratio (SNR). In other words, the methodology takes into
account the signal power to prevent the added noise power from becoming destructive. Note
that, since the speech signals in the development and test data used here are not strictly clean,
Gaussian noise is added on top of the noise embedded in the signals. Transmission channel
and environmental noise types with different SNRs may be present in the signals.

The speech signal is a random continuous-time signal that becomes a discrete-time signal
after sampling. Suppose a speech signal s with finite length of N samples is expressed as

s = [s1,s2, ...,sN ]. (3.2)

The power of the signal is defined by

ϕs =
1
N

N

∑
n=1

s2
n. (3.3)

Then the power of the additive Gaussian noise that maintains a desired linear signal-to-
noise ratio η is

ϕr =
ϕs
η
. (3.4)

The added Gaussian noise is defined by a normally distributed random vector r =

[r1,r2, ...,rN ]. The elements of this vector rn are thus Gaussian distributed with a constant
mean of zero and constant variance ϕr, i.e. rn ∼ N (0,ϕr); the distribution of which can be
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Fig. 3.2 Addition of Gaussian noise with SNR controlled power.

expressed by the probability density function:

G (rn;0,ϕr) =
1√

2πϕr
exp
(
− r2

n
2ϕr

)
. (3.5)

As noise normally has zero mean, this makes the power equal to the variance. Hence,
the desirable Gaussian noise is a normally distributed random vector with zero mean and ϕr

variance, where ϕr is determined in (3.4). The new speech signal with added Gaussian noise
will be

sG = s+ r. (3.6)

The value of ηd is empirically decided based on the performance of the system indicated
by the equal error rate (EER) as will be shown in the results section (3.3). Such calibration is
necessary but was not present in the previous work by e.g Snyder et al. (2017).

3.2 Acoustic Feature Extraction

3.2.1 Odd-Even MFCC (OE-MFCC)

Conventional mel filter banks (FB) comprise of filters that are overlapped (by 50%) in order
not to lose the speech spectrum attenuated by the edges of each filter. Due to this overlap,
the log energy of a particular filter somewhat resembles that of the adjacent ones especially
if they (all three) capture a slowly varying section of the spectrum. Hence, overlapping
filters bank may present relatively high residual correlation in the covariance matrix of the
filter bank’s output log-energies. The proposed methodology is to use subsets in the form of
the odd indexed and even indexed filters, as illustrated in Fig. 3.3; and to extract cepstral
coefficients separately from each subset. This can present the following advantages:
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• It decreases the residual correlation for each subset (as assumed to be desired);

• No spectrum is lost compared to overlapped filter banks, see Fig. 3.3;

• The effect of narrow-band noise on the cepstral coefficients is reduced, see e.g (Besacier
& Bonastre, 2000);

• The computation complexity in DCT application is minimised, see (Sahidullah & Saha,
2012).

The proposed methodology can also compensate for the limitation of extracting higher
order cepstral coefficients in standard MFCC. It should be noted that higher order coefficients
of MFCC are more susceptible to noise Reyes-Galaviz & García (2009).

Fig. 3.3 Odd and even subsets of a filter bank that consists of overlapping filters. Each subset
is applied separately to the output of FFT and cepstral coefficients are extracted separately
for the output of each of them.

Calculating the energy of odd and even indexed filters separately has been used before.
Previously it was used to achieve computational efficiency in hardware implementation of
MFCC as in Jo et al. (2016). In Vu et al. (2010), only the odd filters subset was determined
and the points of the even filters subset were estimated by subtracting each odd indexed filter
from 1. However, in both of these cases, the log-energies of all odd and even filters were
pooled together and the DCT was then applied unlike the methodology proposed here in this
work.
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3.2.1.1 Construction of Odd and Even Filters Subsets

Leading from equations (2.1), (2.2), (2.3) and (2.4) and given that M is the total number
of an overlapping set of filters in a filter bank, the centres of the odd indexed filters on the
mel-scale are defined as

ζ fc,1(n) = (2n−1)∆ where 1 ≤ n ≤ ⌈M/2⌉, (3.7)

where ∆ is the spacing between the filters on the mel-scale which was previously defined in
(2.2). n is an integer and 2n−1 are the indices of the odd filters.

The centres of the even indexed filters on the mel-scale are defined as

ζ fc,2(n) = 2n∆ where 1 ≤ n ≤ ⌊M/2⌋, (3.8)

where 2n are the indices of the even filters. The odd subset of the triangular filters H1(n,κ f )

with the centres of (3.7) are constructed in the linear frequency scale according to the
following formulation:

H1(n,κ f )=



ψ̂(ζ f )− ψ̂

(
ζ fc,1(n)−

∆

2

)
ψ̂(ζ fc,1(n))− ψ̂

(
ζ fc,1(n)−

∆

2

) for ψ̂

(
ζ fc,1(n)−

∆

2

)
≤ ψ̂(ζ f )< ψ̂(ζ fc,1(n));

ψ̂(ζ f )− ψ̂

(
ζ fc,1(n)+

∆

2

)
ψ̂(ζ fc,1(n))− ψ̂

(
ζ fc,1(n)+

∆

2

) for ψ̂(ζ fc,1(n))< ψ̂(ζ f )≤ ψ̂

(
ζ fc,1(n)+

∆

2

)
;

0 elsewhere,
(3.9)

where ζ f is the mel-scale nonlinear frequency calculated in (2.1) and ψ̂ is the transformation
to the linear frequency scale as expressed by (2.4).



3.2 Acoustic Feature Extraction 65

The filters of the even subset H2(n,κ f ) can be similarly achieved as in the following

H2(n,κ f )=



ψ̂(ζ f )− ψ̂

(
ζ fc,2(n)−

∆

2

)
ψ̂(ζ fc,2(n))− ψ̂

(
ζ fc,2(n)−

∆

2

) for ψ̂

(
ζ fc,2(n)−

∆

2

)
≤ ψ̂(ζ f )< ψ̂(ζ fc,2(n));

ψ̂(ζ f )− ψ̂

(
ζ fc,2(n)+

∆

2

)
ψ̂(ζ fc,2(n))− ψ̂

(
ζ fc,2(n)+

∆

2

) for ψ̂(ζ fc,2(n))< ψ̂(ζ f )≤ ψ̂

(
ζ fc,2(n)+

∆

2

)
;

0 elsewhere.
(3.10)

These subsets are used to decompose the spectrum of each frame into two complementary
subsets of filters energies. Finally, the DCT is applied to the log of the energies of each
subset separately. This process is described in Chapter 2 by equations (2.6) and (2.7). The
cepstral coefficients obtained from H1(n,κ f ) and H2(n,κ f ) can be referred to as MFCCodd

and MFCCeven, respectively. Let HE ,1(z), 1 ≤ z ≤ Z, be the log of the odd filters energies.
HE ,1(z) is obtained by using H1(n,κ f ) to decompose the speech spectrum as in equation
(2.6). MFCCodd can then be calculated as

MFCCodd
r =

Z

∑
z=1

HE ,1(z)cos

[
r
(

z− 1
2

)
π

Z

]
for r = 1, 2, ... , R (3.11)

where R is the number of MFCCodd cepstral coefficients. MFCCeven is calculated in the
same way. The resultant coefficients are then augmented to form one feature vector.

3.2.1.2 Residual Correlation of the Covariance Matrix of the Filters Output

The residual correlation is the mean of the absolute values of the off-diagonal elements of a
correlation matrix, see Sahidullah & Saha (2012). The residual correlation (ε) of the filter
bank function (overlapped and non-overlapped) is evaluated for a first order Markov process
covariance matrix with different correlation coefficients (ρ). Let A be the covariance matrix
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of a first order Markov process expressed as

A =



1 ρ ρ2 ρ3 . . .

ρ 1 ρ ρ2 . . .

ρ2 ρ 1 ρ . . .

ρ3 ρ2 ρ 1 . . .
...

...
...

... . . .


. (3.12)

where ρ is the correlation coefficient of the Markov process. Let the size of A be a×a. Now
let H be the matrix of filterbank filters with size h×a where h is the number of filters. The
transformation of A using H can be expressed as

Â = HAHT (3.13)

The nonzero off-diagonal elements in Â form a measure of the residual correlation
(Poularikas, 2010).

Fig. 3.4 The residual correlation of the filter banks function for different values of the
correlation coefficient of a Markov-1 process covariance matrix.

Fig. 3.4 shows that the residual correlation of overlapped filters bank is higher than any of
the odd-indexed or even-indexed subsets. It can also be noticed that this difference increases
for higher values of ρ . Fig 3.5 shows how subsets of overlapping filters bank exhibit higher
residual correlation which increases (except at very high values of ρ) as the number of filters
decreases.
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Fig. 3.5 The residual correlation for variable number of overlapping filters. One can notice
that for most values of ρ . the residual correlation increases as the number of overlapping
filters increases.

No. of Filters Full Set (ε) Odd Subset (ε) Even Subset (ε)
20 0.6547 0.6339 0.6416
24 0.6486 0.6314 0.6367
28 0.6415 0.6258 0.6321

Table 3.1 Residual correlation of the correlation matrix of the filter bank log-energies.

Table 3.1 reports the residual correlation in the correlation matrix of the filter bank output
log-energies for speech data. The speech data used is the training samples of the 2002 NIST
SRE dataset (described in Section 3.3). It can be observed that for the three cases (in terms of
the filters number) of filter bank, the odd and even subsets exhibit lower residual correlation
than that of the full set.

Cepstral coefficients extracted from both odd and even subsets are concatenated for use
in the speaker recognition system. Both subsets interchangeably cover the full band of the
speech spectrum. This relatively increases the residual correlation in the correlation matrix of
their cepstral coefficients. However, the performance of speaker verification does not appear
to be specifically sensitive to this. In the method of block MFCC proposed by Sahidullah
& Saha (2012), the cepstral coefficients of overlapping blocks exhibited relatively higher
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residual correlation in their correlation matrix. Nonetheless, they generally result in better
performance than some of the other forms of block MFCC presented in that work.

3.2.1.3 Correlation of Cepstral Coefficients of Odd Even Subsets

Apart from the residual correlation, an experiment is conducted to assess the likeliness of peer
(from an order perspective) cepstral coefficients of odd and even subsets. The experiment
shows that, except for a few, there exists relatively high diversity between peer cepstral
coefficients of the odd and even subsets. In the experiment, for a particular speech utterance,
cepstral coefficients are extracted with two subsets of 14 odd and 14 even filters. Let M1 and
M2 represent the cepstral coefficients of the odd and even subsets, respectively. For the sake
of comparison, 13 cepstral coefficients are extracted for the same utterance with a set of 14
overlapping filters. Denote this set of cepstral coefficients with M.

Fig. 3.6 Correlation among cepstral coefficients of overlapped filters bank and the non-
overlapped filters subsets.

Afterwards, the degree of correlation between all these sets of cepstral coefficients is
measured as in the following Sharma (2005)

ρ(M1(r),M2(r)) =
M1(r)MT

2 (r)√
∑
∀i

M2
1,i(r)×∑

∀i
M2

2,i(r)
(3.14)

where ρ(M1(r),M2(r)) is Pearson’s correlation coefficient between the rth order cepstral
coefficients of set M1 and set M2. The coefficients ρ(M(r),M1(r)) and ρ(M(r),M2(r))
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are also calculated using equation (3.14). Note that the mean of M, M1 and M2 must be
normalised in order to calculate Pearson’s correlation coefficient using (3.14).

Fig. 3.6 shows the correlation between all of these sets of cepstral coefficients for 13
orders of DCT coefficients. Compared to the ρ(M(r),M1(r)) and ρ(M(r),M2(r)) cases, one can
notice that there is low (peer) correlation between the cepstral coefficients of the odd and
even subsets as indicated by ρ(M1(r),M2(r)). These findings can be used as an indicator to
remove cepstral coefficients from OE-MFCC if they consist of redundant information which
may harm the system performance.

3.2.2 Multitaper-Fitted LPCC

The method presented here aims to avoid direct estimation of the autocorrelation function
and to have an averaged spectrum which can penalise spectral sharp peaks as discussed in
Section 2.1.1.2. One of the objectives in spectrum estimation is to achieve minimal bias that
is mostly caused by spectral leakage and is usually reduced by using a window function,
commonly, a Hamming window as stated in Neustein & Patil (2012). A single particular
window is not an optimal choice as it down-weights the speech frame values at the edges
of the window causing loss of information. Furthermore, spectral leakage may also not be
minimised compared to the multitaper method proposed by Thomson (1982). When spectral
leakage is not minimised, the chance of spectral bias persists Prieto et al. (2007). In Kinnunen
et al. (2010), the multitaper method was used for spectral estimation in the extraction of
MFCC features as an alternative to the Hamming window and was shown to enhance the
performance of speaker recognition.

Multitaper spectrum estimation first introduced by Thomson (1982) results in an averaged
spectral estimate from different orthogonal tapers (windows). The use of more than one
window also allows those parts of the signal which are attenuated by one window to be
captured by some other window in the taper set. The tapers are assigned weights that sum to
1. The first taper has the lowest spectral side lobes (and the highest weight) and the side lobes
increase for higher order tapers. The resulting spectrum is smoothed and has less variance so
that the spectral leakage is minimised giving a reduced bias, see e.g Prieto et al. (2007). The
estimated multitaper power spectrum is a weighted sum of these tapers given by

ŝ[k] =
M′

∑
m′=1

wm′

∣∣∣∣∣N−1

∑
n=1

λm′[n]s[n]exp
(
− j2π

nk
N

)∣∣∣∣∣
2

, (3.15)
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where M′ is the number of tapers, λm′ is a taper associated with a weight wm′ , s[n] is a speech
sample and N is the number of samples.

Accordingly, the multitaper method is integrated into the extraction of the Linear Predic-
tion Cepstral Coefficients (LPCC) features here. The extraction of these features requires
the determination of the Linear Prediction Coefficients (LPC) which starts by having the
speech signal framed. Then each frame is commonly passed to a Hamming window before
estimating the autocorrelation function. One of the methods of determining that function
is based on the Wiener-Khinchin theorem which states that the Fourier transform of the
autocorrelation function is equal to the power spectrum, hence, the inverse Fourier transform
of the power spectrum is the autocorrelation function, see Kantz & Schreiber (2004).

To incorporate the multitaper method, the autocorrelation function for each speech frame
is determined by having the inverse Fourier transform of the multitaper power spectrum
calculated as follows

r̂ss[n] =
K−1

∑
k=1

ŝ[k]exp
(

j2π
nk
K

)
. (3.16)

Multipeak, Thomson and Sine tapers are tested and the results are presented in Section 3.3.4.

3.3 Experimental Results

This sections presents the results of speaker verification in light of the front-end proposed
in this chapter. The impact of data augmentation on the performance of i-vector based
verification is first evaluated. Then, the system performance is evaluated using OE-MFCC
features. Finally, the performance is evaluated using the proposed Multitaper-Fitted LPCC
features. The evaluation parameter used here is the Equal Error Rate (EER) which is an
operation point on the Detection Error Trade-off curve (DET). This curve is produced by
plotting the detection (verification) False Negative Rate (FNR) against the False Positive
Rate (FPR). The point on the curve where the FNR is equal to the FPR is the EER.

3.3.1 Corpora and i-vector Based System Setup

The development data of the i-vector system includes the NIST 2002 SRE telephone training
data (English) Martin & Mark (2004), the NCHLT Speech Recognition microphone corpus
(English) De Vries et al. (2014) and the LWAZI Speech Recognition telephone corpus
(English, Afrikaans, Sesotho and Zulu) de Vries et al. (2014). The system is gender-
independent and in order to balance the analyses, the number of development speakers is
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639 males and 639 females speakers (1278 speakers). Speech recordings with average length
of 2 minutes can be obtained from these datasets for each development speaker. Table 3.2
summarises the number of utterances available, the number after splitting and after adding
simulated Gaussian channel effect.

No. of Speakers
♂, ♀

No. of Utterances No. of Utterances
after Splitting

Splitting plus
Gaussian
Noise

NIST 2002 SRE (English) 139 , 132 271 542 1084
NCHLT (English) 110 , 100 210 420 840
LWAZI (English) 92 , 104 196 392 784
LWAZI (Afrikans) 101 , 99 200 400 800
LWAZI (Sesotho) 96 , 106 202 404 808

LWAZI (Zulu) 101 , 98 199 398 796
Total 639 , 639 1278 2556 5112

Table 3.2 Summary of Development data and number of utterances obtained from the NIST
2002 SRE data Martin & Mark (2004), the NCHLT data De Vries et al. (2014) and the
LWAZI data de Vries et al. (2014).

The data used to evaluate the data augmentation process is the NIST 2002 SRE telephone
set Martin & Mark (2004). For each of the 139 male and 191 female speaker of this set
(total of 330 speakers), the training data is used as speakers’ enrolment. Then one test
sample for each speaker is used to evaluate the system. Each test sample is scored against all
enrolments samples which makes a total of 108900 gender-independent verification trials.
This evaluation set was used for detailed evaluation of the methodology presented for data
augmentation.

A subset of the 2010 NIST speaker recognition evaluation dataset, see Martin & Green-
berg (2010) is also used for evaluation. This subset is the core-core evaluation condition
(commonly referred to by Det5) trials which contains telephone speech for enrolment and
test data. Det5 includes a total of 30373 trials, 708 of which are target trials and the rest
are non-target trials. This subset is used to evaluate the methodology presented for acoustic
feature extraction. Some results on the effect of data augmentation are also presented using
this dataset.

Only the original recordings of NIST 2002 SRE telephone training data (139 males and
139 females) are used to estimate a gender-independent GMM-UBM with 2048 mixtures.
The dimensionality of the total variability matrix is 400 resulting in i-vectors with 400
dimensions. These are then reduced to 150 using LDA. The PLDA model is trained using
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all of the development i-vectors and is used for scoring the i-vectors of the evaluation sets1.
These parameters are fixed for the system except for the features which are varied in this
chapter and in Chapter 4.

3.3.2 Gaussian Noise Level and Impact on i-vector Based System Com-
ponents

The idea presented for data augmentation is centred on the inclusion of simulated Gaussian
channel effect. As described in Section 3.1.1, utterance splitting presented in previous
work by Rao & Mak (2013) is used here for the same purpose of increasing the amount of
development data. Hence, results are produced for the case when development utterances
were only split and a total of 2556 utterances were used to establish the system with some
initial performance. Afterwards, Gaussian noise is used to increases the number of utterances
to 5112 for more appropriate development of the system. This helps in evaluating, purely,
the effect of adding Gaussian noise according to the pre-described methodology.

In this part of the evaluation, the speech features used were 13 MFCC coefficients
(excluding the 0th coefficient) calculated from Hamming windowed 25 ms speech frames
with 40% overlap (10 ms shift), appended with their first and second derivatives. The filter
bank used consists of 24 triangular filters.

Equal Error Rate (EER) and Minimum Detection Cost Functions (minDCF) of the 2008
and 2010 NIST evaluations are used here as performance measures.

The power of the Gaussian noise added is different for each speech sample but the output
signals exhibit the same SNR. The appropriate SNR is empirically determined based on the
performance of the system. Four values of SNR are assessed as shown in Fig. 3.7. The
best system performance is achieved at a SNR of 30 dB. For 10 dB SNR, the noise power
is relatively high. However, some performance improvement is achieved compared to the
case when the development data is only split. The performance at 20 dB SNR is better
compared to that of 10 dB SNR, because the noise power is decreased. Following the best
performance accomplished at 30 dB SNR, it can be noticed that the performance at 40 dB
SNR is comparable to that at 20 dB although the noise power is less. This is because at such
low power, the noise did not have a remarkable effect on the output signals, hence, they were
not much variable from the the original signals.

1The total variability matrix (T) and the Gaussian PLDA model are estimated using the Microsoft Research
(MSR) Identity Toolbox (Sadjadi et al., 2013).
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Fig. 3.7 Detection Error Tradeoff curves of system performance at different SNRs of the
resulting speech signal with added Gaussian noise.

The effect of using utterances with added Gaussian noise is investigated separately in the
development of each system component and the results are reported in Fig. 3.8 and Table 3.3.
In LDA, the use of these utterances produced an improvement of 1.35% in EER. For the case
of PLDA training, the EER is further reduced by 3.4%. When the utterances with Gaussian
noise are involved in the total variability matrix training alone, a slight degredation in the
performance was experienced. However, when they are used in all of the system components,
the overall reduction achieved in EER was 5.38%. This amount of reduction in EER is
higher than that of the methodology presented in Snyder et al. (2018). This is because of the
type of noise used here and the methodology for controlling an appropriate level of noise.
More importantly, this is attributed to the fact that the performance of the i-vector speaker
verification framework degrades when the development data is insufficient.

Methodology in System Components EER% minDCF 2010 minDCF 2008
Splitting in (T+LDA+PLDA) 9.81 4.65 0.088

Plus noise in LDA 8.46 3.76 0.085
Plus noise in PLDA 5.06 1.52 0.029

Plus noise in (T+LDA+PLDA) 4.43 1.33 0.025
Table 3.3 System Performance in terms of EER and DCF. It shows the effect of including
utterances with added Gaussian noise in different components of the i-vector based system.
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Fig. 3.8 Detection Error Tradeoff curves of system performance. Illustrates the effect of
using utterances with added Gaussian noise on the system components [in LDA, in PLDA
and in (T+LDA+PLDA)].

Fig. 3.9 Effect of using Gaussian noise in data augmentation using the Det5 subset of the
2010 NIST SRE set.
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Among the types of noise that can be added to the development data, Gaussian noise
in particular can be helpful in modelling general mismatch between enrolment and test
utterances, especially if it is caused by the transmission channels.

Fig. 3.9 shows another evaluation of the presented methodology on the Det5 subset of
the 2010 NIST SRE set Martin & Greenberg (2010). MFCC features are also used but their
spectrum is this time estimated using the multitaper method with four multipeak tapers1.

3.3.3 Effect of Parameters Variations on OE-MFCC

This subsection includes a study of speaker verification performance in light of a number of
parameter variations in OE-MFCC. It also presents a comparison to MFCC and block based
MFCC. Features are extracted from speech frames of 25 ms length with 10 ms frame shift.
For MFCC and OE-MFCC features, the power spectrum of the speech frames is estimated
using the multitaper method with four multipeak tapers.

In this part, 13 cepstral coefficients (excluding the 0th coefficient) are obtained by applying
the DCT to each set and subsets of filters bank log-energies. The cepstral coefficients are
appended with their first and second derivatives. For OE-MFCC, it was experimentally found
that the first two coefficients of the 13 basic cepstral coefficients degrade the performance if
they are kept together from both the odd and even subsets. This is possibly because keeping
these two coefficients only presents redundant information as they are highly correlated
between odd and even subsets (see Fig. 3.6). Hence, these two coefficients are removed for
the even subset through all the experiments presented but their first and second derivatives
are kept.

Figures 3.10 and 3.11 help to illustrate the system performance for MFCC and OE-MFCC
comparing the Hamming window results to the multitaper (four multipeak tapers) spectrum
smoothing and also the number of filters used. The feature dimension is not varying, 39 and
76 for MFCC and OE-MFCC, respectively. It is notable that OE-MFCC greatly benefits
from multitaper spectrum estimation where it results in lower EER compared to MFCC for
all amounts of filters investigated. For the Hamming window case, although OE-MFCC is
not always superior, it presents better performance in a number of cases and the lowest EER
(compared to Hamming window MFCC) with 35 filters bank. OE-MFCC also has a stable
low EER operation point in the range of 32 to 34 filters bank.It can be noticed that in this
part of the experiment, the number of filters in the filter bank is constrained to the range of
28-35 filters. The lower limit (i.e. 28) is set to allow the extraction of at least 13 cepstral

1The basis for the multipeak multitaper is provided in Appendix A.3.
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from the odd and even filters subsets. Beyond the specified upper limit (i.e. 35), the spectral
decomposition can become poor because of the limited (and relatively low) number of FFT
bins. In case of higher number of filters, one filter can have the value of one FFT bin at the
low frequency region.

Fig. 3.10 System performance using MFCC features with variable number of filters and fixed
feature dimension of 39.

Fig. 3.11 System performance using OE-MFCC features with variable number of filters bank
and fixed feature dimension of 76.

With spectrum estimated using the multitaper method, Fig. 3.12 illustrates the perfor-
mance of OE-MFCC for a lower number of filters with comparison to MFCC. The dimension
of MFCC features is the number of filters minus one plus delta and delta delta. OE-MFCC
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Fig. 3.12 System performance, OE-MFCC and MFCC, with variable number of filters bank
and feature dimension.

features dimension is the MFCC’s total feature number minus five. For example, with 28
filters, MFCC dimension is 81 and OE-MFCC features dimension is 76, including delta and
double delta and after removing two coefficients from OE-MFCC as explained earlier in this
subsection. Fig. 3.12 indicates that, for the majority of cases, the performance of OE-MFCC
is superior to MFCC even for a lower number of filters (lower than those addressed in figures
3.10 and 3.11) and with varying feature dimensionality as well.

Filter MFCC MFCC OE OE NOBT NOBT NOBT OBT OBT OBT
Bank Dim. EER Dim. EER Blocks Dim. EER Blocks Dim. EER

20 57 4.25 52 4.07 1-8 , 9-20 54 4.16 1-9 , 8-20 60 4.10
24 69 4.74 64 4.30 1-9 , 10-24 66 3.88 1-10 , 9-24 72 4.19
28 81 4.97 76 3.80 1-11 , 12-28 78 4.67 1-12 , 11-28 84 4.21

Table 3.4 Performance comparison of OE-MFCC, block MFCC and MFCC using Hamming
window spectrum smoothing. EER is in percentage.

Filter MFCC MFCC OE OE NOBT NOBT NOBT OBT OBT OBT
Bank Dim. EER Dim. EER Blocks Dim. EER Blocks Dim. EER

20 57 3.81 52 4.06 1-8 , 9-20 54 4.32 1-9 , 8-20 60 3.79
24 69 3.90 64 3.85 1-9 , 10-24 66 3.99 1-10 , 9-24 72 3.92
28 81 4.72 76 3.16 1-11 , 12-28 78 3.84 1-12 , 11-28 84 3.99

Table 3.5 Performance comparison of OE-MFCC, block MFCC and MFCC using multitaper
spectrum estimation. EER is in percentage.
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Tables 3.4 and 3.5 report a comparative performance of OE-MFCC, block MFCC and
MFCC. This is investigated for multitaper and Hamming window spectrum smoothing. In
block MFCC, when the blocks are not overlapping the case is referred to as Non-Overlapped
Block Transformation (NOBT). Alternatively, they may be overlapped and are referred to as
Overlapped Block Transformation (OBT). In NOBT, it is found here that two blocks present
good performance (over MFCC) where the first block covers the frequency band 0-883.17 Hz
and the second block covers the band 745.93-4000 Hz. Accordingly, for 20 filters bank, the
first block includes the 1st to the 8th filter and the second block includes the 9th to the 20th

filter. This frequency band coverage is accounted for when the number of filters is higher
than 20 filters. For OBT, the blocks are allowed to overlap by one filter, where higher overlap
was previously found to harm the performance by Sahidullah & Saha (2012).

One can see from tables 3.4 and 3.5 that OE-MFCC and block MFCC result in better
performance than MFCC especially when the number of filters are increased. OE-MFCC is
better than block MFCC for most cases. Especially with a relatively high number of filters
bank, OE-MFCC presents superior performance and the lowest EER. For all OE-MFCC,
block MFCC and MFCC, better features are extracted in the case of multitaper spectrum
estimation.

3.3.4 Effect of Multitapers Type and Numbers on Multitaper-Fitted
LPCC

Speaker verification performance for the i-vector system is evaluated here using the proposed
multitaper-fitted LPCC features. First, the autocorrelation function is determined as the
inverse of a multitaper power spectrum. Then 12 LPC coefficients are calculated and used
to extract 13 LPCC coefficients appended with their first and second derivatives for a total
of 39 coefficients. The performance is then investigated for the taper types previously used
for MFCC extraction in Kinnunen et al. (2010). These are the Thomson, Multipeak and sine

tapers1.
From Fig. 3.13, one can observe that the optimum performance indicated by the minimum

EER of 4.11% is given when four multipeak tapers are used. The performance is also
compared to the baseline of the commonly used Hamming window. It can also be noticed
that a higher number of tapers (over 5) appears to degrade the performance due to an increase
in the side-lobes of higher order tapers. The verification performance using multitaper-fitted
LPCC shows that multipeak tapers is the best taper type.

1The bases for these tapers’ types are provided in Appendix A.3.
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Fig. 3.13 Effect of tapers type and number on EER using LPCC features.

The results presented here by multitaper-fitted LPCC and the results from Kinnunen et al.
(2010) and Alam et al. (2013) on MFCC features, confirm together that multipeak tapers are
the best multitaper type for speech processing in speaker recognition. In this work, using four
multipeak tapers in MFCC and OE-MFCC features extraction provided verification EERs
of 3.79% and 3.16%, respectively. Despite that, in comparison to Hamming window based
LPCC, the verification performance is improved with multitaper-fitted LPCC, MFCC and
OE-MFCC features presents lower verification EER.

3.4 Summary

The main focus and interest of this chapter had two important aspects. First, it tackled the
problem of the lack of development data required to establish an i-vector based speaker
verification system. It was shown that Gaussian noise is an appropriate simulated channel
effect for data augmentation. The data augmentation procedure helped in developing the
speaker verification system with reasonable performance which was useful to evaluate system
performance aspects related to factors such as the type of features used.

The second aspect focused on improving the extraction of two popular speech features
of speaker recognition systems. In comparison to other subband based MFCC, OE-MFCC
helped place the emphasis on improving the performance of the filter bank ‘transformation’
of the speech spectrum. The experiments on speaker verification appear to confirm the
potential usefulness of OE-MFCC. The experiments also provided comparisons to traditional
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MFCC and block MFCC for both cases of Hamming window and multitaper based spectrum
estimations.

The latter multitaper based spectral estimation was fitted in the extraction of LPCC
features. In comparison to traditional LPCC, multitaper fitted LPCC appeared to show
improvements to the performance of speaker verification mostly when using four multipeak
tapers.

The next chapter uses the data augmentation method of this chapter to enable the use
of an i-vector based speaker verification system. This system will be used to evaluate the
performance of the techniques to be introduced for the fusion of features like OE-MFCC
and multitaper fitted LPCC. Chapter 6 presents some experiments that demonstrate the
performance of binary key based diarization using OE-MFCC features.



Chapter 4

Recurrent Neural Network based
Feature Transformation

As is generally the case with pattern recognition systems, a speaker recognition system
can make use of multiple features to enhance its performance. This chapter presents an
efficient methodology for feature fusion which also includes decorrelating and dimensionality
reducing properties. Principal Component Analysis (PCA) is a traditional technique often
used for this purpose in the signal processing literature. The methodology presented here
is also based on PCA but using less well known methods which are developed here for
application to speech features.

First, some considerations regarding the use of PCA with speech features are addressed.
Then an efficient solution for weighted PCA is presented. This solution is based on recurrent
neural network (RNN) methods for finding the most dominant eigenvector of a real symmetric
matrix. The calculation of the correlation or covariance matrices includes the association of
a weight matrix. In this chapter, the weight matrix is used to assign weights for each feature
vector. Weighted principal components are then extracted from weighted correlation and
weighted covariance matrices.

The weights are obtained by calculating the log-likelihood of the feature vectors for
a single Gaussian background model (SG-BM) fitted with the same feature vectors. The
convergence rate of the recurrent neural network is reported. As a result of the reduced
dimensionality, the savings in the processing time within the i-vector based system are also
reported.
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4.1 Critical Considerations for PCA on Speech Features

The principal components are commonly considered to be the eigenvectors of the covariance
matrix (e.g of MFCC feature vectors) and the associated eigenvalues are the amount of
variance interpreted by those eigenvectors. Let X represent a matrix of feature vectors pooled
together from a population of speakers. The covariance between two cepstral coefficients of
L frames referred to here as a and b is

σa,b =
1
L

L

∑
l=1

(al − ā)(bl − b̄), (4.1)

where a and b are rows in X and the columns of X are the feature vectors resulting from
individual MFCC or similar feature extraction process. ā and b̄ are the means of a and b.
Their correlation can be expressed as

Σ̃ΣΣa,b =
1
L

L

∑
l=1

(al − ā)(bl − b̄)
σaσb

, (4.2)

where σa and σb are the variances for a and b, respectively. For X, whose mean is normalised,
the covariance matrix is expressed as

ΣΣΣ = XXT . (4.3)

It is known that in order to perform PCA, the matrix X must be mean normalised. From
(4.1) and (4.2), if the variance of X is also normalised, then both equations are equal because
σa = σb = 1. Hence, ΣΣΣ of (4.3) becomes the correlation matrix, denoted here by Σ̃ΣΣ.

It was demonstrated in Section 2.1.3 that speech features, like MFCC and LPCC, exhibit
large differences in the variances of their cepstral coefficients. The logarithms 1 of the
covariance and correlation matrices of X are depicted in Fig. 4.1, where the feature vectors
of X are 13 MFCC coefficients appended with their first and second derivatives. It can be
seen that the attributes of the covariance matrix are affected by the variance values of the
cepstral coefficients. For example, in the top left corner the highest attributes are associated
with the higher variance coefficients. On the other hand, the relationship between the cepstral
coefficients expressed by the correlation matrix, do not seem to be affected by those numerical
variations. For example, the diagonal of the correlation matrix contain the highest values in
the matrix, which is the correlation of each cepstral coefficient with itself. Hence, it seems

1The logarithm of the matrices is shown to make the plots more visually comprehending.
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to be very important for speech features that the feature variances are normalised before
performing any analysis for PCA.

One may also notice a 3 × 3 structure in the matrices shown in Fig. 4.1. This structure
shows the covariance (and correlation) of MFCC cepstral coefficients with their first and
second derivatives (velocity and acceleration terms of the feature vector).

Fig. 4.1 Left image: logarithm of the covariance matrix. Right image: logarithm of the
correlation matrix. These matrices are determined using a set of 13 dimensional MFCC
feature vectors appended with their first and second derivatives thus the total dimensionality
is 39.

Another aspect that must be considered in the analysis of PCA is its robustness to outliers.
An experiment is conducted here to estimate the amount of outliers that may exist in a more
than 9 million MFCC feature vectors calculated from utterances of ∼ 1200 speakers. Fig.
4.2 illustrates the method used. In the experiment, the mean feature vector is first calculated
then the Euclidean distance is determined between all feature vectors and the mean feature
vector. Now denote the the median of the distances by Q. The first quartile Q1 is determined
as the median of the distances that are smaller than Q. The third quartile Q3 is determined as
the median of the distances greater than Q. The interquartile IQR is then determined, which
is Q3 −Q1. These parameter are used to identify the lower fence, Q1 −1.5× IQR, and the
upper fence, Q3 +1.5× IQR, of the distances distribution. Distance values that are greater
than the upper fence or smaller than the lower fence indicate outlying feature vectors. For the
data under study, the experiment indicated that around 1% of the points are outliers, which is
more than 99 thousand feature vectors. Therefore, it can be useful to establish methods for
PCA that can be robust to outliers and, possibly, bad feature vectors.
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Fig. 4.2 Distribution of the Euclidean distances. This figure illustrates the method used to
determine the possible amount of outliers in a set of feature vectors that could be used to
extract the principal components.

4.2 Recurrent Neural Network Solution for WPCA

4.2.1 Methodology

This section introduces a class of Recurrent Neural Networks (RNN)s that can be used
to extract the principal components of weighted covariance and correlation matrices. The
usually used technique for PCA, Singular Value Decomposition (SVD), does not compute
or use a correlation or covariance matrix. Thus, it is difficult to include weighting in the
analysis. Also, as discussed in Section 2.1.3, PCA based on the Expectation Maximisation
(EM) algorithm was found to be more precise (Bailey, 2012). The power iteration method
introduced in Delchambre (2014) was an improvement over the EM solution. The proposed
RNN-based methodology is found to provide equivalent PCA solution to the power iteration
method but has a higher convergence rate, as will be shown shortly.

The type of the RNN can be defined by its architecture. Furthermore an RNN can be
designed to model a dynamical system. Since a mathematical process can sometimes be
viewed as a dynamical system, Rajasekaran & Pai (2002) formulated the eigendecomposition
problem as an equilibrium problem for a dynamical model of a RNN. In that work, the RNN
was used to identify the largest eigenvalue and the associated eigenvector of a real symmetric
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matrix. Similarly in (Yi et al., 2004), a class of RNN was proposed to determine the largest
and smallest eigenvalues and the associated eigenvectors.

The RNN presented in (Rajasekaran & Pai, 2002) had fixed weights which were the
elements of a real symmetric matrix. Using those weights, it was shown that when the
network input is an arbitrary vector, the output converged to the equilibrium state, i.e. the
dominant eigenvector of that real symmetric matrix. This work defines the objective of the
learning algorithm of (Rajasekaran & Pai, 2002) and considers it for the eigendecomposition
problem here. The RNN based approach considered here is capable of identifying the
desired subset of the weighted principal components, extracted in the order of the size of the
eigenvalues from the weighted covariance or correlation matrix which is not possible with
conventional SVD. This is because the SVD solution does not use or calculate a correlation
or covariance matrix but it identifies the principal components directly from a sequence of
feature vectors. Thus, it can be difficult to engage any weighting.

A weighted correlation or covariance matrix can be determined by including a weights
matrix W which must be the same size as the feature vectors matrix X. If only the mean of X
is normalised, then its weighted covariance matrix can be achieved as in the following

ΣΣΣw = (X◦W)(X◦W)T ⊘ (WWT ), (4.4)

where ◦ and ⊘ indicate the Hadamard product and division, respectively. The weighted
correlation matrix Σ̃ΣΣw can also be determined using (4.4) if the variance of X is normalised.

Weighted covariance and correlation matrices of a set of speech feature vectors are found
to be real and symmetric. The methodology described here considers the weighted correlation
matrix Σ̃ΣΣw and can be equally applied to the weighted covariance matrix ΣΣΣw. The size of Σ̃ΣΣw

is D×D, where D is the feature dimensionality. Consider the following eigendecomposition
formula

Σ̃ΣΣwpw = γwpw. (4.5)

where pw is the weighted principal component associated with eigenvalue γw. The learning
algorithm for determining pw using the RNN is now described.

The structure of the RNN requires two layers: a variable layer and a constraint layer, see
Fig 4.3. The number of nodes in each layer is equal to D. Both layers are fully interconnected
with the weights being the elements of the weighted correlation matrix Σ̃ΣΣw. The initial input
to the neurons of the variable layer can be the values of a random column vector (v(1)).
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Let C = Σ̃ΣΣw, the output of the neurons of the constraint layer at iteration t will be

γγγ
(t)( j) =

D

∑
i=1

Ci jv
(t)
i for j = 1,2, ...,D, (4.6)

where i, j = 1,2, ...,D are, respectively, the rows and columns of C. This describes the so
called feed-forward step. Now let γγγ(t) be a column vector of the values of γγγ(t)( j) arranged
from j = 1 to D.

Fig. 4.3 The topology of the RNN network solution for the eigenvalue problem. Two examples
of the feed-forward step, expressed by equation (4.6), are given here for clarification. The
weights of the links between all v(t)i and γ

(t)
1 , for i = 1,2, ...,D, are the elements of the first

column of C which are Ci,1, for i = 1,2, ...,D. The weights of the links between all v(t)i

and γ
(t)
2 , for i = 1,2, ...,D, are the elements of the second column of C which are Ci,2, for

i = 1,2, ...,D. The rest of the elements of γγγ(t) are obtained in the same way.

In the feedback step, the neural links from the constraint layer to the variable layer are
1/γ̂(t), where

γ̂
(t) = max

(
γγγ
(t)
)
, (4.7)
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which can also be considered to be the eigenvalue at iteration t. For the next iteration, the
input to the variable layer will be

v(t+1) =
γγγ(t)

γ̂(t)
. (4.8)

The process described by (4.6), (4.7) and (4.8) is repeated for κ iterations until the
network converges to the equilibrium state giving the most dominant eigenvector as

v(κ) =
γγγ(κ−1)

γ̂(κ−1)
. (4.9)

Using the variables of the learning algorithm, one can re-write equation (4.5) as

Cv(κ) = γ̂
(κ)v(κ). (4.10)

The outcome of the operations on both sides of (4.10) is a column vector. The objective
of the learning algorithm here is to minimise a parameter α defined as

α =
∣∣∣∣∣∣Cv(κ)− γ̂

(κ)v(κ)
∣∣∣∣∣∣

1
. (4.11)

In order to meet the learning objective, i.e. making the value of α approach zero, the
learning algorithm must be sufficiently iterated. This will be demonstrated shortly.

It can be seen from (4.5) that the real symmetric matrix, Σ̃ΣΣw, scales the eigenvector, pw,
by the eigenvalue, γw. If the largest element of pw is equal to one then the largest element
of γwpw is equal to the eigenvalue γw. One can notice that the calculation in (4.6) estimates
the right hand side of (4.5), γwpw, given the parameters of its left hand side, Σ̃ΣΣw and pw. By
comparing (4.7) and (4.8), one can infer that the maximum value of any v(t), for t > 1, is
equal to one. This justifies the calculation of γ̂(t) using (4.7) since γγγ(t) is equivalent to γ̂(t)v(t).

The dominant weighted principal component, pw, of Σ̃ΣΣw is given here by normalising the
dominant eigenvector, v(κ), to unity

pw =
v(κ)

||v(κ)||
, (4.12)

and the associated eigenvalue is now calculated using pw and Σ̃ΣΣw, as follows

γw = pT
wΣ̃ΣΣwpw. (4.13)
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The rest of the weighted principal components are determined as follows. The variance
captured by the first principal component, pw, is removed from Σ̃ΣΣw as in the following

Σ̃ΣΣ
′
w = Σ̃ΣΣw −pwγwpT

w, (4.14)

then the same pre-described learning algorithm can be applied using Σ̃ΣΣ
′
w as the network

weights to obtain the second principal component. This procedure is repeated as many times
as required to obtain the desired set of d, d ≤ D, weighted principal components. However,
after the order of weighted principal components exceeds the feature dimensionality, all
the variance is captured and the additional principal components represent zero variance as
illustrated in Fig. 4.4. It can also be noticed from the figure that the principal components
are extracted in the order of the amount of variance they represent. This is particularly
useful when only a subset of the principal components is needed and those are required to
represent the majority of the variance. In such a case, it would not be required to extract all
the principal components then selecting the desired subset by examining their associated
eigenvalues.

Fig. 4.4 Amount of variance captured by the extracted principal components in term of
the eigenvalues. Raw feature dimension is 39. It can be noticed that weighted principal
components of order higher than 39 express zero variance.

Fig. 4.5 shows that the proposed RNN solution for the eigendecomposition problem
meets the objective of the learning algorithm. One can observe that α approaches zero with
a sufficient number of iterations. Fig. 4.5 demonstrates the case when the network input is
an arbitrary vector. The use of such an arbitrary vector may not be optimal as it was also
addressed in (Delchambre, 2014) with the power iteration method. It was suggested that if
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some prior eigenvectors were available, it would then be better to use it to start the iterative
process because of the relevance to the problem.

(a) First principal component (b) Second principal component

Fig. 4.5 Demonstration of how the learning objective, minimising α , of the proposed RNN
solution is being met. Examples of the extraction of the first and second dominant principal
components.

It is proposed in this work that for every weighted principal component to be extracted,
the iterative process is started with the corresponding unweighted principal component
determined using SVD. The RNN solution can then be viewed as a process of updating the
SVD principal component using the weighted correlation matrix. This strategy can at least
increase the convergence rate as discussed in (Delchambre, 2014).

4.2.2 Feature Vectors Weighting Criterion

The weight matrix W of (4.4) is the same size as the feature vectors matrix X where the
columns of X are the feature vectors. In this chapter, each column of W will have the same
value for each element such that each feature vector (as a data point) of X has a different
weight. Thus, the weight matrix can be expressed as

W =



w1 w2 w3 . . .

w1 w2 w3 . . .

w1 w2 w3 . . .

w1 w2 w3 . . .
...

...
...


. (4.15)

Alternatively, each row of W can have the same value, i.e. each feature has a different
weight. The case where each element of X is assigned a weight requires further investigation
which is currently out of the scope of this work.
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In this part of the work, each feature vector of the data used to extract the principal com-
ponents is assigned a weight. This is mainly important in order to decrease the significance
of outlying feature vectors and those ones that are noisy or may otherwise represent silence.
The proposed weighting criterion here can be described as follows. Using the EM algorithm
(Reynolds & Rose, 1995), a GMM is fitted to the feature vectors that are used in the PCA.
Then the log-likelihood value of the feature vectors to that GMM can be used directly as
weights in this case. With a GMM, Λ, fitted to all the feature vectors of matrix X, each
feature vector’s weight is then calculated with

Lt = log p(xt |Λ), (4.16)

where Lt is the log-likelihood of a feature vector xt .
This criterion is motivated by the concept of acoustic space modelling for speech with

the GMM-UBM (Reynolds et al., 2000) and by the methods of model based voice activity
detection (VAD) as in (Anguera et al., 2006a). It is therefore anticipated that bad feature
vectors will have relatively low log-likelihood values thus lower weights.

All the log-likelihood values are shifted by a scalar amount so that no negative weight
is assigned to a feature vector. Let Lm be the minimum log-likelihood value assigned to a
feature vector of X. The non-negative weights of the feature vectors are calculated as

L̂t = Lt + |Lm| ∀t. (4.17)

As a result, the minimum value of L̂t is zero (which was the most negative value of Lt).
In Delchambre (2014), zero weighted data points were considered to be missing where the
power iteration method presented in that work was considered to be more suitable in such a
case than conventional PCA methods. It must be noted that the RNN based solution proposed
in this work is found to give the same solution as the power iteration method but at a higher
convergence rate.

The GMM used here has one component and it is referred to as a Single Gaussian
Background Model (SG-BM). One might argue that a GMM-UBM can be used, however, it
seems to overfit for this approach. The reason is that higher variability between the weights
of the feature vectors can be seen with the SG-BM as illustrated in Fig. 4.6. In the same
figure one can see that by using a GMM-UBM, the variability between the weights is less
and it decreases by increasing the number of the mixture components.
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Fig. 4.6 Weight variability in the case of SG-BM versus, the case of GMM-UBM with
different number of components.

The weights are associated in the calculation of the weighted correlation (or covariance)
matrix using (4.4).

4.2.3 Network Convergence

The power iteration method introduced in Delchambre (2014) was considered a fast solution
for weighted PCA as discussed in Section 2.1.3. This method is based on the diagonalisation
of the weighted covariance matrix through two spectral decomposition methods. These are
power iteration and Rayleigh quotient iteration. In brief, given a weighted covariance Σw and
a vector of nonzero elements v(1), the iterative process v(κ) = Σwv(κ−1) should converge to
the dominant eigenvector as κ → ∞. However, that method can experience a low convergence
rate under some conditions and a further refinement process of the principal components was
proposed to allow faster convergence.

The RNN solution for weighted PCA have a higher convergence rate compared to the
power iteration method. Fig. 4.7 demonstrates the convergence rates of the RNN method and
the power iteration method. The figure shows the number of iterations required to achieve the
first weighted principal component of a 39 by 39 weighted correlation matrix. This matrix
was obtained with (4.4) for X using 39 dimensional MFCC features and the weights were
obtained using the criterion described previously (Section 4.2.2).

It can be observed that the RNN method converges approximately twice as fast as the
power iteration method. The figure also demonstrates that both solutions for weighted PCA
are the same. Note that the power iteration process is also initialised here with corresponding
unweighted principal component obtained using SVD.
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Fig. 4.7 Comparison of the convergence rates of the power iteration method and the recurrent
neural network method for extracting the first weighted principal component.

4.3 Evaluation on the i-vector Based Speaker Verification
System

This section reports the performance of speaker verification in the i-vector system. The
system uses features that are transformed or fused based on the proposed RNN approach for
weighted PCA. Note that feature fusion is also, generally, seen here as feature transformation.
The performance is reported in terms of the Equal Error Rate (EER). For the sake of
comparison, weighted covariance based PCA is also considered and the performance of
the system based on the resultant transformed and fused features is provided. Weighted
correlation and weighted covariance based PCA are referred to as WCR-PCA and WCV-PCA,
respectively.

Additionally, the performance introduced by using classical SVD solution for PCA is
also presented. SVD is used to decompose variance normalised features and non variance
normalised features which is equivalent to the eigendecomposition of the correlation and
covariance matrices, respectively. The unweighted correlation based PCA is referred to as
CR-PCA and the unweighted covariance based PCA is referred to as CV-PCA.

The i-vector system parameters and the development data used are the same as the ones
described earlier in Section 3.3.1. The evaluation is conducted on the Det5 subset of the 2010
SRE dataset. The data used for performing the principal component analysis is the same as
the one used for estimating the GMM-UBM which was also described in Section 3.3.1. Note
that the number of speakers of both genders is balanced. The number of iterations of the
RNN used for extracting the principal components of WCR-PCA and WCV-PCA is 50.
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Each feature and feature combination is normalised using the Cepstral Mean and Variance
Normalisation (CMVN) over a sliding window of 3s worth of feature vectors. For the case
of covariance based PCA, features and feature combinations of the speech utterances are
mean normalised, projected on (multiplied by) the principal components then CMVN over a
sliding window is used to normalise the resultant features. For the case of correlation based
PCA, features and feature combinations of the speech utterances are subject to mean and
variance normalisation, projected on (multiplied by) the principal components then CMVN
over a sliding window is also used to normalise the resultant features. For weighted PCA,
the weights are only involved in the extraction of the weighted principal components. This is
done by associating the weights in the calculation of the weighted correlation and covariance
matrices using (4.4). The weights are calculated as described in Section 4.2.2 using the same
feature vectors (and feature type) used to estimate the principal components.

Features (Filter Bank) Features EER(%) EER(%) Splitting plus
Dimension Splitting Adding Channel Effect

MFCC (24) 39 8.20 3.79
OE-MFCC (28) 76 7.97 3.16

MFCC (24) + LPCC 39 + 39 8.01 3.60
OE-MFCC (28) + LPCC 76 + 39 8.33 3.76

Table 4.1 Effect of using Gaussian noise in data augmentation for different features and
feature combinations.

Table 4.1 lists the different sources of features and feature combinations to be used in the
experimentation of the RNN approach for WPCA. The table reports some details about the
features’ parameters. It also highlights the benefits of using the data augmentation method
presented earlier (chapter 3) in terms of providing reasonable system performance with the
limited development data available.

In Tables 4.2, 4.3, 4.4 and 4.5, d, 1 ≤ d ≤ D, indicates the number of the principal
components used for the projection of the original features to the new reduced dimension
feature space. Thus, d is the resultant feature dimensionality. ‘AV’ and ‘STD’ refer to the
average and standard deviation of EER, respectively. The amount of variance captured by
the reported number of principal components is approximately in the range of 95% to 99%
for CV-PCA/WCV-PCA and 85% to 95% for CR-PCA/WCR-PCA. These ranges of variance
are found to give the best verification performance in terms of average EER.

The reduction in computation time as a result of reduced system complexity is presented
at the end (Section 4.3.3).
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4.3.1 Feature Transformation

In this subsection, the effect of the transformation of MFCC and OE-MFCC features using
the proposed RNN PCA is investigated. As the number of cepstral coefficients (features
dimensionality) is 39 for MFCC, the total number of principal components is also 39. For
OE-MFCC, the feature dimensionality is 76 resulting in 76 principal components used for
feature transformation.

d CV-PCA WCV-PCA CR-PCA WCR-PCA
39 3.89 4.08 3.82 4.17
35 3.74 2.96 3.51 3.28
34 3.96 3.00 2.96 2.81
33 3.67 2.71 2.97 2.79
32 3.64 3.28 2.91 2.97
31 3.56 3.23 3.34 2.81
30 3.47 3.47 3.21 3.37
29 3.96 3.50 3.63 3.38
28 3.79 3.46 3.31 3.09
27 3.61 3.10 3.64 3.41
26 4.20 3.69 4.12 3.56
AV 3.76 3.24 3.36 3.15

STD 0.22 0.29 0.37 0.28

Table 4.2 System performance (in EER%) using transformed MFCC features.

d CV-PCA WCV-PCA CR-PCA WCR-PCA
76 4.52 4.20 4.33 4.41
45 3.87 3.23 3.61 3.10
44 3.46 3.06 3.64 2.80
43 3.04 3.16 3.36 2.52
42 2.98 2.75 3.64 2.75
41 3.46 3.06 3.21 3.21
40 3.36 2.52 3.21 3.10
39 3.42 3.79 2.52 2.28
38 3.18 3.06 2.47 2.36
37 3.26 3.25 2.59 2.25
36 3.21 3.18 2.55 2.47
AV 3.32 3.11 3.08 2.68

STD 0.25 0.33 0.49 0.36

Table 4.3 System performance (in EER%) using transformed OE-MFCC features.

The performance of four types of PCA were investigated and the results are listed in
Tables 4.2 and 4.3. It can be observed that the performance using CV-PCA is comparable to
the reference performance (Table 4.1). In fact, covariance PCA outperformed correlation
PCA solely for dimensionality reduction because it gave similar performance in relation to
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the one reported in the table even for lower number of components. It is also noticeable that
WCV-PCA outperforms CV-PCA, however, WCR-PCA provided the lowest average EER in
both cases.

Recall that odd and even filters subsets in OE-MFCC interchangeably capture the speech
spectrum. This can in turn cause their cepstral coefficients to be more correlated than
conventional MFCC coefficients. Accordingly, these features can, in particular, benefit from
the decorrelating effect of a PCA based transformation such as the transformation achieved
in this work.

4.3.2 Feature Fusion

The performance of the system is evaluated for two combinations of features fused using
PCA. These combinations are MFCC+LPCC and OE-MFCC+LPCC. The performance in
terms of EER is reported in Tables 4.4 and 4.5. Similar to single feature type transformation,
weighted PCA outperforms unweighted PCA; and PCA of the correlation matrix outperforms
PCA of the covariance matrix. The average EER in the fusion of MFCC and LPCC is
comparable to that of OE-MFCC which demonstrates the power of OE-MFCC.

d CV-PCA WCV-PCA CR-PCA WCR-PCA
78 4.04 3.92 4.05 4.19
45 4.05 3.10 3.52 2.90
44 3.55 2.79 3.31 3.00
43 3.55 3.07 2.77 2.71
42 3.31 2.79 2.47 2.41
41 3.31 3.05 3.18 2.33
40 3.21 3.33 2.51 2.61
39 3.26 2.97 3.31 2.19
38 2.56 2.40 3.32 2.52
37 3.31 2.79 3.18 2.71
36 3.85 2.95 3.31 2.35
AV 3.40 2.93 3.09 2.57

STD 0.40 0.25 0.36 0.26

Table 4.4 EER for fusion of MFCC and LPCC.

WCR-PCA offers the best average performance for all feature combinations studied and
this is explained by the following reasons: 1) the use of the correlation matrix instead of
the covariance matrix, where the variances of the feature coefficients are normalised thus
they have equal contribution to the analysis; 2) using weights for the population feature
vectors such that the impact of the outliers is reduced and 3) using an iterative approach for
determining the principal components which is found to be more efficient than conventional
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approaches (Delchambre, 2014). WCV-PCA also offers an enhancement over CV-PCA,
while CV-PCA relatively presented the highest average EER.

d CV-PCA WCV-PCA CR-PCA WCR-PCA
115 6.03 5.72 5.86 5.90
50 3.10 2.68 2.71 2.66
49 3.26 2.32 2.71 2.11
48 2.99 2.59 2.54 1.91
47 3.12 2.36 2.36 2.35
46 2.91 2.22 2.71 1.99
45 2.91 2.19 1.99 2.08
44 3.23 2.50 2.11 1.97
43 2.86 2.22 2.71 1.89
42 3.01 2.01 2.53 1.97
41 2.96 2.97 2.40 2.17
AV 3.03 2.41 2.48 2.11

STD 0.13 0.28 0.26 0.23

Table 4.5 EER for fusion of OE-MFCC and LPCC.

A notable aspect of the results presented here is that projection on all the principal
components gives a relatively high EER in all cases. This is because having relatively
high feature dimensionality corresponds to a higher number of principal components. The
higher order principal components will only express a low percentage of the variance. These
principal components may not only represent low variance but also noise or other distracting
effects embedded in the original features. Projection on these principal components results
in sets of attributes that are found to negatively affect the verification performance.

The performance obtained from using all the principal components in all the investigated
cases of transformation and fusion supports that explanation. Particularly in Table 4.5, which
reports the performance for the case of fusing OE-MFCC and LPCC features, it is evident
that using all the principal components (115) gives a high EER compared to the reference
performance for the concatenation of OE-MFCC and LPCC features reported in Table 4.1.
The reason is that, given the high feature dimensionality of 115 (76 dimensions of OE-MFCC
plus 39 dimensions of LPCC), the higher order components, relatively, represent extremely
low variance. Another noticeable aspect in the fusion of OE-MFCC and LPCC, is that even
CV-PCA shows a considerable reduction in EER. This means that a mere concatenation of
different features is not as effective as anticipated especially when the accumulated feature
dimensionality becomes relatively high.

Fig. 4.8 depicts the variability in EER in relation to using variable number of principal
components in the projection of the features. Compared to the performance of CR-PCA,
the EER from WCR-PCA exhibits relatively low variability when using features in different
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Fig. 4.8 Variability in EER for the overall system performance for all PCA configurations
presented for all features and feature combinations.

proportions of dimensionality. This similarly applies to WCV-PCA. The feature vectors
weighting process appears to reduce the significance of feature vectors that are more severely
affected by noise or those that represent non-speech sounds like breathing.

The best average EER achieved in this work is 2.11%, reduced from 3.76%, using devel-
opment data that only contained 639 male and 639 female speakers with 5112 utterances in
total. Given the limited amount of development data, the relative improvement in the perfor-
mance is comparable to that of the GMM-UBM/i-vector framework reported in (Khosravani
& Homayounpour, 2018) with an EER of 1.13%. Note that in (Khosravani & Homayounpour,
2018), the development data contained 1925 male and 2603 female speakers which enabled
a baseline performance of 2.40% EER.

PCA influence on the performance is judged based on the average of the EER values over
a range of principal components used for feature transformation. It is difficult to anticipate
that the performance at a particular number of principal components will be exactly the same
in a different system, for a different evaluation set or with different data used to extract the
principal components. However, the average EER exhibits a notable improvement over the
performance with non-transformed features.
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4.3.3 Computation Time

The complexity of the system described earlier (Section 2.2.2) can be considered to be reduced
using the presented methods for feature dimensionality reduction whilst the performance has
also been improved. The reduced feature dimensionality reduces the processing time taken
by various elements of the i-vector system. The computer used in estimating the computation
time here has an Intel Xeon(R) 3.20GHz CPU and 16GB of RAM.

Process D d
GMM-UBM Estimation 3.4 ms 2.5 ms

Baum-Welch Statistics Calculation 150 ms 110 ms
Total Variability Learning 1480 ms 940 ms

i-vector Extraction 670 ms 250 ms

Table 4.6 Computation time for the processes affected by features dimension.

The highest original feature dimensionality D was 115 for the concatenation of OE-
MFCC and LPCC features. In Table 4.5 we can see that this high feature dimension can be
significantly reduced whilst also providing the aforementioned performance improvements.
Dimensionality reduction to d = 43 is taken in Table 4.6 as a case example to show the
reduction in computation complexity. The processing time taken by the estimation of the
GMM-UBM is reported per feature vector. Similarly for the total variability subspace training,
the processing time is reported per one Baum-Welch statistic supervector. The reported
time of calculating the Baum-Welch statistics is for a 150 seconds long speech utterance.
The most significant reduction in computation time is in the extraction of the i-vector. This
suggests that a variety of speech features can be combined to improve speaker recognition
performance using the proposed methodology with relatively low system complexity.

The processing time taken by the principal component analysis is also investigated. Fig.
4.9 illustrates the time taken by the three PCA methods used versus dimensionality of features
and feature combinations. The processing time is presented per feature vector. Obviously,
the iterative methods (for 50 iterations) consume less time than the classical method used (i.e.
SVD). Also, the time taken by SVD increases substantially for each additional dimension.
The power iteration and the RNN methods have almost the same processing time. However,
it has been shown in Fig. 4.7 that in order for the principal components to converge, RNN
requires fewer iterations than the power iteration method. Hence, the RNN method is superior
to power iteration in situations where the principal components require a higher number of
iterations to converge (for example: 500 iterations) as in (Delchambre, 2014).
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Fig. 4.9 Computation time required to perform PCA using singular value decomposition
(SVD), power iteration and the recurrent neural network (RNN).

4.4 Summary

This chapter elaborated on critical aspects regarding the conduct of principal component
analysis. First, it was demonstrated how the estimation of a covariance matrix can be affected
by the variances of speech features (i.e. cepstral coefficients). It was experimentally shown
that a variance normalisation is useful and that PCA based on the correlation matrix is
superior to that based on the covariance matrix. The amount of possible outliers in a feature
vector set was also demonstrated in this chapter.

The work in this chapter introduced a new RNN-based PCA approach for the eigende-
composition of weighted correlation and covariance matrices. The feature vector weighting
criterion presented aims to down-weight outlying feature vectors and those ones that could be
distorted by noise and similar affects. In this regard, weighted PCA was shown to outperform
unweighted PCA, for dimensionality reduction and feature fusion, in the framework of
i-vector based speaker verification.

In comparison to classical SVD and power iteration approaches for PCA, RNN-based
weighted PCA framework appeared to be efficient in terms of speed and convergence.
The next chapter focuses on speaker diarization and includes some experiments that will
demonstrate a broader application of weighted PCA where different features can be assigned
different weights.



Chapter 5

Spatial Features and Channel Selection
in Binary Key Based Diarization

The focus of this chapter moves on to a different aspect of speaker recognition systems which
is speaker diarization. For a multi-speaker conversation, an unsupervised diarization system
attempts to blindly identify segments of speech belonging to the same speaker. Acoustic
features, like MFCC, that are usually extracted from a summation of the microphones’ signals
are the fundamental front-end processing in diarization systems. This is used for the baseline
system (Fig. 5.1a). On the other hand, Time Delay Of Arrival (TDOA) features estimated
between the speech signals that are simultaneously received by multiple microphones indicate
speakers’ locations. Hence, these features can help in the diarization process.

Binary key based diarization1 is investigated here where the efforts are put into improving
the performance of this fast system. It will be shown that a concatenation of MFCC features
extracted from all available channels 2 provides better performance than combining signals
using the beamforming technique. Since that is computationally expensive, two channel
selection methods are introduced to provide cost-effective alternative sources of acoustic
features that maintain the improved performance. One of the methods aims to select spatially
diverse channels, Fig. 5.1c, and the other aims to select the best quality channels, Fig. 5.1d.
This chapter also investigates how TDOA features can be used in binary key based diarization
where non-linear transformation is proposed for that purpose, Fig. 5.1b.

The evaluation section first presents the system performance based on features extracted
form the beamformed signals in comparison to features extracted from selected channels.
Then it reports the system performance using transformed TDOA features as well as their
fusion with all sources of acoustic features mentioned above as illustrated in Fig. 5.2.

1Full description of this diarization approach is given in Section 2.3.2.
2The terms microphone and channel are used interchangeably.
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(a) Acoustic features of the beamformed signal.
This is the baseline system. Its performance is
reported in Section 5.4.2.

(b) Transformed spatial (TDOA) features. A
nonlinear transformation, X : [0,1]N → RN , is
identified in Section 5.2.2.

(c) Acoustic features of distant microphones. De-
tailed description in Section 5.1.1. A parameter,
τ̃i,re f , expressed in (5.2) is used in the selection.

(d) Acoustic features of best microphones. De-
tailed description in Section 5.1.2. A parameter,
∆̃i,re f , estimated in (5.6) is used in the selection.

Fig. 5.1 Binary key based diarization using the front-ends proposed in this chapter (apart
from the case of Fig. 5.1a which is the baseline system).
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Fig. 5.2 Diagram of the final binary keys-based diarization system of this chapter which
integrates acoustic and spatial features.
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5.1 Acoustic Feature Concatenation of Selected Channels

This section presents two methods that aim to select suitable channels to concatenate their
features in the diarization system. The goal of the first method is to find two sets of channels
that are distant from each other. The second method aims at finding the highest quality
channels.

5.1.1 Selection of Distant Microphones

The fundamental theory behind this selection method is that when many microphones are
available, then those that can deliver a diversity in information are more desired. In other
words, if a subset of microphones is to be selected, a desired selection method could be one
that identifies the microphones with the redundant information. Selecting microphones that
are distant from each other can be useful due to the following aspects:

• In speaker diarization, the feature stream is uniformly segmented whether for the
purpose of initial clustering (in uniform initialisation) or segmentation. As a result, the
starts and ends of segments do not fall into the correct change points between speakers.
This effect can be slightly reduced if a concatenation of features extracted from close
and distant channels is used instead of one set of features extracted from one channel
(or the beamformed signal).

• A microphone located far from a number of other microphones can be closer to some
speakers but not others and that information would be duplicated through the energy
pattern of the recorded speech signal. Also, for a relatively distant microphone, the
signal sensitivity threshold can be triggered by some speakers more than others.

• Variability in speakers’ locations can cause their recorded speech by a particular
microphone to be subject to effects of a different nature because of the room impulse
response. Additionally, the difference in the effect of the room impulse response on
the speech recorded by each microphone is emphasised if the recording microphones
are not placed close to each other (Anguera et al., 2007). These undesired disturbances
that affect distant microphones differently can actually help in the diarization since
a particular speaker’s speech is affected by slightly different conditions from other
speakers.

The diversity may also, but not necessarily, increase statistical independence within the
extracted features especially when diagonal covariance matrices are used in the anchors’
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Gaussian models or the GMMs in the final re-segmentation process. Note that diagonal
covariance matrices better describe the covariance if the variables (the features) are more
statistically independent (Deco & Obradovic, 2012).

Based on the aforementioned theory, a concatenation of features extracted from two
distant microphones would present an improvement in the performance as will be shown
in the results. In addition, it was found that using two groups of distant microphones can
present even better performance. The suitable number of selected microphones for each
group will be chosen empirically.

Before beamforming became common practice for combining microphones’ signals,
the centrally located microphone was usually selected based on cross correlation and was
considered a good signal source for the extraction of speech features Anguera et al. (2007).
A centrally located microphone is considered a ‘close’ microphone in the methodology of
this section. The distance distribution of other microphones is decided based on signal time
delay of arrival at any of the available microphones in relation to the central one.

For this channel selection method, the delays between the signals are calculated using
the cross correlation method over segments of 250 ms length and 10 ms shift. For two
speech segments from one of the microphones, si, and the reference (central) microphone,
sref, the delay τ (the lag) in samples, is the one that maximises the following cross correlation
function (see Appendix A.4 for its definition)

C(τ) =
N

∑
n=1

si(n)sref(τ +n), (5.1)

where N is the total number of samples within the segment.
Let τm be the one that maximises (5.1). The average of the absolute delays over all of the

segments of one of the microphones i and the central ref microphone can then be expressed
as

τ̃i,ref =
1
S

S

∑
j=1

τm(si( j),sref( j)), (5.2)

where S is the total number of segments.
For a total number of M̃ microphones, the farthest microphone from the central ref one is

selected as the one with the highest τ̃i,ref

argmax
∀i

τ̃i,ref for i = 1,2, ...,M̃−1, (5.3)
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and the closest microphone to the central ref microphone is the one with the lowest τ̃ j,ref

argmin
∀ j

τ̃i,ref for j = 1,2, ...,M̃−1. (5.4)

The first order coefficient of MFCC features reflects the distribution of speech spectral
energy between low and high frequencies of speech. It can be used to demonstrate the
diversity between distant microphones. Fig. 5.3 shows the distribution of this coefficient
extracted from signals of the central, the nearest and the farthest microphones of the IS1001a
AMI meeting. One can see that the distribution of this coefficient is similar between the
central and the nearest microphone and dissimilar to that of the farthest microphone. This can
support the idea that near and far microphones are triggered differently by speakers’ speech
from the point of speech loudness and speakers locations. On the other hand, it might be
difficult to argue that features from distant microphones can enrich statistical independence
despite the evident variation in the distributions. The reason is that all microphones are
simultaneously making observations about the same event.

Fig. 5.3 The distribution of MFCC first order coefficient extracted from the speech signal
recorded at a central, near and distant microphone.

Fig. 5.4 illustrates the correlations between the first order MFCC coefficient extracted
from the signal received at the central microphone and those of the rest of the microphones
individually. This is addressed for eight meeting excerpts 1 of the AMI data . Each meeting
has four participants and the conversation is recorded by two circular microphone arrays.
The first array has 8 microphones and is situated between the four participates. The second
array has 4 microphones and it is 1.09 meters away from the first array.

Fig. 5.4 shows the mean correlation over these eight meetings as well as the standard
deviation. It can be seen that the correlation decreases as the microphone distance from the
central microphone increases. This implies that the diversity in the characteristics of the

1Summary of these eight meetings is given in Section 5.4.1 Table 5.1.
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recorded speech signal seems to increase with distance. It must be noted that all coefficients
of MFCC provide similar correlation pattern. The sudden change in the correlation value
between the 7th and the 8th microphones indicates the transition in microphone selection
from one microphone array to another.

Fig. 5.4 The correlation coefficient of channels’ 1st order MFCC cepstral coefficient as a
function of distance from the central microphone. The correlation coefficient is determined
between the 1st order MFCC coefficient obtained from the central microphone and the one
obtained from the first closest microphone, the second closest microphone and so on until
the eleventh microphone. The line indicates the mean of the correlation coefficient across
eight meetings of the AMI data whilst the error bars indicate the standard deviation of the
correlation coefficients across those eight meetings.

This selection method does not consider the quality of the selected channels. Hence,
the application of speech enhancement techniques to the microphones’ signals, as a pre-
processing step, is necessary before speech features are extracted. In this work, a form of
Wiener filtration called Two-Step Noise Reduction (TSNR) was used (Plapous et al., 2006).

5.1.2 Selection of Best Quality Channels

The theory behind this selection method is very different from the one behind the selection of
distant microphones. This method aims to select one or more of the least distorted channels
among the available ones. Reverberation is a considerable source of distortion to the recorded
speech especially in meeting rooms and where the recording microphone is distant from
the speaker(s). Reverberated speech develops when the speech is reflected off surrounding
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objects, like room walls, and overlaps with the original speech at the acquisition (recording)
point.

The use of cepstral distance to identify good quality channels requires a reference channel
which is assumed to provide a relatively clean speech signal. When information about
the meeting room setting is provided, there might be prior knowledge about a particular
microphone which can provide a good quality signal that can be used as a reference signal. It
can be argued that there might be no need to conduct channel selection in such a case. In
practice, however, such information is generally not available and the choice of a reference
channel is a difficult task.

The beamformed signal obtained using the method of (Anguera et al., 2007) is proposed
to be used as a reference signal here for the following reasons:

1. The segments of the signals to be combined are aligned based on the estimated TDOA
delays which strengthens the speech signal and weakens random noise effects;

2. In the summation stage, as described in Section 2.3.3, the signals are weighted accord-
ing to their qualities (using (2.37)).

Although some aspects were noted on beamforming earlier, the beamformed signal
seems to be a good reference choice for the selection of the least distorted channel using
cepstral distance. The beamformed signal is an enhanced signal that was found to have better
diarization performance in comparison to the signal received at the most centrally located
microphone (Anguera et al., 2007). It will be shown in the results that the proposed cepstral
distance based channel selection with the beamformed signal as a reference provides channel
selection that has better diarization performance than the beamformed signal itself for the
development data. MFCC features are used here as the cepstral representation of the speech
signal in the cepstral distance calculation. The cepstral distance between two feature vectors
is calculated as (Flores et al., 2018)

∆i,ref =
10

log10

√
2

R

∑
r=1

| fi(r)− fref(r)|2, (5.5)

where fi(r) and fref(r) are MFCC cepstral coefficients of two feature vectors of channel
i and the beamformed signal re f , respectively. R is the total number of MFCC cepstral
coefficients (feature vector dimensionality). The term 10/log10 in (5.5) is related to the
definition of the cepstral distance as the logarithmic spectrum envelop distance (Kitawaki
et al., 1982).
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Let Xi and Xref denote the entire set of feature vectors extracted from channel i and the
beamformed signal ref. The rows of Xi and Xref are the cepstral coefficients of MFCC and
the columns are the feature vectors. The average cepstral distance between all feature vectors
of channel i and the beamformed signal ref is determined as in the following

∆̃i,ref =
1
T

T

∑
t=1

10
log10

√
2

R

∑
r=1

|Xi(r, t)−Xref(r, t)|2, (5.6)

where T is the number of feature vectors.
The average cepstral distance between all of the channels and the beamformed signal

is calculated. Then the best channel is selected as the one that produces minimal cepstral
distance from the beamformed signal ref

best channel = argmin
∀i

∆̃i,ref (5.7)

where i = 1,2, ...,M̃ and M̃ is the number of microphones. Fig. 5.5a depicts the FFT
spectrum of peer one second segments of speech from the beamformed signal as well as two
channels that are selected as the best and worst channels using the proposed method. The
meeting example under study is the IS1001a AMI meeting. Before making inferences about
the spectrums shown, it should be noted that the regions with the highest values represent
strong energy instances in speech phonemes. As such, empty (silent) regions in the spectrum
should present the lowest values. These (empty) instances may not have the lowest values in
noisy channels, especially if the noise energy is affecting the general spectrum (for example,
white noise).

It can be seen in Fig. 5.5a that the channel selected as the worst one exhibits what can
be described as distorted speech spectrum compared to the spectrum of the beamformed
signal. The dispersion of higher energy regions (spectrum smearing) strongly suggests that
this channel experiences a reverberation effect. On the other hand, the best selected channel
provides a more distinct speech spectrum than the beamformed signal and the worst selected
channel. It can be noticed that the beamformed signal presents higher phoneme energies than
the best selected channel likely due to the alignment of segments before summation. However,
it seems to have lighter coloured background than the best selected channel which indicates
the presence of noise. The probable reason is that the noise is not independent between
channels so that the combined effect is not fully cancelled by the weighted summation.

In the process of MFCC feature extraction, the spectrum of Fig. 5.5a is decomposed
using a filter bank before calculating the cepstral coefficients. The filter bank spectrum is
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(a) FFT spectrum (b) Spectrum quantified with a filter bank.

Fig. 5.5 Spectrums of one second of speech extracted from the beamformed signal and two
channels selected as the best and worst ones. Fig. 5.5a presents quite an informative imaging
of the quality of the spectrums. Fig. 5.5b provides additional insights on the filter bank
decomposition of the spectrums that will actually be used in the extraction of MFCC features.

shown in Fig. 5.5b. It can be noticed that the spectrums of the best selected channel and
the beamformed signal are more alike in this case. The channel selected as the worst one
continued to show dispersion of high speech energy.

It is evident that this selection method performs as anticipated. The beamformed signal
which is used as a reference signal clearly provides a distinguishable factor between good
and bad quality channels based on cepstral distance.

5.2 TDOA Features Fitting in Binary Key Based Diariza-
tion

This section addresses the distribution of TDOA features and presents an inference in binary
keys system statistics. Then, it identifies a suitable objective transformation of those features.
The outcome of this part of the work should enable the integration of spatial (TDOA) features
in the binary keys system in order to improve its performance.
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5.2.1 Distribution of TDOA Features

The main idea in binary key based speaker diarization resides in the methodology of obtaining
a Binary Key Background Model (KBM). The KBM comprises of a number of anchor
models which their selection methodology, described in Section 2.3.2, makes the binary
keys discriminative since they are derived from projecting speakers’ feature vectors onto
the same KBM. The speaker characterised by speech segments which are transformed to
acoustic features (usually MFCC), is the main subject to detect in a conversation. Success of
the anchor models (the KBM) concept, for speaker diarization, in the acoustic feature space
poses a question about the possibility of generalising the concept to other feature spaces if
appropriate observation about the speakers can be obtained. Especially that, in the case of
acoustic features, the anchor models are trained from the conversation’s feature segments
and not a plethora of features of external speakers.

As mentioned earlier, in the system description (Section 2.3.2), the number of clusters
should decrease by one for each step of the clustering process. However, when TDOA
features are used in this system, it was observed that the clusters do not constantly decrease
by one at each iteration but instead, they rapidly decrease to one cluster after few iterations.
The reason is that the binary keys based on a TDOA features space are not sufficiently
discriminative.

Fig. 5.6 AMI corpus sample, Carletta et al. (2006). These are images of matrices, each row
is a section of a segment’s cumulative vector. The horizontal axes indicate the indices of the
attributes of the cumulative vectors. For the TDOA feature space, one can observe relatively
high similarity between the attributes of the cumulative vectors.

For a conversation sample of the AMI corpus, Carletta et al. (2006), Fig. 5.6 shows the
attributes of the cumulative vectors. The figure presents a comparison between the case
of MFCC features and TDOA features. It can be easily observed that, for TDOA features,
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there is very small variability across the segments’ cumulative vectors, unlike the case with
MFCC features. Hence, the resulting binary keys of the TDOA feature space are found to be
less discriminative than those of the MFCC feature space. Similarly, Fig. 5.7 illustrates the
situation with a sample of the RT-05S data, Fiscus et al. (2005).

Fig. 5.7 RT-05S dataset sample, Fiscus et al. (2005). These are images of matrices, each row
is a section of a segment’s cumulative vector. The horizontal axes indicate the indices of the
attributes of segments’ cumulative vectors.

It can be inferred that, in a TDOA feature space, the anchor models collectively rep-
resented by the KBM are not appropriate for binary key based diarization. There are two
possible reasons for this; firstly, the methodology of obtaining the KBM is not appropriate
for a TDOA feature space and secondly, the statistical conditions of TDOA features make
them inappropriate to estimate anchors for the KBM. Since the methodology of selecting the
anchor models has shown success in MFCC acoustic feature space, it is more plausible to
use it. Instead, inference can be conducted about the selected anchors in the MFCC space
and the conclusions can be used to seek possible actions for TDOA features.

Fig. 5.8a shows a plot of 2D MFCC feature space and the means of 896 anchor models
that have been selected within this space. The selection process was described in Section
2.3.2. It can be observed that MFCC features have an approximately spherical histogram
(skewness = -0.0048 and kurtosis = 2.9218) 1. In other words, they approximate a normal
distribution which has a skewness of zero and kurtosis of 3 (Hoyle, 1995). It can be inferred
that the anchor models reside in the area where the data points are more dense which is the
centre of the feature space in the case of MFCC. By comparing this with the case of TDOA
features illustrated in Fig. 5.8b, it can be observed that for TDOA features, the anchors
also reside in the area where the data points are more dense. Hence, one can understand
the behaviour of the selection procedure of anchor models. However, it can be noticed that

1The reader may refer to Appendix A.5 for the meanings of the skewness and kurtosis.



5.2 TDOA Features Fitting in Binary Key Based Diarization 112

TDOA features exhibit a skewed distribution (skewness = 0.96 and kurtosis = 3.29), hence,
the anchors are not located in the centre of the TDOA feature space. Bearing in mind the
locations of MFCC space anchors, one can argue that MFCC anchors are suitable because
they are located in the centre of the feature space. Thus, the features log-likelihood scores on
these anchors are more viable.

(a) MFCC distribution and anchors (b) TDOA distribution and anchors

(c) Anchors locations in MFCC space (d) Anchors locations in TDOA space

Fig. 5.8 Top row: features histogram (light blue) and anchor model means (dark blue) on top
and the density of the feaure distribution at the bottom. Bottom row: another view to clarify
the anchor models locations in their respective feature spaces.

Figures 5.8c and 5.8d can help to complete the picture regarding the locations of the
anchor models in the MFCC and TDOA feature spaces. Finally, it can be concluded that the
distribution of features affects the estimation of a suitable KBM for deriving discriminative
binary keys.

The distribution of TDOA features is usually modelled by a Gaussian Mixture Model
(of one component) in the popular Bayesian Information Criterion (BIC) based speaker
diarization system. Their skewed distribution might be the reason behind the limitation of
their representation with a single Gaussian model as in (Martínez-González et al., 2017; Pardo
et al., 2007). A normalisation of TDOA features could be necessary for most diarization
systems that use these features.
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Let qn denote a stream of raw TDOA features extracted between a pair of microphones.
Let αs denote the skewness value. The distribution of qn can be assumed to fit a skew-normal
(SN) distribution which was introduced in (Azzalini, 2013) and described in Appendix A.6.
The skew-normal distribution of qn is expressed by SN such that qn ∼ SN(µ̃, σ̃2,α) where µ̃

and σ̃2 are the mean and variance of qn, respectively. The skewness of the distribution of
qn is determined by the shape parameter α , such that when α = 0 the skewness vanishes
(αs = 0) and SN(µ̃, σ̃2,α) becomes N (µ̃, σ̃2).

It is proposed, here, to transform the TDOA features in order to normalise their distribu-
tion. The transformed TDOA features will be referred to as TTDOA. The goal is to find a
transformation that can alter the parameter α making it approach zero.

5.2.2 Nonlinear Transformation of TDOA Features

Nonlinear transformations can be used to modify the distribution of TDOA. A nonlinear
transformation, X : [0,1]N → RN is defined here, which takes an N dimensional vector of
the TDOA feature space, [0,1]N , and transforms it to the space RN such that the statistical
distribution of the vector is normalised. Nonlinear transformations alter the relative distances
between the values of the features, thus, they change the shape of their distribution (Weinberg
& Abramowitz, 2008). Let the transformation of TDOA features (qn) be represented by q̃n.

There are some transformations that can be used to correct the positive skewness of a
distribution (Sheskin, 2003). A number of operations are investigated here to identify the
suitable transformation X : [0,1]N → RN . Those include: the square root q̃n =

√
qn, the

logarithm q̃n = log10 qn, the reciprocal q̃n = 1/qn and the arcsine (inverse sine) q̃n = 2×
arcsine×√

qn. The Box-Cox transformation (Box & Cox, 1964), is a power transformation
which is also useful and it can be regarded as an adaptive transformation. This is because
it covers some of the transformations mentioned earlier depending on a parameter λbc

(the meaning and estimation of this parameter will be explained shortly). The Box-Cox
transformation is expressed as follows

q̃n =


qn

λbc −1
λbc

for λbc ̸= 0

logqn for λbc = 0.
(5.8)
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Regardless of the shift and the scaling by λbc in (5.8), the Box-Cox transformation can
assume an infinite number of forms including the logarithmic 1 transformation when λbc = 0,
the square-root transformation when λbc = 0.5 and the reciprocal transformation when
λbc =−1.

The main goal here is to find the transformation that best normalises the distribution
of qn. A pure normal distribution can be difficult to achieve as TDOA features are real
life measurements. In practice, one can still assume normal statistics if the distribution is
unimodal and symmetric (Wu et al., 2010).

5.2.3 Box-Cox Parameter Estimation Based on Local log-likelihoods
Maximisation

The main advantage of Box-Cox transformation is that it is not a fixed operation (it is
parametric) because the basis of the actual operation of this transformation depends on the
parameter λbc. The value of λbc that best normalises the distribution of a TDOA feature
stream q = {q1,q2, ...,qN} using (5.8) is the one that maximises the log-likelihood as in the
following

Lmax(λbc) =−1
2

N log σ̂
2
q̃(λbc)+ logJ (λbc;q) , (5.9)

where logJ (λbc;q) is the Jacobian transformation, it is equal to (λbc −1)∑ logqn for the
special case in (5.8) of the simpler case q(λbc), and

σ̂
2
q̃(λbc) =

rs(λbc)

N
, (5.10)

where rs(λbc) is the residual sum of squares of the variance of q(λbc).
A modification to the estimation of the transformation parameter λbc is also proposed here.

This modification is useful when there is a need to normalise sub-distributions associated
with particular subjects (speakers) in a set of observations (the TDOA features). The task of
speaker diarization is to detect the change points between speakers so these change points are
initially unknown. Alternatively, q can be divided into uniform segments and, as these are
randomly selected samples, normalising the distribution for each segment will theoretically
result in normalising the distribution of all q as well as the distributions of the speakers’
TDOA features. However, the segments cannot be transformed according to different values

1The base of the logarithm is not important (Quinn & Keough, 2002), as υ logb(a) = logc(a), where the
constant υ = logb(c).
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of λbc because there will be an increased chance that the segments belonging to a particular
speaker will have greatly different values (since this is a power transformation).

Therefore, all q will be transformed based on the same new value of λbc. Simply stated,
λbc is to be selected according to (5.9) modified to maximise the average of the local log-
likelihoods estimate for each segment. Let qs represent a segment of q with size S̃ and
let S be the total number of segments. The new selected value of λbc will be the one that
maximises the following average log-likelihood function

L̃max(λbc) =
1
S ∑

S

(
−1

2
S̃ log σ̂

2
q̃s(λbc)+ logJ (λbc;qs)

)
. (5.11)

This proposed modification may not optimally normalise the distribution of all segments
since the objective log-likelihood function of (5.11) is the maximum likelihood estimate of
θθθ for (5.13). However, the majority of segments will be fairly normalised because λbc will
be selected based on an average log-likelihood. Additionally, an overlap can be allowed
between the segments in order to smoothen the local log-likelihood estimates to avoid spikes
that may affect the resulting average log-likelihood.

The basis for the estimation of λbc in the original form of Box-Cox (equation (5.9)) is
explained here. Assume that, at the optimum value of λbc, the transformation of q, denote by
q̃, conforms to the normal distribution theory assumptions with variance σ2

q̃ and expectations

E{q(λbc)}= Aθθθ , (5.12)

where A is assumed to be a known matrix of dimensions N×N and θθθ is a vector of unknown
parameters, associated with q(λbc). The reader may refer to the skew-normal probability
density function of (A.22) for q, qn ∼ SN(µ̃, σ̃2,α). To estimate the parameters of the
Box-Cox transformation, the probability density function of SN(µ̃, σ̃2,α) makes use of the
the Jacobian transformation of the normal probability density function of q̃n:

Fq =
1

(2π)0.5NσN
q̃

exp

(
−(q(λbc)−Aθθθ)′(q(λbc)−Aθθθ)

2σ2
q̃

)
J (λbc;q) , (5.13)

where J (λbc;q) is the Jacobian transformation expressed as

J (λbc;q) =
N

∏
n=1

∂q(λbc)
n

∂qn
. (5.14)
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For a given λbc, (5.13) is the likelihood for a least-squares problem. The maximum-
likelihood estimates of θθθ ’s, are the least-squares estimates for q(λbc) and the estimate of
σ2

q̃ at a fixed λbc is σ̂2
q̃(λbc) given in (5.10). Hence, finding optimum λbc was reduced to

maximising the log-likelihood function of (5.9).

5.3 Integration of Acoustic and Spatial Features

This section describes the primary integration framework of this chapter based on score
fusion. It also describes the possibility of using WPCA of Chapter 4 to perform RNN-PCA
based feature level fusion.

5.3.1 Score Fusion of Independent Binary Key Based Systems

Fusion of the scores of diarization systems that use acoustic features and spatial features
almost always result in superior performance in comparison to the case when features are used
individually. System fusion is normally a weighted combination of scores. An independent
diarization system deals with each type of features and then the decision scores are fused.
The BIC based speaker diarization system completely depends on the log-likelihood scores.
For all the BIC based system components, the log-likelihood scores are commonly combined
with a weight of 0.9 for MFCC features and a weight of 0.1 for the TDOA features Martínez-
González et al. (2017).

The binary key based system will include three aspects of fusion where each is expected
to be a weighted sum of scores. These scores are: the Jaccard coefficient values in the
clustering-and-segments-reassignment phase, the values of within cluster sum of squares
(WCSS) in the best clustering selection phase and the log-likelihood values in the final
re-segmentation phase.

If the spatial (TTDOA) features weight is denoted by ws and acoustic (MFCC) features
weight by wa. For 0 < wa < 1:

ws = 1−wa. (5.15)

The score fusion within the three decision stages of the system is described below.

Clustering and Segments Assignment

This includes a weighted sum of the Jaccard coefficients. The method of segments
assignment to clusters is first explained. For a particular conversation excerpt, let vvva

θ
and vvvs

θ

be two clusters’ binary keys of the acoustic and spatial spaces, respectively. Each of vvva
θ

and
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vvvs
θ

corresponds to the exact same duration of the conversation. Similarly, let vvva
seg and vvvs

seg be
two segments’ binary keys of the acoustic and spatial spaces, respectively. Each of vvva

seg and
vvvs

seg corresponds to the same, but relatively smaller, duration of the conversation. Based on
both acoustic and spatial spaces, the segments scores to the clusters is fused according to the
following weighted sum of the Jaccard coefficients

Jseg = wa
∑

B
i=1vvva

θ
(i)∧ vvva

seg(i)

∑
B
i=1vvva

θ
(i)∨ vvva

seg(i)
+ws

∑
B
i=1vvvs

θ
(i)∧ vvvs

seg(i)

∑
B
i=1vvvs

θ
(i)∨ vvvs

seg(i)
, (5.16)

where B is the size of the binary keys, ∨ is the boolean OR and ∧ is the boolean AND.
Based on maximum values of Jseg, every segment is assigned to a cluster, then each space’s
clusters are re-modelled using the corresponding space’s segments.

Next, two clusters are merged if they are found to be the most similar among the existing
ones. Let vvva

θ1 and vvva
θ2 be the binary keys of two clusters of the acoustic space. Let vvvs

θ1 and
vvvs

θ2 be the binary keys of the same clusters in the spatial space. Note that the same clusters
means that they correspond to the same duration of the underlying conversation. Using both
spaces (acoustic and spatial), the similarity between two clusters is determined as in the
following

Jθ = wa
∑

B
i=1vvva

θ1(i)∧ vvva
θ2(i)

∑
B
i=1vvva

θ1(i)∨ vvva
θ2(i)

+ws
∑

B
i=1vvvs

θ1(i)∧ vvvs
θ2(i)

∑
B
i=1vvvs

θ1(i)∨ vvvs
θ2(i)

. (5.17)

Afterwards, two clusters are merged if they obtained the maximum value of Jθ among
the existing clusters.

Best Clustering Selection

The previous process starts with a relatively large number of clusters then, by cluster
merging, the number of clusters decreases until it reaches one cluster. However, before any
merging takes place after each iteration, the clustering structure is saved. In other words, the
segments labels per clusters are saved at each iteration.

As explained in Section 2.3.2, the Within Cluster Sum of Squares (WCSS) is used to
identify the best clustering structure, supposedly, the number of hypothetical speakers. The
best clustering selection is made using a graphical framework based on the values of WCSS.
As previously illustrated in Fig. 2.10, a straight line connects the WCSS values belonging
to the case of the highest number of clusters (i.e. the number of initial clusters Ninit) and
the case of one cluster. Then, the values of WCSS for the rest of the clustering structures
with different number of clusters Θ, where 1 < Θ < Ninit , are calculated and the plot of those
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values forms a curve under that straight line. The point in the curve with the highest distance
from the straight line, i.e. the curve’s elbow, is identified and it signifies the best clustering
structure (hypothetically the correct number of clusters).

In this work, the focus is on integrating spatial (TDOA) features with acoustic features in
the framework of binary key based diarization. For best clustering selection, the fusion will
also be a weighted sum of WCSS values of acoustic and spatial spaces clusters. Following
the previous clustering and segments reassignment step, a particular clustering structure
C will be the same for the acoustic and spatial spaces. This means that at C , there exists
the same number of clusters Θ in both spaces where each cluster comprises of the same
corresponding segments. The fusion of WCSS values for C is determined as

WΘ(C) =
Θ

∑
i=1

(
wa ∑

ggga∈θ a
i

||ggga − g̃gga
i ||+ws ∑

gggs∈θ s
i

||gggs − g̃ggs
i ||

)
(5.18)

where θ a
i is an acoustic space cluster, ggga is a segment’s binary key within cluster θ a

i and g̃gga
i

is the cluster’s centroid. θ s
i is the corresponding spatial space cluster similarly the meanings

of gggs and g̃ggs
i .

Final Re-segmentation

The previous step identified the best clustering (i.e. the number of clusters). Note that
there is the same number of clusters in the acoustic and spatial spaces where each cluster
is defined by the corresponding segments. A cluster θ in either space, comprises segments
that extend for the same duration of a conversation. A GMM is trained for each cluster
using the feature vectors covered by its extent. Let G a be the GMM for a cluster of acoustic
feature vectors covering the extent T . Let G s be the GMM for a cluster of spatial feature
vectors covering the same extent T . Note that T does not necessarily indicate a set of
subsequent feature vectors, however, the feature vectors covered by T are assumed to belong
to a particular speaker. Let xa

t and xs
t be an acoustic and a spatial feature vectors, respectively,

each representing the same time extent t of a conversation. For all t ∈ T and t /∈ T , the fused
score (log-likelihood value) in this final re-segmentation process is determined as

Lt = wa logP(xa
t |G a)+ws logP(xs

t |G s) (5.19)
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where P(xa
t |G a) is the posterior probability of G a generating xa

t . The same applies to
P(xs

t |G s). The values of Lt are smoothened over a one second window. This indicates the
segmentation of one second worth of feature vectors (i.e. a conversation time) per speakers
that delivers the final outcome of the diarization system which is ‘who spoke when?’. The
values of wa and ws will be experimentally optimised for each of the three stages of the
diarization process as will be shown in the results.

5.3.2 WPCA Based Fusion

To demonstrate broader benefits of weighted PCA, this subsection explains the possibility of
fusing acoustic and spatial features using the RNN based technique of Chapter 4. However,
no extensive investigation will be conducted in this chapter. The framework of weighted
PCA here mainly differs in the weighting criterion as well as the method for achieving the
projection of the original feature vectors onto the weighted principal components. After
concatenating acoustic and spatial feature vectors (say in a matrix X), each feature’s position
along the corresponding column of the weight matrix W is assigned a different weight.
Therefore, unlike the case of Chapter 4, the columns of W are similar but the rows are
different depending on the weight assigned to each feature.

Since the principal components will be retained from the same feature vectors to be
projected (not feature vectors of many speakers), the scoring (projection) on these principal
components can be performed in a least-squares sense as in the following

x̂ = (PT
ww2Pw)

−1PT
ww2x, (5.20)

where x is the original feature vector, w is a diagonal matrix of the weights 1 and Pw is the
set of weighted principal components. See Appendix (A.7) for the basis of (5.20).

In the framework of WPCA based fusion, the values of the weights need a single
calibration. This will be separately studied in the results.

5.4 Experimental Evaluation and Discussion

This section reports the baseline performance of the binary keys diarization system as well
as the performance presented by the proposed methodologies. First the development and
evaluation corpora are described. The baseline performance is reported for these corpora

1w is a column of W transformed into a diagonal matrix. Recall that all columns of W are the same.
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based on MFCC features extracted from the beamformed signal. Then, the performance of
the proposed channel selection methods are compared to the beamformed signal. Afterwards,
diarization performance using transformed TDOA (TTDOA) features is reported. Finally,
the performance for diarization system fusion of TTDOA features with acoustic (MFCC)
features is presented. The acoustic features used in the fusion include features from the
beamformed signals and features from selected channels separately.

5.4.1 Corpora

The AMI meeting corpus (Carletta et al., 2006) contains a high volume of meeting excerpts in
audio and visual forms. Two separate sets of this meeting corpora are selected as development
and evaluation data. The development set consists of eight meeting excerpts collected at the
IDIAP research institute in Switzerland, it will be referred to here as the AMI development
set. The evaluation set consists of another eight meeting excerpts collected at the TNO
Human Factors Research Institute in Netherlands, referred to here as the AMI evaluation set.

Excerpt Name No. of Channels No. of Speakers Excerpt Length (s)
IS1001a 12 4 909.14
IS1002d 12 4 1263.10
IS1003a 12 4 913.57
IS1004a 12 4 796.75
IS1005a 12 4 1024.85
IS1006a 12 4 850.60
IS1007a 12 4 965.97
IS1009a 12 4 838.91

Table 5.1 Description of the AMI development set.

Excerpt Name No. of Channels No. of Speakers Excerpt Length (s)
TS3004a 18 4 1345.32
TS3005a 18 4 1318.84
TS3006a 18 4 1252.86
TS3007a 18 4 1609.34
TS3008a 18 4 1352.23
TS3009a 18 4 1505.89
TS3010a 18 4 1041.02
TS3011a 18 4 1509.76

Table 5.2 Description of the AMI evaluation set.

The RT-05S NIST set (Fiscus et al., 2005) is also used in the evaluation and it contains
ten meetings. This latter set will be referred to as the NIST evaluation set. One excerpt
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of the NIST evaluation set comes from the IDIAP corpus, so it is not included in the AMI
development set. Summaries of the different corpora used in this section are reported in
Tables 5.1, 5.2 and 5.3.

Excerpt Name No. of Channels No. of Speakers Excerpt Length (s)
AMI200412101052 12 4 943.87
AMI200502041206 16 4 2231.65
CMU200502281615 3 4 1083.43
CMU200503011415 3 4 1208.40
ICSI200105311030 6 7 3642.26
ICSI200111131100 6 9 3429.60
NIST200504121303 7 9 3104.97
NIST200504270939 7 4 2381.98
VT200503041300 2 5 1340.59
VT200503181430 2 5 2663.19

Table 5.3 Description of the RT-05S NIST evaluation set.

5.4.2 Baseline System Performance

This subsection reports the baseline system performance for the corpora under investigation.
For convenience of comparison to other achievements in the literature, the system uses
traditional MFCC features (Hamming window) extracted from the beamformed signal of
each meeting excerpt. All available channel signals are used in the beamforming process. The
first best delays selected by the Viterbi algorithm are used in the alignment of the segments.
Delays and channel weights are estimated every 250 ms for 500 ms segment size. The MFCC
features are extracted from the beamformed signal for speech frames of 25 ms in size at 10
ms rate (every 10 ms). The number of filters in the filter bank are 24 and the number of
cepstral coefficients are 19 excluding the 0th order coefficient as it only represents summation
of the filters energies.

The size of the KBMs is 896, as was previously optimised in (Anguera & Bonastre, 2011),
which is also the size of each binary key. The KBM Gaussians are estimated over subsequent
feature segments of 2 seconds in size with 75 % overlap (a rate of 0.5 seconds). In the
clustering phase, the sizes of the segments are 1 second extended by ±1 seconds for a total
segment size of 3 seconds. To determine the cumulative vectors, the top 10 log-likelihood
scores on the KBM Gaussians are selected for each feature vector. For binary keys derivation
from the cumulative vectors, a ratio of 20 % of the highest score positions are set to 1’s, the
rest are set to 0’s. The Jaccard coefficient is used as a similarity metric between the binary
keys as in Anguera & Bonastre (2011). The number of uniform initial clusters is 16. In the
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final re-segmentation, cluster’s (hypothetical speaker’s) feature vectors are modelled by a
GMM of 128 mixtures. The log-likelihood values of segments’ feature vectors to each GMM
are smoothened using a one second sized window. The baseline performance is reported in
Table 5.4. Minimising the DER and SER is the primary performance objective. As explained
in Section 2.3.4, DER indicates speaker time that is not attributed correctly to a speaker and
SER is speaker time that is attributed to the wrong speaker. Non-speech feature vectors are
identified using the reference files associated with each excerpt in order to precisely evaluate
the diarization performance as in (Delgado et al., 2015a).

Dataset DER (%) SER (%) False Alarm (%) Missed Speech (%)
AMI Development Set 36.41 35.9 25.0 9.4

AMI Evaluation Set 41.25 40.3 37.5 3.1
RT-05S NIST Evaluation Set 30.90 21.3 10.7 28.6

Table 5.4 Baseline System Performance. By the end of this chapter, considerable improve-
ments will be shown compared to this baseline performance that only uses MFCC features
extracted from beamformed signals.

5.4.3 System Performance for Acoustic Features Extracted from Se-
lected Channels

This subsection presents a study of system performance in light of the proposed channel
selection methods. The extraction parameters of MFCC, as acoustic features, are the same
as those of the baseline system. Initially, for the AMI development set, Table 5.5 shows
the effect of using a concatenation of features extracted from each individual channel in
comparison to those extracted from the beamformed signal.

Signal Feature Dimension DER (%) SER (%) False Alarm (%) Missed Speech (%)
Beamformed 19 36.41 35.9 25.0 9.4
All Channels 228 28.06 27.6 21.9 3.1

Table 5.5 Performance comparison between the case of MFCC features extracted from the
beamformed signal and a concatenation of MFCC features extracted from each channel for
the AMI development set.

A considerable reduction in DER and SER can be noticed in Table 5.5 as an effect of
features concatenation. However, as mentioned earlier, concatenation of features comes at
the cost of increasing the dimensionality. For the AMI development set, where each excerpt
is recorded using 12 microphones, MFCC feature dimensionality grew from 19 (of the single
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beamformed signal) to 228 which increased the processing time. Accordingly, the channel
selection methods proposed attempts to achieve similar improvement in the performance but
with a lower dimensionality.

5.4.3.1 Distant Channels

The AMI development set is used to approximate the suitable number of selected channels
that provide an improvement in the diarization accuracy. This channel selection method
cannot be evaluated on the RT-05S NIST evaluation set because there are four meetings with
three channels and less. As such, only the AMI evaluation set is used for testing.

The diarization performance is investigated for two cases of this selection method. The
first case is the selection of the most centrally located channel and then additional channels
are selected starting from the most distant one from the central microphone. The second
where two groups of distant channels are selected. One group includes the central microphone
and the ones close to it and the second group is one that is distant from the first group. In
this case, the selection also starts from concatenating the features from the centrally located
microphone and the most distant one. Then, features of two more channels are added, one of
them is the nearest to the central one and the other is the second most distant one, and so on.

Fig. 5.9a demonstrates the system performance in terms of DER and SER in relation to
the first case of this selection method. A trade off must be made between dimensionality
growth and system performance. It can be noticed that concatenating features of three distant
channels in addition to the central one (total of 4) provided equivalent performance to the
one when all channels’ features are used (Table 5.5). After that, an increase in the errors
can be noticed supposedly due to decrease in diversity. Then, as expected, the performance
moves toward the one achieved when all channels’ features are used. One might notice that
the lowest error occurred at nine selected channels, however, it is not a favourable operation
point given the high dimensionality of features at that case.

Fig. 5.9b demonstrates the second case of selecting two groups of distant microphones.
It can be observed that the choice of three pairs (distant groups of three microphones each)
provides an appealing trade off between the performance and the number of channels (six
in total). The DER and SER at this point is also lower than the case of concatenating
all channels’ features. The case of Fig. 5.9b, better demonstrates the achievement of the
desirable diversity using this selection criterion. Selecting two distant groups of microphones
is assumed to provide more diversity between the channels, compared to the case of Fig.
5.9a, hence better performance is achieved.
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(a) Case 1

(b) Case 2

Fig. 5.9 Effect of distant microphones selection (AMI development set) on DER and SER. The
figures contrast the performance of the selection criteria (DER Selected and SER Selected)
with the case of using randomly selected microphones in addition to the centrally located
one (indicated by DER Random and SER Random). Case 1: microphone index 1 means that
only features of the central microphone are used. Then features of the rest of the channels
are added starting from the most distant channel. Case 2: features of two groups of distant
channels are used. Index 1 means the pair of the central and the most distant channels.
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It is evident, from Fig. 5.9b, that using a concatenation of features of only one pair of
distant microphones provides a decrease in DER and SER by about 2% (DER of 34.01% and
SER of 33.5%) compared to the case of using only features extracted from the beamformed
signal (Table 5.4). This can also confirm the basis of this selection method. For the AMI
evaluation data there was a decrease of about 4% (DER of 37.06% and SER of 36.1%) using
features extracted from a central and one distant microphones.

The theoretical behaviour of the plots of Fig. 5.9 was anticipated to be as in the following.
A concatenation of a few number of distant channels improves the performance as the
diversity is assumed to be high. By adding more channels, the errors are expected to increase
as a result of decrease in the diversity. Then the performance is supposed to improve again
by adding more channels as it approaches the case of concatenating all channels features.
The plots of Fig. 5.9 fairly accommodated the expectations. Sharp changes occurred due
to the fact that the DER and SER depend on the outcomes of three components within the
system: clustering, best clustering selection and the final re-segmentation. In the process of
changing the amount of features, a small variation in one component’s outcome can cause
non-smooth changes in the subsequent ones.

Tables 5.6 and 5.7 show system performance in light of both cases of the proposed channel
selection method at the points that gave the lowest errors based on the AMI development
set. By comparing the results in tables 5.6 and 5.7 to those of Table 5.4, one can notice that
there is a maximum relative improvement in DER of around 8% on the evaluation set. While
the development set experienced a maximum relative improvement in DER of about 25%. It
is normal that the relative improvements on the AMI development and evaluation sets are
different because of the difference in meetings conditions. However, this proposed selection
method provides a cost effective alternative to beamforming. Using features of only one pair
of distant microphones, this method presented relative improvements of 6.59% and 10.15%
for the AMI development and evaluation sets, respectively.

Dataset DER (%) SER (%) False Alarm (%) Missed Speech (%)
AMI Development Set 28.99 28.5 31.2 9.4

Baseline 36.41 35.9 25.0 9.4
AMI Evaluation Set 38.03 37.1 15.6 3.1

Baseline 41.25 40.3 37.5 3.1

Table 5.6 System performance for the AMI development and evaluation sets as an effect of
features concatenation of one central channel and three distant channels.
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Dataset DER (%) SER (%) False Alarm (%) Missed Speech (%)
AMI Development Set 26.95 26.5 25.0 12.5

Baseline 36.41 35.9 25.0 9.4
AMI Evaluation Set 38.87 37.9 6.2 6.2

Baseline 41.25 40.3 37.5 3.1

Table 5.7 System performance for the AMI development and evaluation sets as an effect of
features concatenation of two distant groups of channels. Each group has three microphones.

5.4.3.2 Best Quality Channels

The beamformed signal is used here as a reference to assess the quality of the channels using
the cepstral distance and based on 19 MFCC coefficients extracted from the speech signals.

The performance of speaker diarization based on acoustic features from channels selected
with this method is investigated using the AMI development data. The development data
is used to estimate the sufficient number of best quality channels which the concatenation
of their features improves the performance. In this method, the channels’ signals are not
processed by any form of speech enhancement techniques. Therefore, the quality of the
channels is assessed using the proposed method without any speech enhancement.

Fig. 5.10 shows the changes in DER and SER in relation to varying the number of best
selected channels. Concatenated features of these best selected channels are used in the
diarization. In the figure, the diarization performance using features of the first selected
best channel is superior to that of the beamformed signal. This channel presented lower
DER by about 4%. Then concatenating additional features of more good quality channels
decreased the DER and SER further. The increase in DER and SER at 4 channels is caused
by a sudden inexplicable increase in the DER and SER of meeting IS1001a. For this meeting,
the DER was 39.94% for three channels, then it jumped to 61.34% for four channels and
then it returned to 39.00% with five channels. The SER exhibits a similar pattern.

The lowest DER and SER is achieved with five channels. This best performance point is
followed by an increase in DER and SER, possibly as a result of adding features from poor
quality channels. Then the error decreases again as a result of approaching the performance
when all channels’ features are used. For comparison, Fig. 5.10 also presents results on
the concatenation of features selected from worst quality channels and random channels.
Worst quality channels are selected as the ones that have the highest cepstral distance from
the beamformed signal. One can notice from the figure that the curve for worst quality
channels provides degraded performance in the beginning. Then, it improves when the
number of channels increases. On the other hand, the curve of the random selection has
no particular trend. In all cases, the performance improves when the number of channels
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increases. However, the relatively high increase in dimensionality causes the processing time
to increase noticeably.

Fig. 5.10 Effect of best quality microphones selection (AMI development set) on DER and
SER. An improvement over the case of the beamformed signal can be noticed from 1 to 5.
The error increased between 6 and 7 as a result of including lower quality channels, which is
expected. Then the error decreases as a natural result of increasing the number of channels
and features. DER-Best and SER-Best indicate the cases when the concatenation start from
the best channels. DER-Worst and SER-Worst indicate the opposite case. DER-Random and
SER-Random indicate random selection.

By using a concatenation of features in the diarization, it can be difficult to tell if this
selection method is performing as anticipated. It can be more informative to report the
system performance, for illustrative purposes, when features of the selected channels are
individually used in the diarization. Fig. 5.11 demonstrates the system performance in
relation to using features from individual channels, starting from the best quality channel as
selected by this method. The curve of Fig. 5.11 implies that the channel quality estimation
process is performing fairly as anticipated. In general, the DER and SER are increasing as
the quality of the channel is decreasing. However, the concatenation of features from good
quality channels results in lower DER and SER as reported in Fig. 5.10.

Given the similar level of errors for the range of channels 7 to 11 (Fig. 5.11), it can be
inferred that the qualities of those channels are similar. Therefore, those low quality channels
were not optimally ranked by the selection method minimising the impact on the final results.
Thus it appears that the method provides good selection performance, in general, in addition
to identifying the worst quality channel (channel 12) which provides the highest error.
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Fig. 5.11 Effect of microphones selection (AMI development set) on DER and SER starting
from the best quality microphone. This plot demonstrates the efficiency of this selection
method in distinguishing signals’ qualities, specifically, for the range between 1 and 9.

In the evaluation, features concatenated from up to five of the best channels are used with
the AMI and the RT-05S NIST evaluation sets. Table 5.8 shows the results for these sets.
The proposed method of best quality channels selection presents an improvement in DER of
about 20% for the AMI development set and 6% for the AMI evaluation set in comparison to
the case of using MFCC features extracted from the beamformed signals. For the RT-05S
NIST evaluation set, the proposed method introduces a relative improvement of 14.43% in
DER and 20.65% in SER.

Dataset DER (%) SER (%) False Alarm (%) Missed Speech (%)
AMI Development Set 29.13 28.6 15.6 9.4

Baseline 36.41 35.9 25.0 9.4
AMI Evaluation Set 38.84 37.9 9.4 6.2

Baseline 41.25 40.3 37.5 3.1
RT-05S NIST Evaluation Set 26.44 16.9 8.9 32.1

Baseline 30.90 21.3 10.7 28.6

Table 5.8 System performance for the AMI development set and for the evaluation sets as an
effect of features concatenation of a maximum of five best quality channels.

5.4.4 Integrating TDOA Features in Binary Key Based Diarization

This section investigates the performance of binary key based speaker diarization when TDOA
features are integrated. A transformation of these features is needed before their integration
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in the system. Fig. 5.12 depicts the resulting distributions from transforming TDOA features
using a number of transformations. One can notice that the reciprocal transformation has
made it worse and it has increased the skewness and the kurtosis. The arcsine and square-root
transformations introduce a moderate normalising effect which did not reach the desired level.
On the other hand, the logarithmic and the Box-Cox transformations appear to help normalise
the distribution of these features to a great extent. The Box-Cox transformation introduced a
skewness of approximately zero and, at the same time, a kurtosis that is very close to that
of the normal distribution. In the experimentation, the values of Box-Cox transformation
parameter, λbc, are found to be in the range of −1.75 to 0.61.

Fig. 5.12 Distributions of transformed TDOA features using the transformations under
investigation. The skewness and kurtosis are reported below wherein the captions for each
sub-figure identify how the individual transformations affect these parameters. TDOA
features are calculated from the IS1001a meeting of the AMI corpus Carletta et al. (2006).

The example of IS1001a AMI meeting used in Figs. 5.12 and 5.13, contains four speakers.
As stated earlier, the goal of transforming TDOA features can surpass normalising their
overall distribution and instead to normalise TDOA features for each speaker. Fig. 5.13
shows that the distribution of raw TDOA features for each speaker are positively skewed.

Box-Cox transformation of the entire TDOA feature stream also provides a good normal-
ising affect on the distribution of TDOA features for each of the speakers individually, as
shown in Fig. 5.13 and as indicated by the included skewness and kurtosis values. However,
the local skewness and kurtosis of the speakers’ distributions are not the same as that of
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Fig. 5.13 Top row: distribution of raw TDOA features of each speaker of the AMI IS1001a
meeting. Bottom row: for the same meeting and microphone pair, the distribution of each
speaker’s features after performing Box-Cox transformation. The changes in the ditribtuion
are precisely described by the skewness and kurtosis parameters below each sub-figure.

the entire stream (as shown in Fig. 5.12). There could be two reasons for this: firstly, this
is a natural result since speakers’ TDOA are not randomly chosen samples, secondly, the
transformation parameter λbc was selected to be the one that maximises the log-likelihood
of equation (5.9) for all the TDOA sequence. As a result, the speaker with the greater
contribution to the conversation has a higher effect on the selection of λbc in relation to the
other speakers. For example, one can notice that the original distribution of raw features of
Speaker 4 as well as the distribution of speaker 4’s transformed features resembles, to a large
extent, those of the entire sequence. The reason is that this speaker has contributed to about
70% of the conversation.

In the case of the modified Box-Cox transformation, Fig. 5.14 shows the effect of varying
the segment length and that the proposed method can reduce the local skewness of speakers’
distributions. It can be seen that using the original Box-Cox transformation, the distribution
of Speaker 4 has relatively low absolute skewness because it has the greatest contribution to
the conversation and thus the highest impact on the selection of λbc.

Nonetheless, the standard Box-Cox transformation presented superior performance to the
proposed modification as will be shown shortly. The reason is that the Box-Cox transforma-
tion has a better normalisation effect in terms of the distribution of the entire TDOA sequence
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and consequently the skewness and kurtosis. While the modification targeted the normali-
sation of the distribution of each speaker’s features, the distribution of transformed TDOA
(TTDOA) became less normal compared to the one presented by the standard Box-Cox.

Fig. 5.14 The local absolute skewness of speakers’ distributions in relation to segment
length in the modified Box-Cox transformation. The dotted lines represent the local absolute
skewness of the speakers distributions as a result of the standard Box-Cox transformation.

Fig. 5.15 Locations of the anchor models in the feature space. A comparison between raw
TDOA, TTDOA and TTDOA further processed by mean and variance normalisation over a
sliding window (WCMVN).

Fig. 5.15 shows the effect of using the Box-Cox transformation on the locations of the
selected anchors in the TDOA feature space. For TTDOA, the feature distribution became
more spherical and the locations of the anchor models are more centred. For illustrative
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purposes, the figure also shows a case when TTDOA are further processed with mean
and variance normalisation over a 3 seconds sliding window (WCMVN). This additional
normalisation resulted in the features distribution to be even more spherical and the anchor
models to be more concentrated in the centre of the feature space. However, WCMVN is not
suitable for diarization and the actions to normalise the distribution of TDOA features appear
to be currently limited to the Box-Cox nonlinear transformation.

5.4.4.1 TTDOA Features Based Diarization

The proposed modified Box-Cox transformation aims to take into account the distribution
of each speaker. However, as shown in Table 5.9, TDOA features present better diarization
performance when they were transformed with the standard Box-Cox transformation. Each
excerpt of the AMI development set is recorded using 12 microphones. This provides the
TDOA features with 11 dimensions where the delays are computed between each micro-
phone and a central microphone. Table 5.9 shows a performance comparison, based on
the development set, when TDOA features are transformed using the standard or modified
Box-Cox transformations.

Transformation DER (%) SER (%) False Alarm (%) Missed Speech (%)
Standard Box-Cox 35.27 34.8 15.6 6.2
Modified Box-Cox 39.49 39.0 43.8 21.9

Table 5.9 System performance for the AMI development set with spatial features transformed
using standard Box-Cox and modified Box-Cox transformations.

The reason that the standard Box-Cox method appears to be more suitable transformation
for the diarization problem is explained as follows. Standard Box-Cox transformation
normalises the distribution of the overall TDOA stream of a meeting excerpt. Assume
that the TTDOA stream contains all possible TTDOA samples in the confined space of
the meeting room; segments of this presumably normally distributed TTDOA stream are
random samples that should have similar distributions as that of the overall TTDOA. Hence,
the within segment distribution can be more statistically compatible with the procedure of
obtaining the KBM as the anchor models are Gaussian models.

For the AMI development set, TDOA features transformed with standard Box-Cox
transformation have superior performance in comparison to the case when acoustic (MFCC)
features are used (see Table 5.4). This means that if speaker locations are appropriately
measured and modelled, they would then provide sufficiently discriminative properties of
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the speakers for speaker diarization. However, this can also depend on other conditions, for
example, the room setup and speakers’ locations.

While the evaluation sets also exhibit acceptable diarization performance using TTDOA
features, see Table 5.10, the DER and SER were higher than those when MFCC features
are used (Table 5.4). Nonetheless, a notable aspect of using TTDOA features for diarization
is that they are slightly better than MFCC features in terms of the false alarm and missed
speech errors. The fractional relative improvements regarding the combination of these types
of errors were 36.62% for the AMI development set, 46.05% for the AMI evaluation set
and 9.16% for the RT-05S NIST evaluation set. The fusion of TTDOA features with MFCC
features also present considerable reduction in DER and SER as will be shown next.

Evaluation Set DER (%) SER (%) False Alarm (%) Missed Speech (%)
AMI 49.84 48.9 12.5 9.4

RT-05S NIST 43.35 33.8 7.1 28.6

Table 5.10 System performance on the evaluation sets with spatial features transformed using
standard Box-Cox technique.

5.4.4.2 TTDOA and MFCC Features Based Diarization

The integration of MFCC and TTDOA features in binary key based diarization requires two
independent systems, each system deals with one of those features. Through the three stages
of the system, the scores of both systems are fused in a weighted sum fashion. Recall that
those stages are comprised of: clustering and segments assignment, best clustering selection
and the final re-segmentation. The AMI development set is used to learn the suitable weights
that should be assigned for MFCC and TTDOA features in the score fusion. DER is used as
the calibration parameter where the aim is to minimise it by finding the optimum weights.
Recall that wa and ws denote the acoustic (MFCC) and spatial (TTDOA) features weights,
respectively.

It was mentioned in Section 5.4.4.1 that TTDOA features have a noticeable influence on
the system performance in terms of false alarm and missed speech errors. Accordingly, one
can notice from Fig. 5.16 how using TTDOA features in addition to MFCC features in the
clustering and segments assignment phase considerably affect the DER and SER for the AMI
development set. The lowest DER and SER is achieved when wa = 0.5, which represents the
case when TTDOA and MFCC features are given the same weights, or in other words, the
fusion is simply the sum of both systems’ scores.
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Fig. 5.16 Effect of fusion weights of MFCC and TTDOA features on system performance in
the clustering-and-segment-reassignment phase for the AMI development set.

Fig. 5.17 Effect of fusion weights of MFCC and TTDOA features on system performance in
the best clustering selection phase for the AMI development set.
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Fig. 5.17 illustrates the effect of TTDOA and MFCC features fusion on the process of
best clustering selection. The best DER and SER at this phase is achieved when wa = 0.3
and wa = 0.4. However, it can be noticed that there is not an adequate range of stability
where the performance is improved over the case of only using MFCC features (Table 5.4).
Hence, there is no robust point of weights ratio (between MFCC and TTDOA features) that
one can safely choose to use in the fusion and a simple sum of WCSS scores seems to be a
good choice. One can also have the decision of the best clustering structure made using only
one type of the features.

Results for the final re-segmentation phase are shown in Fig. 5.18. Here, for the AMI
development set, the lowest DER and SER are obtained when wa is less than 0.3. The
performance within that range of weights is not as stable as the one for the range above
wa = 0.3. In this range, one can notice that the best working points are provided when MFCC
features have the weights: wa = 0.5, wa = 0.6 and wa = 0.7. It appears that any of these
weights is favourable since the performance is less variant in the vicinity of those particular
weights. This conclusion is further confirmed by the plot of Fig. 5.19 which shows results
on the AMI evaluation set for various weights in this final re-segmentation phase. One can
notice that the weights range wa = 0.5 to wa = 0.6 provided the lowest error with wa = 0.5
falling in the middle of invariant performance as particularly indicated by the SER values.

Fig. 5.18 Effect of fusion weights of MFCC and TTDOA features on system performance in
the final re-segmentation phase for the AMI development set.

After this investigation, it can be concluded that the system’s performance appears to
improve when the score fusion is only a simple (unweighted) summation. Furthermore, the
fusion in the clustering-and-segment-reassignment stage has the greatest influence on the
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Fig. 5.19 Effect of fusion weights of MFCC and TTDOA features on system performance in
the final re-segmentation phase for the AMI evaluation set.

performance and the best performance was achieved at the point when both features are
equally weighted, i.e. wa = ws = 0.5. When the fusion is a simple summation of scores, it
provides the advantage of minimised fusion dependencies.

Table 5.11 reports the system performance for the fusion of MFCC features (extracted
from the beamformed signal) and TTDOA for the three datasets used in this study. The
fusion of these features provided variable amounts of relative improvements in the errors.
The least absolute improvement in DER is 4.6% for the RT-05S NIST evaluation set. The
absolute improvement in DER for the AMI development and evaluation sets is 10.11% and
8.78%, respectively. The least relative improvement is 14.88% in the DER for the RT-05S
NIST evaluation set. For the AMI development set, the relative improvement in DER is
27.76% and it is 21.28% for the AMI evaluation set.

Data Set DER (%) SER (%) False Alarm (%) Missed Speech (%)
AMI Development 26.30 25.8 31.2 6.2

Baseline 36.41 35.9 25.0 9.4
AMI Evaluation 32.47 31.5 15.6 6.2

Baseline 41.25 40.3 37.5 3.1
RT-05S NIST Evaluation 26.30 16.7 3.6 25.0

Baseline 30.90 21.3 10.7 28.6

Table 5.11 Fusion of TTDOA features and MFCC features extracted from the beamformed
signals.
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Table 5.12, shows the fusion of TTDOA features and concatenated MFCC features of
selected distant pairs of channels. The performance provided when only using concatenated
features of selected distant pairs was previously shown in Table 5.7. Table 5.13, on the other
hand, shows the performance of the fusion of TTDOA features and concatenated features of
a maximum of five best selected channels. The performance provided by using concatenated
features of selected best quality channels was previously shown in Table 5.8.

Data Set DER (%) SER (%) False Alarm (%) Missed Speech (%)
AMI Development 24.54 24.0 18.8 6.2

Baseline 36.41 35.9 25.0 9.4
AMI Evaluation 36.99 36.0 21.9 9.4

Baseline 41.25 40.3 37.5 3.1

Table 5.12 Fusion of TTDOA features and concatenated MFCC features of three distant pairs
of channels.

Data Set DER (%) SER (%) False Alarm (%) Missed Speech (%)
AMI Development 27.27 26.8 21.9 9.4

Baseline 36.41 35.9 25.0 9.4
AMI Evaluation 36.64 35.6 14.3 7.1

Baseline 41.25 40.3 37.5 3.1
RT-05S NIST Evaluation 24.87 15.3 7.1 26.8

Baseline 30.90 21.3 10.7 28.6

Table 5.13 Fusion of TTDOA features and concatenated MFCC features of best quality
channels (maximum of five).

By comparing the results between Tables 5.12 and 5.7 and between Tables 5.13 and
5.8, it can be observed that fusion with TTDOA features results in an improvement in the
performance in all cases. For the case of selecting distant groups of microphones (Table
5.12), the AMI development set experienced further improvement in the performance over
the case when MFCC from the beamformed signal is used (Table 5.11). Also, for the case
when TTDOA features are fused with MFCC features extracted from selected best quality
microphones (Table 5.13), the RT-05S NIST evaluation set exhibited additional improvement
in the performance over the case when TTDOA features are fused with MFCC extracted
from the beamformed signal (Table 5.11).

The DER and SER of the RT-05S NIST evaluation set for the results reported in Table
5.13 represent state-of-the-art performance for this dataset using this fast diarization system.
As previously reported in (Anguera & Bonastre, 2011), the DER for this dataset was 24.96%
using the conventional BIC based diarization system with MFCC features extracted from
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the beamformed signal. The baseline performance using the binary keys system results in a
DER value of 30.90% for this dataset with MFCC features extracted from the beamformed
signal. The methodology presented here removed the performance gap between the BIC
based and the binary key based systems. Precisely, the DER of 24.87% for the NIST-RT05S
set indicates that the proposed methodologies makes the binary key based diarization a
very competitive approach. Although using a concatenation of features and the fusion with
TTDOA features increases the computation time, the system is still very fast with average
run time for the RT-05S dataset of 0.0516 ×RT.

System Features DER (%) SER (%) ×RT
Binary Keys (Beamformed) MFCC 30.90 21.3 0.026
Binary Keys TTDOA Integration (Beam-
formed)

MFCC + TTDOA 26.30 16.7 0.034

Binary Keys (Best Channels) MFCC 26.44 16.9 0.039
Binary Keys TTDOA Intergation (Best
Channels)

MFCC + TTDOA 24.87 15.3 0.051

Information Bottleneck (Vijayasenan et al.,
2008)

MFCC + TDOA – 17.7 0.340

BIC based System (Anguera & Bonastre,
2011)

MFCC 24.96 – 1.19

Online i-vector with Information Bottle-
neck (Madikeri et al., 2015)

MFCC – 16.1 –

PLDA i-vector with Information Bottleneck
(Madikeri et al., 2015)

MFCC – 16.5 –

Robust GMM based Modelling (Peso,
2016)

TDOA – 17 –

Table 5.14 Summary of diarization systems performance in terms of SER (%) for the RT-05S
NIST set.

From a DER and SER perspective, other than the BIC based diarization system, the
performance presented here is superior to other diarization methods, integrated diarization
systems and acoustic/spatial features fusion. Recently, a method for robust TDOA features
modelling was presented in (Peso, 2016). The SER was found to be 17.0% using TDOA
features with the number of speakers known. In (Madikeri et al., 2015), an online i-vector
extractor system is integrated with information bottleneck based diarization to produce SER
of 16.1%. The same study reported an SER of 16.5% based on a PLDA i-vector system
instead of the online i-vector. Also, previously in (Vijayasenan et al., 2008), TDOA features
were fused with MFCC features using an information bottleneck system resulting in SER of
17.7%. Table 5.14 provides a summary of those results and the results achieved here.
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5.4.5 WPCA Based Fusion of Acoustic and Spatial Features

This section presents a short experiment that demonstrates how weighted PCA of Chapter 4
can be used to fuse MFCC and TTDOA features. Each feature type, MFCC and TTDOA,
is assigned a different weight and the weights are associated with a conversation’s feature
matrix (after mean and variance normalisation) using equation (4.4) which determines the
weighted ‘correlation’ matrix. Before performing the WPCA analysis, feature vectors that
represent silences are removed. This experiment uses the IS1000 set of the AMI corpus
(Carletta et al., 2006). The first four meetings (IS1001a, IS1002d, IS1003a and IS1004a) will
be reserved for final evaluation. Meetings IS1005a, IS1006a, IS1007a and IS1009a will be
referred to as the calibration subset and will be used to identify the suitable weighting and
number of components. Since the acquisition conditions are similar for all the recordings
used in this experiment, it can be expected that the parameters optimised on the calibration
subset will produce good results on the final evaluation subset.

The meetings of the IS1000 set were recorded using 12 microphones each. The signals
of those microphones are combined using beamforming and 19 MFCC coefficients are then
extracted. Delays are calculated between each microphone’s signal and the central micro-
phone, then they were transformed using Box-Cox transformation to provide 11 dimensional
TTDOA features. The combination of MFCC and TTDOA features results in 30 dimensional
feature vectors. Feature vectors are mean and variance normalised, the weighted principal
components are retained using the RNN framework then the mean and variance normalised
feature vectors are projected onto the principal components using (5.20).

At the beginning, an arbitrary number of principal components are selected, 15 in this
case, then the weights are varied to find the suitable ones for each feature (MFCC and
TTDOA). Using the calibration subset, Fig. 5.20 illustrates the DER and SER in light of
weights variation. wa indicates the weight of acoustic (MFCC) features and the spatial
(TTDOA) features weight ws is equal to 1−wa.

From Fig. 5.20, the lowest error is achieved when TTDOA features are assigned higher
weight than MFCC features. Given the case of score fusion when the best performance was
achieved at equal weighting of MFCC and TTDOA, the case with WPCA is probably due to
the fact the MFCC dimensionality is higher than TTDOA. Hence, in the analysis of WPCA,
higher weighting was required for TTDOA features in order to emphasise their effect on the
analysis.
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Fig. 5.20 Feature weighting in WPCA. Number of components is 15. It can be seen that the
lowest error was given when MFCC features are assigned the weight 0.3 and TTDOA are
assigned the weight 0.7.

Fig. 5.21 System performance for the fusion of MFCC and TTDOA features using concate-
nation, WPCA and PCA with variable number of principal components. The calibration set
was used here (IS1005a, IS1006a, IS1007a and IS1009a). Features’ weights are: wa = 0.3
and ws = 0.7.
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At the weights wa = 0.3 and ws = 0.7, Fig. 5.21 illustrates the performance across a
range of principal components for the scoring of the original features. It also compares
RNN based WPCA to traditional PCA based on the Singular Value Decomposition (SVD)
technique. It can observed that WPCA outperforms traditional PCA in the majority of the
cases. The three best number of components indicated by the exhibited error are chosen to
experiment the system performance with the final evaluation (meetings: IS1001a, IS1002d,
IS1003a and IS1004a). The results are shown in Table 5.15 with comparison to traditional
PCA and to the case of feature concatenation.

Method - Feature Dimension DER (%) SER (%) False Alarm (%) Missed Speech (%)
Concatenation - 30 31.73 31.00 43.80 12.50

WPCA - 20 28.87 28.10 12.5 6.2
PCA - 20 36.37 35.60 6.2 6.2

WPCA - 18 32.03 31.30 0 18.8
PCA - 18 37.69 36.90 18.8 12.5

WPCA - 14 30.99 30.20 0 12.5
PCA - 14 39.09 38.30 6.2 6.2

Score Fusion - 30 25.87 25.1 6.2 25.0

Table 5.15 System performance using the evaluation subset of the IS1000 data with feature
fusion by concatenation, WPCA and PCA. The number of components chosen are the best
ones indicated by the system error as shown in Fig. 5.21. The bottom row shows the case of
score fusion for this subset at wa = ws = 0.5.

It can be seen in Table 5.15 that WPCA outperforms traditional PCA in all of the cases.
WPCA also outperforms concatenation of features in terms of false alarm and missed speech.
Additionally, traditional PCA noticeably improved false alarm and missed speech errors but
it has worsened the DER and SER. The case of score fusion provided better DER and SER
but relatively high missed speech error in comparison to PCA based fusion. Given both
cases, of score fusion and PCA based fusion, there is trade-off to be made between accuracy
and computational complexity which can be decided in favour of the underlying application.
For example, the performance of the clustering phase, indicated by false alarm and missed
speech errors, appears to be better in case of PCA based fusion which can be preferable for
speaker detection and counting.

This experiment demonstrated another aspect of weighted PCA where different features
can be weighted as appropriate. While PCA is commonly seen as a sole dimensionality
reduction technique, WPCA can additionally be used as an effective feature fusion technique
that can be very useful for speaker recognition in general.
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5.5 Summary

The work in this chapter addressed two aspects related to speaker diarization and it proposed
methodologies that noticeably improved the performance of binary key based diarization
at a computation speed that reached a maximum of 0.056 ×RT. Acoustic features, usually
MFCC, are the main input to diarization systems. Therefore, one of the aspects focused on
making use of richer sources (when multiple channels exist) for the extraction of MFCC
features as opposed to their extraction from a single (beamformed) signal.

While a concatenation of MFCC features of all available channels’ was shown to improve
the performance, the proposed channel selection methods provide a suitable solution for the
problem of increased dimensionality that would otherwise slow down the system. A selection
of distant microphones can possibly help to capture similar diverse information captured
by all the channels in an enclosed space; especially, if the major diversity comes from the
acoustical conditions of the space. Selection of the best quality channels, on the other hand,
can be particularly helpful when low quality, faulty or badly located microphones exist.

Interestingly, it has been observed during the experimentation that the best quality channel
selection method tends to, generally, choose channels that are selected as close channels
by the distant channel selection method. This implies that microphones that are closer to
the speaker(s) provide better quality speech signals. This could be due to the fact that the
magnitude of the direct signal is higher than those of multipath signals. Furthermore, the
power of peripheral environmental noise can be lower than the power of direct speech signals.

The second aspect focused on the integration of spatial features as an additional input that
was found to be helpful in other systems. This chapter highlighted the issue of the distribution
of TDOA features which, to the best of the author’s knowledge, was not addressed before. A
non-normal distribution of these features is found to be an obstacle for their integration in
binary key based diarization. As learned from the system behaviour when MFCC features
are used, it is found to be mandatory for the features to be normally distributed such that the
anchor models are situated in the centre of the feature space. That is, in turn, believed here to
be essential for the derivation of discriminative binary keys.

The next chapter presents methods for non-uniform initialisation of the binary key based
diarization. It also presents an acquisition of MFCC features that is based on the selection of
least distorted channels’ subbands.



Chapter 6

Subband Based Diarization and System
Initialisation

The focus of the first section of this chapter is similar to the the idea of channel selection
presented in the previous chapter. From the literature, it came to the attention that reverbera-
tion effect can vary across the speech spectrum. Therefore, the first section here presents the
idea of selecting the least distorted subbands of the available channels instead of the entire
channel. The reverberation effect is to be assessed using an appropriate measure presented in
this chapter that is expected to be adaptive to the acoustic conditions of a meeting session.
The performance of binary key based diarization is to be evaluated using acoustic features
extracted from selected subbands of the available channels. This will be compared to the
performance when features are extracted from channels combination based on beamforming.

The second part of this chapter focuses on the initialisation of binary key based diarization.
A number of methods will be presented for this purpose. One of the effective aspects of these
methods is that they make use of the cumulative vectors and binary keys that are already
derived as a part of the actual diarization process. System performance based on these
methods will be compared to the uniform initialisation method. Also, the most robust method
among the ones proposed will be identified. The additional processing time presented by
using non-uniform initialisation will be reported.
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6.1 Speaker Diarization Based on Spectrum Subbands

This section introduces a methodology for channels’ subbands selection in relation to the
amount of the reverberation exhibited. It also presents an evaluation of the performance of
binary key based diarization using OE-MFCC features introduced in Chapter 3.

6.1.1 Selection of Least Reverberated Channels’ Subbands

The amount of reverberation can be influenced by the location of the recording microphone
in an enclosure, such as a meeting room. This is because each microphone receives a
different amount of reflected signals and is exposed to a different proportion of the direct
signal in comparison to reflected signals. This was partly addressed with the quality based
channel selection methodology in Chapter 5. However, the amount of reverberation and the
reverberation time in particular can vary depending on frequencies (Ismail, 2013). Hence,
for each channel (microphone) there is potentially a range of its frequencies that might be
less affected by reverberation.

This motivates the idea of extracting acoustic features from subbands of channels that
are less affected by reverberation. It is important to clarify that a channel refers to the
speech signal recorded by a microphone and a subband refers to a range of frequencies in the
spectrum of that signal. In brief, the speech spectrum will be first divided into a number of
subbands and the reverberation effect on those subbands will then be characterised over all
of the available channels. The least reverberated subbands among the underlying channels
are then chosen. In the end, the entire speech spectrum is retained from different channels
and MFCC coefficients are extracted from the log-energies of the mel-filters that correspond
to each subband.

6.1.1.1 Average Joined Gradient Estimates of Reverberation

Reverberation is known to cause smearing in the speech spectrum. This effect can be visually
observed when stacking together the spectral estimates of short speech frames like it is done
in the extraction of MFCC. Consider the layout in Fig. 6.1, reflected speech is delayed and it
overlaps with the directly propagated speech at the acquisition point. In the speech spectrum
represented by a sequence of frames, reflected speech signal causes extensions in the speech
energy from one frame to another as illustrated by the reverberated spectrum in Fig. 6.2a. On
the other hand, the spectrum of clean (non reverberated) speech signal has sharper transitions
from one frame to the other as shown in Fig. 6.2b.
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Fig. 6.1 Hypothetical room setup illustrating how reverberated speech can develop.

It is proposed here, to estimate the gradients of the spectrum across the speech frames
and to use it to characterise the degree of reverberation. It is assumed that the smearing effect
of reverberations minimises the gradient. Hence, less reverberated speech will have higher
gradient values.

(a) Reverberated Speech (b) Clean Speech

Fig. 6.2 Speech sample of the YOHO data (Campbell & Higgins, 1994) for a female ut-
tering the numbers "35 79 81". Artificial reverberation of 0.7s was added to produce the
reverberated sample.
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In order to estimate the gradient, the speech signal is first divided into frames of 25 ms
length. Overlap is not allowed between frames since it would result in some continuity of the
speech spectrum from one frame to another which would affect the gradient. The spectrum is
determined for each frame as log10 of the magnitude of the discrete Fourier transform (i.e.
FFT). In an attempt to equalise the gradient estimates over different channels, the mean and
variance of the spectrum is normalised across the speech frames.

Let k denote a fraction of the spectrum (one FFT bin). Let η(k, t, j) be k’s value at
speech frame t of channel j. The mean of the absolute gradient of η(k, t, j) for T frames is
determined as

ξk,T, j =
1
T

T

∑
t=1

|∆tη(k, t, j)| , (6.1)

where ∆t is the gradient function over time.

(a) Reverberated Speech

(b) Clean Speech

Fig. 6.3 These plots illustrate the absolute value of the gradient across t (the x-axis) )as
calculated in (6.1). This is the gradient across the 80th bin of the spectrums shown in Fig.
6.3. The average of the gradient is also shown.
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The mean of the absolute gradient, calculated above, is plotted in Fig. 6.3 for the sample
of Fig. 6.2. It can be noticed form Fig. 6.3 that clean speech has higher average gradient
than reverberated speech. This is because clean speech spectrums in general should have
sharp transition between the frames (across t). Thus, the differences are higher between the
spectrum magnitudes of the frames.

The average gradient of a specific subband of the spectrum is calculated as

ξ̄k1,k2, j =
1

k2 − k1

k2

∑
k=k1

ξk,T, j, (6.2)

where k1 and k2 are, respectively, the low and high frequency limits of the subband.
Channels that exhibit high reverberation times can have similar ξ̄k1,k2, j values which

could make the degree of reverberation to be indistinguishable when measured by ξ̄k1,k2, j.
For example, it is possible that longer spread of the speech energy causes the value of ξ̄k1,k2, j

to increase which is the opposite to what was originally assumed here. The possibility of such
conditions can be tackled by introducing a threshold to discard overly extended smearing of
the spectrum.

The threshold is determined using all of the channels for which the reverberation to be
characterised over the subband k1 to k2. It is calculated as

ιk1,k2 =
1
M

M

∑
j=1

ξ̄k1,k2, j, (6.3)

where M is the number of channels.
This threshold is basically the average of all channel’s ξ̄k1,k2, j values obtained in (6.2).

The value of ι will be used to transform the gradient estimates into binary values. For
k1 ≤ k ≤ k2, the new gradient estimates, or the joined gradient, will be obtained by the
following transformation

ξ̂k,t, j =

1 for ξk,t, j ≥ ιk1,k2

0 for ξk,t, j ≤ ιk1,k2

. (6.4)

where ξk,t, j is the jth channel gradient value for specific fraction of the spectrum k (equivalent
to an FFT bin) at frame t. Then, the new Average Joined Gradient (AJG) estimate of channel
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j over T frames and for a subband that extends from k1 to k2 is determined as

ξ̂k1,k2, j =
1

k2 − k1

k2

∑
k=k1

(
1
T

T

∑
t=1

ξ̂k,t, j

)
. (6.5)

The higher the reverberation effect the higher the smearing it causes in the spectrum
which minimises the value of ξ̂k1,k2, j as assumed here. The channel that exhibits the lowest
reverberation at subband k1 to k2 is selected using the AJG estimate of (6.5) as

jselected = argmax
∀ j

ξ̂k1,k2, j. (6.6)

As stated earlier, this selection method is designed to account for hypothetical variations
in the degree of reverberation across the speech spectrum of the available channels. Three
subband selection cases will be investigated. In one case, the spectrum is divided into two
equal subbands each is to be selected from a different channel. The second case considers
three equal subbands and the third case considers four equal subbands.

Fig. 6.4 The framework of feature extraction from selected subbands based on MFCC
methodology. This figure illustrates the case of the spectrum being divided into three equal
subbands each is selected from a different channel. Cepstral coefficients are to be calculated
separately from the filters that cover each subband. Dotted filters indicate that they will be
included in the feature extraction of both of the adjacent subbands.

Acoustic feature extraction from selected subbands will be based on the MFCC frame-
work. Fig. 6.4 illustrates the case where the spectrum is divided into three equal subbands.
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The filters that cover the subbands’ edges will be included in the feature extraction for both
of the adjacent subbands.

6.1.1.2 Detection of Simulated Reverberation Effects

This subsection demonstrates the accuracy of the Average Joined Gradient (AJG) estimates
in detecting the degree of reverberation. Simulated reverberation effects are added to a clean
speech sample using the tool designed for the REVERB challenge by Kinoshita et al. (2013).
The tool performs convolution between the speech sample and a designated Room’s Impulse
Response (RIR). Three different reverberation times are added and tested:

• 0.2s using the RIR of simulation room 1 recording angle A;

• 0.5s using the RIR of simulation room 2 recording angle A;

• 0.7s using the RIR of simulation room 3 recording angle A.

Added Reverberation ξ̄k1,k2, j ξ̂k1,k2, j

0.0s (Original Speech) 0.356 0.603

0.2s 0.166 0.308

0.5s 0.159 0.276

0.7s 0.152 0.260

Standard Deviation 0.098 0.162

Table 6.1 Values of the average gradient (ξ̄k1,k2, j) and average joined gradient (ξ̂k1,k2, j) in
relation to different added reverberation times as well as the original speech sample "21 37
63" of the YOHO data (Campbell & Higgins, 1994).

A speech sample from the YOHO data (Campbell & Higgins, 1994) for a male uttering the
numbers "21 37 63" is used here to test the gradient estimations of its convolution with the
three rooms’ RIR as shown in Fig. 6.5. For the entire speech spectrum, Table 6.1 shows the
values of the average gradient (ξ̄k1,k2, j) determined using (6.2) and the average joined gradient
(ξ̂k1,k2, j) estimated using (6.5). The value of these gradients, ξ̄k1,k2, j and ξ̂k1,k2, j, is expected
to decrease as reverberation time increases. This is because an increase in reverberation
causes spectrum smearing to increase. Thus, the transitions of the spectrum between speech
frames would become smoother.



6.1 Speaker Diarization Based on Spectrum Subbands 150

One can notice from Table 6.1 that both ξk1,k2, j and ξ̂k1,k2, j decrease as the reverberation
time increases which accommodates the assumptions made here. The maximum values are
given for non-reverberated speech. More importantly, the values of ξ̂k1,k2, j have higher stan-
dard deviations which makes this measure more precise in distinguishing close reverberation
times.

(a) Added Reverberation 0.0 s (b) Added Reverberation 0.2 s

(c) Added Reverberation 0.5 s (d) Added Reverberation 0.7 s

Fig. 6.5 The speech spectrum of the speech frames for a speech sample of a male saying the
numbers "21 37 63" from the YOHO data (Campbell & Higgins, 1994). The figure shows
the spectrum of the original sample (0.0 s) as well as the spectrums with added reverberation.
Recall that the frames are 25 ms in size and they are not overlapped.

6.1.1.3 Evaluation on Speaker Diarization

The performance of binary key based diarization is to be evaluated here using acoustic
features extracted from selected channel’s subbands (see Fig. 6.4, as an example). The three
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cases of subbands division to be investigated are summarised in Table 6.2. Despite that the
proposed method aims to account for possible differences in reverberation effects over the
subbands, the extent of reverberation over the spectrum is unknown. In an attempt to tackle
such uncertainty when examining a subband, the AJG (ξ̂ ) will be estimated over the subband
plus 50% extensions with the adjacent subbands as described in the second column of Table
6.2.

Number of Spectrum Limits Subbands for Mel-Filters Feature

Subbands for Estimating ξ̂k1,k2, j Feature Extraction Subset Dimension

2 51 - 3012.5 Hz, 51 - 2025 Hz, 1 - 17,

1037.5 - 4000 Hz. 2025 - 4000 Hz. 17 - 24. 23

3 51 - 2025 Hz, 51 - 1367.66 Hz, 1 - 14,

709.33 - 3342.65 Hz, 1367.66 - 2684.32 Hz, 14 - 20,

2025 - 4000 Hz. 2684.32 - 4000 Hz. 20 - 24. 23

4 51 - 1531.25 Hz, 51 - 1037.5 Hz, 1 - 11,

543.75 - 2518.75 Hz, 1037.5 - 2025 Hz, 11 - 17,

1531.25 - 3506.25 Hz, 2025 - 3012.5 Hz, 17 - 21,

2518.75 - 4000 Hz. 3012.5 - 4000 Hz. 21 - 24. 23
Table 6.2 Summary of the MFCC based feature extraction framework from selected channels’
subbands. The third column shows the subbands to be selected from different channels. The
exact subband of a channel used in the feature extraction can be slightly extended as a result
of the actual number of filters used, refer to Fig. 6.4.

The choice of the best subband division case will be made based on experiments per-
formed using 16 meeting excerpts of the AMI corpus (Carletta et al., 2006). The first eight
meetings are the IS1000 set summarised in Table 5.1 and the second set of eight meetings is
the TS3000 set summarised in Table 5.2. The final evaluation will be made on the RT-05S
set described in Table 5.3.

The binary key based system here also uses the same setup previously described in
Section 5.4.2. In Chapter 5, the baseline performance was produced using MFCC features
with 19 dimensions extracted using 24 triangular mel-filters (Table 5.4). For consistent
comparison with the feature extraction setup of this section, MFCC features are extracted
using the same filter bank of 24 mel-filters but with 23 dimensions (the 0th order coefficient
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is excluded). The difference in feature dimensionality provided new results as shown in Table
6.3.

Dataset DER (%) SER (%) False Alarm (%) Missed Speech (%)
IS1000 34.66 34.2 12.5 12.5
TS3000 44.68 43.7 37.5 3.1

IS1000 & TS3000 39.99 39.2 25.0 7.8
RT-05S 32.13 22.6 26.8 25.0

Table 6.3 Binary key based system performance for the datasets under investigation using
23 dimensional MFCC features extracted from beamformed signals. These results are the
reference to which the subband selection results are compared.

Table 6.4 shows the system performance using the combination of IS1000 & TS3000
sets for the 2, 3 and 4 division cases of the subband selection and feature extraction process
describe here (as summarised in Table 6.2). Both of the 2 and 3 subband cases improve
the accuracy over the reference performance shown in Table 6.3. In theory, having smaller
sections of the spectrum selected from different channels is not expected to degrade the
performance. However, the case of 4 subbands has slightly degraded the performance which
is believed to be caused by the feature extraction framework. In the case of 4 subbands, the
third subband (2025 - 3012.5 Hz) is decomposed using 5 mel-filters and the fourth subband
(3012.5 - 4000 Hz) is decomposed using 4 mel-filters. Since those are overlapped filters, they
can have poor transformation of the spectrum because they are expected to have relatively
high residual in the correlation matrix of their log-energies as discussed in Section 3.2.1.2
(also see Fig. 3.5).

No. of Subbands DER (%) SER (%) False Alarm (%) Missed Speech (%)
2 38.87 38.1 26.6 9.4
3 35.02 34.3 14.1 9.4
4 40.61 39.9 23.4 7.8

Table 6.4 Binary key based system performance for the combination of IS1000 and TS3000
sets for the cases of 2, 3 and 4 subbands.

From Table 6.4 one can notice that the best results are obtained for the case of three
subbands. This finding is further investigated and evaluated on the RT-05S set and the
results are shown in Table 6.5. The same table also presents separate results for each of
the IS1000 and the TS3000 sets. The results of Table 6.5 appear to show a noticeable
improvement over the case of using MFCC features extracted from the beamformed signal
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(Table 6.3). The results appear to provide evidence that the methodology presented in this
section might considered to be a better practice than the process of combining all channels’
signals into a single beamformed signal. Beamforming is a time domain process that does
not take into account the spectral properties for individual microphones and in particular
any deficiencies in particular ranges of a microphone’s spectrum. These results appear to
show that channels’ subbands selection discards channels with spectrums that may have been
distorted by reverberation effects or other degradation.

Dataset DER (%) SER (%) False Alarm (%) Missed Speech (%)
IS1000 30.00 29.5 6.2 15.6
TS3000 39.45 38.5 21.9 3.1
RT-05S 28.21 18.6 16.1 21.4

Table 6.5 The performance of the binary key based diarization system for each of the IS1000,
TS3000 and RT-05S datasets in the case of three equal subbands spectrum division.

The diarization accuracy shown in Table 6.5 is slightly lower than the case of using a
concatenation of features of selected channels which was investigated in Chapter 5. However,
the method presented in this section provides a reduction in the feature dimensionality.
Therefore, there is a trade-off to be made when deploying the speaker diarization system.

6.1.2 Evaluation of Diarization Performance using OE-MFCC

In Chapter 3, OE-MFCC features were presented and they were shown to improve the
performance of speaker verification over regular MFCC features based speaker verification.
This is of interest here too as regular MFCC features based speaker diarization have been
used in the literature (see e.g Delgado et al. (2015a) and Anguera & Bonastre (2011)) to
capture the performance of binary key based diarization.

Therefore, it would be interesting to investigate the performance of speaker diarization
using OE-MFCC features. The same filter bank of 24 triangular mel-filters is used here. 11
cepstral coefficients are extracted from each of the odd and even filters subsets for a total
of 22 cepstral coefficients. This feature extraction configuration is comparable to extracting
23 dimensional MFCC features from the beamformed signal (Table 6.3) using a bank of
24 filters. However, as discussed in Section 3.3.3, the first 2 coefficients obtained from
the even filters subset should be omitted because they exhibit high correlation with the
same coefficients obtained from the odd subset. Accordingly, the total number of cepstral
coefficients becomes 20.
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The binary key based system setup is the same one described in Section 5.4.2. Using a
Hamming window in the spectral estimations, Table 6.6 shows the performance of speaker
diarization using OE-MFCC. In comparison to the results of Table 6.3, one can see that
OE-MFCC has improved the results for TS3000 and RT-05S sets. On the other hand, MFCC
outperformed OE-MFCC for the case of the IS1000 set, yet OE-MFCC has reduced Missed
Speech error to zero.

Dataset DER (%) SER (%) False Alarm (%) Missed Speech (%)
IS1000 39.70 39.2 18.8 0.0
TS3000 43.28 42.3 37.5 3.1
RT-05S 29.13 19.5 14.3 23.2

Table 6.6 Speaker diarization performance using OE-MFCC features with Hamming window
based spectral estimations.

It was shown in Section 3.3.3 that the extraction of OE-MFCC features improves when
it is based on multitaper spectral estimations. That observation is confirmed by the results
shown in Table 6.7 for speaker diarization where the spectral estimates for OE-MFCC are
made using four multipeak tapers as in (Kinnunen et al., 2010). In comparison to Table 6.6,
one can observe noticeable improvements in the system’s performance provided in Table 6.7.

Dataset DER (%) SER (%) False Alarm (%) Missed Speech (%)
IS1000 27.44 26.9 21.9 3.1
TS3000 41.26 40.3 25.0 3.1
RT-05S 25.76 16.2 7.1 19.6

Table 6.7 Speaker diarization performance using OE-MFCC features with four multipeak
multitaper based spectral estimations.

Other than speaker verification, the experiments here demonstrated the superiority of OE-
MFCC over traditional MFCC for speaker recognition in general. It is anticipated that further
improvements can be obtained when a concatenation of OE-MFCC features of selected
channels are used in speaker diarization.

6.2 Initialisation of Binary Key Based Diarization

Diarization systems usually adopt uniform initialisation, as discussed in Section 2.3.4, which
can provide acceptable performance. However, uniform initialisation may not be appropriate
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for all diarization systems. In binary key based diarization, cluster merging takes place after
segment re-allocation without the use of any algorithms to identify a best segmentation path
as in Martínez-González et al. (2017) with the Viterbi algorithm. Such algorithms are useful
for providing increased accuracy but require more computation time. A disadvantage of
binary key based diarization is at the beginning of the process when uniform initialisation is
deployed. This is because it is very likely that the system merges clusters containing more
than one speaker very soon. In such a case, for example, the segments of a speaker with low
contribution to the conversation are expected to be merged with another speaker’s model.

In binary keys diarization, cluster and segment modelling, whether by cumulative vectors
or binary keys, can facilitate the development of efficient initialisation methods like the
ones to be introduced in this section. The most important aspect of the source of this
improvement in efficiency is the compatibility of such methods with the diarization system
from a computational load perspective. A number of methods are proposed here based on
cumulative vectors and others are based on variations of binary keys.

Algorithm 1 The Cluster Purification Framework
Input: X, C ▷ X are the features vectors of a conversation

▷ C is the number of initial clusters
1: Split X into 3s segments with 1s overlap between adjacent segments
2: Derive a model for each segment and store it in SModels

▷ SModels are binary keys or cumulative vectors

3: Split X into C uniform portions
4: Derive a model for each portion and store it in CModels

▷ CModels are binary keys or cumulative vectors
5: Initialise a vector Labels with size S to zeros ▷ S is the number of segments
6: PreLabels = Labels
7: Set D = 1
8: while D ̸= 0 do
9: for i = 1 to C do

10: for j = 1 to S do
11: Similarities (i, j) = metric (CModels(i), SModels( j))

▷ metric is the cosine similarity or the Jaccard coefficient
12: end for
13: end for
14: for i = 1 to C do
15: ∀ j ∈ S find the set of segments, Si, with maximum scores to cluster i in Similarities (i, j)
16: ∀s ∈ Si, Labels(s) = i
17: Derive new cluster model (CModel) from the feature vectors of the segments s
18: CModels(i) = CModel
19: end for
20: D = sum(abs(PreLabels - Labels))
21: PreLabels = Labels
22: end while

Output: Labels, CModels
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A new idea (Algorithm 1) is presented for initialisation which aims to purify the initial
clusters. The purification process starts with uniform clusters and iteratively assigns segments
to clusters and estimates new cluster models from those segments until segments re-allocation
converges. Thus the initial clusters are expected to consist of homogeneous segments before
any merging takes place. Cluster purification is used to obtain the initial clusters, see Fig.
6.6a & 6.7a, and as a method to start the K-means algorithm (Algorithm 2), see Fig. 6.6b
& 6.7b. Given a cluster’s centre, K-means aims to maximise the similarity between that
centre and the models of the segments assigned to the cluster. The performance of K-means
is heavily influenced by the way it is initialised, hence, different initialisation criteria are
investigated.

The segments used within the initialisation methodologies are the same ones that the
system uses in the actual diarization process. Those are uniform with a coverage of one
second and an overlap of one second with the proceeding and the following segments. Hence,
the total segment length is three seconds.

Algorithm 2 The K-means Based Framework
Input: X, C ▷ X are the features vectors of a conversation

▷ C is the number of initial clusters
1: Split X into 3s segments with 1s overlap between adjacent segments
2: Derive a model for each segment and store it in SModels

▷ SModels are binary keys or cumulative vectors

3: Select CCentres using one of the methods below
▷ CCentres are the initial cluster centres

CCentres = random (SModels, C) ▷ select C random segments models
CCentres = K-means++ (SModels, C) ▷ select using the K-means++ algorithm
CCentres = CModels ▷ use the cluster models obtained by cluster purification

4: Initialise a vector Labels with size S to zeros ▷ S is the number of segments
5: for k = 1 to N do ▷ N is the number of K-means iterations
6: for i = 1 to C do
7: for j = 1 to S do
8: Similarities (i, j) = metric (CCentres(i), SModels( j))

▷ metric is the cosine similarity or the Jaccard coefficient
9: end for

10: end for
11: for i = 1 to C do
12: ∀ j ∈ S find the set of segments, Si, with maximum scores to cluster i in Similarities (i, j)
13: ∀s ∈ Si, Labels(s) = i
14: Calculate new cluster centre: CCentre = mean(SModels(s))
15: CCentres(i) = CCentre
16: end for
17: end for

Output: Labels
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6.2.1 Cumulative Vector Based Initialisation

The cosine similarity is used as a similarity measure within the methodologies presented for
this case. In cluster purification, feature vectors of a conversation are first uniformly divided
into a set of preliminary clusters. Cumulative vectors are derived for the uniform segments
and clusters. The cosine similarity is then used to assign segments to clusters and new cluster
cumulative vectors are obtained from the corresponding speech frames of the newly assigned
segments. The process is repeated until no segment is assigned a new label, see Fig. 6.6a.

Using the K-means algorithm, Fig. 6.6b, only the cumulative vectors of the segments are
required. K-means is iterated for a maximum of 100 times. The K-means++ algorithm (Arthur
& Vassilvitskii, 2007) is adopted here to find the initial centres for the K-means method
instead of using arbitrary centres. K-means++ is an improved algorithm in comparison to
K-means, mainly, in terms of speed. The cluster models obtained by the pre-described cluster
purification (Fig. 6.6a) are also adopted as initial clusters’ centres for the K-means algorithm.

(a) Cluster Purification Framework (b) K-means based Framework

Fig. 6.6 Cumulative vectors and cosine similarity based initialisation.
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6.2.2 Binary Key Based Initialisation

The methodology presented here uses the Jaccard coefficient as a similarity measure. The
main difference in cluster purification here is the necessity of using a counter, see Fig. 6.7a.
This is because, from empirical observation, cluster purification requires many iterations for
the segment re-allocation process to converge.

(a) Cluster Purification Framework (b) K-means based Framework

Fig. 6.7 Binary keys and Jaccard coefficient based initialisation.

K-means based on binary keys is different since a straightforward mean calculation from
the relevant segments’ binary keys provides a vector of non-binary values. The mean is deter-
mined here as follows; given a group of segments clustered based on the Jaccard coefficient,
the mean of their cluster is determined by averaging their corresponding cumulative vectors.
Afterwards, the binary domain cluster centre is derived from that cluster’s mean cumulative
vector. As illustrated in Fig 6.7b, K-means is initialised with cluster purification or by having
the initial centres as the binary keys of randomly selected segments.

6.2.3 Evaluation

This subsection provides an evaluation and examination of the initialisation methodologies
presented. The datasets and acoustic features sourcing (from beamformed signals and selected
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channels) of sections 5.4.2 and 5.4.3 are used here with the same system parameters given
in Section 5.4.2. The main focus is put on identifying a robust initialisation method among
the proposed ones which can therefore be reliably deployed as an alternative to uniform
initialisation. The evaluation parameters used is DER and the Clustering Error which can be
defined as

Clustering Error (%) = EFA(%)+EMISS(%), (6.7)

where the calculations of EFA(%) and EMISS(%) were given in equations (2.32) and (2.33),
respectively.

A simultaneous low DER and Clustering Error might imply a good initialisation is
obtained. This might also considered to imply that purer clusters were obtained for the final
re-segmentation process. The clustering error indicates the system’s ability to identify the
correct number of speakers present in a conversation which can be greatly affected by the
initialisation. In the results shown shortly, cluster purification with Cumulative Vectors is
referred to as Purification (CV) and that with Binary Keys as Purification (BK). Similarly,
K-means initialised with cluster purification are referred to as Kmeans-P (CV) and Kmeans-P
(BK). Also, Kmeans-K (CV) is cumulative vector based K-means initialised with K-means++;
and Kmeans-R (BK) is binary key based K-means initialised randomly1.

6.2.3.1 The case when MFCC is Acquired from Beamformed Signals

Figures 6.8a and 6.8b illustrate the system performance in DER and Clustering Error in light
of the methodologies presented and in comparison to the uniform initialisation case.

In those figures, the system uses MFCC features extracted from the beamformed signals
of each conversation. One can notice that on average, i.e. the case of all data, all the
methodologies presented outperform the case of uniform initialisation.

For the individual sets, Purification (BK) results in an increase in the Clustering Error for
the IS1000 dataset. Also, Kmeans-K (CV) slightly increase the DER for the same dataset.
On the other hand, it did not provide an improvement in the Clustering Error for the same
case. The rest of the methodologies provided a reduction in DER in all cases and similar (to
uniform) or lower Clustering Error at the same time. On average, Kmeans-P (CV) results in
the best DER in addition to significant reduction in the clustering error.

Diarization initialisation based on the K-means algorithm is clearly useful, however, its
performance is influenced by its own initialisation. This can be investigated by further testing
as in the following section.

1In case of grey scale print, the bars from left to right are inline with the legends from top to bottom.
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(a) DER (b) Clustering Error

Fig. 6.8 System performance in terms of DER and Clustering Error using 16 initial clusters
with MFCC extracted from beamformed signals.

6.2.3.2 The case when MFCC is Acquired from Distant and Best Quality Channels

Figures 6.9a and 6.9b show the DER and Clustering Error, respectively, for the case when
MFCC features are extracted from distant channels1. Additionally, figures 6.10a and 6.10b
show the DER and Clustering Error for MFCC features extracted from best channels2.

(a) DER (b) Clustering Error

Fig. 6.9 System performance in terms of DER and Clustering Error using 16 initial clusters
with MFCC extracted from distant channels.

1The reader may refer to Section 5.4.3.1 and the results of Table 5.7.
2The reader may refer to Section 5.4.3.2 and the results of Table 5.8.
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(a) DER (b) Clustering Error

Fig. 6.10 System performance in terms of DER and Clustering Error using 16 initial clusters
with MFCC extracted from best channels.

From those figures, it can be observed that, again, Kmeans-P (CV) appears to have the
best initialisation effect. One can infer that cluster purification provide good starting centres
for the K-means algorithm. Also, in general, Kmeans-K (CV) presented slightly worse
performance compared to Kmeans-P (CV). Similar performance is not achieved using binary
key based methods, Kmeans-P (BK) and Kmeans-R (BK), possibly because a cluster mean is
not being accurately calculated by the procedure described earlier at the end of Section 6.2.2.

6.2.3.3 Effect of the Number of Initial Clusters on Initialisation

The effect of the number of initial clusters is also of interest and is therefore investigated.
A separate part of the AMI corpus collected at the University of Edinburgh is used for
this purpose. It is referred to as ES2000 and includes the meetings: ES2002a, ES2003a,
ES2004a, ES2006a, ES2007a, ES2009a, ES2011a and ES2012a. The conversations include
four speakers each. MFCC features extracted from beamformed signals are used. Using this
dataset, Fig. 6.11 shows the system’s DER for the cases of 12, 16 and 20 initial clusters.

From Fig. 6.11, the proposed methods provide better performance than uniform initialisa-
tion. Except for Kmeans-K (CV) and Kmeans-R (BK), the methods exhibit a similar pattern
of performance when varying the number of initial clusters. More specifically, Kmeans-P
(BK) provides more consistent performance when the number of initial clusters vary. Purifi-
cation (BK) presents similar behaviour with a small tendency to provide better performance
for a smaller number of initial clusters. Kmeans-P (CV) and Purification (CV) have a positive
effect on the performance for a smaller number of initial clusters which accentuates the
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importance of the initial clusters purification idea presented here. This is because, especially
for the Purification (CV) approach, more homogeneous segments result at the output of the
purification process which is important before any cluster merging takes place.

Fig. 6.11 DER for ES2000 dataset illustrates system performance in relation to the initial
number of clusters with different initialisation methodologies. The horizontal axis represent
the number of initial clusters.

These observations of the the results in Fig. 6.11 were tested on the IS1000, TS3000 and
RT-05 datasets. Comparisons between the cases of 16 and 12 initial clusters can be seen in
figures 6.12, 6.13 and 6.14 with MFCC features extracted from beamformed signals, distant
and best channels, respectively. In terms of DER, the performances with Kmeans-K (CV)
and Kmeans-R (BK) are degraded which confirms the observation from the results shown
in Fig. 6.11 that those methods do not follow a stable pattern when the number of initial
clusters is changed. On the other hand, Kmeans-R (BK) interestingly delivers a reasonably
stable performance. For the case of fewer number of initial clusters, the rest of the proposed
methodologies provide better performance as expected from the results of Fig. 6.11.

It can also be noticed from figures 6.12, 6.13 and 6.14, that Kmeans-P (CV) and Pu-
rification (CV) present better performance than uniform initialisation in most of the cases.
Despite the fact that DER with Purification (CV) is slightly worse than the uniform method
as shown in Fig. 6.13 (for the case of 12 initial clusters), the Clustering Error provided by
that method is noticeably smaller. This can be understood by the fact that lower clustering
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(a) DER (b) Clustering Error

Fig. 6.12 Effect of initial clusters number on system performance with MFCC extracted from
beamformed signals for the combination of IS1000, TS3000 and RT-05S datasets.

(a) DER (b) Clustering Error

Fig. 6.13 Effect of initial clusters number on system performance with MFCC extracted from
distant channels for the combination of IS1000 and TS3000 datasets.
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(a) DER (b) Clustering Error

Fig. 6.14 Effect of initial clusters number on system performance with MFCC extracted from
best channels for the combination of IS1000, TS3000 and RT-05S datasets.

errors indicate higher speaker detection accuracy which includes detecting those speakers
with a proportionally low contribution to the conversation. In such cases the GMM models
trained for those speakers in the final re-segmentation process may not be very reliable, given
the small data, which increases the final segmentation errors which would be reflected in the
DER.

Number of Unifrom Kmeans-K Kmeans-R Kmeans-P Kmeans-P Purification Purification
Initial Clusters (CV) (BK) (CV) (BK) (CV) (BK)

16 0.0227 0.0231 0.0300 0.0372 0.0384 0.0257 0.0317
12 0.0203 0.0209 0.0269 0.0310 0.0341 0.0231 0.0282

Table 6.8 System computation time in ×RT with various initialisation methods for the 16
and 12 initial clusters cases.

Finally, it is important to demonstrate the computational load incurred by the initialisation
methods investigated. The choice of the number of initial clusters can vary depending
on initial estimates of the number of speakers present in a conversation. With uniform
initialisation, it is common to over-cluster a conversation several times higher than the
expected number of speakers. However, with reliable initialisation methods, like Kmeans-P
(CV), one might not need to over cluster as in the case of uniform initialisation. This can in
turn reduce the overall computational load of the system. For the cases of 16 and 12 initial
clusters, Table 6.8 reports the overall system computation time in terms of ×RT. The data
used is the combination of IS1000, TS300 and RT-05S datasets with MFCC features extracted
from beamformed signals. From Table 6.8, the simple uniform initialisation provided the
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fastest performance. However, the proposed methodologies appear to incur relatively low
computational load.

6.2.4 Discussion

Putting aside the way in which K-means is started, its effect on initialisation could have
also been affected by concatenating features from different sources (whether distant or best
channels) which may, however, confound the process of determining the clusters’ centres.
This might help to explain why the proposed initialisation methods performed very well for
the case of a single source for feature extraction (the beamformed signal case). Features
concatenated from different channels can be fused using PCA. In that case, it is anticipated
that the proposed methodologies will present similar performance to the case of features
extracted from the beamformed signal. This is based on the fact that the fused features (using
PCA) are linear combination of all the original features which can remove the confusion in
centres determination for the K-means based methodologies.

In terms of DER, Kmeans-P (CV) has proven to be the most robust initialisation method
(among the ones proposed) that outperformed uniform initialisation through all the ex-
periments presented. Regarding the Clustering Error, uniform initialisation outperformed
Kmeans-P (CV) with the TS3000 dataset in particular for two cases only, see figures 6.9b
and 6.10b. The robustness of Kmeans-P (CV) appears to come from two main aspects:
determining clusters’ means in the cumulative vectors domain appears to be more accurate
than the methodology used for achieving the means of binary keys; and having the initial
centres as models of purified clusters such that K-means will then serve as a fine tuner for
the cluster boundaries.

6.3 Summary

This chapter tackled an interesting aspect for speaker diarization in general. In the presence
of multiple microphones, acoustic feature sourcing was shown to improve by making a more
appropriate use of the available signals as opposed to combining them in a beamformed
signal. Beamforming Anguera et al. (2007) has limited consideration of channels’ qualities.
For the reverberation problem in particular, MFCC features extracted from selected channels’
subbands was found to outperform those extracted from a beamformed signal. On simulated
reverberation effects, the Average Joined Gradient (AJG) presented for spectral assessment
was found to have direct relation with the degree of reverberation. On practical data, it
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is anticipated that AJG provided successful assessment of spectral distortions given the
improved performance shown in Table 6.5.

The chapter also addressed an issue related to binary key based diarization in particular
which is the system’s initialisation. Six methods were presented for binary key based
initialisation. Three methods are based on Cumulative Vectors: Purification (CV), Kmeans-K
(CV) and Kmeans-P (CV). The other three are based on Binary Keys: Purification (BK),
Kmeans-R (BK) and Kmeans-P (BK). In terms of computational load, the complexity of the
methods was shown to be accommodating with the fast performance of the binary key based
system since they added slight computational time (refer to Table 6.8). The initialisation
methods presented outperformed uniform initialisation in the majority of the experiments.
Among these methods, Kmeans-P (CV) appeared to be the most robust one.



Chapter 7

Conclusions and Future Work

This chapter summarises the work carried out and the methodologies presented. Due to the
different aspects of the contributions, this chapter allocates a separate section for interrelated
subjects. Accordingly, the relevant potential future works are included at the end of each
section.

7.1 Acoustic Feature Extraction

Acoustic features are a fundamental input to speaker recognition systems. It has been shown
in this work that, in particular, the performance of the speaker diarization system investigated
is largely influenced by the methodology used to extract the MFCC features. This thesis has
presented a reliable improvement on the extraction of MFCC feature which is widely used in
speaker recognition systems.

The Discrete Cosine Transform (DCT) used in MFCC extraction approximates the basis
function of Karhunen-Loeve transform when the correlation matrix of the input resembles
that of a highly correlated Markov-I process (Sahidullah & Saha, 2012). This is commonly
considered important for reducing the losses in the DCT transformation. The proposed
paradigm for odd-even MFCC (OE-MFCC) highlights the role of the filter bank as a ‘transfor-
mation’ of the speech spectrum as opposed to the DCT transformation of the filters’ output.
It was shown that using non-overlapped filters in spectrum decomposition results in having
lower residual correlation in the correlation matrix of the filters’ output. However, this is
considered to be more important since the filter bank is designed according to the perceptual
mechanism of speech. The application of the DCT to the outputs of the odd and even subsets
of filters separately have two main advantages: each subset consists of non-overlapping filters
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and the combination of both subsets captures the entire spectrum as it is done in traditional
MFCC.

OE-MFCC presented a maximum absolute improvement of ∼6% in terms of DER in
speaker diarization. For speaker verification, it provided an absolute improvement of ∼1% in
terms of EER. As investigated in the framework of speaker verification, the system’s accuracy
using OE-MFCC features does not decrease when the number of filters increases unlike the
case with traditional MFCC. This implies that OE-MFCC is more robust to such variations. It
is important to note that OE-MFCC depends on the multitaper spectrum estimation where it
has provided the best performance in speaker verification and diarization using this spectrum
estimation method. The multitaper method provides smoothened spectral estimates which
OE-MFCC appears to efficiently use in its lower residual filter bank transformation of the
spectrum.

Given the enhancement provided by multitaper spectrum estimation in MFCC and OE-
MFCC features extraction, it was fitted in the extraction of LPCC features in this work.
The methodology presented for this purpose seamlessly approximated the autocorrelation
function required to determine the coefficients of the linear prediction model by taking the
inverse of the multitaper spectrum based on the Wiener-Khinchin theorem. Multitaper-Fitted
LPCC outperforms traditional LPCC as it was shown in the i-vector based speaker verification
framework. It is interesting that Multitaper-fitted LPCC provides the best results using four
multipeak tapers. This is because MFCC features have previously provided the best results
in (Kinnunen et al., 2010) using the same type and number of tapers.

Since the effects of noise were not part of the scope of this work, it did not include a study
of the spectral envelop provided by the linear prediction coefficients which are estimated
here using the inverse-multitaper-spectrum approximation of the autocorrelation function.
In a future work, it will be interesting to investigate the impact of this approximation on
the spectral envelop under the effect of various types of noise. It will also be interesting to
investigate the effect of the proposed approximation of the autocorrelation function on sharp
peaks in the spectrum of feminine speech. Such specifics were not investigated since the
framework of this research is gender-independent.

Regarding OE-MFCC, future work can look into the possibility of having further re-
duction in the residual correlation of the correlation matrix of the filters output. One might
consider a different decimation of the filters other than the odd-even criterion. Also, this work
has used triangular shaped filters and it will be interesting to investigate how the methodology
might perform using different filter shapes such as rectangular or Hamming filters.
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7.2 RNN based Weighted PCA

The imperfect performance of speaker recognition systems can be attributed to a number of
factors. One of those factors is that none of the existing features are capable of completely
representing discriminative speaker-dependent characteristics. A plausible remedy for this
issue is to pool together a number of different features. However, it is required to establish
efficient methods for feature combination that can improve the performance with a minimal
increment in a system’s complexity. This work presented a weighted PCA method for this
purpose.

The proposed method provides principal component analysis that allows altering the
significance of the feature frames or the different features. By doing so, weighted PCA has
two advantages over classical PCA. It is robust to outlying and corrupted feature frames
as it was shown in the experiments for speaker verification where it provided a maximum
absolute improvement over classical PCA of ∼0.5% in terms of EER for feature fusion
(MFCC+LPCC & OE-MFCC+LPCC). Additionally, it enables the weighting of the features
to be combined as it was shown in the fusion of MFCC and TTDOA features in speaker
diarization. In this latter case, it was shown that weighted PCA noticeably outperforms
classical PCA by ∼8% in terms of DER.

The choice of having the PCA based on the covariance or the correlation matrix may be
influenced by the type of features and the speaker recognition modality. The choice of the
correlation matrix (equivalently variance normalisation) is safer when there is uncertainty
about the features’ variances in order to avoid the risk of having non-significant feature
attributes of high variance to dominate the principal components. On the other hand, the
choice of the covariance matrix could be preferable when it is desired to let some types of
features to have higher dominance on the principal components. This can be especially useful
when it is needed to have the feature frames weighted since it could be complicated to assign
weights to the individual features at the same time.

The RNN framework of extracting the dominant principal component is a fast and an
uncomplicated iterative process. It is further developed here to solve for the entire set
of the principal components provided that the correlation or covariance matrix remains
symmetrical after subtracting the variance represented by a preceding principal component.
The RNN framework is found to have relatively high convergence rate. Using prior principal
components to start the iterative process is a plausible alternative to using arbitrary initial
vectors. In the work of i-vector based speaker verification, the principal components retained
by the SVD technique were used to help the network convergence. However, this is not
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mandatory for the outcome of the principal component analysis performed by the RNN.
Nonetheless, this can be a good choice in some conditions when there exists some prior
principal components and one wishes to update them using additional data.

This latter situation can be studied in future work with particular modalities of speaker
recognition systems that may require a constant update of the principal components. This
work did not consider the fusion case where MFCC and LPCC features are assigned different
weights. In a future work, it will be interesting to consider such weighted fusion as well as
the fusion of more than two features by giving different weights to each feature. This can
be complicated to calibrate but the prospective outcome is expected to be worthwhile. One
can also investigate different weighting criterion of the feature frames other than the single
Gaussian model and log-likelihood values.

7.3 Spatial Feature Transformation

It is reasonable that a difficult task, like speaker diarization, requires extra resources. Having
a multi-speaker conversation, like a meeting, recorded by multiple microphones is useful
for speaker diarization. For one aspect, one can exploit the availability of multiple speech
signals to help the diarization process by measuring the time delay of arrival (TDOA) of
those signals which indicates speakers’ locations. The binary key based diarization system
was incapable of using TDOA features in the diarization process as it is the case with other
diarization systems, see (Martínez-González et al., 2017).

This work conducted an analysis within the framework of binary key based diarization
which revealed that the problem resides in the positively skewed distribution of TDOA
features. In order to derive discriminative binary keys, it was also found that the normality
of the features’ distribution is necessary in order to have the Gaussian models (forming the
KBM) to be positioned so that the peak of a Gaussian suitably coincides with the centre of the
feature density population. In this work, the distribution of TDOA features is assumed to fit
a skew-normal distribution which considers a shape parameter that is related to the skewness.
The skewness of the distribution of these features seems to be caused by the Generalised
Cross Correlation with the Phase Transformation (GPHAT) algorithm used to estimate the
delays. However, this work showed that the severity of the skewness can be influenced by
other factors like the locations of the speakers which cannot be controlled in practice.

Since the GPHAT algorithm is widely used to estimate TDOA features, this work con-
sidered normalising their distribution which is found to enable binary key based diarization
using such features. Among the normalising operations investigated, the Box-Cox power
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transformation is found to incur the best normalising effect on the distribution of TDOA
features as it was measured by high order moments (skewness and kurtosis). This enabled the
integration of these spatial features (transformed TDOA) with MFCC features in binary key
based diarization which provided 5-10% improvement in terms of DER for three different
datasets. The diarization performance using TTDOA features alone is outperformed by the
case of only using MFCC features which is plausible since acoustic features are the primary
input to diarization systems (Pardo et al., 2007).

The standard Box-Cox transformation is also found to outperform the proposed modified
Box-Cox transformation presented in this work. This is because the objective of the proposed
modification was to normalise the distribution of individual speakers’ features which affected
the normality of the entire stream of TTDOA features. However, that outcome confirms
the finding in this work about the necessity of providing the binary key based system with
normally distributed features. This work considered TDOA features estimated between a
central microphone (as a reference) and the rest of the available microphones. It is possible
that the degree of skewness of TDOA features distribution is affected by the choice of the
reference microphone or any other pairs of microphones to be used to estimate the delays.
However, this was not investigated here since any findings are unlikely to generalise to
different meeting scenarios, setups or venues.

Alternatively, future work could consider TDOA feature selection depending on their
degree of normality before or after their transformation. In such a case, it can be useful to
estimate the delays between all possible pairs of microphones in order to provide a broader
choice of feature streams. This can, however, be time consuming when there exists a large
number of microphones but the selection could be done only once since it is expected to
generalise to different meetings given a fixed venue and setup.

Despite the efforts made here, the distribution of transformed TDOA features remains
somewhat imperfectly normal. Future work could investigate the possibility of developing a
specialised normalisation framework for this purpose. It will also be interesting to consider
other algorithms to estimate delays that could potentially be more normally distributed than
those provided by the GPHAT algorithm.

7.4 Channel and Channel’s Subband Selection

Recording a conversation using multiple microphones (channels) also provides a richer
resource for acoustic feature extraction in speaker diarization. Nonetheless, it is computa-
tionally expensive to use speech features extracted from all of the channels especially when
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there is a plethora of channels. Combining all channels using the beamforming technique
is one way to exploit all channels. Acoustic features are then extracted from the combined
signal and used in the diarization system. One type of acoustic feature was considered in
this diarization framework which is MFCC features. The objective of beamforming is to
direct the spatial signal’s beam towards the talking speaker. Alternatively, the work presented
here investigated the idea of having the acoustic features extracted from selected channels or
channels’ subbands.

The methodologies proposed here, for different channel selections, provides acoustic
features in which their concatenation presents better accuracy in speaker diarization than the
features extracted from a beamformed signal. One way to interpret this outcome is that the
beamforming technique does not optimally exploit the available channels. The alternatives
presented here, in particular, provide the necessary enhancements to improve the performance
of binary key based diarization systems. Additionally, the relatively high processing speed
of this system makes the resultant increase in feature dimensionality a minor concern. The
system’s processing time using features extracted from a beamformed signal is around
0.025×RT which only increases to a maximum of 0.05×RT using a concatenation of features
from up to six channels with a noticeable increase in the accuracy. The improvements to be
stated here are in relation to using acoustic features extracted from a beamformed signal in
the diarization process.

Two methodologies for channel selection have been described. One methodology consid-
ers the selection of spatially diverse channels (distant microphones) in an attempt to capture
equivalent acoustics to those recorded by all microphones. The acoustic features of the
channels selected using this methodology provides an improvement of 3-9% in terms of DER.
Two different datasets were used in the evaluation which indicates that the methodology is
operational in different scenarios. However, the choice of the optimal number of selected
channels may vary from one meeting setup to another. To address this, the methodology con-
siders the selection of the central microphone and those close to it as well as the microphones
that are distant from the central microphone. Given the achieved outcome, such configuration
appears to provide a diversity among the selected channels and constrains the number of
selected channels.

The objective of the second channel selection methodology is to identify best quality
channels based on the cepstral distance measure and the beamformed signal as a reference.
In the beamforming technique, the speech is assumed to be strengthened and the noise
is assumed to be weakened. When it is used as a reference, it is found to provide good
discrimination between the quality of the channels. With a maximum of five best quality
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channels, this methodology presents an improvement of 2-7% in terms of DER for three
different datasets. The relative improvement obtained using this method can be attributed to
the fact that, in beamforming, all of the channels are combined irrespective of their qualities.
However, using five selected channels may not always be the best choice. For example, when
there exists a total of 7-10 channels, selecting five may include bad quality channels. In order
to find an improvement over the case of the beamformed signal, one might have to opt for a
relatively small number of selected channels.

The channel’s subband selection methodology proposed in this work tackled a particular
aspect of speech signal’s quality which is related to reverberation effects. The selection
framework accounts for the variability of the reverberation degree across the speech spectrum
that is potentially caused by factors like the microphone location and the surrounding objects.
The average joined gradient measure presented is found to be successful in differentiating the
amount of reverberation time affecting the speech spectrum. Having this measure determined
using a threshold that is calculated from the signals to be compared is particularly useful
for its feasibility in different meeting scenarios. The combination of the acoustic features
extracted from selected channels’ subbands provides an improvement of around 4% in terms
of DER for three different datasets. In comparison to using features extracted from the entire
spectrum of selected channels, this selection methodology can be particularly useful for
slower diarization systems that cannot afford an increase in feature dimensionality.

The reverberation degree can be influenced by speakers’ locations. Since each speaker’s
turn in a conversation is initially unknown, future work could consider channels’ subbands
selection over segments of the speech signal. It will likely be a good methodology to conduct
this selection over segments specified by adjacent silences since there is a good chance that
the speakers’ turns are changed between the silences. This can additionally apply to best
quality channel selection. Future work could also investigate vastly distant microphone
selections based on delays estimated between all possible pairs of microphones. Such a
framework may also reduce the selection down to two groups of distant microphones but
they would potentially be different from the groups selected in this work which could also
form the basis of even further work.

7.5 Verification and Diarization Systems Studied

The establishment of the i-vector based verification system requires a large separate bank of
data for development purposes to enable the modelling of session and channel variability
in particular. It was shown here that the performance of i-vector based speaker verification
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noticeably degrades when such external data is insufficient. This work presented a data
augmentation method by having copies of the available development data which is then
extended with the addition of Gaussian noise in order to increase the number of development
utterances. This is found to enable the operation of the i-vector based system with reasonable
performance as it was shown with telephone speech evaluation data (e.g the SRE 2002
dataset). However, it must be noted that if the system is already established with sufficient
external data, then data augmentation may not present a noticeable impact on the performance.
Nonetheless, in a future work, it will be interesting to investigate the performance of data
augmentation when more than one copy of each development utterance is made by adding
Gaussian noise at different SNRs. Alternatively, the use of a mixture of noise types, such as
babble noise and Gaussian noise, can be appropriate in a multi-condition training framework.

The contributions made in the speaker diarization framework are particularly useful for
the binary key based system. In this system, the integration of TTDOA features and MFCC
features extracted from selected best quality channels have achieved a DER of 24.87% on
the RT-05S dataset at 0.051×RT speed. This represents a 19.51% relative improvement on
this system’s accuracy and slightly outperforms the accuracy of the BIC based diarization
system (Anguera & Bonastre, 2011). This is important for speaker diarization because a fast
system allows real time application of further processes like a speech recogniser which is
one of the objectives of diarization. It is found here that the performance of binary key based
diarization is influenced by the initialisation method used. Six initialisation methods were
presented in this work to provide suitably selected initial clusters. The experiments show that
the commonly used uniform initialisation method can be reliably replaced by the Kmeans-P
(CV) method. This method can be particularly important to improve the performance when a
conversation is recorded by a single microphone since the resources to improve the systems’
front-end are limited in such a case.

In a future work, the selection of the best clustering structure could benefit from innovative
configurations. This can be particularly necessary for the case of acoustic and spatial features
integration. Also, the system performance can be optimised by calibrating the fusion weights
in compliance with specific feature types, dimensionality and meeting conditions. The
most computationally expensive process in the binary key based system is calculating the
log-likelihoods of all feature vectors to the KBM’s Gaussian models. Some experimentation
showed that down-sampling the feature vectors by a ratio of 1/2 expedites this process and
approximately maintains the performance. This could be further investigated, analysed and
justified in a future work.
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7.6 Summary

This work introduced a number of enhancements on the front-end of speaker recognition
systems that are developed to perform two different tasks: speaker verification and speaker
diarization. The achieved enhancements are found to boost the accuracy of binary key
based diarization in particular. This is important because a diarization system, especially a
fast one like the binary key based, can itself be a ‘front-end’ for speech processing related
applications.

Speaker recognition applications have good potentials to configure a cost effective
monitoring system, for example, in a building. This is based on the fact that the speech signal
propagates in all directions and this can be exploited to gain information that may not be
discernible from a video. Binary key based diarization can form the basis for a monitoring
system in an uncontrolled environment. One can make use of the proposed Kmeans-P (CV)
initialisation method to start the system. Multiple distant microphones can be deployed to
flexibly record the conversations around the building. Thus, an appropriate selection of the
microphones’ signals can be performed based on one of the methods proposed to secure
reliable resources for acoustic feature extraction. Since multiple microphones would be
available, spatial features can also be extracted, transformed and integrated in the system
with the acoustic features. Acoustic features extracted from multiple microphones can be
fused based on weighted PCA. The use of OE-MFCC and multitaper fitted LPCC speech
features is recommended.

A small number of microphones might exist in some places which incur a limitation
on channel selection. In such case, feature extraction based on least reverberated subband
selection is a robust solution. For speaker tracking, speakers’ clusters resulting from the
diarization performed in a number of places in the building can be compared and matched.
When two clusters are found to be matching, the decision can be verified using the i-vector
based verification system. The performance of the verification system can be enhanced by
retrieving the original speech signals and extracting a number of acoustic features including
OE-MFCC. The features extracted can be fused with weighted PCA and used in the verifica-
tion system. Verified speakers’ utterances can be used as annotated data to re-develop the
i-vector based system with more utterances.
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Appendix A

A.1 Baum-Welch Statistics

The foundation work that led to the introduction of the i-vector representation of speech
utterances considered a Gaussian Mixture Model based Hidden Markov Model (GMM-
HMM) as a Universal Background Model (UBM) to represent the global acoustic space, see
e.g Kenny et al. (2005). The Baum-Welch statistics, also known as the forward-backward
algorithm, is the maximum likelihood estimation algorithm for an HMM Beigi (2011).

In the specific problem of text-independent speaker recognition, there is no textual
structure to be modelled by the transition probabilities between an HMM states. Therefore,
the GMM-UBM model introduced by Reynolds et al. (2000) was widely considered to
represent the global acoustic space. The forward-backward algorithm is an application of
the Expectation Maximisation (EM) algorithm. It was used in the extraction of the i-vector
in Dehak et al. (2011) to adapt the speaker-and-channel independent supervector obtained
from the GMM-UBM to an utterance’s feature vectors to produce an utterance-dependent
supervector.

A.2 The i-vector Extraction

This appendix section provides the derivation of equation (2.26) which is used to extract
the i-vector. Let Yu = (yu

1,y
u
2, ...,y

u
T ) be a sequence of feature vectors of an utterance u. To

extract the i-vector for this utterance, recall the following factor analysis model

mu = m+Twu, (A.1)

where T is a low rank rectangular matrix of dimensions C×D by F . C is the number of
components in the GMM-UBM model Λ and D is the feature vectors dimension. wu is an
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F-dimensional random vector having a prior distribution of a standard normal distribution
N (.;0,I). Each mixture component c, for c = 1,2, ...,C, of Λ has a D dimensional mean
vector, µµµc, a D by D covariance matrix, ΣΣΣc, and a weight wc. m is a C×D speaker-and-
utterance independent supervector obtained by concatenating all µµµc of Λ. mu is an utterance
dependent supervector.

Let ΣΣΣ be a C×D by C×D matrix of diagonal blocks ΣΣΣc for c = 1,2, ...,C. Given Yu, mu

and ΣΣΣ, the i-vector is the MAP solution of the following problem

ŵu = argmax
wu

P(wu|Yu)

= argmax
wu

P(Yu|wu)P(wu),
(A.2)

where

P(Yu|wu) =
T

∏
t=1

C

∑
c=1

wcN (yu
t ;mu

c ,ΣΣΣc), (A.3)

where mu
c is the cth D-dimensional sub-vector of mu. Equation (A.3) is intractable because

of the summation element, hence, the solution of (A.2) becomes a solution of the following
problem (Zhang et al., 2011)

ŵu = argmax
wu

T

∏
t=1

C

∏
c=1

N (yu
t ;mu

c ,ΣΣΣc)
P(c|yu

t ,Λ)P(wu), (A.4)

where
P(c|yu

t ,Λ) =
wcN (yu

t ;mc,ΣΣΣc)

∑
C
l=1 wlN (yu

t ;ml,ΣΣΣl)
. (A.5)

By comparing equations (A.4) and (A.2), the solution for P(Yu|wu) is

logP(Yu|wu) =
T

∑
t=1

C

∑
c=1

P(c|yu
t ,Λ) logN (yu

t ;mu
c ,ΣΣΣc) . (A.6)
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The right hand side of (A.1) is used to substitute mu
c , thus

logP(Yu|wu) =
T

∑
t=1

C

∑
c=1

P(c|yu
t ,Λ)

[
log

1
(2π)D/2|ΣΣΣc|1/2

− 1
2
(yu

t −mc −Tcwu)T
ΣΣΣ
−1
c (yu

t −mc −Tcwu)
]

=
T

∑
t=1

C

∑
c=1

P(c|yu
t ,Λ)

[
log

1
(2π)D/2|ΣΣΣc|1/2 −

1
2
(yu

t −mc)
T

ΣΣΣ
−1
c (yu

t −mc)

+(wu)T TT
c ΣΣΣ

−1
c (yu

t −mc)−
1
2
(wu)T TT

c ΣΣΣ
−1
c Tcwu

]
,

(A.7)

where Tc is a sub-matrix of T associated with mixture component c of Λ. Note that
T (of (A.1)) comprises C component matrices stacked up column wise such that T =

[TT
1 ,T

T
2 , ...,T

T
C ]

T . Also note that mc = µµµc. Only the last two terms of (A.7) are related
to wu and one can define

H u =
T

∑
t=1

C

∑
c=1

P(c|yu
t ,Λ)

[
(wu)T TT

c ΣΣΣ
−1
c (yu

t −mc)−
1
2
(wu)T TT

c ΣΣΣ
−1
c Tcwu

]
. (A.8)

The calculations in (A.8) include, for each mixture component c, the computations of the
0th order Baum-Welch statistics

nu
c =

T

∑
t=1

P(c|yu
t ,Λ), (A.9)

and the centralised 1st order Baum-Welch statistics

f̃u
c =

T

∑
t=1

P(c|yu
t ,Λ)(y

u
t −mc). (A.10)

Hence, One can re-write (A.8) as

H u = (wu)T TΣΣΣ
−1f̃u − 1

2
(wu)T TT Nu

ΣΣΣ
−1Twu. (A.11)
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Using (A.11), one can write

P(wu|Yu) ∝ P(Yu|wu)P(wu)

∝ exp
(
(wu)T TΣΣΣ

−1f̃u − 1
2
(wu)T TT Nu

ΣΣΣ
−1Twu

)
exp
(
−1

2
(wu)T wu

)
= exp

(
(wu)T TΣΣΣ

−1f̃u − 1
2
(wu)T [TT Nu

ΣΣΣ
−1T+ I

]
wu
)

∝

(
− 1

2

(
wu −

[
TT Nu

ΣΣΣ
−1T+ I

]−1 TT
ΣΣΣ
−1f̃u

)T [
TT Nu

ΣΣΣ
−1T+ I

]
(

wu −
[
TT Nu

ΣΣΣ
−1T+ I

]−1 TT
ΣΣΣ
−1f̃u

))
(A.12)

Therefore, the posterior distribution of wu is Gaussian with mean
[
TT Nu

ΣΣΣ
−1T+ I

]−1 TT
ΣΣΣ
−1f̃u,

determined in equation (2.26), and covariance
[
TT Nu

ΣΣΣ
−1T+ I

]−1
.

A.3 Multitaper Methods

This appendix section provides the bases for the multitaper methods investigated in this work,
see Alam et al. (2013).

Thomson Method
In this method, a set of M orthonormal tapers is specified from the Slepian sequences.

These are the solutions of the following eigenvalue problem

Aλλλ
p
j = vp

λλλ
p
n , (A.13)

where 0 ≤ n ≤ N −1, 0 ≤ j ≤ N −1, A is a real symmetric matrix and 0 < vp ≤ 1 is the pth

eigenvalue associated with pth eigenvector, λλλ
p
n , known as the Slepian taper. N is the length

of the speech frame. The elements of the matrix A are given by

an j =
sin2πW (n− j)

π(n− j)
, (A.14)

where W is the half-frequency bandwidth. Each taper weight is wp = 1/M.
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Sine Multitaper
In this method, a taper is given by

λp( j) =

√
2

N +1
sin
(

π p( j+1)
N +1

)
for j = 0,1,2, ...,N −1, (A.15)

where p, 1≤ p≤M, is the order of a taper. The taper weight is determined as in the following

wp =

cos
(

2π(p−1)
M/2

)
+1

M

∑
p=1

(
cos
(

2π(p−1)
M/2

)
+1
) . (A.16)

Multipeak Multitaper
These are peak matched multiple windows. The multipeak tapers are obtained by solving

the following generalised eigenvalue problem

RBλ j = v jRzλ j for j = 1,2, ...,N, (A.17)

where RB is the N by N Toeplitz covariance matrix of the following assumed spectrum model

S( f ) =

e

2L| f |
10B log10(e) for | f | ≤ B/2

0 for | f |> B/2,

(A.18)

with L = 20 dB and a predetermined interval of width B outside of which spectral leakage
is to be prevented. Rz is the Toeplitz matrix, chosen for decreasing the leakage from the
sidelobes of the tapers, of the following frequency penalty function

SZ( f ) =

G for | f |> B/2

1 for | f | ≤ B/2,
(A.19)

where G = 30 dB. The eigenvectors corresponding to the M largest eigenvalues of (A.17)
comprise the set of multipeak multitaper. Using the eigenvalues, each taper’s weight is
determined as

wp =
vp

M

∑
p=1

vp

for p = 1,2, ...,M. (A.20)
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A.4 Cross Correlation

The cross-correlation indicates the matching between two signals and it is determined as
the summation of the product of the signals (Gaydecki & of Electrical Engineers, 2004). It
is usually used to estimate the similarity between two measurements where the higher the
cross-correlation the more similar the measurements. The cross-correlation between two
signals is calculated as

y[t] =
N

∑
n=0

x1[n]x2[t +n] (A.21)

A.5 High Order Moments of Distributions

High order moments of distributions assess the departure of a distribution from normality
(Hoyle, 1995) and are used to identify a feasible transformation. Skewness is the third order
moment which characterises the symmetry of the distribution. The fourth order moment,
kurtosis, characterises how much the height of the distribution is different from that of a
normal distribution. In other words, it characterises the peakedness of the distribution, thus,
it is also used to measure the unimodality or bimodality of the distribution (Gacula Jr, 2013).
When the value of the kurtosis is 3 and the skewness is 0, the distribution is said to be normal
and it can be sufficiently described only by its mean and variance (the first and second order
moments, respectively) (Hoyle, 1995).

A.6 The Skew-Normal Distribution

In the skew-normal distribution (Azzalini, 2013), the probability density function (PDF) of a
continuous random variable zn is expressed as

GSN = 2φSN(zn)φ̂SN(αzn), (A.22)

where

φSN(zn) =
e(−z2

n/2)
√

2π
, (A.23)

and
φ̂SN(αzn) =

∫
αzn

−∞

φSN(zn)dt, (A.24)

where α is called the shape parameter. The variable zn and its probability density function GSN

are basic components of the skew-normal distribution. In the formulation of the skew-normal
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distribution (Azzalini, 2013), a practical measurement, let it be qn, is a linear transformation
of zn

qn = µ̃ + σ̃zn, (A.25)

where µ̃ and σ̃ are called the location and scale parameters, respectively. Note that a linear
transformation does not change the shape of the distribution so α remains constant.

A.7 Least-Squares Scoring on the Principal Components

The power iteration method for weighted PCA was presented in (Delchambre, 2014). In that
work the authors described, for comparison proposes, the implementation of an Expectation-
Maximisation (EM) approach for weighted PCA. That EM based approach viewed the
eigendecomposition as a minimisation problem of the following formula

X 2 =∑
i j

W2
i j
(
Xi j − [PwX̂]i j

)2 (A.26)

where i and j indicate the rows and columns indices, respectively. X̂ is the projection (scores)
of X on Pw, where X is the feature vectors matrix and Pw is the entire set of principal
components. W is the weights matrix.

While Pw is held fixed, the expectation step retrieves X̂ that optimises (A.26). Since each
feature vectors of X is a linear combination of the principal components, the solution for X̂
is given by

X̂ j = (PT
ww2Pw)

−1PT
ww2X j (A.27)

where X̂ j is a column of X̂, X j is a column of X and w = diag(W j).
The maximisation step, on the other hand, retrieves Pw that optimises (A.26), for a given

X̂, as in the following
Pw,i = Xiw2X̂T (X̂w2X̂T ) (A.28)

where Pw,i is a row of Pw and Xi is a row of X.
In the RNN based framework presented in this work, the scores (projection) of X on Pw

can be achieved using (A.27). However, since (A.27) is based on the formulation in (A.26),
the use of (A.27) may only be valid when Pw is estimated from X.
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