
 

 

 

 

 

 

 

 

 

 

 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

• This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

• A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

• This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

• The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

• When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



Speech processing

using

digital MEMS microphones

Erich Zwyssig

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Centre for Speech Technology Research

School of Informatics

University of Edinburgh

2013





Abstract
The last few years have seen the start of a unique change in microphones for consumer

devices such as smartphones or tablets. Almost all analogue capacitive microphones

are being replaced by digital silicon microphones or MEMS microphones.

MEMS microphones perform differently to conventional analogue microphones. Their

greatest disadvantage is significantly increased self-noise or decreased SNR, while

their most significant benefits are ease of design and manufacturing and improved sen-

sitivity matching.

This thesis presents research on speech processing, comparing conventional analogue

microphones with the newly available digital MEMS microphones. Specifically, voice

activity detection, speaker diarisation (who spoke when), speech separation and speech

recognition are looked at in detail.

In order to carry out this research different microphone arrays were built using digital

MEMS microphones and corpora were recorded to test existing algorithms and devise

new ones. Some corpora that were created for the purpose of this research will be

released to the public in 2013.

It was found that the most commonly used VAD algorithm in current state-of-the-

art diarisation systems is not the best-performing one, i.e. MLP-based voice activity

detection consistently outperforms the more frequently used GMM-HMM-based VAD

schemes. In addition, an algorithm was derived that can determine the number of active

speakers in a meeting recording given audio data from a microphone array of known

geometry, leading to improved diarisation results.

Finally, speech separation experiments were carried out using different post-filtering

algorithms, matching or exceeding current state-of-the art results.

The performance of the algorithms and methods presented in this thesis was verified

by comparing their output using speech recognition tools and simple MLLR adaptation

and the results are presented as word error rates, an easily comprehensible scale.

To summarise, using speech recognition and speech separation experiments, this the-

sis demonstrates that the significantly reduced SNR of the MEMS microphone can be

compensated for with well established adaptation techniques such as MLLR. MEMS

microphones do not affect voice activity detection and speaker diarisation performance.
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Zusammenfassung
Mobile Telefone und Tablett-Rechner durchlaufen in den letzten paar Jahren eine un-

gemeine Veränderung, indem fast alle ihre analogen Mikrofone durch digitale Silikon-

Mikrofone ersetzt werden.

Silikon-, d.h. MEMS-Mikrofone unterscheiden sich leicht in ihren Leistungsmerkma-

len verglichen mit konventionellen analogen Kondensator- oder Elektretmikrofonen.

Der größte Nachteil von MEMS-Mikrofonen ist das deutlich größere Selbstgeräusch

oder verkleinerte Signal-Rausch-Verhältnis (SRV), während ihre größten Vorteile der

einfachere Einbau und die leichte Fabrikation sowie vor allem eine stark verbesserte

angepasste Empfindlichkeit sind.

Diese Doktorarbeit umfasst eine Forschungsarbeit auf dem Gebiet der Sprachverar-

beitung, wobei konventionelle analoge Mikrofone mit den neuen digitalen MEMS-

Mikrofonen verglichen werden. Besonders werden Sprachaktivitätserkennung, Sprecher-

Fahrplan (wer spricht wann), Sprachtrennung und Spracherkennung genau untersucht.

Verschiedene Mikrofon-Arrays wurden dafür mit den digitalen MEMS-Mikrofonen

entwickelt und gebaut, und diese wurden zur Aufnahme verschiedener Korpora ge-

nutzt, um damit bestehende und neue Algorithmen und Theorien zu testen. Einige

dieser Korpora sollen auch im Frühling 2013 der Öffentlichkeit zugänglich gemacht

werden.

Es wird gezeigt, dass der verbreitetste Sprachaktivitäts-Algorithmus, der in den meis-

ten Sprecher-Fahrplan-Systemen eingesetzt wird, einer großen Verbesserung bedarf.

D.h. MLP-basierte Sprachaktivitätserkennung funktioniert stets besser als die weitver-

breitete und meistbenutzte GMM-HMM-basierte Sprachaktivitätserkennung.

Weiterhin stellt diese Doktorarbeit einen Algorithmus vor, der die Anzahl aktiver Spre-

cher in einer Sitzung erkennt. Dazu benötigt dieser neue Algorithmus Sprachsignale

von einem Mikrofon-Array mit definierter Geometrie. Die Kenntnis der Anzahl ak-

tiver Sprecher in einer Sitzung erlaubt die Erzeugung eines verbesserten Sprecher-

Fahrplans.

Zum Schluss werden Sprachtrennungsexperimente beschrieben, in denen verschiedene

Nachfilter-Verfahren vorgestellt werden und in deren Analyse gezeigt wird, dass die

vorgeschlagenen Verfahren mit dem Stand der Technik gleichziehen oder sogar über-

legen sind.
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Die Ergebnisse der Untersuchungen der Algorithmen und Methoden dieser Doktorar-

beit wurden mit Spracherkennung und einfacher MLLR-Adaption ermittelt. Damit

wird garantiert, dass die Resultate als Wortfehler-Rate einfach und sicher zu interpre-

tieren sind.

Zusammenfassend zeigt diese Doktorarbeit, dass das erheblich reduzierte Signal-Rausch-

Verhältnis der digitalen MEMS-Mikrofone durch einfache und bekannte Adaptierungs-

Algorithmen wie MLLR für Sprechertrennung und Spracherkennung kompensiert wer-

den kann und dass Sprachaktivitätserkennung und Sprecher-Fahrplan-Erzeugung durch

MEMS-Mikrofone nicht beeinträtigt werden.
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Chapter 1

Introduction

The world we live in offers a wealth of recorded material such as lectures, meetings

or TV programmes. The volume of these recordings far exceeds what a human being

can possibly search or listen to. What is required are recognition technologies that

will produce transcripts which are more readable by human beings and more useful to

machines, so that key points or answers to specific questions can be obtained with a

relatively low input of time and resources.

One means to improve the information content of conversational data is to create a rich

transcript. A rich transcript, according to Furui et al. [2012c], is

“a transcript of a recorded event along with meta-data to enrich the
word stream with useful information such as identifying speakers, sen-
tence units, proper nouns, speaker locations, etc. As the volume of online
media increases and additional, layered content extraction technologies
are built, rich transcription has become a critical foundation for delivering
extracted content to down-stream applications such as spoken document
retrieval, summarization, semantic navigation, speech data mining, and
others.”

Rich transcriptions (RT) are therefore rich in the sense that a word transcript alone

is not sufficient to convey the information from a conversation, but that additional

information is required such as who was present, who spoke when, who decided what

or who is assigned to which task.

Considerable research effort continues to be invested to devise methods that generate

rich transcriptions from lectures, meetings and other forms of discussions and presen-

tations. The principle of rich transcription is shown in Figure 1.1.

1
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processing

meeting

talk show

lecture

video

audio

rich transcript

presentation

Figure 1.1: Rich transcription (RT)

Ideally the data captured from a meeting, a talk show or a lecture contains the audio

and video of the event as well as the information presented, whether through slides or

documents either as a file, a series of screenshots or even an additional video.

Traditionally the recordings of these events are performed using sophisticated, purpose-

built capture hardware that produces high quality signals. For meeting recording this

would contain several close talking and distant microphones, cameras capturing the

meeting room from different angles and panoramic cameras on a table in the middle of

the participants, and some means to capture whiteboards, blackboards and screens and

even note-capturing devices.

The audio, video and presentation information is then processed to generate a rich

transcript.

Processing audio signals typically includes components such as audio enhancement,

voice activity detection, speaker diarisation, speaker identification, automatic speech

recognition and discourse analysis. Audio and speech enhancement is typically done

using noise reduction, acoustic beamforming, dereverberation and echo cancelling.

The order and combination of these processes is critical and still an open research

topic.

Voice (or speech) activity detection and speaker diarisation are also sometimes com-

bined for best performance. Voice activity detection (VAD) aims to find regions of

silence, speech and audible non-speech in the conversation. Speaker diarisation is the
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task of determining who spoke when in a meeting, or meeting recording. Input to the

speaker diarisation system is one or more channels of audio. Output is a timetable of

who spoke when and the number of active speakers present. Generally it is often not

known how many people are present and how many people speak or who they are,

i.e. there is no primary model for speakers and a speaker diarisation system therefore

needs to work in an open-set manner.

Speaker identification tries to determine the ID of the individual speakers, automatic

speech recognition generates a text transcript of the recording and discourse analysis

aims to post-process this transcript and combine it with all the information present in

order to extract a summary, a list of action or a list of decisions from a meeting.

1.1 Contributions

Speech processing using digital MEMS (micro electro-mechanical systems) micro-

phones motivates the research presented in this thesis. Traditionally, speech data used

to develop new algorithms and methods and to measure the performance of them

is recorded with the best possible audio quality achievable. Robustness of the new

algorithms and methods is very often tested by artificially adding noise or reverbera-

tion to the (clean) input signal.

The last couple of years have seen a massive shift in the consumer electronics market

where almost all (analogue) capacitive microphones are swiftly being replaced with

silicon microphones, or MEMS microphones. This, combined with the trend that novel

portable devices are getting more and more sophisticated, is leading to the availability

of advanced speech processing on portable devices that record sounds (and therefore

also speech) using MEMS microphones.

The newly available MEMS microphones have different sound qualities compared to

high quality studio recording equipment for example. Most importantly, the SNR

(signal-to-noise ratio) performance of the MEMS microphones does not match conven-

tional microphones, leading to audio data with higher noise levels.

The effect of the higher noise level on different speech processing algorithms and in

particular the effect of the decreased SNR on speaker diarisation, speech recognition

and speech separation is the focus of this research.
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The work presented in this thesis has been carried out using digital MEMS micro-

phones. Digital MEMS microphones, compared to analogue ones, contain not only the

capacitive sensor and a pre-amplifier, but also an analogue to digital converter (ADC).

The performance of the digital and analogue MEMS microphones is identical and any

experimental outcome and conclusion presented in this thesis applies for both types of

microphones. Details will be presented in Chapter 3.

Starting with a very first prototype with limited functionality, developed as part of

my MSc dissertation [Zwyssig, 2009], I have demonstrated the feasibility of a digital

MEMS microphone array for speech recognition.

Leading on from this and as part of my PhD, I designed and developed two fully

functional circular MEMS microphone arrays, each containing 8 microphones on a

diameter of 20 cm and 4 cm. Using these arrays, I carried out several experiments to

investigate the effects of the reduced SNR of the digital arrays using noise reduction

techniques, beamforming and dereverberation, comparing the digital MEMS micro-

phone arrays (DMMAs) with conventional analogue microphone arrays with identical

geometry. The performance of the different arrays was evaluated on the voice activity

detection, speaker diarisation, speech separation and recognition tasks.

In the first phase of my research I have analysed different VAD algorithms with regards

to their performance on meeting data. I compared well known methods with the most

commonly used ones and also with some newly suggested methods and found that

neural-network-based (MLP) VAD outperforms the best known GMM-HMM-based

method on the NIST RT task.

In the second phase of my research I looked at speaker diarisation. One open research

question, which most current state-of-the-art diarisation systems fail to address, is to

determine the number of active speakers in a meeting audio stream or recording. Using

the TDOA of the individual microphone arrays and the known array geometry I have

invented an algorithm which determines the number of active speakers in a recording,

aiding the diarisation process significantly. Using the well known NIST RT meeting

corpus and diarisation metric I obtained results surpassing state-of-the art diarisation

systems, without carrying out segmentation and clustering.

In addition, I recorded a corpus of meetings at the CSTR and carried out experiments

to analyse the effect of superdirective beamforming (as against traditional delay-sum

beamforming) on the performance of state-of-the-art diarisation systems. The findings
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demonstrate that while superdirective beamforming has previously been shown to im-

prove the speech for speech recognition it does not help the diarisation task.

In the third and final phase of my PhD research, I collaborated with Friedrich Faubel

from Spoken Language Systems, Saarland University, in which we carried out speech

separation experiments. For this I first recorded a novel corpus of single and over-

lapping speech, the 2012 MMA corpus, motivated by the work presented from the

MC-WSJ-AV corpus. Using state-of-the-art speech separation, acoustic beamforming

techniques, post-filtering and simple constrained MLLR adaptation, Friedrich Faubel

and I have obtained baseline WERs matching the current best performing systems on

the distant single speaker task, and demonstrated improved recognition accuracy on

the overlapping speech separation and recognition task.

We have also demonstrated that the 2012 MMA corpus is a valuable extension to

the existing MC-WSJ-AV corpus, allowing research in speech separation on natu-

ral speech using recordings from four different microphone arrays, including digital

MEMS microphones. We are currently working with the Linguistic Data Consortium

(LDC) to publish the 2012 MMA corpus in 2013.

The following list summarises the contribution of this thesis:

• analysis of different VAD algorithms for meeting diarisation

• design of DMMA.2 and DMMA.3

• analysis of effect of SNR and acoustic beamforming on meeting diarisation

• invention of a novel algorithm to determine the number of active speakers in a

meeting recording

• collection of 2012 MMA corpus of single and overlapping speech which is to be

released for research

• analysis of speaker localisation and speech separation algorithms on single and

overlapping speech

1.2 Publications

The following publication were derived from the work and results presented in this

thesis:



6 Chapter 1. Introduction

• Determining the number of speakers in a meeting using microphone arrays [Zwys-

sig et al., 2012a]

• On the effect of SNR and superdirective beamforming in speaker diarisation in

meetings [Zwyssig et al., 2012b]

• Signal processing method and apparatus [Zwyssig, 2012]

• Recognition of overlapping speech using digital MEMS microphone arrays [Zwys-

sig et al., 2013]

• The Sheffield Wargames Corpus [Fox et al., 2013]

1.3 Outline

The outline of this thesis is as follows: first, prior work and some background on

methods and algorithms used for the research presented in this thesis are reviewed.

This includes microphone arrays and acoustic beamforming, automatic speech recog-

nition, distant (and robust) speech recognition, voice activity detection and speaker

diarisation, and concludes with speech corpora and open source software available.

This is followed by an introduction to MEMS microphones and a description of the

microphone arrays that were developed for the work presented in this thesis after which

the 2012 MMA (multi-microphone array) corpus is introduced.

Multiple voice activity detection algorithms and their suitability for meeting diarisation

are presented and analysed next, which is followed by the description and analysis of

a novel algorithm that is capable of determining the number of active speakers in a

meeting recording.

Finally, results from speech separation experiments using single and overlapping speech

from digital MEMS and analogue microphone arrays will be presented.

This thesis closes with a chapter summarising and concluding the work presented and

proposes possible future work.



Chapter 2

Speech processing for meeting

recordings

This chapter presents a review of prior work and gives background information on

methods and algorithms used for speech processing of meeting recordings. The aim

is to provide a foundation for understanding the methods and algorithms investigated

in the following chapters and to give a comprehensive review of speech processing as

used for the rich transcription of meetings.

First, microphone arrays and acoustic beamforming are reviewed. This is followed

by a discussion of automatic speech recognition and distant speech recognition, in-

cluding their robustness to acoustically adverse environments. Next, state-of-the-art

voice activity detection and speaker diarisation algorithms and systems are reviewed.

Last, speech corpora and open source software used for the research in this thesis are

presented.

2.1 Microphone arrays and beamforming

Multiple microphones are often used to perform distant recordings of conversations.

The signals from many microphones can be combined in an array to perform acoustic

beamforming, a versatile method for spatial filtering. The advantage of a microphone

array over a single close-talking microphone is the hands-free signal acquisition and

the benefit of acoustic beamforming is improved noise robustness. The most basic

form of beamforming is delay-sum beamforming and the most basic delay-sum beam-

7
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former is a stereo microphone. Signals from the front (or back) are amplified while

signals from the side cancel out. Applying a signal delay to one channel enables the

look-direction of the array to be steered. This principle can be applied to any num-

ber of microphones, allowing fine-steering of the beam. Beamforming is subject to

wave theory and spatial as well as frequency aliasing [Ward et al., 2001]. A typical

beamforming directivity pattern is shown in Figure 2.1.

Figure 2.1: Beamforming directivity pattern for 400 Hz < f < 3 kHz (with kind permis-

sion of McCowan [2001])

Figure 2.1 shows the absolute value of the directivity |D( f ,φ)| as a function of the

input signal angle of arrival φ and input frequency f . The beam is not of constant

width over the audio frequency range which can cause spatial aliasing problems. It is

recommended to use as high a sample rate as possible for the audio signal acquisition

in order to get the best-performing beamformer, i.e. 48 kHz sampling rate is preferred

over 16 kHz (which is typically used for speech processing).

Note that the layout (e.g. linear, circular) and the distance between adjacent micro-

phones of a microphone array represent one of the most important parameters that

characterise its behaviour, i.e. its spatial and frequency response, as shown in Fig-

ure 2.1.

Improvements to delay-sum beamforming are adaptive or steered beamforming meth-

ods such as filter-sum beamforming, constant-beamwidth beamforming, generalised
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sidelobe cancelling (GSC) beamforming and minimum variance distortionless res-

ponse (MVDR) beamforming [Ward et al., 2001, Bitzer and Simmer, 2001, Elko and

Meyer, 2008].

Adaptive beamforming allows the beam to be steered and adapted to different acoustic

scenarios. One adaptive beamforming option is to use filter-sum beamforming where

the sampled signal delay chain is used as an FIR (finite impulse response) filter be-

fore it is summed. For filter-sum-beamforming the weight vectors of the signal delay

chain (i.e. the coefficients of the FIR filters) are optimised for a higher directivity and

therefore better noise suppression than ordinary delay-sum beamformers. Minimum

variance distortionless response (MVDR) beamforming, a special case of filter-sum

beamforming achieves super-directivity (or super-gain) by minimising the output po-

wer of the array and therefore suppressing the white noise gain [Cox et al., 1987, Bitzer

and Simmer, 2001].

An MVDR beamformer therefore optimises its steering vector, beamforming frequency

spectrum and spatial characteristic for any input signal that is not considered uniformly

distributed white noise. In the case of one active speaker this will lead to a much im-

proved audio signal from the one source.

For speech processing of meetings we cannot assume uniformly distributed noise or

fixed speaker position over the entire duration of the meeting. Speaker localisation is

therefore a necessary component of meeting analysis.

The primary goal of a speaker (or source) localisation system is accuracy. The speaker

position estimates must be reasonably correct and updated frequently for best acoustic

output over the entire speech frequency band as the sensitivity of the beam width is

much greater for higher frequencies, as illustrated in Figure 2.1 (see DiBiase et al.

[2001] for details).

Three general source localisation methods have been extensively investigated based on

• extracting time-difference of arrival (TDOA) information,

• maximising the steered response power (SRP) and

• estimating a high-resolution spectrum (e.g. eigenanalysis used for the MUSIC

[Schmidt, 1986] algorithm)

The first two are looked at in greater detail in what follows.
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2.1.1 Delay-sum beamforming (DSB)

The way in which acoustic beamforming is performed depends on whether the direc-

tion of the sound source and therefore the direction of the beam is specified at the

start or whether it needs to be determined from the incoming sound. In the first case

the acoustic beam is steered into the desired direction, in the second methods such

as GCC, GCC-PHAT, SRP and SRP-PHAT can be used to determine the most likely

direction of arrival of the sound(s) after which beam-steering is carried out.

This section first introduces delay-sum beamforming (DSB) and superdirective beam-

forming (SDB) and then defines GCC (generalised cross correlation), GCC-PHAT (ge-

neralised cross correlation with phase transform), SRP (steered response power) and

SRP-PHAT (steered response power with phase transform).

Before defining beamforming and SRP, four assumptions in array processing used in

this thesis are presented. First, we assume that there is uniform propagation of all

sound in all directions in the air. Second, we assume that our algorithms are carried

out in a far field environment, i.e. the distance from the source of the sound (and any

reflection) to any microphone is much greater than the size of the array and that there

is plane wave propagation. The third assumption is that the noise and signal recorded

with our arrays have zero mean, that the noise is white and that the signal and noise

are uncorrelated. Finally, we assume that the microphones have no coupling, that the

sensitivity, self-noise and amplification are matched and that the relative microphone

positions are known precisely.

Beamforming provides an elegant way to extract the signal from a desired source

through spatial filtering. Under the far-field assumption, for a microphone array with

N microphones, a delayed and noise corrupted source signal x(t) is present at each

individual microphone. The task of the acoustic beamformer now is to spatially filter

a speaker located at direction

a = [cosθcosφ sinθcosφ sinφ]T , (2.1)

with θ and φ denoting the azimuth and elevation in relation to the array.
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The direction of a translates to time delays

τn =
−aT mn

c
(2.2)

at the microphone positions mn, n∈ {1, . . . ,N}, where N denotes the number of micro-

phones in the array and c the speed of sound. The delay-sum beamformer then aligns

the individual signals in time and sums them.

Delay-sum beamforming is therefore defined as:

y(t,a) =
N

∑
n=1

xn(t + τn), (2.3)

where τn are the steering delays for a defined spacial location a.

For fixed beam beamforming the steering delays τn are calculated from the desired

angle of arrival of the sound source and the microphone positions.

The output of an N-channel delay-sum beamformer can be defined in the frequency

domain as

Y (ω,a) =
N

∑
n=1

Xn(ω)e jωτn, (2.4)

where Xn is the Fourier transform of the n-th microphone signal xn.

Often DSB is described as a multiplication of the input X by a weight vector w as

Y (ω, t) = wH(ω) ·X(ω, t) (2.5)

with H denoting the Hermitian conjugate. For the delay-sum beamformer, w(ω) is

defined as

w(ω) =
1
N

v(ω) (2.6)

where v denotes the array manifold vector

vn(ω) = [e− jωτn,1 · · · e− jωτn,N ]. (2.7)
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v(ω) translates the time delays ωτi to phase shifts vi.

In the presence of white, uncorrelated noise, delay-sum beamforming (DSB) is optimal

and gives signal-to-noise ratio (SNR) improvements of 3 dB for every doubling of

the number of microphones in the array. Enhancement is achieved by constructively

adding the signals from the look direction and suppressing interference from other

sources.

2.1.2 Superdirective beamforming (SDB)

One commonly used measure of the performance of beamforming techniques is the

array gain G which shows the improvement of the SNR of the array compared to an

individual sensor:

G =
SNRarray

SNRsensor
(2.8)

By optimising the array gain, more sophisticated methods, known as superdirective

beamformers, can be used to improve the beamformer’s directional selectivity, further

cancelling undesired sources.

A number of superdirective beamformers found their application in speech proces-

sing [Bitzer and Simmer, 2001, Elko and Meyer, 2008]. Examples include filter-

sum, constant-beamwidth, generalised sidelobe cancelling (GSC) and minimum va-

riance distortionless response (MVDR) beamformers, each being differentiated by the

method employed to optimise G.

As shown in Figure 2.1 above, acoustic beamforming is subject to wave theory and

spatial as well as frequency aliasing. For constant-beamwidth beamforming the physi-

cal placement of the microphones has to be such that spatial aliasing can be overcome.

For a fixed beamwidth from 500 Hz to 8 kHz this requires an endfire1 microphone

array with a distance of 2–16 cm in between the microphones and a total width of over

1.5 m (see Elko and Meyer [2008] for details) which is infeasible for mobile meeting

recording.

1An endfire array is an array of N (preferably equidistant) microphones placed in line with the
direction of the arriving sound, compared to a broadside array, where the (equidistant) microphones are
placed perpendicular to the direction of the sound.
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Generalised sidelobe cancelling beamformers aim to improve their output by steering a

null into the direction of an interfering source. This requires knowledge of the location

of the undesired sound source, something which cannot be assumed for this research

(see Elko and Meyer [2008] for details). In addition, working with speech signals, the

statistics of the desired source are not precisely known or are highly non-stationary.

MVDR beamforming, also know as Capon’s beamforming, is a well known and ex-

tensively used beamforming technique that offers a good spectral characteristic of the

output and is therefore well suited to acoustic beamforming and speech enhancement

[Bitzer and Simmer, 2001, Elko and Meyer, 2008]. MVDR beamforming is looked at

in detail in what follows.

The aim of MVDR beamforming is to minimise the power of the output signal of the

array while maintaining unity gain in the look direction and also maximising the white

noise gain. MVDR beamforming is based on filter-delay-sum beamforming and its

frequency domain output signal Y is defined as:

Y (e jΩ) =
M−1

∑
m=0

wm
∗(e jΩ)Xm(e jΩ) = wHX, (2.9)

where wm(e jΩ) denotes the filter coefficients of the beamformer for sensor m at fre-

quency Ω, Xm(e jΩ) are the microphone input signals and [·]H denotes the matrix trans-

pose conjugate.

Cook et al. [1955] proposed to minimise the total output power Y (e jΩ) under the as-

sumption of a diffuse noise field in order to optimise spatial filtering with respect to

reverberant environments. This leads to the superdirective beamformer whose weight

vector is:

w(ω) =
T−1(ω)vω)

vH(ω)T−1(ω)v(ω)
. (2.10)

Ti, j(ω) denotes the coherence of a spherically isotropic noise field with

Ti, j(ω) = sinc(
ω

c
‖mi−m j‖), i, j ∈ {1, . . . ,N}. (2.11)

‖mi−m j‖ is the absolute magnitude matrix of the microphone inter-distances.
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The output of the acoustic beamformer, i.e. the spatially filtered speech signal y(t), is

recovered from Y (e jΩ) using inverse Fourier transformation followed by overlap-and-

add (see Bitzer and Simmer [2001] for details).

2.1.3 TDOA and GCC-PHAT

Beamforming as described so far requires knowledge of the direction of the sound. For

adaptive beamforming the steering delays can be calculated using GCC, GCC-PHAT,

SRP or SRP-PHAT, which are defined below.

The most important parameter for delay-sum beamforming is the direction of arrival

(DOA) of the speech signal. Knowing the DOA, the delay-sum beamformer coef-

ficients can be calculated and the beam steered in the direction of the speaker. An

established method to determine the DOA is to use generalised cross correlation with

phase transform (GCC-PHAT) to obtain the time difference of arrival (TDOA) of each

microphone pair of the microphone array.

Note that while GCC can be used for DOA estimation this is rarely done in practise due

to poor performance of GCC alone compared to GCC-PHAT [Omologo and Svaizer,

1994].

For DOA estimation the array microphone with the highest energy level is generally

used as the reference. If a signal is detected on that microphone then, using GCC-

PHAT, the TDOAs can be calculated and the beam steered (see Knapp and Carter

[1976] and Brandstein and Silverman [1997] for details).

The generalised cross correlation with phase transform of two signals is defined as

ĜPHAT ( f ) =
Xi( f )[X j( f )]∗

|Xi( f )[X j( f )]∗|
, (2.12)

where xi(t) and x j(t) are two discrete signals in the time domain and Xi( f ) and X j( f )

their DFT (discrete Fourier transform); Xi( f )X j( f ) is the element-by-element product

of Xi( f ) and X j( f ); [X( f )]∗ is the conjugate complex of X( f ), and | f (x)| is the ampli-

tude of the complex number.

The TDOA d̂PHAT (i, j) of the two signals xi(t) and x j(t) is estimated as the maximum
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value of the inverse Fourier transform of ĜPHAT , i.e.

d̂PHAT (i, j) = argmax
d

(R̂PHAT (d)), (2.13)

where R̂PHAT is the inverse Fourier transform of ĜPHAT . Note that a valid d̂ ranges

from the minimum to the maximum possible delay determined by the distance between

the microphone pair. In practise though, due to noise, argmax(R̂PHAT ) might well be

outside the valid range of d̂. This can be detected and corrected if the distance of the

two microphones is known.

GCC-PHAT as a source localisation algorithm performs time-delay estimation (TDE)

in pairs of microphones at very little computational cost. Unfortunately, pairwise TDE

techniques suffer considerably in reverberant environments due to the increase of peaks

in the cross correlation function from the individual echoes, leading to a lower direct-

to-reverberant ratio (DDR), i.e. the ratio between the energy of the direct sound and

reverberation. This problem can partially be overcome by increasing the amount of

data, i.e. the input audio segment length. This again has practical limitations, as for

best beamforming and therefore acoustic output, the look direction of the acoustic

beamformer is best tracked (or updated) ten times a second or more (for details see Di-

Biase [2000], Section 1.1 and reference therein). Using an error-prone pair-wise TDE

method is therefore not ideal for sound source localisation.

2.1.4 SRP and SRP-PHAT

Steered response power (SRP) and steered response power with the phase transform

(SRP-PHAT) are much better suited to sound source localisation than TDE-based

methods such as GCC and GCC-PHAT.

For SRP, a beamformer is used to search over a predefined spatial region looking for a

peak (or peaks) of higher signal power. This is computationally much more expensive

than pairwise methods but it combines the signal from all inputs and not just two at a

time. Using SRP-based sound source localisation it is possible to locate one or more

speakers simultaneously on much shorter speech segments compared to TDE-based

techniques. Multiple active speakers appear as multiple peaks in the SRP map [Do and

Silverman, 2008].
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For source localisation using the SRP, a simple delay-sum beamformer searches a pre-

defined spatial region looking for peaks in the power spectrum. The SRP can therefore

be defined as:

P(q) =
∫ +∞

−∞

|Y (ω)|2dω (2.14)

The location estimate is then found from

q̂s = argmax
q

P(q) (2.15)

In reality the integral of Equation 2.14 is not calculated as such, but a power map is

generated over the space required. For meeting recordings using a circular array, an

SRP map would be calculated on the circular plane with a reasonably good azimuth re-

solution of e.g. 2◦ and on the elevation from 0◦ to 30◦ with a resolution of e.g. 5◦. An

SRP map with these requirements involves creating 1267 beamformers, applying them

to the acoustic input, calculating the SRP of each of them and finding the maximum

SRP(s) which corresponds to the speaker localisation(s). To complete the process,

SDB is applied in the desired direction(s) after which some means of postfiltering is

performed.

The SRP as defined in Equation 2.14 is the real value of the power of a 3-D spatial

vector obtained by steering a delay-sum beamformer, and the location estimates q̂s

should ideally be the point sources of our active speakers even under very noisy and

highly reverberant conditions.

However, under adverse conditions, DiBiase showed that applying the weighting func-

tion from the GCC-PHAT (see Equation 2.12) to the SRP sharpens the peaks in the

phase transform and therefore the steered response power, making SRP-PHAT a su-

perior localisation method compared to SRP, especially under higher noise conditions

(see DiBiase [2000] for details).

DiBiase suggested steering a DSB into each possible direction a1(φ,θ) and then cal-

culating the total power at the beamformer output as

P{aaa(φ,θ), t}=
∫

∞

−∞

‖wwwH(ω) · X̃XX(ω, t)‖2dω (2.16)



2.1. Microphone arrays and beamforming 17

where

X̃(ω, t) =
X(ω, t)
|X(ω, t)|

. (2.17)

X̃i(ω, t) is a whitened version of Xi(ω, t) and wwwH(ω) for the DSB can be calculated as

per Equations 2.6 and 2.7.

2.1.5 Postfiltering

MVDR beamforming theoretically provides the optimum solution for a given sound

field, but only from a narrowband point of view. Speech, however, is a broadband

signal and postfiltering of the beamformed output has been found to bring significant

improvements [Simmer et al., 2001]. Figure 2.2 shows the typical filtering processes

applied to speech signals in the pre-processing stage, i.e. before voice activity detec-

tion, diarisation and speech recognition.

Noise 

reduction

Acoustic 

beamforming
Postfilter

Microphone

Array

Figure 2.2: Flow diagram for typical speech filtering

It is common to apply noise reduction to the single microphone channels after which

acoustic beamforming is performed in which the multiple channels are reduced to one

channel only (see e.g. Friedland et al. [2012], Huijbregts and van Leeuwen [2012],

Lincoln et al. [2005], Zwyssig et al. [2010], etc.). This single audio channel is then

further enhanced by postfiltering.

The best possible linear filter for speech enhancement is the Wiener filter which is also

very effective at reducing the input signal noise before sound source localisation and

beamforming.

Assume we receive a distorted input signal y(n) = x(n)+ v(n) where x(n) is a zero-

mean clean input signal and v(n) is a zero-mean noise signal (white or coloured but

uncorrelated to x(n)). Using Wiener filtering we try to estimate x(n) from y(n). The

output of the Wiener filter is therefore defined as x̂(n) and the error signal ex(n) is
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given by

ex(n) = x(n)− x̂(n) = x(n)−hT y(n), (2.18)

where (.)T denotes the transpose of a vector or matrix and h is the Wiener filter which

is optimised to minimise ex. Reducing the error signal ex(n) is a difficult problem as

neither the clean input x(n) signal nor the noise v(n) are known.

Possible solutions are:

• the noise statistics are known a priori

• using a simple speech activity detection algorithm, regions of pure noise can be

identified

• knowing the statistics of speech, pure noise regions can be identified

Implementation of noise reduction is often done using sub-band processing and noise-

only regions are detected using inactive bands. h is then determined using the famous

Wiener-Hopf equation. For details please refer to Simmer et al. [2001], Chen et al.

[2006], Zelinski [1988] and the references therein.

Postfiltering can be carried out using different filter types, some of which modify the

phase of the input signal. Good TDOA estimation using GCC-PHAT and SRP-PHAT

relies on accurate phase information (cf. Section 2.1.3 and 2.1.4) . The research pre-

sented in this thesis follows the signal flow as used by Lincoln et al. [2005] and Zwys-

sig et al. [2010] in order to change as few parameters as possible and to compare the

results.

It is a common choice in the speaker diarisation community to apply noise reduction

before performing acoustic beamforming, particularly as the recordings in the NIST

RT evaluations were carried out with microphones located arbitrarily, generally far

from each other in a noisy meeting room environment (see e.g. Friedland et al. [2012]

and Huijbregts and van Leeuwen [2012]).

Note also that in the deliverable D4.6 of the AMI project [Renals, 2010] it is stated

that “Wiener filtering is applied to each channel to remove the stationary background

noise”, i.e. post-filtering is applied before acoustic beamforming.

The experiments presented in this thesis follow the process used for the NIST RT eva-

luations and AMI/DA recordings in order to be compatible with these. Unfortunately
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this might be suboptimal for good TDOA estimation, as Wiener filter are non-linear

phase filters which modify the phase of the signal.

Note also that sample rate reduction can be applied before or after noise reduction. If

sample rate conversion was required for the research presented in this thesis then either

‘sox’2 or the Matlab™ ‘resample’ programme were used. In both cases the settings

were chosen so that only linear filtering was applied to the audio signal, therefore

guaranteeing that the phase of the audio signals remained unchanged.

2.2 Automatic speech recognition (ASR)

The task of a speech recogniser is to find the most probable sequence of words Ŵ given

a series of acoustic observations O. This is a statistical classification problem where

a decoder tries to find the most likely sequence of words Ŵ given an observations

O, as defined in Equation 2.19. However, Equation 2.19 is difficult to model but,

using Bayes’ theorem, it can be reformulated as Equation 2.20. When searching for

argmax(.), P(O) can be omitted because it is constant for a given series of O, resulting

in Equation 2.21.

Ŵ = argmax
W

P(W |O) (2.19)

= argmax
W

P(O|W )P(W )

P(O)
(2.20)

= argmax
W

P(O|W )P(W ) (2.21)

The most probable sequence of words Ŵ can therefore be calculated from P(O|W ),

the probability of a feature observation given a word sequence W and P(W ), the prob-

ability of a word (within the context of the sequence of words). Therefore, the most

probable sequence of words Ŵ is determined from the acoustic model P(O|W ) and the

language model P(W ).

The success of state-of-the-art automatic speech recognition (ASR) was achieved through

the application of hidden Markov models (HMMs) and Gaussian mixture models (GMMs)

to finding P(O|W ), i.e. to the acoustic modelling task.

2http://sox.sourceforge.net
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A review of GMMs, HMMs, how to decode and train them as well as the performance

of state-of-the-art GMM-HMM-based large-vocabulary ASR systems is given next.

See also Rabiner and Juang [1986] for a detailed introduction to HMMs and Young

[2008] for a more up-to-date review of HMMs and current speech recognition techno-

logies.

A schematic overview of ASR is shown in Figure 2.3.

decode

acoustic

model

dictionary

language

model

feature

extraction

training

data

speech

decoded text

(transcription)

training

data

Figure 2.3: Schematic overview of automatic speech recognition

Input to the ASR system is speech, output is the decoded text, or transcription. The

incoming speech is analysed and enhanced by means of speech feature extraction, or

generation. In the first step, speech features are extracted from the incoming audio

signal with two main aims: (1) to reduce the redundancy of the incoming signal to

extract the essential information and (2), to adapt the incoming features to best match

the training data for best recognition performance.

Inputs to the decoding task are not only the enhanced speech features but also an acous-

tic model, a dictionary and a language model. Two principal methods to carry out the
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acoustic modelling task are to create the GMM-HMM model network dynamically

(from the acoustic and language model) or to statically compile the network before-

hand using the finite state transducer (FST) approach (see e.g. Mohri et al. [2002] for

details).

The sections below describe feature generation, the hidden Markov model and deco-

ding and training hidden Markov models followed by language models. Afterwards

the detailed implementation of phone models and how they are adapted for working

under adverse conditions is presented. The error metric to measure the performance of

an ASR system is then defined followed by a review of state-of-the-art ASR.

2.2.1 Speech feature generation

The speech for speech recognition systems is usually sampled at 16 kHz in 16-bit

values using the linear pulse-code modulation (LPCM) format. The highly redundant

and correlated nature of waveform data means that it is not well suited for practical

speech processing. Speech therefore needs to be compacted and encoded, i.e. its

features extracted in order to obtain the best discriminative features while retaining

only useful information.

Two schemes dominate current speech systems: these use MFCCs (Mel frequency

cepstral coefficients) and PLP (perceptual linear prediction) coefficients. The principle

for generating MFCC and PLP features is shown in Figure 2.4.

Figure 2.4 actually shows three different feature extraction schemes, MFCC, PLP and

MF-PLP feature generation.

For MFCC generation, a time domain sampled signal o[n] is transformed into the fre-

quency domain using discrete Fourier transformation (DFT) giving complex values

O[k]. The absolute powered values of O[k] are binned in Mel-frequency bands (typi-

cally 12 + energy) and the logarithmic values are decorrelated using the inverse DFT,

IDFT. Speech processing (for both MFCCs and PLPs) typically uses the Cepstral co-

efficients c[n] and their first and second order derivatives ∆ and ∆∆. A detailed des-

cription can be found in Jurafsky and Martin [2009a].

PLP coefficient generation differs in principle from MFCC in that Hermansky [1990]

derives



22 Chapter 2. Speech processing for meeting recordings

s
p

e
e

c
h

p
re

-

e
m

p
h

a
s
is

w
in

d
o

w
D

F
T

M
e

l

fi
lt
e

r-
b

a
n

k
lo

g
ID

F
T

D D
D

1
2

 M
F

C
C

1
2

 D
 M

F
C

C

1
2

 D
D

 M
F

C
C

1
 e

n
e

rg
y

1
 D

 e
n

e
rg

y

1
 D
D

 e
n

e
rg

y

1
2

 M
F

C
C

c
o

e
ff
ic

ie
n

ts
.

s
p

e
e

c
h

p
re

-

e
m

p
h

a
s
is

w
in

d
o

w
D

F
T

B
a

rk

fi
lt
e

r-
b

a
n

k
  
  
 .
  
 2

(.
)

ID
F

T
D D
D

3
e

q
u

a
l 

lo
u

d
n

e
s
s

c
o

u
rv

e

L
P

C
 

e
s
ti
m

a
ti
o

n

M
F

C
C

P
L

P

s
p

e
e

c
h

p
re

-

e
m

p
h

a
s
is

w
in

d
o

w
D

F
T

M
e

l

fi
lt
e

r-
b

a
n

k
  
  
 .
  
 2

(.
)

D D
D

3
e

q
u

a
l 

lo
u

d
n

e
s
s

c
o

u
rv

e

L
P

C
 

e
s
ti
m

a
ti
o

n

M
F

-P
L

P

ID
F

T

1
2

 P
L

P

1
2

 D
 P

L
P

1
2

 D
D

 P
L

P

1
 e

n
e

rg
y

1
 D

 e
n

e
rg

y

1
 D
D

 e
n

e
rg

y

1
2

 P
L

P

c
o

e
ff
ic

ie
n

ts

1
 e

n
e

rg
y
 

fe
a

tu
re

1
2

 M
F

-P
L

P

c
o

e
ff
ic

ie
n

ts

1
 e

n
e

rg
y
 

fe
a

tu
re

1
2

 M
F

-P
L

P

1
2

 D
 M

F
-P

L
P

1
2

 D
D

 M
F

-P
L

P

1
 e

n
e

rg
y

1
 D

 e
n

e
rg

y

1
 D
D

 e
n

e
rg

y

L
P

C

to

C
e

p
s
tr

u
m

o
[n

]

o
[n

]

o
[n

]

O
[k

]

O
[k

]

O
[k

]

c
[k

]

c
[k

]

c
[k

]

1
 e

n
e

rg
y
 

fe
a

tu
re

Figure 2.4: Speech feature generation
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“... three concepts from the psychophysics of [human] hearing [to get]
an estimate of the auditory spectrum: (1) the critical-band spectral resolu-
tion, (2) the equal loudness curve and (3) the intensity-loudness power law.
The auditory spectrum is then approximated by an autoregressive all-pole
model.”

For PLP coefficient generation, the Bark scale is used instead of the Mel scale (satis-

fying 1 above) after which the coefficients are weighted by an equal-loudness curve (2)

and then compressed by taking the cubic root (3). Following this, the inverse Fourier

transform is calculated and linear prediction coefficients (LPC) are estimated from the

resulting auditory spectrum, i.e. all-pole filter coefficients are approximated from the

spectrum. The LPC coefficients are then converted to cepstral coefficients. A detailed

description can be found in Hermansky [1990].

The HTK toolkit implements PLP coefficient generation slightly differently, shown

as MF-PLP in Figure 2.4. For MF-PLP coefficient generation, the Mel frequency

bands are used and an equal-loudness curve and cubic root compression applied. LPC

estimation is then carried out in the frequency domain, and cepstral coefficients are

generated from the LPCs using the DCT. Please refer to the HTKBook [Cambridge

University Engineering Department (CUED), 2012] for details.

Feature generation is still an active area of research and multiple comparative studies

have been carried out to determine which features perform best on what task (see e.g.

Davis and Mermelstein [1980], Woodland et al. [1997], Beyerlein et al. [2002] and

Zolnay et al. [2005]. Young [2008] summarises these as:

“ in practice, PLP can give small improvements over MFCCs, espe-
cially in noisy environments and hence it is the preferred encoding [method]
for many systems.”

I carried out experiments using MFCC and MF-PLP coefficients and was unable to

measure a significant difference. Experimental results presented in this thesis use

MFCCs if not stated otherwise, as these are the most commonly used speech features

for diarisation (see e.g. Friedland et al. [2012], Huijbregts and van Leeuwen [2012],

etc.) and in order to compare all my results with those presented previously (see e.g.

Lincoln et al. [2005], Zwyssig et al. [2010], etc.).

Speech features can be greatly enhanced by applying normalisation, i.e. by adapting

them to the features used for training the GMM-HMMs. Two well-known and esta-

blished feature enhancing methods are cepstral mean and variance normalisation, and
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vocal-tract-length normalisation (VTLN).

For mean normalisation, the average feature value is removed, leading to the test data

being more similar to the training data and therefore to improved speech recognition

accuracy. For cepstral variance normalisation, each feature coefficient is set to have

unit variance, leading to reduced sensitivity to additive noise [Young, 2008]. In a real

application the means and variances are normalised over the longest possible speech

segment for which the speaker and environment conditions are constant.

Vocal-tract-length normalisation (VTLN) aims to compensate for pitch (F0) and for-

mant frequency shifts observable in between e.g. male and female speech by compres-

sing or expanding the frequency scale. Assuming the HMMs of a speech recogniser

are trained with male-only speech, recognising female speech can be significantly im-

proved by applying VTLN [Lee and Rose, 1996].

Please see Young [2008] and references therein for a detailed description of speech

feature adaptation.

2.2.2 Hidden Markov model

As mentioned above, the success of state-of-the-art ASR was achieved with the ap-

plication of hidden Markov models (HMMs) and Gaussian mixture models (GMMs)

to decode the text from speech. A hidden Markov model is a special case of a finite

state machine (FSM, or FSA - finite state automaton) containing a set of states Q, their

transition probabilities ai j (representing the probability of moving from state i to state

j) and a sequence of observation likelihoods b j(ot), expressing the probability of the

observation O = o1,o2, ...,oT being generated from the state qi, as shown in Figure 2.5.

Please note that for the HTK tool the entry and exit states of an HMM for speech

recognition are non-emitting. This allows easy concatenation of phone models to make

word models.

The output observation distributions b j(ot) are usually mixtures of Gaussians (i.e.

Gaussian mixture models – GMMs). The probability of an observation o, given a

GMM λ is therefore defined as

p(ooo|λ) =
M

∑
m=1

wm g(ooo|µµµm,σσσm), (2.22)
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q1 q2 q3 q4 q5

a22

a34a23a12

a44a33

a45

O =

o1 o2 o3 o4 o5

b2(o1) b2(o2) b3(o3) b3(o4) b4(o5)

Markov 

model

Acoustic 

vector 

sequence

Figure 2.5: HMM-based phone model Q and acoustic observation vector O

where ooo is a D-dimensional data vector (e.g. 13 MFCCs plus first and second or-

der derivatives ∆ and ∆∆) with M Gaussian densities; www are mixture weights with

∑
M
m=1 wm = 1 and g(ooo|µµµi,σσσi) are Gaussian component densities.

HMMs make two assumptions. First, that the probability of a state depends only on

the previous state, i.e.

P(qi|q1 . . .qi−1) = P(qi|qi−1) (2.23)

and second, that the probability bi of an observation ot depends only on the state qi that

produced the observation.

The three principal problems that now need to be addressed are:

• likelihood: given an HMM Λ = (A,B) and an observation sequence O, find the

likelihood P(O|Λ), 3

• acoustic modelling: given an observation sequence O and an HMM Λ = (A,B),

find the best hidden state sequence Q,

• learning: given an observation sequence O and the set of states in the HMM,

learn the HMM parameters w, µµµ and σσσ.

3A is the matrix of all ai j coefficients of the HMM and B is the matrix of all b j coefficients.



26 Chapter 2. Speech processing for meeting recordings

An efficient way of calculating the likelihood of an HMM is by using the forward

algorithm. Decoding is carried out using the Viterbi algorithm and training is best done

using a special case of the expectation-maximisation (EM) algorithm, the forward-

backward algorithm (or Baum-Welch algorithm). These algorithms are explained in

detail in what follows (see also Jurafsky and Martin [2009b] for examples and further

references).

Please note that in practise the covariances σσσi are usually constrained to be diagonal

in order to reduce the computational effort necessary to perform speech recognition,

since the dimensionality of the acoustic input vector ooo can be relatively high.

2.2.3 Viterbi decoding

The Viterbi algorithm is an efficient decoding algorithm applied to HMMs which finds

the optimal sequence of hidden states. Given an observation sequence O, it returns the

state path through the HMM with the maximum likelihood

vt( j) =
N

max
i−1

vt−1(i)ai jb j(ot), (2.24)

where vt−1(i) is the previous Viterbi probability, ai j is the transition probability and

b j(ot) is the state-observation likelihood.

The applied use of the Viterbi algorithm is explained in the context of HMMs and ASR

in Section 2.2.5 below. Note that token-passing is used for Viterbi decoding in order

to return the state path through the HMMs. In practise the N-best paths – and not just

the best possible output – are returned in the form of a word lattice.

2.2.4 EM algorithm

The expectation-maximisation (EM) algorithm is a forward-backward algorithm to

train HMMs with the aim of learning the parameters of an HMM given the observation

sequence.
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As the name implies, optimisation of the HMM parameters is carried out in two steps,

the expectation step and the maximisation step. First the HMM parameters ai j and b j

are initialised (either with an arbitrary or a random number). Then, in the expectation

step, the expected values of the state occupancies are calculated using the forward

(Equation 2.25) and backward algorithms (Equation 2.26).

αt( j) =
N

∑
i=1

αt−1(i)ai jb j(ot) (2.25)

βt(i) =
N

∑
j=1

ai jb j(ot+1)βt+1( j) (2.26)

Using the above likelihoods αt( j) and βt(i), the state occupancy counts γt( j) and the

expected state transition counts ξ(i, j) are calculated as follows:

γt( j) =
αt( j)βt( j)

P(O|λ)
∀ t and j; (2.27)

ξ(i, j) =
αt(i)ai jb j(ot+1)βt+1( j)

αT (N)
∀ t, i, and j; (2.28)

where P(O|λ) is the forward (or backward) probability of the complete utterance and

αT (N) is the observation probability of the complete utterance.

In the maximisation step, the HMM parameters ai j and b j are recalculated, i.e. maxi-

mised, as follows:

ai j =

T−1

∑
t=1

ξt(i, j)

T−1

∑
t=1

N

∑
j=1

ξt(i, j)

, (2.29)

b j(vk) =

T

∑
t = 1s.t.Ot = vk

γt( j)

T

∑
t=1

γt( j)

, (2.30)
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where “t = 1s.t.Ot = vk” means sum over all t for which the observation at time t was

vk.

The EM steps are repeated until the model converges.

The applied use of the EM algorithm is explained in the context of HMMs and ASR in

Section 2.2.5 below.

2.2.5 HMM acoustic models

The power of speech recognition using HMMs (that is GMM-HMMs) lies in their

ability to model sentences, words or phones. HMM-based speech recognition started

with whole word small vocabulary applications such as digit recognition. Increasing

amounts of training data and computing power today allow continuous speech recogni-

tion on broadcast news programmes (BN), spontaneous telephone conversations (CTS)

or meeting recordings. The performance of ASR on these tasks will be reviewed in

Section 2.2.8.

As noted above, the aim of GMM-HMM-based speech recognition is to find the likeli-

hood of a sequence of acoustic observations given an acoustic model. Assuming a ASR

which recognises 60,000 words, the number of possible sentences would be near infi-

nite while the number of words is 60,000. Working with word models would require

the presence of many examples of every word to train the models, which in practise

is not feasible. A feasible solution is to build GMM-HMMs of the individual phones.

For English that would require approximately 40 models, 25 vowel and 15 consonant

models.

A complicating factor in spoken language is that the pronunciation of a phone changes

in the context of a word, such as ‘oo’ in mood versus cool. The realisation of ‘oo’ is

different depending on the preceding and following consonants.

The solution to the problem is to use a context-dependent phone model, i.e. a triphone

model, as illustrated in Figure 2.6.

In this example the words ‘stop that’ are first split into phones and then triphones, with

x-q+y denoting a triphone with q being the target phone, x the preceding phone and
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(silence)                  Stop               that                       (silence)

sil       s         t            oh            p          th           ae            t         sil

sil   sil-s+t   s-t+oh   t-oh+p   oh-p+th   p-th+ae   th-ae+t   ae-t+sil   sil

m1    m23      m76      m32      m34        m984      m743       m2      m1

Words

Phones

Tri-phone

HMM

Figure 2.6: Context-dependent phone modelling

y the following phone. Note that triphone context can (and should) span across word

boundaries, therefore allowing modelling of e.g. phone suppression or deletion such

as ‘p’ which is unreleased by the following consonant ‘t’ in ‘stop that’.

If the English language requires 40 phone models for good recognition, then N3 (= 64,000)

triphones would need to be trained, again leading to the problem of data sparsity, i.e.

many examples of each triphone are required to train their GMM-HMMs.

The solution is the formation of tied-state phone models, as illustrated in Figure 2.7.

t-ih+n t-ih+ng f-ih+l s-ih+l

t-ih+n t-ih+ng f-ih+l s-ih+l

Figure 2.7: Formation of tied-state phone model

Similar states – as frequently occur for the biphone of each triphone – can share the

same GMM-HMM, as is for example possible with t-ih in t-ih+n (tin) and t-ih-ng
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(ting)4. In practise the total number of triphone models can be significantly reduced

for ASR from tens of thousands of triphone sharing models to a few thousand tied-state

models.

The partitioning of the triphone models to tied-state models is usually carried out using

decision tree clustering, as shown in Figure 2.8.

s-aw+n

t-aw+n

s-aw+t

1 2 3etc.

3 51 2 4

no

yes

yes

n
o

y
e
s n

o

n
o

ye
s

R = central-cons?

L = nasal? R = nasal?

R = centralstop?

States in each leaf node are tied

Figure 2.8: Decision tree clustering

Tied-state models are well suited to handling data sparsity when training the triphone

GMM-HMMs, while decision-tree-based clustering established itself as the most ef-

ficient means to determine which triphones to tie in similar models [Woodland et al.,

1994].

In the proposed method, triphones are grouped for the same base phone and, using a
4See http://www.speech.cs.cmu.edu/cgi-bin/cmudict to look up the pronunciation of a word

or a sentence as defined in the CMUdict

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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predefined set of phonetically driven decisions, the tree is grown, i.e. split from the

root by maximising the log likelihood of the left and right side data. The aim is to have

the best balanced tree and enough data in each leaf to train the GMM-HMMs. The best

possible tree is grown from the top down using every question left in the pool (from

which previously used questions are removed).

2.2.6 Language model

As stated in Equation 2.21, the probability of a sequence of words, given a sequence of

acoustic observations, is calculated from the acoustic model and the language model.

The language model takes the output of the decoder, i.e. the recognised lattice, and

calculates the probability of a word W being in that position of the lattice given the

preceding words in the lattice. The prior probability of a word sequence W =w1, ...,wk

is given by:

P(W ) =
K

∏
k=1

p(wk|wk−1,wk−2, ...,w1) (2.31)

Equation 2.31 implies that the probability P(W ) is calculated depending on all previous

words W = w1, ...,wk. For practical purposes the word history is truncated to N− 1

words, i.e.

P(W ) =
K

∏
k=1

p(wk|wk−1,wk−2, ...,wk−N−1), , (2.32)

where N is typically in the range 2–4. The set of P(W ) is called a language model

(LM). N-grams as defined in Equation 2.32 are one of the most important tools in

speech and language processing and are not only used for speech recognition but also

for machine translation and spelling checkers for example5.

Three main problems for language modelling will now be looked at in more detail.

The main problem of LM is the same as for acoustic modelling, i.e. data sparsity.

Training a 3-gram LM for a ASR system with a vocabulary of 60,000 words requires

calculating P(W ) for 216 ·1012 3-grams. However large the training set for modelling

53 or 4-grams are typically used in state-of-the-art ASR, while higher-order N-grams are employed
in state-of-the-art machine translation
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is, most 3-grams will not be seen in a training set and therefore acquire a probability

of zero, thereby obliterating P(W ) in the recognition process.

In order to avoid null probabilities, smoothing is required. For smoothing, ‘unseen’ N-

grams are assigned some discounted probability mass taken from the ‘seen’ N-grams.

Turing-Good and Kneser-Ney smoothing are two well-known and established smoo-

thing methods used in state-of-the-art ASR systems (for details see Young [2008] and

references therein).

Another problem of LMs, as per Rosenfeld [2000], is

“... brittleness across domains: Current language models are extremely
sensitive to changes in the style, topic or genre of the text on which they are
trained. For example, to model casual phone conversations, one is much
better off using 2 million words of transcripts from such conversations than
using 140 million words of transcripts from TV and radio news broadcasts.
This effect is quite strong even for changes that seem trivial to a human: a
language model trained on Dow-Jones newswire text will see its perplexity
doubled when applied to the very similar Associated Press newswire text
from the same time period.”

The same applies to meeting domain data, where unfortunately only little annotated

data is available to train a language model.

The third problem for acoustic and language model training is out-of-vocabulary (OOV)

words. If a recogniser does not contain a word in its dictionary and acoustic model,

then it cannot decode it, but will come up with the most likely alternative. Adding

new words to a recogniser can be quite complex. First, the N-gram probabilities for

the new words need to be calculated. Then, depending on the decoder architecture,

these new words need to be made available for the dynamic decoding or to regenerate

the FSTs. In the case of FSTs this requires restructuring and optimising the complete

FST, a time-consuming task that is not feasible for online ASR. One possible solution

to this problem is on-the-fly composition of the FST [Hori et al., 2007]. Modifying a

language model efficiently for online processing is an open research problem.

2.2.7 Adaptation

Speech recognition using GMM-HMMs is formulated as a statistical pattern recogni-

tion task. Speech models are generated from a training set and tested on a test set.

For good performance it is necessary (but often impractical) that the training and test
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set should be well matched. In practice there will always be a change in the acoustic

environment or a new speaker who is poorly matched to the training data leading to a

degradation in the recognition performance.

It is therefore essential for good recognition to be able to easily adapt the existing

models to a new input with a small amount of data from a new speaker. This is called

adaptation.

Two principal different adaptation techniques are looked at in detail here, these being

maximum a posteriori (MAP) adaptation and maximum-likelihood linear regression

(MLLR).

For MAP adaptation [Gauvain and Lee, 1994], given new input speech features and

the corresponding triphone alignment, the original GMMs are gradually modified to

increasingly match the new input data. The major drawback of MAP adaptation is

that each GMM is modified individually, requiring sufficient amounts of data to do so

with confidence. Using MAP adaptation, the initial speaker-independent (SI) model

estimates gradually converge to the maximum-likelihood (ML) estimate.

In contrast, MLLR adaptation [Leggetter and Woodland, 1995] is a method well suited

to limited new data. The basic idea of MLLR adaptation is to estimate transforms that

are applied to the means and variances of multiple acoustic models rather than directly

adapting each single model parameter. Using MLLR, linear transforms are applied to

the parameters of a set of Gaussians and shared across multiple GMMs.

MLLR addresses the locality problem, i.e. the data sparsity of MAP adaptation, since

there are relatively few adaptation parameters to be estimated. Each adaptation trans-

form can affect many GMM means and variances, making the estimation robust.

The number of different transforms (i.e. regression classes) for applying MLLR is

first defined, a frame-state alignment is then performed and the GMM means µµµ jm and

variances ΣΣΣ jm are updated as per Equations 2.33 and 2.34.

µ̂µµ jm = GGGµµµ jm +bbb (2.33)

Σ̂ΣΣ = HHH ΣΣΣ jm HHHT (2.34)

The GMM means are modified using the transformation matrix GGG and the offset bbb

and the GMM variances are modified using HHH. The more adaptation data is available,
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the more transformation matrices can be inserted leading to improved matching of the

GMMs to the new input data.

In practice, few regression classes and well-estimated transforms are chosen for best

performance. MLLR adaptation is very often carried out in two steps: (1) two trans-

formation matrices for two classes – silence and speech – are trained given very little

adaptation data and (2) multiple classes – e.g. one silence and 31 acoustic classes – are

generated once more adaptation data is present. The regression classes are automati-

cally built from the training data available using hierarchical clustering (see e.g. Gales

[1996]).

MLLR is the best known linear transform approach to speaker adaptation and has been

extensively used for the research presented in this thesis.

There are two main variants of MLLR, constrained and unconstrained [Gales, 1998].

For constrained MLLR (i.e. cMLLR) the same transforms are applied to modify the

GMM means and variances, that is GGG = HHH. Constrained MLLR can therefore be vie-

wed as a feature space transformation.

The power of GMM adaptation lies in performing discriminative training, i.e. if we

want to generate models for the individual speakers (in e.g. a meeting). In order

to overcome the data sparsity problem, initially speaker-independent GMM-HMMs

are trained, after which speaker adaptive training (SAT) is carried out to generate

speaker-dependent models by using only transformation matrices for MLLR adapta-

tion. cMLLR has proved to be more efficient in practice then MLLR for SAT. For

details see Young [2008] and references therein.

2.2.8 State-of-the-art ASR performance

This section presents the performance of state-of-the-art speech recognition systems.

It is first necessary to define an error metric to measure speech recognition accuracy,

which is the word error rate (WER). After this, state-of-the-art ASR and multipass

recognition architectures are reviewed and their recognition performance presented.
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2.2.8.1 Word error rate (WER)

In order to calculate the WER of the decoded text output of a speech recognition system

compared to a reference, the output of the system and the reference output are first

aligned using dynamic string alignment. After this, the word error rate is computed as

WER =
S+D+ I

N
(2.35)

with N being the number of words in the reference output, S the number of substitu-

tions, D the number of deletions and I the number of insertions. Consequently, the

accuracy (ACC) of an ASR system is defined as

ACC = 1−WER =
N−S−D− I

N
(2.36)

Note that WER and ACC results are usually reported in % figures.

The error metrics defined above were used for the NIST RT evaluations [Fiscus et al.,

2008]. In addition to these error metrics NIST also defines an RTTM file format speci-

fication that can be used to run automatic scripts to calculate the WER. A definition of

the RTTM file format and the scripts are available on the NIST website6.

2.2.8.2 State-of-the-art ASR

Although speech recognition is an active area of research it is already found in the

latest consumer devices as a commercial product. Performance figures for state-of-the-

art speech recognition are available from published work but not commercial products.

The latter usually keep their performance figures (and architecture and implementation

details) confidential as a trade secret – therefore leaving very little information for

researchers to measure their performance. If any data is available then it is usually

not comparable with published research results. Two studies of speech recognition

running on desktop and mobile devices are presented in Liu et al. [2011] and Darre

and Yussupov [2011]. The authors have investigated commercially available speech

recognition software in terms of its suitability in health care and reported that enhanced

speech recognition accuracy would be desirable. However, no concrete experimental

evidence was presented on the performance of the software under test.
6http://www.itl.nist.gov/iad/mig/tests/rt/

http://www.itl.nist.gov/iad/mig/tests/rt/
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The reminder of this section therefore presents performance results for published sys-

tems. These state-of-the-art speech recognition systems bear little resemblance to the

one presented in Figure 2.3, despite using the basic building blocks as described above.

Modern speech recognition systems are based on multipass recognition architectures
(see e.g. Young [2008], Hain et al. [2012]). As implied by the name multipass, recog-

nition is carried out in several stages. Typically the initial pass is carried out using

an unadapted conventional acoustic model and low-order language model. After this,

feature adaptation (cepstral means and variance normalisation and VTLN), acoustic

model adaptation (cMLLR/ MLLR), speaker adaptive training (SAT) and a more com-

plex language model are inserted over several iterations.

A very good indication of the WER achievable with state-of-the art speech recogni-

tion systems was presented at the NIST Rich Transcription 2009 Meeting Recognition

Evaluation Workshop7. It is reproduced here in Figure 2.9.

Figure 2.9: NIST RT09 STT and SASTT performance (with kind permission of Jonathan Fiscus - NIST)

7http://www.itl.nist.gov/iad/mig/tests/rt/2009/workshop/RT09-Agenda.htm

http://www.itl.nist.gov/iad/mig/tests/rt/2009/workshop/RT09-Agenda.htm
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Table 2.1: [%] WER performance of HTK and KALDI on the RM and WSJ corpora

Corpus Resource Management (RM) WSJ (20k open)

HTK 4.10 14.5

Kaldi 4.06 15.0

Figure 2.9 shows the performance of speech recognition on the speech to text (STT)

and speaker attributed (SA) speech to text (SASTT) tasks. This clearly illustrates the

way in which speech recognition improved over the last two decades and how the task

was gradually made more difficult. Initial speech recognition was performed on read

speech of very limited content, such as digit recognition, the 1000 word resource ma-

nagement (RM) corpus [Price et al., 1988] or the Wall Street Journal (WSJ) corpus

[Paul and Baker, 1992]. Recognition performance on these tasks matches the range of

human error in transcription. After this the research efforts moved to conversational

speech, such as broadcast news (BN) [Graff, 2002], conversational telephone speech

(CTS) such as the Fisher corpus [Cieri et al., 2004] and the Switchboard corpus (SWB)

[Godfrey et al., 1992]. The best performing recognition systems achieve as little as

10% WER on read and conversational speech but are unable to match human perfor-

mance (ranging from 2–4%). These figures were accomplished using clean audio data

from close talking microphones. More recently speech recognition has also been ai-

med at distant speech from e.g. meetings [McCowan et al., 2005]. Here state-of-the-art

recognition performance is currently around 30% WER.

Only a handful of AST tools are looked at in detail in the remainder of this section.

These are the HTK [Cambridge University Engineering Department (CUED), 2012],

Kaldi [Povey et al., 2011] and IBM Attila [Soltau et al., 2010] speech recognition

toolkits. This is a very limited selection but one which nonetheless clearly shows the

state-of-the-art.

Comparing the state-of-the-art speech recognition performance of the systems se-

lected is actually difficult, mainly because their performance has been measured on

many different tasks and they are therefore optimised for that specific task.

Table 2.1 summarises the performance of state-of-the-art speech recognisers on read

speech, i.e. the 1000 word resource management (RM) corpus and the 20,000 word

open vocabulary Wall Street Journal (WSJ) corpus, using the HTK and Kaldi toolkits.

As already indicated in Figure 2.9, read speech recognition can match human trans-
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Table 2.2: [%] WER performance of the IBM Attila GMM and DBN speech recogniser

on the Fisher and SWB corpora

Corpus Fisher (CTS) SWB (03) SWB (05)

GMM 17.6 26.3 15.1

DBN 16.4 25.5 13.3

cription accuracy. This is the case for both HTK and Kaldi on the RM task, where they

achieve 4% WER, but not on the WSJ task, where they achieve 15% WER.

The performance of the IBM Attila speech recogniser has been measured on conversa-

tional speech recognition and is shown in Table 2.2.

Researchers from IBM published the performance of the IBM Attila speech recogni-

tion toolkit in Soltau et al. [2010]. Using a GMM-HMM system they achieved 17.6%

WER on the Fisher corpus (CTS), 26.3% WER on the 2003 Switchboard (SWB) task

and 15.1% on the 2005 SWB task8. The IBM Attila toolkit is also able to perform

speech recognition using deep belief networks (DBN) [Kingsbury et al., 2012]. The

DBN recogniser achieved 16.4% WER on CTS, 25.5% on the 2003 SWB corpus and

13.3% WER on the 2005 SWB corpus, therefore performing marginally better than the

GMM-HMM-based recogniser.

The IBM Attila toolkit was also tested using speech from the English Broadcast News

(BN) corpus, achieving 15.5% WER [Soltau et al., 2010] using the GMM-HMM-based

recogniser.

Note that the IEEE Signal Processing magazine has published a dedicated special issue

(Volume 29, Issue 6 [Furui et al., 2012a]) on the subject “Fundamental Technologies

in Modern Speech Recognition” [Furui et al., 2012b]. The results presented in the 10

articles in this issue match the results presented here.

8Note that both the Fisher and SWB corpus are CTS.



2.3. Distant speech recognition 39

2.3 Distant speech recognition

Speech recognition, as looked at so far, was mostly based on speech from head-

mounted or close-talking single microphones. The impressive advances in speech re-

cognition over the last two decades have led to increased requirements, mostly for

robust and distant speech recognition.

Robust speech recognition is speech recognition in adverse environments such as noise,

reverberation or overlap. Distant speech recognition is speech recognition using dis-

tant speech capturing devices, i.e. the microphone is moved away from the mouth of

the speaker, as is typically the case for hands-free applications or when recording a

meeting with one or more table-top microphones.

This section looks at robust and distant speech recognition (DSR) and presents a review

of their performance.

2.3.1 Robust speech recognition

The problem of speech recognition in adverse environments is not new. A review of

the field was presented as early as 1991 in Juang [1991]. The authors looked at speech

feature enhancement, noise reduction and model adaptation, and reported significant

improvements in WER on digit and isolated word recognition. The methods investi-

gated then still achieve significant improvements in speech recognition systems today,

as demonstrated above and reviewed in Droppo and Acero [2008]. Obviously fea-

ture enhancement, noise reduction and model adaptation have progressed enormously

since then in step with the progress in the recognition, as shown by Droppo and Acero

[2008].

2.3.2 Audio-visual (AV) speech processing

A more recent approach to improve speech recognition accuracy is audio-visual (AV)
speech processing. Today’s increased computing power allows for combining visual

features with audio features, thus allowing AV voice activity detection, AV sound

source localisation and AV speech recognition (AVSR), as reviewed in Chin et al.

[2012] for example. Until recently the research in AVSR has concentrated on audio

and video information from close talking speakers [Chin et al., 2012].
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This trend is now shifting, in part due to the availability of Microsoft’s Kinect™ 9, an

affordable sound, video and motion capturing device that

“ gives computers eyes, ears, and the capacity to use them ... allow-
ing [people] to interact naturally with computers by simply gesturing and
speaking.”

The Kinect™ and its software development kit (SDK) enabled researchers at IBM [Ga-

latas et al., 2012] to incorporate facial depth in addition to the audio and video features

for carrying out speech recognition experiments. The authors achieved absolute WER

improvement of up to 10% (from 50% using audio features only) at 0 dB SNR and

30% WER improvement at -10 dB SNR (from 15% using audio features only) on a

connected digit recognition task.

2.3.3 Distant speech recognition system architecture

Figure 2.10 shows a typical distant speech recognition system architecture using audio

and video signals to carry out audio-visual speech recognition (AVSR), as per Wölfel

and McDonough [2009].

First, in the so-called front-end stage, the multiple audio and video channels are com-

pressed and enhanced to reduce the data rate at the highest possible quality. For the

audio signal, speaker localisation and tracking is carried out and the best audio channel

selected and/or the audio quality improved by means of noise reduction, acoustic

beamforming and postfiltering. For the video signal, areas of interest (such as mo-

vement) are detected and the video is compressed without loss of quality in important

regions.

After this, voice activity detection and segmentation and clustering are carried out to

detect “who spoke when”, i.e. to perform speaker diarisation. VAD and diarisation

are reviewed in detail in Section 2.4 below. Automatic speech recognition (reviewed

above) follows downstream from the diarisation process.

McDonough et al. [2008b] reviewed the single components of a complete DSR system

and found that:

“ while it is tempting to isolate and optimize each component indivi-
dually, experience has proven that such an approach cannot lead to optimal
performance.”

9http://www.microsoft.com/en-us/kinectforwindows

http://www.microsoft.com/en-us/kinectforwindows
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Figure 2.10: Architecture of an audio-visual DSR system (with kind permission of John

Wiley & Sons, Inc., modified from Wölfel and McDonough [2009], Figure 1.9)

The success of a good DSR system lies in the architecture and combination of its com-

ponents as well as the interaction of their input and output features, as demonstrated

next in Section 2.3.4. Please note that the reminder of this thesis looks at the audio

components of DSR only.

2.3.4 State-of-the-art DSR performance

Like ASR, distant speech recognition performance is measured by word error rate

(WER). While ASR performance is commonly measured using close talking micro-

phones (ctm), DSR performance is usually reported on a single distant microphone

(sdm) and multiple distant microphones (mdm) – as per the NIST RT evaluations [Fis-

cus et al., 2008].

A typical distant speech recognition task is the transcription of meetings, as demonstra-

ted by Hain et al. [2012] for the AMI/DA system. The authors implemented a 10-pass

ASR system which is used for meeting transcription. Speech recognition in meetings
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(from multiple distant microphones) is considered one of the most difficult ASR tasks

today.

The AMI/DA system contains the speech pre-processing, that is the speech front-end,

consisting of noise reduction and acoustic beamforming; speech segmentation and

clustering, or diarisation; speech feature generation (PLP) and enhancement; and a

multiple-pass ASR system containing state-of-the-art adaptation techniques such as

VTLN, cMLLR and MLLR.

Hain et al. [2012] achieved 29.3% WER on the NIST RT07 and 33.2% on the RT09

SASTT tasks. Only two teams, AMI/DA and ICSI/SRI, participated in the STT and

speaker attributed STT (SASTT) challenge of the RT09 workshop10. Both teams

achieved similar results as presented above for the AMI/DA system (see the RT09

workshop homepage for details).

Two years earlier, five teams participated in the STT and SASTT challenge of the NIST

RT07 workshop11, that is AMI/DA and ICSI/SRI on the meeting or conference room

data and ICSI/SRI, IBM and UKA on the lecture room data. WERs for the meeting

room data were between 30% and 50% on the mdm condition and between 40% and

70% for the lecture data (see the RT07 workshop homepage for details).

Two years earlier, five teams participated in the STT and SASTT challenge of the NIST

RT07 workshop12, that is AMI/DA and ICSI/SRI on the meeting or conference room

data and ICSI/SRI, IBM and UKA on the lecture room data. WERs for the meeting

room data were between 30% and 50% on the mdm condition and between 40% and

70% for the lecture data (see the RT07 workshop homepage for details).

Meeting recognition, as stated above, is quite a complex task, dealing with distant

speech signals degraded by noise, reverberation and overlapping speech. While it is

important to deal with the complete system for a realistic WER and performance (as

per McDonough et al. [2008b]), it is also equally important to be able to isolate the

individual problems to find good solutions (and algorithms).

One open research problem for good DSR is speech recognition of overlapping speech.

A vehicle to carry out research in recognising overlapping speech is the PASCAL

speech separation challenge 2 (SSC2) [Lincoln et al., 2005] which produced the MC-

10http://www.itl.nist.gov/iad/mig/tests/rt/2009/workshop/RT09-Agenda.htm
11http://www.itl.nist.gov/iad/mig/tests/rt/2007/workshop/RT07-Agenda.htm
12http://www.itl.nist.gov/iad/mig//tests/rt/2007/workshop/RT07-Agenda.htm

http://www.itl.nist.gov/iad/mig/tests/rt/2009/workshop/RT09-Agenda.htm
http://www.itl.nist.gov/iad/mig/tests/rt/2007/workshop/RT07-Agenda.htm
http://www.itl.nist.gov/iad/mig//tests/rt/2007/workshop/RT07-Agenda.htm
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WSJ-AV corpus of overlapping speech recorded with multiple distant microphones.

The MC-WSJ-AV corpus and the DSR systems that were developed and evaluated for

the PASCAL speech separation challenge will be presented and reviewed in Section 2.5.1,

after the review of speaker diarisation in the next section.

2.4 Speaker diarisation

Speaker diarisation is the process of determining who spoke when in a multi-party

conversation such as a TV or talk show, a lecture or a meeting. Initially, the main

application for diarisation was upstream processing for automatic speech recognition,

that is speaker attributed text to speech (SASTT) processing. In recent years diarisation

has meanwhile become a key technology not only for audio transcription but also for

audio classification and content retrieval, audio segmentation for archiving and sound

indexing and search.

The principal diarisation flow is shown in Figure 2.11.

pre-processing

(signal enhancement)

speech/voice

activity

detection

speech segmentation 

and clustering

speaker and 

speech recognition

audio

rich

transcript

(meeting) diarisation

Figure 2.11: Typical processing flow for rich transcription

The first step in diarisation is to determine whether an incoming audio segment13 is

speech or not, i.e. voice activity detection (VAD). Silence (and music) segments are

not of interest in diarisation and are therefore discarded for the downstream proces-

sing. The individual speech segments detected by the VAD process are analysed for

a change of speaker. If this is the case, the speech block is segmented. In the third

and final step, speech segments are analysed to ascertain whether they belong to the

13An audio segment in the context of VAD and diarisation is a continuous block of audio containing
no elements of silence longer than 200 ms.



44 Chapter 2. Speech processing for meeting recordings

same (unidentified) speaker and segments believed to come from the same speaker are

clustered.

The audio input to speaker diarisation can either be from a recording or fed in conti-

nuously in an online system. The work presented in this thesis is not restricted to

recorded audio data. All the algorithms analysed and developed are assessed for their

suitability to run online.

It is common to merge the segmentation and clustering steps and execute them in

multiple iterations, as shown in Figure 2.11. A very good review of the recent research

in speaker diarisation is presented in Anguera Miro et al. [2012].

2.4.1 Voice activity detection (VAD)

The following section is a review of voice (or speech) activity detection. Voice acti-

vity detection (VAD) is one of the first processes that is applied to an incoming audio

stream before it is used for further processing. Subsequent processes rely on the correct

labelling of the incoming audio stream(s) for optimal performance, i.e. to reduce false

alarms. Problems with the incoming audio stream are:

• noise, both stationary and intermittent

• reverberation

• overlapping speech/speakers

• non-speech segments (such as music)

Disturbing signals that interfere with speech processing techniques are not only noise

(both stationary such as from an equipment fan or intermittent like clapping) but also

reverberation, echo and music. Stationary noise removal and echo and reverberation

cancelling may be dealt with in the speech processing front-end. Intermittent noise

or music (possibly mixed with speech), on the other hand, are usually dealt with du-

ring speech enhancement or acoustic modelling. Alternatively, the diarisation (and

recognition) models may be trained with noisy speech and the output ought to then be

correctly decoded. Algorithms developed for speech activity detection need to distin-

guish between music and speech and also need to be able to cope with overlapping

speech. There are four main techniques used for speech activity detection (also known

as accurate endpointing). These are:
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• signal (or energy) threshold detection

• hidden Markov models (HMM)

• likelihood ratio tests (LRT)

• neural networks

Mobile devices rely mostly on energy-based VAD methods such as the ones defined

in the ITU-T P.56 “Objective measurement of active speech level” standard [ITU-T,

2011] or the ETSI ES 202 050 “Speech Processing, Transmission and Quality As-

pects (STQ); Distributed speech recognition; Advanced front-end feature extraction

algorithm; Compression algorithms” standard [ETSI, 2007].

Assuming that speech is recorded in a quiet room, the most basic method of detecting

speech is to measure the energy level of the recorded signal, track the power envelope

and use a threshold level to determine whether speech is present or not, as outlined in

Equation 2.37

VAD = (Ecurrent−Eaverage)> Ethreshold, (2.37)

where Ecurrent is the current energy of the input audio signal, Eaverage is the average

of the tracked power envelope and Ethreshold is a predefined threshold which is obtai-

ned through experiments and adapted to the recording environment. Note that these

thresholds may use a forget-me factor, i.e. a predefined time over which the power

envelope is tracked and averaged in order to compensate for a change in the quasi-

stationary noise.

For meeting recordings, using the latest technology allows recording equipment to be

built that is highly flexible, mobile and lightweight [Hori et al., 2010]. This enables re-

cording of conversations in many different environments, therefore making the process

of speech activity detection increasingly difficult. These problems are overcome using

multiple channel recording (e.g. microphone arrays) and enhanced signal processing,

utilising the ever increasing computer power available.

VAD methods utilised in meeting recordings are for example LRT-based [Sohn et al.,

1999], neural-network-based [Adami et al., 2002b] or GMM-HMM-based [Huijbregts,

2006]. These and additional algorithms and methods will be reviewed in detail in

Chapter 5.
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2.4.2 Speech segmentation and speaker clustering

The next section serves as a review of speech segmentation and speaker clustering.

Segmentation and clustering is the task of partitioning audio segments into homoge-

neous regions which are believed to belong to one speaker only. Speech segmentation

is the process of taking audio and splitting it into segments speaker change points.

Speaker clustering is performed to assign the speech segments to the individual speak-

ers. Segmentation and clustering is traditionally carried out in combination over mul-

tiple iterations.

2.4.2.1 The Bayesian information criterion

Speech segments identified by voice activity detection algorithms may contain speech

from more than one speaker. The Bayesian information criterion (BIC [Chen and Go-

palakrishnan, 1998b]) has been found to be a reliable measure to determine whether a

segment contains one or more speakers, i.e. to avoid the entire segment being incor-

rectly assigned to a single speaker during diarisation. It is used extensively in most of

the state-of-the-art diarisation systems such as the ICSI [Friedland et al., 2012]) and

SHoUT [Huijbregts, 2008] tools.

BIC is a likelihood criterion penalised by the model complexity, i.e. the number of

parameters in the model. If C is the audio data and M are the candidate models, the

task at hand is now to maximise the likelihood for each model L(C ,M) penalised by

the number of parameters of M. For this the audio data C is modelled as a multivariate

Gaussian distribution N(µ,Σ). The Bayesian information criterion for an audio cluster

Ck is now defined as

BIC(Ck) =
k

∑
i=1

{
− 1

2
ni log |Σi|

}
−λP, (2.38)

where ni is the number of samples in the cluster and Σi is the sample covariance matrix.

The penalty P is defined as

P =
1
2
(d +

1
2

d (d +1)) logN, (2.39)
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where N = ∑i ni is the total sample size and d the number of parameters per cluster.

Note that λ, the penalty weight, is usually set to 1.

The Bayesian information criterion can now be used to calculate whether a speech

segment contains one or more different speakers (i.e. segmentation) and to determine

whether two speech segments are from the same speaker (i.e. clustering). Using the

BIC for segmentation and clustering can best be explained for the latter. The increase

in the ∆BIC value for merging two segments s1 and s2 can be shown to be:

∆BIC = BIC(s1 + s2)− (BIC(s1)+BIC(s2)) (2.40)

= n log Σ−n1 log Σ1−n2 log Σ2−λP, (2.41)

where ni is the number of samples in the cluster i = 1,2 and Σi is the sample covariance

matrix of each segment, n = n1 + n2 and Σ is the covariance matrix of the combined

input segments.

If the ∆BIC value is greater than zero then the information content of the merged

segments is higher than the individual segments and the two segments are likely to

belong to the same speaker and should be merged. Similarly, a speaker change is

indicated by a positive peak of the ∆BIC value when calculating a series of ∆BIC

values for a sliding split point of a speech segment.

Chen and Gopalakrishnan [1998b] carried out experiments to detect the change point

in a speech segment, comparing the first cepstral coefficient and the Gish (i.e. log-

likelihood) and KL2 (Kullback Leibler) distance with the ∆BIC, and found that the

∆BIC is the best performing measure. Using the ∆BIC allows the search for speaker

changes in audio segments of variable length and provides a termination criterion for

speech segment clustering. Details and results on using the BIC in speaker change

detection can be found in Chen and Gopalakrishnan [1998b] and details on how to use

the BIC for speech clustering are presented in Chen and Gopalakrishnan [1998a].

Using the ∆BIC to detect speaker changes in a speech segment (and deciding whether

to merge two audio segments) can be carried out by means of the speech features (e.g.

MFCCs) as defined in Equation 2.41. This requires application of the penalty λP to

compensate for the difference in length of the two speech segments to be compared.

Ajmera and Wooters [2003] devised a method that does not require this penalty. If

Gaussian mixture models (GMM) are trained on the two speech segments and if the
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combined GMM contains the sum of mixtures of the two separate models, then the

penalty λP cancels out.

2.4.3 Diarisation

This section reviews typical diarisation methods and algorithms. Diarisation typically

follows VAD as presented in Figure 2.11. Over recent years speaker diarisation has

gradually become more difficult by progressing from working with telephony data

(CTS) to broadcast news (BN) and then meeting data, similar to speech recognition.

Speaker diarisation can be carried out in two principally different ways: top-down or

bottom-up. Top-down methods naturally require the presence of the complete data

and are therefore not suitable for online processing. Both methods employ the same

principal algorithms and achieve similar results, as presented in Evans et al. [2012].

One of the best known and successful diarisation systems has been developed at the

ICSI (International Computer Science Institute [Friedland et al., 2012]). Its perfor-

mance has been consistently at the top and most other systems have been designed in a

similar manner. Its review therefore serves as the basis for the review of state-of-the-art

diarisation.

The ICSI diarisation engine follows the basic flow diagram presented in Figure 2.11.

First the single or multiple channel audio input signal is enhanced, i.e. a dynamic

range compression is performed, before the noise is reduced using Wiener filters and,

in the case of multiple input channels, the audio is compressed and enhanced to a

single channel using acoustic beamforming. Next VAD is carried out using prelimi-

nary bootstrapping of the speech and silence regions which are then used to train the

VAD models (GMM-HMM). Over multiple iterations a speech model, an audible non-

speech model and a silence model are trained using the EM algorithm. Speech seg-

mentation and clustering are performed iteratively following the steps outlined below

and illustrated in Figure 2.12.
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1. initialise basic models

2. resegment audio data and retrain models using the EM algorithm

3. merge models using ∆BIC

4. repeat 2 & 3 as long as model purity improves

5. perform final segmentation and write output

Initialise model

resegment audio 

using Viterbi 

algorithm

DBIC < 0

for all possible 

pairs

final segmentation 

using Viterbi 

algorithm

retrain models 

using EM 

algorithm

merge two closest 

models using 

DBIC

y

n

Figure 2.12: Schematic overview of the ICSI diarisation system

First, the basic models are initialised by splitting the complete audio recording into 2N

segments. After this N models are trained by taking separated audio segments. Viterbi

alignment is used to generate a diarisation sequence with N speakers and the N models

are retrained with their new speech segments. Step 2, resegmentation and retraining, is

usually repeated a few times. The N models are then tested to determine whether they

might contain the same speaker and top-scoring models are merged using the Bayesian
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information criterion (∆BIC), thus decreasing N. Steps 2 and 3 are then repeated as

long as the model purity improves until a stopping criterion is reached. The diarisation

process is completed by writing the output. Note that there is no segmentation step

as such, but speaker changes are detected using Viterbi alignment and the minimum

speech segment length is defined by the length of the HMM.

Diarisation performed using the bottom-up flow principle has the following weak-

nesses:

• Using Viterbi alignment on GMM-HMMs and the ∆BIC to merge speech seg-

ments, the minimal speech segment duration needs to be rather long, i.e. 3 or

more seconds, which does not fit with the average speech segment length in

meetings of approximately 1.5 s (see Figure 6.11 on Page 128).

• Initial segmentation is carried out after removing non-speech (and non-audible)

segments and may occur at places which are not speaker boundaries. Recovering

from these artificial cuts is difficult.

• The number of active speakers is not known at any stage during merging and it

is therefore difficult to define the merge stopping criterion.

Bottom-up approaches capture comparatively purer models then top-down methods

which provide less discriminative and potentially better normalised speaker models

[Evans et al., 2012]. The top-down approach starts with a single general speaker model

from which it constructs new speaker models one-by-one. First a general speaker is

trained with all the available acoustic data. A new speaker model is then introduced

and trained with a subset of the total data. Selecting a good subset is crucial and –

in the implementation presented by Evans et al. [2012] – the longest speech segment

detected by the VAD process has proved to give consistently good performance.

A major advantage of top-down diarisation is potentially more reliable new speaker

models as they are drawn from a well-normalised background model which has been

trained from the complete speech data.

Top-down diarisation achieves similar performance but, like bottom-up approaches,

suffers from an undefined segmentation and clustering stopping criterion, while also

being unable to run in an online matter, as mentioned above.

Open issues in diarisation are looked at in detail in the next few sections.
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2.4.3.1 Cluster initialisation

In segmentation and clustering, cluster initialisation is an open research problem for

both top-down and bottom-up approaches. This problem has been addressed in mul-

tiple ways such as using the overall meeting length [Friedland et al., 2012] or using

K-means initial assignments instead of bootstrapping [Ben-Harush et al., 2012], pro-

ducing minor improvements at the expense of increased system complexity and com-

putational demand.

2.4.3.2 Cluster merge (and segmentation) stop

Precise change point detection and merge stopping is also an open research issue. In-

vestigations undertaken by Chen and Gopalakrishnan [1998b,a] have been extended

using the

• generalized likelihood ratio (GLR) and penalised GLR,

• (symmetric) Kullback-Leibler (KL) and asymmetric KL2 divergence [Siegler

et al., 1997] and

• information change rate (ICR), or entropy.

Experiments carried out using these algorithms on different data sets led to no signifi-

cant improvement over the ∆BIC [Anguera Miro et al., 2012, Barras et al., 2006, Han

and Narayanan, 2007, 2008, Kotti et al., 2008]. Segmentation and clustering using the

∆BIC, however unsuited to short speech segments, remains the first choice for speaker

diarisation [Anguera Miro et al., 2012].

2.4.3.3 Cluster purification

Segmentation and clustering very often lead to impure clusters, such as clusters created

from speech segments containing multiple speakers (overlapping or not) or when a

speech segment includes silence, non-speech (e.g. music) or a mixture of silence,

music and speech. These clusters are ‘impure’ and a cause of major degradation in the

diarisation task [Sinclair and King, 2013].

Anguera et al. [2006] suggest both segment and frame level purification for improved

diarisation. For segment level purification, the authors remove the speech segments
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which are most dissimilar from each speaker model after each iteration of segmentation

and clustering. For frame level purification, the statistics of the individual speech seg-

ments are analysed as to whether they contain silence, and speech segments believed

to do so are subsequently removed from training. The proposed scheme achieves purer

speaker models and an improved diarisation output.

Inspired by the re-sampling technique known from pattern classification, Nwe et al.

[2012] performed clustering several hundred times (with different numbers of GMMs)

on the assumption that pure segments will always cluster to the same model, while im-

pure ones will not. This process creates a consensus matrix, allowing impure clusters

to be removed from the model. The proposed method is part of the I2R diarisation

system, the best-performing diarisation system in the NIST RT09 challenge.

Bozonnet et al. [2010] applied the purification method suggested by researchers from

the I2R to their top-down diarisation system, also achieving purer speaker models and

improved diarisation.

2.4.3.4 Multiple acoustic features

Acoustic features such as MFCCs or PLPs are optimised to reduce the speaker depen-

dency of the incoming audio signal for best speech recognition. This, unfortunately, is

not optimal for speaker diarisation which can be significantly improved by combining

traditional short-term features (MFCCs) with prosodic and other long-term features.

Friedland et al. [2009] analysed 70 different long-term features (such as pitch, energy,

formants, harmonics-to-noise ratio and long-term average spectrum) with respect to

improved diarisation on the sdm condition, assuming that multiple microphone signals

would not always be available.

They found that ...

“... the median and average fundamental frequency are the best fea-
tures, followed by high formants (F4, F5). Also, the mean harmonics-to-
noise ratio and the variance of the long-term average spectrum achieved a
high score. Although pitch median and pitch mean are likely to be highly
correlated, we decided to keep them both since their scores are outstan-
ding.”

Given audio data from multiple microphones, localisation data can be extracted using

sound source localisation and the audio signal can be enhanced using beamforming
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techniques. Unfortunately, if neither the microphone positions nor the time alignment

of the audio channels are defined (as is the case for the NIST RT evaluations), then

sound source localisation can only be performed by means of TDOA estimation and

only delay-sum beamforming is possible [Bitzer and Simmer, 2001].

Ellis and Liu [2004] successfully demonstrated the use of microphone channel cross-

correlation to detect speaker turns in meetings. Pardo et al. [2006] applied this method

to carry out diarisation using the TDOA features only, and later combined the acoustic

(MFCC) and location features [Pardo et al., 2007].

In today’s state-of-the-art diarisation systems, using multiple acoustic features gives a

consistent 30% relative improvement in diarisation error rate (DER) [Friedland et al.,

2012].

Pardo et al. [2012] found that improved performance can be achieved by adding the

intensity channel contribution and interpolated fundamental frequency to the feature

stream. The intensity channel contribution is the normalised energy of the signal arriv-

ing at the different microphones and, in addition to the TDOAs, another way to deter-

mine the direction of arrival of the sound. The second new feature is the F0 frequency,

or pitch, of the incoming audio. By adding these two features, the authors managed

to improve the DER of their system. The additional features require weighting and

careful alignment as they are produced in different time intervals.

The major problem of combining multiple features is that TDOA features are long

term features (only stable over several seconds) while MFCC are short term features

(typically stable over a vowel length of a few 100 ms). The combination of short and

long term features makes implementation difficult, and segmentation and clustering of

short speech segments is hindered by these constraints. Pitch periods of speech are

only available for voiced speech, therefore making their integration difficult, despite

them being short term features.

Pardo et al. [2012], Ishiguro et al. [2012], Nwe et al. [2012], Zelenak et al. [2012] and

many other researchers realised that the TDOAs are crucial for good diarisation, but

also very difficult to integrate. Pardo et al. [2012] (and Friedland et al. [2012] as well

as Huijbregts et al. [2012]) integrate the TDOA values as a (weighted) parallel feature

stream.

Nwe et al. [2012] treat the TDOAs as multi-dimensional features and use consensus-

based cluster purification to reduce the dimension of the TDOAs to two only, thereby
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determining the number of speakers in the recording. Ishiguro et al. [2012] use the

direction of arrival (DOA) information calculated from a microphone array and the

‘bag-of-words’ model14 (applied to these DOAs) to determine the number of (active)

speakers. ∆BIC-based segmentation and clustering then leads to improved diarisation

results as the cluster stopping criterion is known.

Video recordings of meetings are available for the ICSI and AMI/DA meetings, inclu-

ding those used for the NIST RT evaluations. Friedland et al. [2012] looked at com-

bining the acoustic, prosodic and video features into the diarisation task to perform

audio-visual (AV) diarisation. Using the close-up video information from EDInburgh

and IDIap meetings, the authors calculate average motion vector magnitudes over es-

timated skin blocks and add these as an additional feature stream. Unfortunately, the

proposed AV diarisation system performs marginally worse than the baseline system

(using sdm audio features only).

Combining audio and visual features is computationally expensive and still an open

research area.

2.4.3.5 Overlapping speech

Overlapping speech accounts for 5–10% of all speech in meetings, leading to a si-

gnificant degradation in speaker diarisation if not detected or handled. Zelenak et al.

[2012] developed a diarisation system that takes account of simultanous (i.e. over-

lapping) speech. The system is based on agglomerative clustering like e.g. the ICSI

system presented above. While the systems presented so far ignore overlapping speech,

Zelenak et al. [2012] developed a method to detect simultaneous speech and attribute

these segments to the correct speakers.

In the proposed method the authors implemented a two-stream GMM-HMM diari-

sation system with an overlap detection component combining spectral (audio) and

spatial (TDOA) features which correctly detected 20% of the overlapping speech on

the AMI data set and 5% on the RT09 data set, leading to a marginally improved DER.

This diarisation system and overlap detection method will be reviewed in detail in

14Bag-of-words (BoW) approaches are well known histographical representation method initially
used in natural language processing and information retrieval research. BoW representation describes a
document by a histogram of words which are appearing in it. For diarisation, the authors use the BoW
representation to represent the frame-wise observations of the speaker localisations.
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Section 7.2.

2.4.3.6 Non-parametric diarisation

A novel method for diarisation using a non-parametric approach is the information

theoretic framework presented by Vijayasenan [2010]. The information bottleneck

(IB) principle is a non-parametric clustering method aimed to find the relevance va-

riables of a cluster where, in diarisation, each remaining cluster represents a speaker

upon completion. The critical component of IB-based diarisation is the stopping crite-

rion, i.e. when to stop the merging of clusters.

The system presented achieves similar speaker error rates15 (16.8%) as a baseline

GMM-HMM system (17.0%) while performing the diarisation six times faster than

real-time, compared to the GMM-HMM-based system which is slower than real-time.

The IB principle is also much better suited to integrating different features as it com-

bines the feature streams in a normalised space of relevance variables compared to

GMM-HMM-based systems which make use of log-likelihood combination.

The IB-based system achieved 5% absolute improvement over the baseline for the two

feature combination (MFCCs and TDOAs) and 7% for the four feature combination

(MFCC, TDOA, modulation spectrum and frequency domain linear prediction) while

still running in real-time and ten times faster than the GMM-HMM-based system.

2.4.3.7 Online processing

Diarisation as reviewed so far is not able to run in an online manner but requires the

complete recording to be available in order to process the data iteratively many dozens

of times. Online diarisation requires that the data is processed as it arrives and that the

latency, i.e. the time from arrival to completed processing of a data segment, is within

acceptable limits of e.g. a few seconds.

A real-time online diarisation, speech recognition and speech analysis system has been

developed by researchers at NTT [Ishiguro et al., 2012, Hori et al., 2010, Ishiguro et al.,

2012].

15DER results are not reported
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The researchers at NTT use dereverberation, noise reduction and acoustic beamform-

ing to enhance the audio signal. Their system performs combined noise suppression

and VAD by applying a likelihood-ratio test (LRT) to the GMMs of noisy speech and

silence models. In the proposed method (called DIVIDE), clean pre-trained speech

and silence models are combined with noise models into GMMs on which the LRT

test is performed. The noise models are constantly updated using Kalman filtering un-

der the assumption of non-stationary noise. Segmentation and clustering are carried

out using the speech that is passed on from the VAD by performing the ‘who speaks

when’ process in two steps: (1) DOA features generated using independent component

analysis are used to determine the speaker position after which (2) speech separation

is carried out. The DOA, i.e. the speaker position, and the VAD output are combined

to generate the diarisation output. Speech recognition is then carried out using the

results from the diarisation process. In the final stage speech analysis, that is speaker

activity detection (e.g. speaking, laughter, watching someone) and meeting statistics

(e.g. topic, activeness, casualness) are produced. When testing their system on the RT

data the researchers at NTT unfortunately failed to achieve results matching the ICSI

or SHoUT systems due to the NTT system working in online mode compared to the

batch mode processing used by the ICSI and SHoUT systems.

2.4.4 State-of-the-art diarisation

Information on current and state-of-the-art diarisation systems can be obtained from

the NIST RT challenges. These challenges are very useful for researchers as they

define standard experimental tools and databases which enable researchers to compare

their algorithms and systems.

The next section serves to present the diarisation error metric (DER), a measure to as-

sess and compare the performance of a diarisation algorithm or system, defined by the

NIST. This will be followed by a discussion of the performance of different diarisation

systems.

2.4.4.1 Diarisation error metrics

Two metrics are used to verify the performance of speaker diarisation systems: these

are the VER (VAD error rate) and DER (diarisation error rate). The VER is calculated
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from the missed speech (MS) and false alarms (FA). Missed speech are recorded audio

segments that are not detected as speech and therefore lost. False alarms are segments

passed to the next processing step that are actually not speech. The DER is calculated

from the missed speakers, false alarms and the speaker error, i.e. audio segments that

are assigned to the wrong speaker.

These individual errors are calculated as follows:

Emiss: percentage of missed speaker time

Emiss =
∑

S
s=1 dur(s) · (Nre f (s)−Nhyp(s))

Tscore
∀ (Nre f (s)−Nhyp(s))> 0 (2.42)

with Tscore = ∑
S
s=1 dur(s) ·Nre f .

S is the total number of segments of the recording in the reference, dur(s) is the length

of a segment and Nx is the speaker ID for the individual segment with Nx = 0 indicating

a non-speech segment. Note that segment boundaries are defined as speaker change

points in the reference transcript and the system output.

EFA: percentage of false alarm time

EFA =
∑

S
s=1 dur(s) · (Nhyp(s)−Nre f (s))

Tscore
∀ (Nhyp(s)−Nre f (s))> 0 (2.43)

Espkr: percentage of speaker error time assigned to the wrong speaker

Espkr =
∑

S
s=1 dur(s) · (min(Nre f (s),Nhyp(s))−Ncorrect(s))

Tscore
(2.44)

The DER is then calculated from Equations 2.42, 2.43 and 2.44 as follows:

DER = Emiss +EFA +Espkr (2.45)

Calculating the DER as defined in Equation 2.45 includes overlap errors, i.e. regions of

speech where multiple speakers are talking and where the incorrect number of speakers

is found. Note that overlap errors fuse into Emiss and EFA if missed speech and false

alarms are reported per speaker. Note also that the scoring script supplied by NIST16

allows a flag to be set which defines whether overlapping speech is ignored or not.

The VER and DER results presented in this thesis do not include overlapping speech,

unless stated otherwise, and are calculated as per Equations 2.42, 2.43 and 2.44 with

16The latest version of SCTK tools are obtainable from ftp://jaguar.ncsl.nist.gov/pub/

ftp://jaguar.ncsl.nist.gov/pub/
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the modification that dur(s) is calculated as (dur(s) ·X) with X being either 0 or 1,

i.e. (Nre f (s)−Nhyp(s)) in Equation 2.42, (Nhyp(s)−Nre f (s)) in Equation 2.43 and

(min(Nre f (s),Nhyp(s))−Ncorrect(s)) in Equation 2.43 are limited to a maximum of 1.

Note that a collar (or hang-over) of±250 ms is defined at the edges of speech segments.

This allows for a tolerance band for the automatic processing of the audio files and for

the error due to the human labelling of the references.

2.4.4.2 State-of-the-art diarisation performance

The performance of state-of-the-art diarisation systems is reviewed in what follows,

including the analysis of top-down vs. bottom-up diarisation as well as the impro-

vements of multiple-acoustic-feature diarisation. This is achieved by comparing the

performance of all the contestants of the NIST RT09 evaluation, that is the diarisation

systems implemented by Friedland et al. [2012], Evans et al. [2012], Huijbregts et al.

[2012], Pardo et al. [2012], Zelenak et al. [2012] and Nwe et al. [2012]. Note that all

results presented here apply to the mdm condition.

A good starting point is the ICSI diarisation system [Friedland et al., 2012]. It uses

multiple acoustic features for the model training, i.e. audio (MFCCs), localisation

(TDOAs) and other speech features such as pitch, formants and harmonics. It achieves

4.9% VER and 17.2% DER on the RT09 evaluation data set. Combining audio and

visual features does not show any improvements.

Another well known system is the SHoUT diarisation and speech recognition system

[Huijbregts et al., 2012, Huijbregts and van Leeuwen, 2012]. It follows the same basic

steps as the ICSI system and achieves 26.6% DER on the RT09 data set. The SHoUT

Speech Recognition Toolkit is freely downloadable for research purposes (from Huij-

bregts [2006]).

Pardo et al. [2012] found that improved performance can be achieved by adding the

intensity channel contribution17 and interpolated fundamental frequency to the feature

stream. Adding these two features the authors managed to improve the DER of their

system by 16.7% to 21.4% overall for the RT09 evaluation data set. The additional

features require weighting and careful alignment as they are produced in different time

intervals. The system was optimised using RT05 and RT06 data and achieved the best

17The intensity channel is the channel with the relatively highest energy, updated on a frame-base.
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Table 2.3: State-of-the-art diarisation error DER [%] on the NIST RT data

System ICSI SHoUT LIA/Eurecom UPM SUT I2R IB

RT07 n.a. n.a. 18.6 n.a. n.a. 7.5 11.9

21.9a

RT09 17.2 26.6 21.3 21.4 8.8 13.2

26.8a 42.2a

a DER calculated by adding overlap errors

results with a weight of 0.9 on the acoustic features (MFCCs) and a weight of 0.1

equally distributed on all the other features.

Nwe et al. [2012] achieved the best DER on the NIST challenges at 7.5% for the

RT07 and 8.8% for the RT09 data. The researchers at the I2R implemented a 2-stage

diarisation system, where the first stage was similar to the ICSI and SHoUT systems.

In the second stage, the authors implemented a consensus-based cluster purification

method that removed inpure speech segments, leading to better speaker models and

the overall best diarisation system presented at the NIST RT09.

Zelenak et al. [2012] developed a method to detect simultaneous speech and attribute

these segments to the correct speakers. The diarisation rate of the baseline system

measured on the RT09 data set is 42.2%, significantly higher than previously reported

results because overlapping speech is not ignored. The authors achieved an absolute

DER improvement of 1.2% and a relative improvement of 2.7% with the proposed

overlap detection method.

Please note that all diarisation systems contain many (model and hyper-) parameters

which are finely tuned using data from e.g. the RT05 and RT06 evaluations and tes-

ted on the RT07 and RT09 evaluations. The variation in the DER of the individual

meetings is very large, as shown in Pardo et al. [2012], for example.

Table 2.3 summarises the results presented at the NIST RT09 workshop. The codes

for the different research groups are: ICSI [Friedland et al., 2012], SHoUT [Huijbregts

et al., 2012], LIA/Eurecom [Evans et al., 2012], SUT (Slovak University of Techno-

logy) [Zelenak et al., 2012], UPM (Universidad Politécnica de Madrid) [Pardo et al.,

2012] and Institute for Infocomm Research (I2R) [Nwe et al., 2012]. Results for the

information bottleneck (IB) [Vijayasenan, 2010] principle are added for completeness.
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2.5 Speech corpora and (open source) software

This section reviews speech corpora and open source software. Almost all the results

presented so far have been produced from experiments carried out on publicly available

speech corpora. These corpora and the metrics and scripts to measure the performance

of a novel algorithm or method define their success or failure.

While it is impossible to present every single corpus available to speech researchers,

the next section will give an overview and provide details of the two most relevant

ones for the research presented in this thesis. These are multi-party conversation and

overlapping speech corpora. After this follows a list of the open source software used

along with a brief explanation of the function of the components.

2.5.1 Multi-party conversation corpora

State-of-the-art performance of diarisation systems is usually measured using a multi-

party conversation corpus. This started as early as 2002 when experiments were car-

ried out using broadcast news and conversational telephone speech for the NIST RT02

challenge on the speech to text and meta data extraction (MDE, including speaker dia-

risation) tasks.

From then on the NIST organised the RT challenges every year (or even twice-yearly

in the early years) until 2009. English meeting domain data was first released for the

2005 challenge. Different research institutes had by then created extensive corpora

from which the NIST data was taken. These include the corpora from:

• ICSI [Wooters, 2009]

• M4 [Renals, 2004]

• AMI(DA) [Renals, 2010]

• CHIL [Mostefa, 2008]

The first known corpus of meeting recordings is the ICSI corpus created between 1999

and 2002. It contains many meetings recorded with headset and tabletop microphones.

The corpus unfortunately lacks video data or information on the precise speaker po-

sitions. Nevertheless, inspired by the work at ICSI, CMU and Microsoft each created

a corpus of meetings containing video data and a meeting browser. The Microsoft
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corpus included distributed meetings with video and audio broadcasting capabilities –

note though it is not publically available.

The next milestone in meeting recordings was the M4 corpus, a collection of short

meetings run using scripts and created by the Idiap research institute in Switzerland

from 2002 to 2004. The M4 corpus contains audio and video data of meetings, white-

board screenshots and, for the first time, audio data from distant microphone arrays.

Care was also taken to ensure that the individual audio and video streams were syn-

chronised and aligned.

Following on from the M4 corpus, the AMI, CHIL and later AMIDA corpora were

created. Like the M4 corpus, audio and video data were carefully synchronised. The

AMI/AMIDA corpora contains scenario and non-scenario, i.e. real meetings. In the

AMI and AMIDA scenario meeting recordings 4 participants — a project manager, a

marketing expert, an interface designer and an industrial designer — were given the

brief of designing a remote control, and information and tasks were fed to them at

defined points in the process to influence the scenarios to a certain degree (see Hain

et al. [2012] for details).

Confidentiality in recordings is a major issue and can cause problems in meeting re-

cordings, while scenario recordings can considered to be unnatural. The 2012 MMA

corpus was created to address these issues and details will be presented in Chapter 4.

2.5.2 Overlapping speech corpora

Overlapping speech causes major degradation in the performance of diarisation (and

speech recognition) systems. Shriberg et al. [2001] observed as much as 9–17% over-

lap in meetings while I have measured 1.6–36.2% overlap in the NIST RT meetings

(see Figure 2.13) and 1.9–6.4% overlap in lively discussions in my own meeting re-

cordings (see Table 3.2 in Section 3.2.2.1).

The overlap for two speakers calculated from the results in Figure 2.13 averages out at

23% for the RT06, 11% for the RT07 and 14% for the RT09 meetings. Overlap figures

for three or more speakers are 4.7% for the RT06, 1.2% for the RT07 and 2% for the

RT09 meetings.

All RT data sets contain mixtures of meetings from the same set of recordings, e.g.

CMU, EDI and NIST. These sets of meetings have been recorded within the same
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Figure 2.13: Overlap analysis on the NIST RT meetings

framework and are of similar nature so that comparable overlap ratios might be expec-

ted. The only known distinction between the sets is that different people worked on

the transcription (Steve Renals and Mike Lincoln, personal communication, 19 April

2013).

Comparing these figures with the results from my own recordings of meetings, I conclude

that the overlap measured for the RT07 and RT09 meetings indicates a ‘normal’ meeting

while figures for the RT06 meetings are quite extreme and the results from the RT06

data should therefore be accorded less attention.

Overlapping speech can nevertheless deteriorate the performance of diarisation and

speech recognition systems and it is important to be able to handle it properly.

While a final solution to the problem needs to be able to deal with overlapping speech

in real meetings, it is also important to have data produced in a more controlled envi-

ronment to develop algorithms that can process overlapping speech.

I am only aware of the existence of one microphone array based corpus of natural over-

lapping speech dedicated to speech separation experiments, which is the MS-WSJ-AV

corpus, presented in Lincoln et al. [2005]. Separating overlapping speech is a research

problem that combines acoustic array processing and automatic speech recognition

(ASR). Kumatani et al. [2012] states that researchers working in these two areas un-

fortunately
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“... have failed to adopt each other’s best practices. For instance,
the array processing community tends to ignore speaker adaptation tech-
niques, which can compensate for mismatches between acoustic condi-
tions during training and testing. Moreover, this community has largely
preferred to work on controlled, synthetic recordings, obtained by convol-
ving noise- and reverberation-free speech with measured, static room im-
pulse responses, with subsequent artificial addition of noise, as in the
recent Pattern Analysis, Statistical Modeling, and Computational Learning
(PASCAL) Computational Hearing in Multisource Environments (CHiME)
Speech Separation Challenge (see e.g. Christensen et al. [2010], Barker
et al. [2012] and references therein). A notable exception was the PAS-
CAL Speech Separation Challenge 2 [McDonough et al., 2008a, Hima-
wan et al., 2008, Kumatani et al., 2008] which featured actual array re-
cordings of real speakers; this task, however, has fallen out of favor, to
the extent that it is currently not even mentioned on the PASCAL CHiME
Challenge Web site, nor in any of the concomitant publications. This is
unfortunate because improvements obtained with novel speech enhance-
ment techniques tend to diminish, or even disappear, after speaker adap-
tation; similarly, techniques that work well on artificially convolved data
with artificially added noise tend to fail on data captured in real acoustic
environments with real human speakers. Mainstream speech recognition
researchers, on the other hand, are often unaware of advanced signal and
array processing techniques. They are equally unaware of the dramatic
reductions in error rate that such techniques can provide in DSR tasks.”

The MC-WSJ-AV corpus offers researchers an intermediate task between simple digit

recognition and ASR. It consists of sentences read from the Wall Street Journal (WSJ)

taken from the test set of the WSJCAM0 database [Robinson et al., 1995]. A total of

about 45 speakers, male and female, are recorded in three different scenarios, these

are:

• single (stationary) speaker

• two (stationary) overlapping speakers

• single moving speaker

Speakers reading WSJ sentences from prompts are recorded using a headset and lapel

microphone and an eight-channel microphone array. In the single speaker scenario and

in the overlapping speaker scenario participants are assigned a fixed position for the

entire recording while for the moving speaker scenario participants are asked to read

from six different, fixed positions.

Fifteen participants were recorded for the single scenario, nine pairs for the overlap-
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ping scenario and nine for the moving scenario. Each read approximately 90 sentences

which are available for speech separation and recognition experiments. These 90 sen-

tences consist of 17 adaptation sentences, approximately 40 sentences from the 5k-

word WSJ corpus and another approximately 40 sentences from the 20k-word WSJ

corpus, identical to the WSJCAM0 corpus.

Only two teams entered the PASCAL Speech Separation Challenge 2 (SSC2) and the

results are presented in McDonough et al. [2008a] and Himawan et al. [2008].

Himawan et al. [2008] implemented a microphone array beamforming approach to

blind speech separation. This method estimates the position of the microphones from

the noise field model in order to use these locations to carry out SDB (which re-

quires knowledge of the microphone position) and subsequent blind speech separa-

tion. Speech separation is carried out by estimating the speaker location using SRP-

PHAT followed by superdirective (MVDR) beamforming and frequency domain mask-

ing postfiltering. Himawan et al. [2008] achieved a WER of 54.8% for both speakers

and 35.1% for the better speaker on the development set of the SSC2 corpus and a

WER of 58.0% for both and 38.3% for the better speaker on the test set.

The system presented by McDonough et al. [2008a] is made up of four principal com-

ponents: speaker localisation, beamforming, postfiltering and automatic speech recog-

nition. In the proposed system, speaker localisation is carried out by extended Kalman

filtering of the TDOA values derived using GCC-PHAT. With the a-priori knowledge

of two active speakers, the system then uses the speaker locations to steer two GSC

beamformers in the direction of the speakers, while the blocking matrices of the beam-

formers are optimised according to a minimum mutual information (MMI) criterion.

The outputs of the beamformers are further enhanced using postfiltering and binary

masking. Finally, an ASR engine based on a weighted FST is used to generate the

word hypotheses in four decoding passes where the HMMs of the recogniser are adap-

ted to the speakers.

McDonough et al. [2008a] achieve a WER of 39.6% with the proposed system.

All the results presented so far have been obtained using signal enhancement through

acoustic beamforming. Kumatani et al. [2008, 2012] compare the performance of

the system presented by McDonough et al. [2008a] on the single speaker task of the

MC-WSJ-AV corpus using data from the close talking microphone channel, a single

audio channel from the distant microphone array and all array channels. The authors



2.5. Speech corpora and (open source) software 65

achieved WERs of 28% on a single array channel; 12.2% with their best acoustic

beamforming and speaker adaptation technique on all eight array channels; and 6.5%

on the speech from the close talking microphone channel. No results were presented

for the overlapping speaker task.

A single distant microphone could be considered as an array of 0 m diameter, al-

though having numerous microphones at the exact same location would still allow for

advanced noise reduction but without the capability of extracting TDOA information.

Note that topics such as noise reduction, speech separation and dereverberation are not

the main focus of the work presented in this thesis and are therefore not reviewed here.

State-of-the-art research in these areas is presented in the relevant places in this thesis

with the overall aim of best readability.

2.5.3 Open source software

The work and results presented in this thesis would have not been possible without

the use of (open source) software which researchers have made available to the public

and in some cases to me individually. This section lists this software along with a

brief explanation of the function of the components used if this has not been explained

above.

The QIO-FE [Adami et al., 2002a] is a collection of tools for robust feature extraction

from an audio signal for distant speech recognition (DSR). I used the noise reduction

and VAD components of the QIO-FE for the research presented in this thesis. The

QIO-FE noise reduction employs VAD to detect silence regions and Wiener-filtering

to reduce the noise.

The BeamformIt [Anguera, 2006] tool is an acoustic beamforming tool. It is optimi-

sed for best diarisation output on the NIST RT challenges. BeamformIt uses GCC-

PHAT for TDOA estimation followed by TDOA smoothing after which it carries out

delay-sum beamforming.

TDOA estimation for a microphone array requires setting a reference channel. As

mentioned above, the microphone with the highest energy level is generally used as

the reference. Selecting the reference channel using the signal energy can be difficult

(particularly for small array geometries) if there is little measurable energy difference.

In addition, for large geometries the microphone closest to the active speaker will show
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the highest energy level, therefore requiring constant change of the reference during a

multi-party conversation.

BeamformIt therefore uses a different method to determine the reference channel.

First, it calculates the cross-correlation of every possible microphone pair for the entire

recording after which it selects the microphone with the highest time-averaged value

as the reference. The reference microphone is then kept for the entire recording.

The major strength of BeamformIt is its two-phase Viterbi TDOA smoothing scheme,

leading to significantly improved DER if the TDOAs are used as an additional (locali-

sation) feature stream for diarisation.

TDOA smoothing in the first phase is carried out on the single channels using the

best TDOA from GCC-PHAT as per Equation 2.12 and not just the maximum as per

Equation 2.13. First, TDOA values smaller then a threshold are discarded after which

the two best TDOA values are chosen from the N-best values using Viterbi decoding.

In the second phase, Viterbi decoding is used again to smooth the two best TDOA

values of all channels by finding the smoothest path through the TDOA-HMM. The

TDOA-HMM emission probabilities are derived from log(ĜPHAT ( f )) and the transi-

tion weights from the delay distance of two adjacent states. Please refer to Anguera

et al. [2007] for details.

The mdm tools [McCowan, 2005] are, like BeamformIt, a front-end system for ASR,

providing noise reduction as well as delay-sum and superdirective (MVDR) beam-

forming. TDOA estimation is carried out using GCC-PHAT. The mdm tools select

the microphone channel with the highest energy over the entire audio input as the

reference for TDOA estimation. This reference microphone is determined once and

retained throughout the recording.

Details on GCC-PHAT, delay-sum and MVDR beamforming have been reviewed above

(cf. Section 2.1).

SHoUT [Huijbregts, 2006] is a ASR system which also provides a VAD and diarisation

component.

The ICSI [Friedland et al., 2012] and LIUM [Meignier and Merlin, 2010] toolkits

are software dedicated to speaker diarisation. The SHoUT and ICSI systems are very

similar, performing VAD and diarisation using GMM-HMMs in a bottom-up manner,

while the LIUM follows the same principle but processes the data top-down.
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The SHoUT, ICSI and LIUM diarisation tools have been reviewed in detail above (cf.

Section 2.4).

The Hidden Markov Model Toolkit HTK provides sophisticated tools for HMM trai-

ning, testing and results analysis [Cambridge University Engineering Department (CUED),

2012]. The principal working of its components and its performance have been pre-

sented above (cf. Section 2.2).





Chapter 3

MEMS microphones and microphone

arrays

The advent of MEMS (micro electro-mechanical systems) technology which combines

silicon- and nanotechnology to build microphones has caused a major shift in the elec-

tronics market, particularly for consumer electronics. MEMS microphones with either

analogue or digital output are not yet good enough for high-fidelity applications, but

their advantages outweigh their disadvantages for consumer devices such as mobile

telephones or tablets.

In order to research the use of MEMS microphones for meeting capturing I have deve-

loped a sequence of digital MEMS microphone arrays, the DMMA.1, DMMA.2 and

DMMA.3.

A microphone array is a collection of three or more microphones that work in unison.

Although not strictly necessary, it is recommended that the microphone signals are

sample-synchronous, i.e. all microphones are sampled at exactly the same time. In

addition, superdirective beamforming is only possible for sample-synchronous audio

signals and if the geometry of the array, i.e. the relative position of each microphone,

is known.

The digital MEMS microphone arrays satisfy these requirements.

69
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3.1 Digital MEMS microphones

MEMS technology is a miniaturisation technology defined as the technique of design-

ing structures well below one micron1. Typical MEMS systems today are sensors or

actuators. It is common to classify MEMS into their fields of application, with acce-

lerometers, gyroscopes, microphones and pressure sensors being typical sensors and

inkjet printheads or fluid accelerators being typical actuators.

The basic building blocks used for MEMS components are not only silicon but also

polymers, metals and ceramics. Processing these materials is usually carried out in

three basic steps: deposition, patterning and etching. These processing steps are very

similar to photographic processes, with the major distinction that for microchip and

MEMS manufacturing both chemical as well as mechanical changes are applied to the

basic material. Examples of such processes are wet or dry etching of the silicon to

corrode a microphone membrane, as shown in Figure 3.1.

Figure 3.1: MEMS microphone membrane (courtesy of Analog Devices Inc.)

The chemical processes, i.e. the substances, temperatures and pressures necessary to

process the silicon for microchip transistor structures are not identical to the ones used

to etch a sensor or actuator. Many different methods have been developed allowing

manufacturing of single chip MEMS devices at increased process costs. Alternatively,

a MEMS system may contain two microchips, both optimised for their individual pro-

cess requirements at cheaper process costs but higher component count. One-chip and

two-chip MEMS microphones are shown in Figure 3.2.

Looking at the basic building blocks of MEMS microphones, many different imple-

1http://www.memsnet.org/mems/what_is.html

http://www.memsnet.org/mems/what_is.html
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(a) One chip MEMS microphone (b) Two-chip MEMS microphone

Figure 3.2: MEMS microphone (courtesy of Akustica Inc.)

mentations are possible. The first MEMS microphones available on the market had an

analogue output, therefore omitting the analogue to digital conversion (ADC). Later

the first digital output MEMS microphones became available. These contain a 1-bit

ADC and the output is a pulse-density modulated (PDM) bitstream, typically at 64

times the signal sample rate 64 Fs. Recently Analog Devices Inc. released a MEMS

microphone with built-in signal processing, providing the user with a down-sampled

digital audio signal at the sample rate using the industry standard I2S interface. The

block diagram of this microphone, the ADMP441, is presented in Figure 3.3.

The building blocks of the ADMP441 digital MEMS microphone are: the microphone

membrane, a 1-bit ADC, a digital downsampling filter and the I2S interface. In addi-

tion, a power management block (to provide the microphone with an up-converted and

ultra-clean supply voltage between 10 and 15 V) is required plus a hardware control

block to configure the microphone.

With most MEMS microphones the microphone membrane is used as a capacitor at

a constant charge. Any changes in the capacity caused by air pressure changes on

the loose capacitor plate in relation to the second fixed capacitor plate will result in

a voltage change which is amplified using a JFET transistor. The power management

circuit keeps the charge constant. Figure 3.4 shows this principal schematic and a cross

section of it on the microchip.

The sales of MEMS microphones is growing to impressive new levels year by year. In

2012 2.05 billion units were sold, up 57% from 2011, while forecasts for 2016 are for
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Figure 3.3: ADMP441 digital MEMS microphone block diagram (courtesy of Analog

Devices Inc.)

4.65 billion MEMS microphones shipped, predicting three more years of double digit

growth2.

MEMS microphones can be found in smartphones (e.g. Apple iPhone, HTC, Samsung,

LG), tablets and ultrabooks (e.g. Apple iPad, Amazon Kindle, Microsoft Surface),

laptops (e.g. HP, Dell, Lenovo and Asus), headsets, gaming (e.g. Nintendo and Sony),

cameras, televisions and hearing aids.3

3.2 Digital MEMS microphone array

Microphone arrays are a key element for data capture in meetings. They allow hands-

free sound signal acquisition and are becoming more prevalent in modern consumer de-

vices. The advent of MEMS microphones now enables the construction of cheap com-

modity microphone arrays [Zwyssig et al., 2010]. MEMS microphones (and micro-

phone arrays) have recently attracted a great deal of interest and might well be the

future of sound signal acquisition.

2http://www.digikey.com/supply-chain-hq/us/en/articles/semiconductors/mems-microphone-
market-revenues-soar-42-in-2012/1497

3http://www.electronicsweekly.com/news/business/apple-determines-mems-microphone-market-
2013-05

http://www.digikey.com/supply-chain-hq/us/en/articles/semiconductors/mems-microphone-market-revenues-soar-42-in-2012/1497
http://www.digikey.com/supply-chain-hq/us/en/articles/semiconductors/mems-microphone-market-revenues-soar-42-in-2012/1497
http://www.electronicsweekly.com/news/business/apple-determines-mems-microphone-market-2013-05/
http://www.electronicsweekly.com/news/business/apple-determines-mems-microphone-market-2013-05/
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(a) MEMS microphone FE (b) MEMS microphone FE chip

Figure 3.4: MEMS microphone front-end (FE) and chip cross section (from Brauer et al.

[2001], with kind permission of Infineon Technologies AG and IOP publishing)

I designed and built the first digital MEMS microphone array as part of an MSc dis-

sertation during the summer of 2009 using Knowles Acoustics SPM0205HD4 di-

gital MEMS microphones, a Xilinx Spartan 3A FPGA and the Texas Instruments

TUSB3200A USB streaming controller[Zwyssig, 2009]. This implementation was

very much a prototype and only supported sampling the audio signal at 16000 Hz

while requiring post processing of the output signal to extract the raw audio. Speech

recognition experiments carried out with the prototype demonstrated the viability of

MEMS microphones for speech processing [Zwyssig et al., 2010].

When the USBPAL from Rigisystems and the Analog MEMS microphone ADMP441

became available I redesigned the digital MEMS microphone array as part of my PhD

in 2011. The second version of the MEMS microphone array is a USB device suppor-

ted by Windows PC and MAC OS X and allows recording of eight channels of audio

at 8000, 9600, 11025, 12000, 16000, 19200, 22050, 24000, 32000, 38400, 44100 and

48000 Hz. Experiments in speaker diarisation carried out with the DMMA.2 again

demonstrated the value of the new MEMS technology. Unfortunately, due to the pro-

totype build of the DMMA.2, the clocking was not as clean as required and the audio

recorded with the DMMA.2 contains non-white noise. Standard Wiener-based noise

filtering is required to clean up the signal for speech processing.

Built for capturing the audio signal from meetings, the DMMA.1 and DMMA.2 are

circular arrays of eight microphones with a diameter of 20 cm, therefore allowing

superdirective beamforming due to knowledge of the relative microphone positions

and sample-synchronous audio channels. Microphone array beamforming and blind

source separation for improved speech processing are also a requirement for hand-held
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devices. This requirement and the need to address the noise issues of the DMMA.2 led

me to design the third generation digital MEMS microphone array, the DMMA.3, in

2012.

For the DMMA.3 I customised the USBPAL for my requirements and designed an

array that would fit onto the back of most mobile devices. The DMMA.3 contains eight

microphones on a circle of diameter 4 cm. In order to overcome the problems of spatial

aliasing the audio signal sampling rate had to be increased in inverse proportion to the

shrinking of the array geometry. Preliminary experiments showed that the ADMP441

microphones work perfectly well at 96 kHz, despite being specified for a maximum

sample frequency of 48 kHz. The experiments showed a minimal decrease of the

SNR.

3.2.1 DMMA.1

As mentioned above, experiments with the DMMA.1 indicated the suitability of MEMS

microphones for speech processing and the results are presented in Table 3.1. These

experiments were performed on recordings made in a typical meeting room at the Uni-

versity of Edinburgh using the DMMA.1 and an analogue array of the same dimensions

built using Sennheiser MKE 2 microphones. The experiments are identical to the ones

used for the MC-WSJ-AV corpus (cf. Section 2.5.1 and Lincoln et al. [2005]).

Six male and six female speakers were recorded reading sentences from the WSJCAM0

test and development sets [Robinson et al., 1995]. All participants were native British

English speakers. The set of prompts for each speaker was selected from one of the sets

used in WSJCAM0 and typically contained 17 TIMIT style sentences (for adaptation),

40 sentences from the 5,000 word (closed vocabulary) sub corpus of WSJCAM0 and

40 sentences from the 20,000 word (open vocabulary) sub corpus. Each audio channel

was recorded as a single wav file, and the files were manually split into individual

sentences for recognition.

First, noise reduction and acoustic beamforming was carried out using the mdm tools

after which speech recognition was performed using HTK, identical to the setup used

for the MC-WSJ-AV corpus [Lincoln et al., 2005].

The results show that the digital array recordings give a substantially increased WER

compared with those obtained from the analogue array. The SNR of the digital micro-
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Table 3.1: [%] WER on 5k-word MC-WSJ-AV single speaker task for 6 male and 6

female speakers performed on recordings of WSJ sentences using the digital MEMS

microphone array DMMA.1 and an equivalent analogue array [Zwyssig et al., 2010]

Male Female Average

Adaptation Technique Analogue Digital ∆ Analogue Digital ∆ Analogue Digital ∆

None 30.2 40.7 10.5 36.9 55.1 18.2 33.6 47.9 14.3

MLLR Channel 22.6 27.4 4.7 22.2 32.2 10.0 22.4 29.8 7.4

cMLLR Channel 21.3 26.3 5.0 20.7 29.7 9.0 21.0 28.0 7.0

MLLR Speaker and Channel 18.2 20.7 2.5 19.4 25.9 6.6 18.8 23.3 4.5

phones is lower than that of the analogue microphones, meaning that the audio from

the digital array is less well matched to the recognition models which are trained on

speech from high quality analogue headset microphones. This is likely to be the reason

for the observed decrease in accuracy.

In order to address the mismatch between training and test data, three experiments were

conducted in which the recognition models were adapted to the acoustic properties of

the recordings using MLLR and cMLLR adaptation (cf. Section 2.2.7).

First, the acoustic models were adapted to the channel by pooling the 17 adaptation

sentences recorded for each speaker to produce transforms specific to the digital and

analogue arrays. Recognition was then performed on the 5k-word data from the mat-

ched array and the results are shown as ‘Channel’ in Table 3.1. As expected, the adap-

tation gives decreases in WER for both analogue and digital arrays. More importantly,

the absolute difference in WER between the analogue and digital arrays is reduced

by nearly 50%, from 14.3% to 7.4%. This suggests that, although the quality of the

output from the digital array is lower than that of the analogue array and therefore not

as closely matched to the close talking models, it still contains much of the speech

information required to perform recognition, providing the models are matched to the

microphones. Performing cMLLR channel adaptation in a second experiment resulted

in further decreases in the WER.

Third, experiments were performed in which the models were adapted to the speaker

and to the channel by defining the adaptation sets as those sentences recorded from

the same speaker on the same array. In this case the absolute difference in the WER

between the analogue and digital arrays was further reduced by about 40% to 4.5%.

Looking at these results I conclude that the most probable cause for the decreased
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WER performance of the digital MEMS microphone array is the increased SNR of the

microphones and that simple MLLR and cMLLR adaptation can be used to achieve

almost identical speech recognition performance from the digital MEMS and analogue

microphones.

See Zwyssig [2009] for a full description of the work and Zwyssig et al. [2010] for a

detailed summary.

3.2.2 DMMA.2

Initial research using MEMS microphones for signal acquisition in meeting rooms

produced very promising results as demonstrated above in Section 3.2.1. The DMMA

was therefore redesigned and improved, and the second version, DMMA.2, allows

recording of eight microphone channels at sample rates from 8 to 48 kHz.

The DMMA.2, shown in Figure 3.5, is built using ADI ADMP441 omnidirectional

MEMS microphones4 with bottom ports and I2S outputs and the Rigisystems USB-

PAL5, a USB 2.0 multi-channel audio interface for Windows PC and MAC OS X.

The digital MEMS microphones are mounted on daughterboards which themselves are

mounted on a disk-shaped motherboard, both of which I designed as part of my PhD.

The daughterboards contain the microphones, a de-coupling capacitor for improved

power supply and a resistor for clock signal termination. Eight daughterboards are

mounted on the motherboard so as to be placed equidistant on a circle of diameter

20 cm, identical to the analogue array used for the AMI/DA recordings [McCowan

et al., 2005]. The motherboard itself is then plugged onto the USBPAL, resulting in an

8-channel microphone array USB device ready for recording, as shown in Figure 3.5.

Digital MEMS microphones have significantly lower intrinsic SNRs compared to ana-

logue microphones. Tests on the microphones used in the DMMA.2 show that this

sensor noise is not white as would be expected. While SNR and THD (total harmonic

distortion) measurements show the microphones to be within specification, the MEMS

microphones output a non-white chirping noise which originates from poor PCB layout

due to using prototype technology, i.e. lack of clock shielding, lack of ground planes

and undefined clock and signal routing impedances.

4http://www.analog.com/en/mems-sensors/microphones/admp441/products/product.
html

5http://www.rigisystems.net/

http://www.analog.com/en/mems-sensors/microphones/admp441/products/product.html
http://www.analog.com/en/mems-sensors/microphones/admp441/products/product.html
http://www.rigisystems.net/
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(a) Microphones on daughter boards (b) Complete microphone array

Figure 3.5: The digital MEMS microphone array DMMA.2

3.2.2.1 AD IMR corpus

The DMMA.2 and an array with identical geometry constructed using high SNR ana-

logue microphones were used to simultaneously record six research meetings of around

one hour in length. The recordings were made in a typical meeting room at the Uni-

versity of Edinburgh. The analogue array is identical to that used in the AMI meeting

corpus recordings and is fully documented in Section 4.3 and in Hain et al. [2010].

From each of the recordings, a continuous ten to fifteen minute segment containing

lively discussion was selected, creating a total of approximately 78 minutes of record-

ings. These extracts were annotated to show speech/non-speech events and for each

speech segment the speaker ID was marked. Both overlapping speech (where more

than one speaker is talking simultaneously) and back channels (short interjections from

listeners, typically indicating agreement or disagreement with the main speaker) were

included in the annotations. The annotations was formatted using the RTTM specifi-

cation, as defined by NIST6, allowing scoring of automatically generated diarisation

annotations using the standard NIST evaluation tools. Details of the meeting record-

ings contained in the corpus, named AD IMR, are listed in Table 3.2.

3.2.2.2 Methods

Experiments were conducted to investigate the effect on the diarisation task of using the

digital array and superdirective beamforming. Two state-of-the-art diarisation systems

6http://www.itl.nist.gov/iad/mig/tests/rt/

http://www.itl.nist.gov/iad/mig/tests/rt/
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Table 3.2: Summary of AD IMR corpus meeting recordings

Recording Length # of min/avg/max # of Overlap
speakers speech segment length segments

[s] [s] [%]

rec14june2011 825 5 0.14 / 1.94 / 8.5 351 3.0

rec15june2011 804 7 0.23 / 1.92 / 18.1 314 4.2

rec21june2011 630 4 0.21 / 1.71 / 10.4 286 1.0

rec22june2011 856 4 0.15 / 1.50 / 10.0 313 2.4

rec28june2011 607 4 0.19 / 1.74 / 8.0 245 1.9

rec29june2011 914 6 0.21 / 1.47 / 13.8 501 6.4

were employed to compare the error rates achieved by the low SNR recordings from

the DMMA.2 with recordings of the same meeting from the analogue array. Using

both smoothed and unsmoothed delay estimates, I then compared diarisation errors

from the MVDR beamformer and the currently used delay-sum beamformer.

Figure 3.6 shows the data flow for the experiments. Initially, Wiener-filter-based noise

reduction using the QIO-FE was applied to the analogue and digital microphone si-

gnals and both smoothed and unsmoothed TDOA values for each of the channels cal-

culated using BeamformIt and the mdm tools. Enhanced signals were then generated

using three techniques: (1) delay-sum beamforming with smoothed delay estimates,

(2) superdirective beamforming with unsmoothed delay estimates and (3) superdirec-

tive beamforming with smoothed delay estimates.
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Figure 3.6: Flow diagram to investigate the effect of using the digital array and superdi-

rective beamforming on the diarisation task

Details of the TDOA smoothing method are given in Section 2.5.3 and Anguera et al.

[2007].
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Speaker diarisation was then performed on the three enhanced signals using two diari-

sation systems, the SHoUT speech recognition toolkit and the ICSI speaker diarisation

system7.

The ICSI system was made available to me thanks to Gerald Friedland.

3.2.2.3 Results

The missed speech (MS), false alarms (FA), voice activity detection error rate (VER)

and diarisation error rate (DER) results for the six meetings in the AD IMR corpus are

given in Table 3.3.

Table 3.3: [%] DER, DER, FA and MS for delay-sum (DSB) and superdirective (SDB) beam-

forming for analogue and digital arrays using the ICSI and SHoUT diarisation systems on

recordings from the AD IMR corpus

SHoUT ICSI
DER VER FA MS DER VER FA MS

DSB analogue 20.5 2.3 1.3 1.0 22.5 2.2 1.3 0.9

(TDOA smoothing) digital 21.9 3.0 1.5 1.5 22.8 2.9 1.5 1.4

SDB analogue 29.2 4.8 3.5 1.3 28.2 4.7 3.5 1.2

GW=0.6 digital 35.2 4.9 3.0 1.9 30.3 4.8 3.1 1.7

modified SDB analogue 23.1 3.6 1.9 1.7 21.6 3.5 1.9 1.6

GW=0.6 (TDOA smoothing) digital 25.5 3.7 1.6 2.1 28.8 3.7 1.7 2.0

The results show that, for diarisation, the new digital microphone array compares well

with the analogue array despite the reduced SNR, producing only marginally increased

error rates. This result suggests that MEMS microphone technology provides a viable

alternative to analogue devices for speech data capture.

Table 3.3 also shows that superdirective beamforming results in a decrease of the dia-

risation performance compared to Viterbi smoothing of the TDOA coefficients and

delay-sum beamforming. Using Viterbi smoothing of the TDOA coefficients and su-

perdirective beamforming leads to an improved DER, though this does not match the

results from simple delay-sum beamforming.

7The implementation of the ICSI system evaluated here only uses acoustic features, in contrast to the
system used in the ICSI submission to the NIST RT09 evaluation which incorporates TDOA features
directly as an input to the diarisation system.
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The main problem of using GCC-PHAT-based TDOA estimation for beamforming on

the diarisation task is that the values of the TDOA and therefore the direction of the

acoustic beam is undetermined, i.e. neither the direction of the beam nor the positions

of the active speakers are known at any particular time. Viterbi smoothing produces

more stable TDOA values and interrupting speakers are therefore ignored. This results

in improved diarisation performance.

Both the SHoUT and ICSI diarisation tools have been optimised for GCC-PHAT-based

TDOA estimation and delay-sum acoustic beamforming. Using superdirective beam-

forming for diarisation will result in a different acoustic speech signal, particularly in

regions of overlapping speech and speaker changes. Superdirective beamformers will

also remove acoustic information from the sidelobes which may lead to an increased

DER as the diarisation tools are tuned to acoustic output from a delay-sum beamfor-

mer.

Note also that the TDOA smoothing method was optimised for diarisation performance

using a delay-sum beamformer. An alternative TDOA coefficient optimisation may

well lead to improved diarisation when using superdirective beamforming.

Analysing the effect of the superdirective beamformer white noise gain constraint GW

on the diarisation error rate, I found that tuning GW does not have an effect on the

DER of the digital MEMS microphone but decreasing GW increases the DER of the

analogue array as shown in Figure 3.7.

Note that setting GW = 8 for an eight-channel array results in the superdirective beam-

former being a simple delay-sum beamformer.

Figure 3.7 shows that the white noise gain GW has little effect on the digital MEMS

microphone array which might be due to the non-white noise of the DMMA.2.

Increasing the directionality of the beam decreases the performance of the analogue

array, indicating again that removing the sidelobes of the acoustic beam decreases the

diarisation performance.

I conclude that SDB beamforming is not desirable for best diarisation performance.

See [Zwyssig et al., 2012b] for details.
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Figure 3.7: Effect of white noise gain constraint GW on [%] DER from diarisation expe-

riments on the AD IMR corpus

3.2.3 DMMA.3

As mentioned above, almost all mobile consumer devices nowadays contain one, or

possibly more microphones. Research has shown that multiple mobile devices can

be combined to build an ad-hoc microphone array [Hennecke and Fink, 2011]. Un-

fortunately, using this configuration of mobile devices the individual signals are not

aligned and their clocks and signals will drift. In addition, the position of the devices

(and therefore microphones) is not known, making superdirective beamforming im-

possible [Elko and Meyer, 2008]. Any beamforming algorithm apart from delay-sum

beamforming requires knowledge of the microphone position and synchronised audio

samples. If only one of these requirements is given, then algorithms exist that allow

the other to be estimated (see e.g. McCowan et al. [2008]) but these approaches are

often not practical.

I have therefore designed the third generation digital MEMS microphone array DMMA.3

which would fit onto most current smart mobile devices. The digital MEMS micro-

phone array DMMA.3 is shown in Figure 3.8.

The DMMA.3 has been designed by myself and 10 units have been manufactured and

tested by Rigisystems8.

8http://www.rigisystems.net/

http://www.rigisystems.net/
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Figure 3.8: DMMA.3 (underside) – the upper side is empty to allow unobstructed sound

wave propagation

Using the DMMA.3 and DMMA.2 and equivalent analogue arrays of identical sizes,

the research questions to be answered are: what are the effects of the MEMS micro-

phone performance, the array size and the sample rate on state-of-the-art speech pro-

cessing algorithms.

3.2.4 Verifying the microphone SNR

The performance of a microphone is usually measured using acoustic parameters such

as microphone self-noise, sensitivity, frequency response, directionality and maximum

input sound pressure as well as electrical parameters such as power consumption and

impedance.

If combined with an ADC the microphone system performance is also defined using

additional parameters such as the THD (total harmonic distortion), SNR or power sup-

ply rejection ratio (PSRR).

MEMS microphones are defined as a system and their performance is given in a da-

tasheet, provided by the supplier. Analogue microphones, on the other hand, require

an external amplifier, ADC and interface. These components are specified separately.

Comparing the performance of MEMS microphone systems with analogue microphone

systems is therefore not straightforward.

Nevertheless, the MEMS industry is close to producing MEMS microphones that
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achieve comparable performance to analogue microphones. The main performance

degradation of MEMS microphones used for the experiments presented in this thesis

is the significantly reduced SNR9.

This section explains the meaning of the ‘significantly reduced SNR’ of digital MEMS

microphones compared to analogue microphones and how the SNR is measured. Please

note that the only performance degradation perceivable using the digital MEMS micro-

phone arrays is the non-white noise of the DMMA.2.

Analog Devices Inc. give a good explanation of the SNR as

“... the ratio of a reference signal to the noise level of the microphone
output. This measurement includes noise contributed by both the micro-
phone element and the ASIC incorporated into the MEMS microphone
package. The SNR is the difference in decibels between the noise level
and a standard 1 kHz, 94 dB(SPL) reference signal.

SNR is calculated by measuring the noise output of the microphone
in a quiet, anechoic environment. This specification is typically presented
over a 20 kHz bandwidth as an A-weighted value (dBA), which means
that it includes a correction factor that corresponds to the human ear’s
sensitivity to sound at different frequencies. When comparing SNR mea-
surements of different microphones, it is important to make sure that the
specifications are presented using the same weighting and bandwidth; a
reduced bandwidth measurement makes the SNR specification better than
it is with a full 20 kHz bandwidth measurement.”

The two microphones used for the research presented in this thesis are the Sennhei-

ser MKE 2 sub-miniature clip-on lavalier microphone and the Analog Devices Inc.

ADMP441 omnidirectional digital MEMS microphone.

Sennheiser’s technical datasheet for the MKE 2 specifies:

• sensitivity in free field, no load (1 kHz) of 5 mV/Pa ± 3 dB

• equivalent noise level of 26 dB

Analog Devices specifications for the ADMP441 are:

• high SNR of 61 dB(A)

• high sensitivity of -26 dB(FS)

Lewis [2012] explains that the sensitivity for a digital microphone defines when the

maximum possible output or maximum digital number is reached, i.e. the maximum

9http://www.eetimes.com/document.asp?doc_id=1280170

http://www.eetimes.com/document.asp?doc_id=1280170
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output at 94 dB(SPL) with a sensitivity of -26 dB translates into the maximum possible

output of 94 dB + 26 db = 120 dB(SPL).

The noise level is calculated as the reference level (which is 94 dB(SPL)) minus the

specified SNR, that is 94 dB - 61 dB = 33 dB(SPL).

This compares to the 26 dB noise level of the Sennheiser MKE 2 microphone. The

maximum possible output of the MKE 2 is not specified as it is defined by the amplifier.

The amplifier used for the research presented in this thesis is the MOTU 8pre which

provides eight microphone pre-amplifiers and analog to digital converters, allowing

40 dB of gain on the inputs.

The input gain is set to approximately 15 dB so as to match the output of the digital

MEMS microphones within ±6 dB, as shown in Table 3.4.

In order to verify the specifications given by Sennheiser and Analog Devices Inc., I

analysed the output of the analogue and MEMS microphones under two conditions,

(1) when stimulated with the Brüel & Kjær (B&K) sound calibrator type 4231 which

produces a calibrated sine wave of 1000 Hz at a sound pressure level of 94 dB(SPL)

and an accuracy of ±0.2 dB and (2) with no signal, i.e. self-noise.

The resulting output levels and frequency responses are shown in Table 3.4 and Fig-

ures 3.9 and 3.10.

Table 3.4: Analogue (Sennheiser MKE 2) and digital (ADMP441) microphone Vrms mea-

surements

Microphone Diameter [cm] Fs [kHz] Vrms

Analogue 20 48 0.089

Analogue 4 96 0.057

Digital 20 48 0.037

Digital 4 96 0.039

I recorded about five seconds of audio with the four different microphone arrays at two

different samples rates. The Vrms output measured and presented in Table 3.4 shows

that the gain of the four arrays are matched within one bit of their outputs, i.e. 6 dB or

0.5.

It is now of interest to see whether the increased noise level of the MEMS microphones

shows in the frequency responses given in Figures 3.9 and 3.10.
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Figure 3.9: Microphone calibration signals (with B&K reference signal)

Figure 3.10: Microphone calibration signals (with self-noise)
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For the frequency responses as shown in Figures 3.9 and 3.10, I calculated the FFT

using Blackman windowing of one second of the recorded output signal from the Brüel

& Kjær sound calibrator type 4231.

The best SNR can be observed for the Sennheiser MKE 2 (analogue) microphone,

sampling at 48 kHz. This SNR degrades slightly when recording at 96 kHz. The

digital MEMS microphone performs slightly less well (DMMA.3) and the ‘design-

issue’ of the DMMA.2 shows clearly in the significantly higher noise floor and heavily

distorted frequency response, particularly between 1500 and 2000 Hz.

Without the DMMA.2 ‘design-issue’, its noise level ought to be better than that of the

DMMA.3.

Please note that the SNR is measured as the accumulated noise over the complete

input signal frequency range. The noise levels of the individual FFT frequency bins

displayed for higher sample rates will therefore naturally be much lower than for lower

sample rates, nevertheless resulting in a comparable SNR performance. Looking at

Figures 3.9 and 3.10, this means that the SNR for Fs = 96 kHz is not better than for

Fs = 48 kHz but worse. Figures 3.9 and 3.10 can only serve to compare the analogue

vs. digital microphones but not the different sampling rates of 48 kHz vs. 96 kHz.

Figures 3.9 and 3.10 only show the frequency responses from 0 to 10,000 Hz in order

to maximise readability around 1000 Hz. The frequency responses above 10,000 Hz

are as expected for a 1-bit SDM (sigma-delta modulator) ADC and do not add any

further information.

As described in this chapter, the digital MEMS microphones have shown their great

potential, encouraging me to proceed with the analysis of speech processing algorithms

using digital MEMS microphones. For this I have recorded a corpus using four micro-

phone arrays to carry out further experiments. This corpus and the experiments perfor-

med using it are presented in the next chapter.



Chapter 4

2012 MMA corpus

This chapter presents the 2012 MMA (multi microphone array) audio-visual corpus

of read and conversational speech recorded with microphone arrays built using digital

MEMS and analogue microphones.

Speech research is inevitably driven by the data that is available. The 2012 MMA

corpus bridges the gap between existing corpora recorded with conventional analogue

microphone arrays and speech processing algorithms used on mobile devices which

increasingly use MEMS microphones.

This corpus of MEMS microphone recordings makes audio data available for resear-

chers to guarantee that their research results are fit for this changeover. It is designed

to support research in:

• noise reduction

• speaker localisation

• acoustic beamforming

• speech separation

• blind source separation (BSS)

• voice activity detection (VAD)

• speaker diarisation

• speech recognition

• discourse analysis

– agent goals/beliefs/desires/interaction

(prioritisation/goals/conflict/game theory)

87



88 Chapter 4. 2012 MMA corpus

The different components of the 2012 MMA corpus are presented in Table 4.1.

Table 4.1: Overview and brief description of the 2012 MMA corpus

Data set Environment # of spkr Brief description Reference

WSJ IMR 1 Wall Street Journal text

hemi-anechoic 1 (fixed) speaker position

MSWSJ IMR 2 Multiple Speaker text

hemi-anechoic 2 Wall Street Journal (fixed) speaker position

Settlers IMR 6 Settlers of Catan VAD/diarisation/(text)

hemi-anechoic 4 (fixed) speaker position

Wargames IMR 4 (+) Warhammer 40000 VAD/diarisation/(text)

speaker position

The 2012 MMA corpus contains four different data sets, the WSJ, MSWSJ, Settlers

and Wargames recordings. Note that all participants were native British English speak-

ers.

4.1 WSJ and MSWSJ data sets

In the WSJ recordings 12 participants, 6 males and 6 females, were recorded reading

Wall Street Journal sentences prompted on a screen in both an instrumented meeting

room (IMR) and a hemi-anechoic chamber1. This allows research in algorithms and

methods for noise reduction, dereverberation and echo cancelling (by e.g. convolving

the clean speech with any room impulse response or noise), where the output perfor-

mance can be evaluated using ASR software.

For the WSJ and MSWSJ data sets of the 2012 MMA corpus, participants recorded

17 adaptation sentences, approximately 40 sentences from the 5k-word WSJ corpus

and another approximately 40 sentences from the 20k-word WSJ corpus, resulting

in approximately one minute of adaptation data and two times seven minutes of test

data per speaker, providing about one hour of audio data for each data set. This is

summarised in Table 4.2.
1An anechoic chamber, that is a non-echoing or echo-free chamber, is a room designed to absorb re-

flections of sound (or radio waves) in order to conduct experiments in nominally “free field” conditions.
Full anechoic chambers aim to absorb energy in all directions and the device-under-test and necessary
test equipment are placed on a wire-mesh in the centre of the room. Semi-anechoic chambers are built
with energy absorbing walls and ceiling but have a solid floor onto which the device-under-test and any
equipment are placed.
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Table 4.2: Overview and brief description of the WSJ and MSWSJ data subsets from the 2012 MMA

corpus

Data subset Number of sentences Description

adap approximately 17 TIMIT style, for adaptation [Garofolo, 1993]

5k approximately 40 5,000 word (closed vocabulary) sub corpus of WSJCAM0

[Robinson et al., 1995]

20k approximately 40 20,000 word (open vocabulary) sub corpus of WSJCAM0

Participants were recorded using five different microphone arrays plus a panoramic

video camera, as shown in Figure 4.1. This basic recording setup was identical for the

entire 2012 MMA corpus.

avi

wav

wav

wav

wav

wav

panoramic video 

camera

20 fps

analogue microphone 

array
20 cm; Fs = 48 kHz

4 cm; Fs = 96 kHz

digital MEMS 
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4 cm; Fs = 96 kHz
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8

8

8

8

8

Figure 4.1: Basic recording setup for 2012 MMA corpus

For the MSWSJ data set, six pairs of speakers, male+male or female+female, were

recorded simultaneously reading different Wall Street Journal sentences prompted on

a screen. As with the WSJ recordings, adaptation, 5k-word and 20k-word sentences

were recorded in both an IMR and a hemi-anechoic chamber.

The MSWSJ data allows research in blind source and speech separation as well as

noise reduction, dereverberation and echo cancelling. As with the WSJ data, the output

performance of any algorithm working on this data can be measured in WER using an

ASR system.
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The setups for the WSJ and MSWSJ recordings are shown in Figures 4.2, 4.3 and 4.4.

Figure 4.2 shows the setup and measurements of the recordings for the WSJ data

sets for both the IMR and hemi-anechoic chamber. Participants were recorded using

five different microphone arrays where, for each array, eight microphones are placed

counter-clockwise on a circle and channel one is marked with a red triangle.

Figure 4.3 shows the setup and measurements of the recordings for the MSWSJ data

sets and Figure 4.4 gives an idea of the room layout.

4.2 Settlers and Wargames data sets

As mentioned above (cf. Section 2.5), speech research corpora try to balance the

difficulty of the task and the naturalness of the data. A good corpus therefore pro-

vides simple tasks such as sentences read from scripts as well as natural conversatio-

nal speech, such as occurs in meetings. Meeting conversations unfortunately contain

confidential information which might need to be removed by manual labour which is

expensive and time consuming.

Two more data sets have been added to the 2012 MMA corpus in order to address

these problems. These are the Settlers and Wargames recordings.

The Settlers recordings contain four to six players, male and female, playing Set-

tlers of Catan, a strategic board game, in both an IMR and an hemi-anechoic cham-

ber. The Settlers data allows research in blind source separation, speaker localisation

and speech separation as well as noise reduction, dereverberation and echo cancelling.

Using the output of an ASR system on the Settlers dialogue (i.e. transcripts) allows

discourse analysis and research on prioritisation, goal, conflict and game theory, also

in the context of Software agents.

Finally, the Wargames recordings contain four players playing Warhammer 40,000 in

an IMR at the Speech and Hearing Group, Department of Computer Science, Univer-

sity of Sheffield2.

Given the reference transcript of the players and their location, the Wargames are the

first recordings of moving speakers interacting in a lively manner, recorded with close

2Thomas Hain and his group kindly invited me to help carry out the experiments which were re-
corded with Edinburgh and Sheffield University and EADS IW equipment.
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Figure 4.2: Single speaker recording setup for the WSJ and WSJ anechoic data sets
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Figure 4.3: Overlapping speakers recording setup for MSWSJ and MSWSJ anechoic

data sets
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Figure 4.4: Room layout for the IMR and hemi-anechoic chamber
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and distant microphones. This allows research in blind source separation, speaker lo-

calisation and speech separation, noise reduction, dereverberation and echo cancelling,

voice activity detection, speaker diarisation and automatic speech recognition as well

as complex discourse analysis beyond the possibilities of the Settlers games. Most dis-

cussions and disputes in the Warhammer 40,000 game, for example, are on the rules of

the armies, and an intelligent system could find the correct entry in the rulebook when

such a dispute is taking place.

4.3 Recording equipment

The WSJ, MSWSJ and Settlers data sets were recorded with five microphone arrays

and a panoramic video camera3. The microphone arrays used were

• eight channel, 20 cm analogue array sampling at 48 kHz

• eight channel, 4 cm analogue array sampling at 96 kHz

• eight channel, 20 cm digital array sampling at 48 kHz (DMMA.2)

• eight channel, 4 cm digital array sampling at 96 kHz (DMMA.3)

• eight channel, 4 cm digital array sampling at 48 kHz (DMMA.3)

This is shown in detail in Figure 4.5.

USB (2.0)

Firewire

Firewire

Fs = 48kHz

Array diameter = 20cm

meeting

capture

USB (2.0)

USB (2.0)

Firewire

Fs = 96kHz

Fs = 48kHz

Array diameter = 4cm

Figure 4.5: Detailed recording setup for the 2012 MMA corpus

3The video recordings for the WSJ and MSWSJ data sets are not part of the released corpus as the
participants do not move and therefore do not add any information to the audio.
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The analogue microphone arrays require external analogue to digital conversion, while

this is integrated in the digital ones.

The analogue microphone array setup comprises:

• (8 x) Sennheiser MKE 2-P-C microphone
• Motu 8pre Firewire audio interface4

• Firewire interface on PC running Microsoft XP
• AMI/DA meeting recording software for 20 cm array
• Bidule recording software for 4 cm array5

The digital microphone array setup consists of either the DMMA.2 or the DMMA.3

and comprises:

• (8 x) ADI ADMP441 digital MEMS microphone
• Rigisystem’s USBPAL high speed multi-channel high performance audio inter-

face
• USB interface on PC running Windows XP
• Bidule recording software

The panoramic video recording equipment comprises:

• Point Grey Research’s Ladybug2 (1394b) spherical vision camera6

• Firewire interface on PC running Windows XP
• AMI/DA meeting recording software

In addition, for the Wargames recordings, several fixed microphones were placed in the

room and two cameras recorded the games from opposite corners of the room. This

was supplemented by the spherical Eigenmike®7 placed onto the table, recording 32

analogue channels at 44.1 kHz. Most importantly, each speaker wore a headset and a

localisation tracker8, allowing research in speaker localisation, speaker tracking, etc.

The complete recording suite for the Wargames data set is shown in Figure 4.6.

The WSJ and MSWSJ recordings naturally contain word level transcription as they

are sentences read from script. For the Settlers and Wargames recordings I plan to

provide diarisation references which can be used for evaluation of VAD and diarisation

algorithms verified by VER and DER measurements. Thomas Hain, Charles Fox and

4http://www.motu.com/products/motuaudio/8pre
5http://www.plogue.com/products/bidule/
6http://www.ptgrey.com/products/ladybug2/ladybug2_360_video_camera.asp
7http://www.mhacoustics.com/mh_acoustics/Eigenmike_microphone_array.html
8http://www.ubisense.net/en/

http://www.motu.com/products/motuaudio/8pre
http://www.plogue.com/products/bidule/
http://www.ptgrey.com/products/ladybug2/ladybug2_360_video_camera.asp
http://www.mhacoustics.com/mh_acoustics/Eigenmike_microphone_array.html
http://www.ubisense.net/en/
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Figure 4.6: Complete recording setup for Wargames data set from the 2012 MMA cor-

pus

Yulan Liu from the University of Sheffield are working on full word-level transcription

of selected sequences of the Wargames recordings.

Each participant was asked to fill in a form confirming that their recordings can be used

for research. For simplicity I first used the form provided for the AMI/DA meeting

recordings. The AMI/DA form was modified for the Wargames recordings and later

a new form was used for Settlers recordings. All forms are attached in Appendix A.

Please note that participants were paid for their contribution.

4.4 Data preparation

The recorded wav files for the WSJ and MSWSJ corpus had to be pre-processed before

being used for speech recognition. This required the following steps:
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1. mark beginning and end of each utterance for one microphone array

2. convert utterance labels to contain sentence reference

3. measure offset (and drift) of all the other microphone array recordings

4. generate utterance labels for all microphone arrays

5. split recording into utterances and store separately

The process was automated as much as possible and manual work was carried out on

mono audio files which were re-sampled at 16 kHz so as to reduce the file size and

therefore enable manual processing. The original wav files are impossible to handle as

their size exceeds 1 GB (or even 10 GB for the Eigenmike® data).

Details are available on the 2012 MMA corpus homepage at http://www.cstr.ed.

ac.uk/corpora/2012_MMA/.

4.5 Baseline results

Baseline results for the WSJ, WSJ anechoic, MSWSJ and MSWSJ anechoic data sets

are presented in Chapter 7.

http://www.cstr.ed.ac.uk/corpora/2012_MMA/
http://www.cstr.ed.ac.uk/corpora/2012_MMA/




Chapter 5

Voice activity detection

Voice activity detection (VAD) is a well established research area and an integral part of

different speech communication systems such as teleconferencing, speech recognition

or hands-free telephony. Standards for VAD were defined as early as 1989 [Freeman

et al., 1989] in the wake of the advent of mobile telephony. Over the last two decades

many algorithms and methods for VAD have been presented. These have been tested

in various environments using a range of data sets.

VAD, i.e. speech activity detection, was one of four evaluation tasks of the spring NIST

RT challenge in 20051 where participants had the task of detecting when someone in a

meeting was speaking.

VAD performance is therefore one critical parameter in research in speaker diarisation

and it is important to look at the most promising algorithms and evaluate them in the

context of speaker diarisation in meetings. For this I selected a number of methods and

analysed them with respect to their performance on the NIST RT meeting data.

In the following section, five VAD schemes will be presented and their performance

measured and analysed. This is followed by the conclusion and discussion of the

results and an evaluation of the suitability of these algorithms for online diarisation

and handling overlapping speech.

Voice activity detection is very important as it is one of the earliest steps in any speech

processing system and errors at this stage propagate directly into downstream pro-

cesses. A missed speech segment, for example, cannot be recovered. A false alarm

1http://www.itl.nist.gov/iad/mig/tests/rt/

97
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segment, i.e. claiming the presence of speech during silence, will also cause problems

downstream as an ASR system will generate words for the silence received if its si-

lence model does not recognise it as such. Downstream processes can be designed

to handle false alarm segments, most VAD algorithms are therefore tuned for lowest

missed speech at an increased false alarm rate.

5.1 VAD algorithms

Most of the VAD algorithms presented in the literature are compared to one or both

of two well-known methods: the ITU-T P.56 VAD standard [ITU-T, 2011] and Sohn

et al.’s LRT (likelihood-ratio-test) VAD algorithm [Sohn et al., 1999]. It is therefore

essential to have these methods available for comparison and for reporting results. In

addition, the best performing VAD methods for speaker diarisation in meetings are

analysed. This is followed by recently published VAD algorithms and my own modi-

fications and improvements of them.

In summary, the following VAD algorithms have been considered for speaker diarisa-

tion in meetings:

• ITU-T P.56 [ITU-T, 2011],

• Sohn [Sohn et al., 1999],

• QIO-FE VAD [Adami et al., 2002b],

• SHoUT [Huijbregts, 2006],

• AZR [Ghaemmaghami et al., 2010] and

• all ones/zeros

5.1.1 All ones (on) and zeros (off)

To date, no results have been presented as to what would happen if the VAD step for

speaker diarisation in meetings was left out. For the VAD algorithms the easiest test

is to compare the output of the voice activity detector with a reference, where either

the complete audio waveform is speech or non-speech, i.e. the VAD output is all ones

(always on) or all zeros (always off). This test is also useful as a reference and to
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check whether an existing or new VAD algorithm performs better then omitting the

VAD process entirely. The all ones and zeros test therefore provides floor results.

5.1.2 P.56

The International Telecommunication Union (ITU) defines an Objective Measurement

of Active Speech Level standard ITU-T P.56 to ensure that different parties measure

speech levels the same way and results can be compared. The P.56 standard defines a

software voltmeter that measures the speech signal power, ignoring segments of silence

longer than 200 ms. Speech is considered to be present if the current speech activity

level exceeds the long-term speech activity level minus 15.9 dB. Freely available C++

code implementing the P.56 standard is part of the ITU-T recommendation G.191.

All details are presented in P.56 [ITU-T, 2011] and G.191 [ITU-T, 2010]. The basic

building block of the P.56-based VAD scheme is the software voltmeter sv56.

According to ITU-T P.56, VAD implementation has a warm-up period, i.e. speech (or

increased input signal power) has to be present for some time before non-speech is

detected. This warm-up time is defined by the smoothing time of the software volt-

meter (smoothing coefficient τenvelop) of 30 ms. Two-stage exponential averaging is

carried out on the rectified input signal which outputs the signal envelope. The thresh-

old of 15.9 dB is then applied to determine whether speech is present or not. I added

a simple IIR filter to the input of the software voltmeter to remove any DC signal as

recommended by the P.56 standard.

The ITU-T P.56 standard also defines a hang-over time of 200 ms, i.e. speech is only

considered absent if the signal power level is 15.9 dB less than the long-term activity

for 200 ms or longer. Any periods of silence with a length of 200 ms or less are

therefore ignored.

5.1.3 Sohn

A second well established benchmark VAD algorithm is the LRT-based VAD scheme

presented by Sohn et al. [Sohn and Sung, 1998, Sohn et al., 1999]. Decision rule-based

speech detection is composite hypothesis testing, i.e. the output of a VAD detection

system is a flag indicating either speech or non-speech. Assuming that the speech is

degraded with noise, two hypotheses are possible:
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H0 : speech absent : X = N, (5.1)

H1 : speech present : X = N+S, (5.2)

where N is a noise feature vector and S is a speech feature vector.

The principle of decision rule-based LRT is to classify an audio input frame as either

speech (incl. noise) or non-speech,

Λ(k) =
p(X(k)|H1)

p(X(k))|H0

H1
>
<
H0

v, (5.3)

where X(k) is the discrete Fourier transform (DFT) of the input signal, H0 and H1 are

Gaussian distributions of the noise alone and noisy speech respectively, p(X(k)|Hi) is

the probability density function (pdf) of the received signal assuming the hypothesis

Hi, and v is a threshold which is defined for a specific environment.

Λ, i.e. log Λ, then defines whether an incoming audio frame is noise or noisy speech

and is calculated from the geometric mean of the likelihood ratios of the individual

frequency bins of the DFT, defined as

logΛ =
1
L

L−1

∑
k=0

logΛk

H1
>
<
H0

v, (5.4)

where L is the number of DFT frequency bins.

In their work, Sohn et al. [1999] demonstrate that the dependency of Λ on the statistics

of the noise alone and noisy speech can be reduced to the noise alone, i.e.

1
L

L−1

∑
k=0

|Xk|2

ΛN(k)

H1
>
<
H0

1+α, (5.5)

where ΛN(k) is the variance of the noise in the individual DFT frequency bins.

The decision statistics defined in Equation 5.5 are therefore an average of L subband

SNR ratios, i.e. speech is present if the mean activity (i.e. variance) of all subbands

exceeds a pre-defined threshold. This matches the general assumption that noise is

static (within a limited time frame) and speech dynamic.
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The authors estimate and track the noise statistics using a secondary LRT-based VAD

process which keeps the noise model, i.e. the noise power spectra, up to date.

In practice, the VAD output of the proposed scheme needs smoothing. Sohn et al.

[1999] use a HMM-based model which tracks the current and previous VAD outputs

and delays the transition from H1 to H0, therefore reducing missed speech at the cost

of an increased false alarm rate.

Sohn et al.’s algorithm is available as a Matlab™ implementation and is part of Voice-

box [Brookes, 2011].

5.1.4 QIO-FE VAD

VAD is used in different domains, one of which is front-end processing for telecom-

munication applications such as mobile phones. The aim is to detect speech and only

transmit a signal if a party is talking. These algorithms are optimised for lowest pos-

sible missed speech. A set of such algorithms, called QIO-FE, has been designed by

a team from Qualcomm, ICSI and OGI and is available online [Adami et al., 2002a].

The QIO-FE contains a VAD algorithm based on a multilayer perceptron (MLP) and

a noise reduction Wiener-filter. The QIO-FE program silence flags has been used

for VAD.

QIO-FE VAD is implemented using a single hidden-layer feed-forward MLP. The MLP

therefore contains three layers. The input layer contains nine frames of six cepstral

coefficients computed from low-pass filtered log-energies. These cepstral coefficients

are calculated from the speech input from 23 Mel filters. The middle layer of the MLP

is hidden. The output layer of the trained MLP contains two elements, pn(sil) and

pn(nosil), giving an estimate of the posterior probability of the current frame being

speech or non-speech. Training of the MLP is done offline using a noisy database and

the well known back-propagation algorithm.

The QIO-FE VAD system is shown in Figure 5.1.

Taking the six cepstral coefficients ci(n) computed from the 23 Mel filters, the inputs

c′i(n) to the MLP are calculated from ci(n) and the previous values c′i(n−1) using low
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Figure 5.1: VAD using the QIO-FE

pass filtering (LPF) as

c′i(n) = 0.5∗ ci(n)+0.5∗ c′i(n−1). (5.6)

Equation 5.6 represents a first order IIR filter where coefficient a is equal to coefficient

b which is equal to 0.5.

The output pn(sil) of the MLP is now determined as

pn(sil) =
eyn(sil)

eyn(sil)+ eyn(nosil)
(5.7)

with

yn(sil) =
49

∑
k=0

w2
k,silsigm

(
5

∑
j=0

4

∑
i=−4

w1
i, j,kc j(n+ i)

)
(5.8)

and

yn(nosil) =
49

∑
k=0

w2
k,nosilsigm

(
5

∑
j=0

4

∑
i=−4

w1
i, j,kc j(n+ i)

)
. (5.9)

pn(sil) is the probability of a frame being silence and pn(nosil) the probability of a

frame not being silence, i.e. speech or music. c j(n) is the jth order cepstral coefficient
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of frame n, wq
i, j,k is the weight of the first MLP layer associated with the hidden unit

k, cepstral coefficient j and frame n+1. w2
k,sil and w2

k,nosil are the weights between the

hidden unit and the outputs yn(sil) and yn(nosil). The function sigm is defined as

sigm(x) =
1

1+ ex (5.10)

To obtain the final VAD output a median filter of length 21 is applied. Details are

available in Adami et al. [2002a] and the references given therein.

5.1.5 SHoUT

Marijn Huijbregt’s SHoUT speech recognition toolkit is another freely available soft-

ware packet that contains VAD and speaker diarisation programs. The SHoUT toolkit

is based on GMMs and HMMs and optimised for the NIST RT challenges. The VAD

program shout segment and the diarisation program shout cluster are used for the

purpose of this research.

VAD using GMMs and HMMs follows a well established sequence using unsupervised

learning techniques and the SHoUT tool is no exception to that. VAD using GMMs

and HMMs works on MFCC coefficients provided in a single channel data stream.

The incoming audio is therefore usually enhanced using noise reduction and acoustic

beamforming techniques to reduce the multi-channel audio stream to a mono channel.

After this the speech is split into chunks of variable length, ten minutes in the case

of SHoUT. These audio chunks then require pre-processing, i.e. some coarse method

to extract speech and silence segments. At this stage it is important to use only the

segments with the highest confidence of being pure speech or silence. The SHoUT

toolkit uses bootstrapping to determine these, the criteria for finding high confidence

segments being segment energy and zero-crossing rate. Each ten minute chunk of

audio is therefore split further into equal segments of arbitrary length, typically a few

seconds (e.g. 5 s). The energy and zero-crossing rate of each segment is then measured,

and segments with high energy and zero-crossing rate are believed to be pure speech,

while segments with low energy and zero-crossing rate are considered to be silence.

GMMs are trained using these audio segments and the EM algorithm. This process

is repeated iteratively while the number of Gaussian mixtures is increased and the

thresholds for speech or silence are relaxed. The iteration is aborted after a fixed
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number of repetitions or when a threshold is exceeded and the speech model is trained

using all speech segments in one last iteration.

In the second stage the algorithm is repeated for the audible non-speech model, and

again in the third stage for the silence model.

Training of the speech, silence and audible non-speech model is completed if the ∆BIC

score confirms that the models differ significantly, otherwise the process is repeated

from the start with two models only, speech and silence.

Finally, VAD is carried out by a single VAD alignment over the complete audio record-

ing using the Viterbi algorithm. The winning model determines whether a segment is

speech, silence or audible non-speech.

To summarise:

• create initial segmentation using a speech/silence acoustic model

• iteratively train three new GMMS (speech, silence and audible non-speech) using

the high confidence fragments of the initial segmentation

• check if the speech and audible non-speech models are different using the Baye-

sian information criterion (∆BIC); discard all models and retrain only two GMMs

(speech and silence) if they are identical

• run a final Viterbi decode to determine the regions of speech, silence and (possi-

bly) audible non-speech

A detailed documentation is available in Huijbregts [2008] and Huijbregts [2006].

5.1.6 AZR

Ghaemmaghami et al. [2010] presented a noise-robust VAD algorithm based on the

fusion of two systems. In the proposed method the authors looked at typical charac-

teristics of vowels and their cross-correlation, i.e. they used two measures, the maxi-

mum peak of the normalised autocorrelation (MaxPeaks) and the zero-crossing rate of

the autocorrelation (CrossCorr) of an audio signal to determine whether the incoming

signal is speech or non-speech. The proposed method has two advantages: it runs in

the time-domain and it is suitable for online processing.
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A detailed analysis of the AZR algorithm showed that the MaxPeaks component of the

algorithm is ineffective and that only the CrossCorr algorithm achieves an improved

VER compared to the all ones algorithm (see [Zwyssig, 2011] and [Zwyssig et al.,

2012a] for details). Henceforth any reference to the AZR algorithm implies that only

the CrossCorr part of the algorithm is used.

In the proposed method an input signal s[i] = s1[i],s2[i], ...,sk[i], where i represents

the sample number, is segmented into 50 ms frames. To obtain the CrossCorr, the

autocorrelation Rk[z] is first calculated as

Rk[z] =
∑

n−z
i=1 xk[i]xk[i+ z]

∑
n
i=1 x2

k [i]
. (5.11)

The authors use only the xk[i] values for pitch periods of 2 to 20 ms. For Fs = 16 kHz

this implies minF = 50 Hz and maxF = 500 Hz and therefore only values of xk[i] for i

from 32 to 320 are evaluated. The periods of the autocorrelation R̂k[z] are then extrac-

ted, i.e. a list of the distances between every two zero-crossing points Py is generated.

Next the cross-correlation R̂y[z′] of two sets of periods Py is calculated as

R̂y[z′] =
n′−z′

∑
j=1

Py[ j]Py+1[ j+ z′]. (5.12)

Again, this is only done for pitch periods of 2 to 20 ms. Finally, the measure for the

periodicity of an incoming audio signal is determined as the maximum of the cross-

correlation of two adjacent sets of the periods of the autocorrelation, i.e.

C[k] =
m−1

∑
y=1

max(R̂y[z′]). (5.13)

Ghaemmaghami et al. [2010] then applied fusion and smoothing to determine whether

an incoming signal is speech or not.

The actual implementation requires a few further steps. First, it is essential to remove

any DC offset from the audio input. The authors added a de-emphasis filter before the

VAD process, i.e. a first order IIR high pass filter defined as

yk[i] = (xk[i]−µk)−α(xk[i−1]−µk), (5.14)



106 Chapter 5. Voice activity detection

where xk is the input signal and i the sample number, µk the mean of the input signal xk,

and α the de-emphasis constant, here set to 0.96 (as per Ghaemmaghami et al. [2010]).

Next, the periodicity (CrossCorr) C[k] is measured according to Equations 5.11, 5.12

and 5.13. A voiced speech segment is considered to be present if the CrossCorr value

exceeds a certain threshold. I tuned this threshold using the NIST RT06 data and tested

it on the RT07 and RT09 data. Finally, it is essential to smooth the CrossCorr value as

it is only able to detect voiced sounds. Ghaemmaghami et al. [2010] (and references

therein) suggest applying a smoothing window of 200 ms before and 500 ms after

detecting a vowel (i.e. CrossCorr exceeds the predefined threshold), i.e. VAD is set to

be active for a period of 800 ms if a vowel is detected.

5.2 NIST RT corpus

Many hours of annotated meetings have been made available for the NIST evaluation

of meeting diarisation. The data from the RT06 (R106), RT07 (R123) and RT09 (R123)

evaluations has been used to test the VAD algorithms presented above. Table 5.1 below

lists the specific meeting recordings used.

Table 5.1: Complete list of the NIST RT meetings

RT06-R106 RT07-R123 RT09-R123

CMU 20050912-0900 CMU 20061115-1030 EDI 20071128-1000

CMU 20050914-0900 CMU 20061115-1530 EDI 20071128-1500

EDI 20050216-1051 EDI 20061113-1500 IDI 20090128-1600

EDI 20050218-0900 EDI 20061114-1500 IDI 20090129-1000

NIST 20051024-0930 NIST 20051104-1515 NIST 20080201-1405

NIST 20051102-1323 NIST 20060216-1347 NIST 20080227-1501

TNO 20041103-1130 VT 20050408-1500 NIST 20080307-0955

VT 20050623-1400 VT 20050425-1000

VT 20051027-1400

Please note that only EDI2, TNO3 and IDI4 meetings were recorded with a circular

eight-channel microphone array of 20 cm diameter. All other meetings were recorded

2CSTR - Centre for Speech Technology Research - The University of Edinburgh
3Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek - Dutch Organization

for Applied Scientific Research
4Institute Dalle Molle d’Intelligence Artificielle Perceptive - Dalle Molle Institute for Perceptual

Artificial Intelligence
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with an ad-hoc setup of two to seven microphones.

5.3 Evaluation of VAD algorithms

In the experiments presented here, Wiener-filter-based noise reduction was first applied

to the individual microphone signals. Delay-sum beamforming was then performed on

the signals after which VAD was carried out. Scoring was performed using the NIST

scoring tools.

Two different noise reduction and beamforming tools were used. This allowed run-

ning the VAD experiments with two completely different pre-processing methods for

improved verification of the algorithms used. Noise reduction was carried out using

the QIO-FE nr tool and the in-house mdm tools. The mdm tools also provide delay-

sum and superdirective beamforming. In these experiments, delay-sum beamforming

was used in order to compare the results with the BeamformIt delay-sum beamformer

which was combined with the noise reduction of the QIO-FE, as shown in Figure 5.2.
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Figure 5.2: Flow diagram for verification of VAD algorithms

Tables 5.2 and 5.3 show the voice activity detection error rate (VER) for each of the

algorithms when tested on the complete NIST RT06, RT07 and RT09 data sets. These

tables show mean and standard deviation (SD) for the VER. Note that the % VER

figures for the mean and SD are scaled in proportion to the individual meeting lengths.

On the RT06 test set, perhaps surprisingly, classifying all segments as speech outper-

forms all the other algorithms with 6.8% VER. This implies that, for this particular

set of meetings, there are very few non-speech intervals leading to few false alarm er-

rors for the all ones algorithm. For RT07 and RT09, which contain more non-speech
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Table 5.2: Voice activity detection error rate VER [% mean (SD)] for all algorithms using

the BeamformIt and QIO-FE nr tools on the NIST RT meeting data

VER [%] All ones ITU-T P.56 Sohn QIO-FE VAD AZR SHoUT

RT06 6.8 (4.9) 14.3 (8.3) 16.7 (3.0) 9.0 (3.2) 15.6 (12.5) 15.6 (2.6)

RT07 13.7 (3.6) 12.2 (6.1) 11.9 (1.0) 4.7 (1.3) 13.5 (11.3) 4.1 (1.5)

RT09 11.3 (9.7) 10.3 (3.1) 10.8 (2.1) 3.4 (1.5) 7.7 (2.4) 7.1 (3.9)

Table 5.3: Voice activity detection error rate VER [% mean (SD)] for all algorithms using

the mdm tools on the NIST RT meeting data

VER [%] All ones ITU-T P.56 Sohn QIO-FE VAD AZR SHoUT

RT06 6.8 (4.9) 27.5 (8.9) 14.6 (3.5) 10.3 (3.4) 12.3 (13.6) 15.5 (2.5)

RT07 13.7 (3.6) 14.9 (8.4) 20.5 (26.4) 4.4 (1.2) 12.5 (9.2) 4.8 (2.0)

RT09 11.3 (9.7) 10.8 (3.8) 10.0 (2.2) 3.2 (3.2) 6.3 (4.4) 7.8 (4.0)

segments, the all ones, ITU, Sohn and AZR algorithms have similar results, and are

consistently outperformed by QIO-FE VAD and SHoUT, with QIO-FE VAD having

the lowest overall error when averaged over all three test sets.

The VAD results of the RT06, RT07 and RT09 meetings show a great variability of the

error for the different meetings. This is something that has been noted and documented

before (see e.g. Vijayasenan [2010]). Figure 5.3 shows the variability of the VER on

the RT corpora with the QIO-FE and SHoUT VAD algorithms using the QIO-FE nr

and BeamformIt tools.

I carried out a detailed analysis of all meetings looking at overlap (two or more active

speakers) and minimal, average and maximum speech segment length of the individual

meetings compared to the VAD error rate. Most RT06 meeting recordings contain a

very high percentage of overlap (15-35%) compared to the RT07 and RT09 meeting

recordings (4–15%), but each meeting set contains at least one outlier.

The VER displays a similar behaviour, i.e. a high variance in VER, but no correlation

could be observed between % overlap or minimal/average/maximal speech segment

and the VER5.

Minimum and average speech length are almost double for the RT06 meeting re-

5Percent overlapping speech and maximum speech segment length for the RT06 data are twice as
high as as for the RT07 and RT09 data. Considering that all data are ‘normal’ meetings this indicates
problems with the transcription, i.e. reference. More weight is therefore applied to results from the
RT07 and RT09 data.
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Figure 5.3: Detailed VAD results (QIO-FE VAD) on the NIST RT meeting data

cordings (0.2–0.4s/3–4s) compared to RT07 and RT09 (0.05–01s/1.5–2s), perhaps

indicating that the VAD algorithms tested are better suited for shorter speech seg-

ments. Again, for the RT09 test set, the SHoUT VAD algorithm shows two large

outliers, the EDI 20071128-1500 and NIST 20080201-1405 meetings. Looking at

the overlap (2/3+ speakers) of these two meetings (EDI 20071128-1500: 6.5%/0.3%;

NIST 20080201-1405: 31.6%/7%) no conclusion can be drawn as to the correlation of

the meeting statistics and the performance of a particular VAD scheme.

It is therefore interesting to see how the VAD algorithms deviate over the individual test

sets and meetings. To give a better picture of the nature of the VER over the different

data sets the box plot results for the algorithms tested are shown in Figures 5.4, 5.5

and 5.6. The median is shown as the interface between the brown and red boxes, the

lower quartile as a brown box, the upper quartile as a blue box and the minimum and

maximum VER as whiskers.

The median, lower and upper quartile and minimum and maximum VER of the dif-

ferent algorithms and data sets shows that the QIO-FE and SHoUT VAD algorithms

have the least variability over all meetings and are best suited for VAD in meetings.

I have therefore decided to use the QIO-FE VAD tool for my research and further

experiments.
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Figure 5.4: Detailed VAD results (NIST RT06 meeting data)

Figure 5.5: Detailed VAD results (NIST RT07 meeting data)

Figure 5.6: Detailed VAD results (NIST RT09 meeting data)
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5.4 Re-training the QIO-FE VAD MLP

Little information is available as to the nature and quantity of the data used for training

the MLP weights of the QIO-FE VAD algorithm. Adami et al. [2002a] only state:

“... training is done offline using a noisy database.”

The only other hint as to the data used for training the MLP can be found in the toolset

documentation, i.e. the README file for the VAD parameters which the authors make

available for users of the VAD tool. A comment there reads:

“... SpeechDatCar-Italian data was omitted from the VAD training set due
to its license terms ...”

I can therefore only assume that the SpeechDatCar corpus was (in part) used for trai-

ning the MLP weights.

The SpeechDatCar corpus contains speech from multiple languages (US English, Ger-

man, Spanish, Italian, etc.) recorded in cars using four microphones: one close-talking

microphone (used as the reference) and three distant microphones at fixed positions in

the car, all sampling at 16 kHz. In addition, a GSM speech signal sent from the car

was recorded at 8 kHz. This configuration applies to all the databases.

At least 300 participants (per language set), both female and male, read instructions and

commands from a prompt. Each speaker uttered the type of commands typically found

for controlling (mobile) devices in a car, such as voice activity keywords, isolated

and connected digits, dates, people and place names or phrases containing embedded

keywords. Annotation of the speech and silence regions was carried out using human

transcribers. Details can be found at http://www.elda.org.

SpeechDatCar is a highly variable corpus with many hours of speech data from dif-

ferent people, languages, environments and noise conditions, but principally out-of-

domain with respect to meeting data.

It is therefore of interest to determine how the QIO-FE VAD algorithm performs if it is

trained on in-domain data, especially because MLP-based VAD has been shown to per-

form well on speech from meeting data recorded using individual headset microphones

[Dines et al., 2006].

Please note that I carried out re-training of the MLP to check whether the QIO-FE

VAD algorithm could be improved if the MLP weights were trained on in-domain data.

http://www.elda.org
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Modification of the QIO-FE toolkit parameters and flow is very limited, and working

in depth with MLP is beyond the scope of my research.

For modification of the QIO-FE VAD algorithm I decided to use the audio data and

reference transcriptions from the AMI and AMIDA meeting corpus [Renals, 2010] to

train the MLP weights and to test them again on the RT data. The AMI and AMIDA

meetings have been recorded with either two or three microphone arrays. The first

array is placed in the middle of the four participants of the meeting (I use only scenario

meetings), the second in front of the whiteboard and the third at the remote location

(of the fourth meeting participant of the AMIDA meetings).

Only the first array is used for the purpose of this research. The eight-channel audio

data from the meetings needs pre-processing, i.e. noise reduction (QIO-FE tools) and

acoustic beamforming (BeamformIt) are used to enhance the audio and reduce it to

a mono channel. Next, MFCC feature vectors are generated and the MLP is trained

using the ICSI Quicknet toolset [The International Computer Science Institute, 2010].

Training an MLP requires setting a parameter to specify how much of the training data

is to be used for training and how much for cross-validation. I verified the best ratio

in an initial experiment and achieved the best VER using approximately 10% for cross

validation, a number which was confirmed by one of the developers of the QIO-FE

(Stéphane Dupont, personal communication, 13 February 2013)

The final VER performance of the QIO-FE VAD MLP, trained on four AMI meetings

(three for training, one for cross validation) and 32 AMI meetings (28 for training, four

for cross validation) and tested on the NIST RT data is presented in Figure 5.7. ‘QIO

FE VAD’ shows the results using the original weights, ‘3-1’ shows the VER results for

re-training using four AMI meetings and ‘28-4’ for re-training using 32 AMI meetings.

The results in Figure 5.7 show that using the QIO-FE-trained MLP weights achieves

the best overall VER on the NIST RT data. It also shows that increasing the training

data from four meetings (approximately two hours of training data) to 32 meetings

(approximately 16 hours of training data) actually does result in a degradation of the

VAD performance. This would indicate that the increased amount of training data

(AMI/DA meetings) leads to a greater mismatch on the test data (NIST RT meetings),

despite the fact that nine of the 24 meetings from the test data are very similar to the

training data. Surprisingly, the VER for EDI, IDI and TNO meetings in the NIST RT

data also increases when VAD is carried out using the weights trained on the AMI data.
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Figure 5.7: [%] VER for the QIO-FE VAD (retrained on AMI meeting data) on the NIST

RT meeting data

I conclude that it is more important to train the MLP on varied test data which incor-

porates many different speakers and environments than a limited amount of in-domain

data. This result also reinforces the decision to use the QIO-FE VAD with its own

MLP weights for best VAD in meetings.

Please note that the great potential of MLP-based VAD has also recently been de-

monstrated by Ng et al. [2012] when developing a speech activity detection system

for the DARPA RATS program. MLP-based VAD outperformed GMM-based VAD on

the RATS (Radio Traffic Collection System) data comprising five different languages

transmitted over eight different radio channels. The authors evaluated the MLP-based

and GMM-based systems individually and also implemented a combined system with

which they achieved 5% relative improvement over the MLP-based VAD system and

9% over the GMM-based system. The best EER (equal error rate) achieved on the

RATS data which contains mostly CTS was 1.42%, i.e. 1.42% false alarms and 1.42%

missed speech.
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5.5 Summary and conclusions

This chapter reviewed and analysed multiple well-known and commonly used VAD

algorithms for speaker diarisation and speech recognition. These were the ITU-T P.56

standard based on the energy threshold, the LRT scheme based on frequency bands

proposed by Sohn, the MLP-based method developed for the QIO-FE, the GMM-

HMM-based algorithm provided by the SHoUT toolkit and my own modification of

the periodicity-based AZR method.

When comparing these VAD schemes with each other and with no VAD I found that,

when designing a VAD algorithm, great care is required in order for it to perform well,

especially in meetings.

Note that some of the VAD methods presented in this chapter were developed for tele-

phone speech and automotive applications and not for distant speech (which typically

contains a reverberation tail at the end of a vowel).

The results presented show that VAD based on GMM-HMMs and MLPs performs

considerably better than methods based on speech activity or speech periodicity. Mea-

sured on the RT07 and RT09 data, I found that overall MLP performs best both in

terms of the lowest mean and lowest variance.

Retraining the MLPs using in-domain meeting data did not achieve an improvement in

VER.



Chapter 6

Determining the number of speakers

in a meeting

Intuitively I would expect that the performance of speaker diarisation, that is, finding

‘who spoke when’ in a multiparty conversation, relies heavily on correctly determining

the number of speakers, a parameter which is not known a priori. Surprisingly though,

most state-of-the-art diarisation systems show little interest in finding this parameter,

despite its potential use as a stopping criterion for the speaker clustering step.

This chapter starts by looking at prior research on determining the number of active

speakers for diarisation and the reasons why there has so far been limited success in

finding this number. This is followed by the presentation of a novel algorithm that

is able to determine the number of active speakers in a meeting (or any other multi-

party conversation) recording using a microphone array of known geometry. The new

algorithm was verified on the NIST RT AMI meeting data and on the 2012 MMA

corpus, specifically on the single and dual speaker tasks. The chapter concludes by

presenting the results that were achieved followed by an analysis and discussion.

6.1 Prior work

In experiments, Meignier et al. [2006] found that automatically estimating the number

of speakers during the clustering process generates a 4% increased absolute diarisation

error than clustering with the optimal number of speakers. The authors used a diarisa-

tion engine that is based on HMMs and GMMs, and segmentation and clustering was

115
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carried out using the Bayesian information criterion (BIC). It is therefore compatible

with the ICSI, SHoUT and LIUM diarisation systems and achieves comparable results.

The experiments show that the minimal DER is not achieved with the true number of

active speakers but some other (higher) number, which is sub-optimal for downstream

processes. Diarisation systems are optimised for lowest error rate which is achieved

by clustering to a higher number of speakers than are really present, a result confirmed

in the experiments by Sinclair and King [2013].

Sinclair and King showed that segmentation and clustering based on GMM-HMMs (as

used by most current state-of-the-art diarisation systems) suffers from bad models as

a result of training on impure data. Their research shows that conversational speech

labelled with the correct number or too few speakers results in a sudden increase in

DER.

Huijbregts et al. [2012] performed Oracle experiments on the SHoUT diarisation sys-

tem. In their experiments the authors substituted single components of the system with

Oracle components, i.e. the ground truth. Experiment 4 presented in Huijbregts et al.

[2012] comes closest to providing the diarisation system with the correct number of

speakers as the merge stopping criterion, but

“fixing the number of speakers to the reference number is not ideal,
because if the system makes a merging mistake, trying to cluster up to
the reference number of speakers will not give you the best DER (Marijn
Huijbregts, personal communication, 23 November 2011)”.

The designers of the SHoUT and ICSI diarisation systems found that using the true

number of speakers as the stopping criterion for the segmentation and clustering pro-

cesses does not lead to the best DER. As a consequence of this, neither of these toolkits

supports defining the final number of clusters.

Determining the number of speakers in a multi-party conversation for improved diari-

sation is not a new problem. Early experiments carried out by Ben et al. [2004] found

that the task is very difficult (if not impossible) to solve using acoustic features alone.

The acoustic signal does not inherently contain any location information, but the direc-

tion of arrival (DOA) of that signal and the time difference of arrival (TDOA) linked

to this DOA do.

As discussed in Section 2.4, incorporating TDOA features into the diarisation task –

that is, combining the audio (MFCC) and localisation (TDOA) features – has been

explored by several researchers and can lead to significant DER improvements. Most
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algorithms integrate the TDOA values as a parallel feature stream and do not attempt to

determine the number of active speakers per se. Sinclair and King [2013] demonstrated

that allowing more speakers, i.e. clusters, for the diarisation tasks leads to improved

results as this keeps the main speaker models more pure and allows for segments with

less confidence to be assigned to impure models. In addition, the last critical merge

does not need to be carried out and can therefore not go wrong, thus avoiding model

impurity and a significantly increased error rate.

For diarisation systems such as developed by Pardo et al. [2012], Friedland et al.

[2012], Huijbregts et al. [2012] etc., determining the number of speakers Nspkr would

only be of interest if the clustering stopping criterion could be set to Nspkr plus some

arbitrary offset, where the offset would need to be determined by experiments.

At present, only two research groups appear to have tackled the problem and have de-

veloped algorithms that determine the number of active speakers in meetings. Nwe

et al. [2012] developed an offline diarisation system that analyses the histogram of the

TDOA values (generated by a DSB beamformer and smoothed using Viterbi align-

ment) of an entire recording, discards bad histograms that contain few different peaks

(i.e. speakers) and clusters the quantised good histograms, where the number of clus-

ters corresponds to the number of speakers. For N microphones and (N− 1)! micro-

phone pairs, this method generates (N−1)! possible histograms and therefore (N−1)!

hypotheses for the number of speakers present. The authors then used cluster fusion to

determine the correct number of speakers after which a sophisticated cluster merging

and purification scheme was employed to carry out the diarisation, producing the best

known results on the RT09 data and a good estimate of the number of active speakers.

Nwe et al. [2012] state that “if speakers do not move during a meeting and audio

quality is good then the number of significant peaks in the TDOA histogram represents

the number of speakers and the TDOA features are very informative”. However, they

also claim that if speakers move to different places such as they believe to be the

case in the RT07 and RT09 recordings, then the performance of the suggested scheme

decreases “because the segments of an individual speaker are distributed into two or

more clusters”.

I analysed three of the four meeting videos which were claimed to contain moving

speakers and can confirm that this is not the case, i.e. speakers do not change their

position. My own research points more to the fact that TDOA values are prone to
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error in noisy environments and that the natural movement of a speaker’s head during

talking and reverberation could well result in histogram peaks at positions where no

real speaker is present.

Figures 6.1, 6.2 and 6.3 show exactly this scenario. Figure 6.1 shows two screenshots

of the NIST RT06 meeting ‘EDI 20050218-0900’ at times 5:46 (a) and 6:55 (b). The

active speaker and the direction of her speech are indicated by blue arrows, the position

of the microphone array is indicated by a yellow arrow. Figures 6.2 and 6.3 show the

direction of the arriving sound derived from the TDOAs of the array. On the x-axis are

36 sectors on the circle, the y-axis shows the time in seconds and the z-axis the activity

per sector. Figure 6.3 shows a zoomed version of Figure 6.2 for the time 300–350 s (a)

and 700–900 s (b). The four speakers in the meeting sit at the positions 3, 8, 20 and

24. Figure 6.1 shows three distinct sharp peaks for speakers 3, 8 and 20, and a much

wider peak for speaker 24. When analysing the video of the meeting recording, I found

that speaker 24 moved her head between two distinct positions, either addressing the

other meeting participants (Figure 6.1 (a)) or talking in the direction of the whiteboard

(Figure 6.1 (b)). The width of the active sectors indicate that turning her head by 45◦

while talking results in TDOA changes which give the impression that the speaker

moved by 30◦ around the circular array. Details of how to determine the active sector

of a speaker from the TDOAs will be presented in Section 6.2.

An alternative to using TDOAs as a sound source location is to use DOA from power-

steered beamforming. Ishiguro et al. [2012] took DOAs from ICA (independent com-

ponent analysis) algorithms and filtered the result using the bag-of-words (BoW) mo-

del to determine the number of (active) speakers. ∆BIC-based segmentation and clus-

tering then leads to improved diarisation results as the cluster stopping criterion is

known.

The system implemented by Ishiguro et al. [2012] works online, achieving approxi-

mately 34% DER on a subset of the AMI meetings. No results are presented as to the

number of speakers detected compared to the true number.

The next section presents a novel method for speaker diarisation which explicitly cal-

culates the number of speakers by estimating their location using a microphone array.
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Microphone 

Array

(a)Talking to the group

Microphone 

Array

(b) Talking to the whiteboard

Figure 6.1: Analysis of TDOA during a meeting with the speaker (orange dot) turning

her head while talking, blue indicates the direction of speech (EDI 20050218-0900)

Figure 6.2: Histogram of angle of arrival of sound on microphone array for a complete

meeting (EDI 20050218-0900)

(a) Speaker 2 (b) Speaker 1, 3 and 4

Figure 6.3: Detailed histogram of angle of arrival of sound on microphone array for a

complete meeting (EDI 20050218-0900)
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6.2 TDOA analysis

The TDOA is the time difference of the direct wavefront from a given sound source

arriving at two different microphones. An established method for TDOA estimation is

generalised cross correlation with phase transform (GCC-PHAT, cf. Section 2.1.3) and

the estimates produced may be further improved by Viterbi smoothing [Anguera et al.,

2007]. If the relative location of the microphones is known, given the TDOA values

for a pair of microphones, simple geometry may then be used to calculate the angle of

arrival of the signal in relation to the microphones. In fact, due to rotational symmetry,

for two microphones a single delay estimate results in two possible angles of arrival –

the correct one and another reflected on the axis of the two microphones.

If a recording is done with an eight-channel microphone array, then seven microphone

pairs can be analysed in relation to one reference channel. The reference channel can

be any of the eight microphone channels and is usually chosen once and fixed at a

specific position. One option for choosing the reference channel is to select the input

with the highest signal level, therefore assuming that this microphone is closest to the

current active speaker. Another possibility is to analyse the cross-correlation of every

microphone pair (resulting in (M− 1)! possible pairs) and to select the microphone

with the highest overall cross-correlation score. Both schemes are sub-optimal, as the

first requires changing the reference if the active speaker changes or it results in running

with a non-optimal reference channel if the active speaker is not in front of the selected

reference microphone. The second scheme requires large amounts of computation and

is also not suitable for online processing as the complete audio needs to be available to

determine the reference microphone.

As stated above (cf. Section 2.5.3), BeamformIt determines the reference channel

by calculating the cross correlation of every microphone pair for the entire recording

and then selects the one with the highest value. The mdm tools simply choose the

microphone with the highest averaged energy. Both tools select the reference channel

once and keep it fixed for the entire recording. The reference channel is the channel

with TDOA = 0.

In either case, if one of the M microphones is chosen as the reference microphone,

then the TDOA values of M-1 microphone pairs can be calculated. The GCC-PHAT

algorithm is most widely used for this. The TDOA values can only take discrete values

and are subject to spatial and frequency aliasing. Given the speed of sound c and the
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difference Di j of a microphone pair, two possible angles of arrival can be calculated

for a given TDOA value. These angles then need to be aligned to a reference direc-

tion, after which they can be evaluated and the most likely direction of arrival (DOA)

determined. The following list summarises the proposed procedure:

1. determine reference channel

2. look up pair of angles from TDOA value

3. align each pair of angles with the reference direction

4. create a sector activity map with entries for each angle

5. evaluate this sector activity map to determine the most likely sound source loca-

tion

6. write sector activity table

First, the reference channel is determined, looking at either a single set of TDOA

values or the entire TDOA data. The reference channel is the channel with a TDOA

value of 0. Then, given a circular microphone array with a diameter of D = 20 cm and

eight uniformly distributed microphones around this circle, the distance between each

microphone pair Di j can be calculated. After this, given the T DOA(n) of an incoming

signal x(n) (sampled at the frequency Fs), the angle of arrival ϕ for a specific TDOA

value can be calculated as

ϕ = arccos
(

T DOA(n)
N

)
, (6.1)

where N is the distance (in audio samples) of the microphone pair i and j between

which the T DOA(n) was measured, i.e.

N =
Di jFs

c
, (6.2)

where c is the speed of sound in air (set to 343m/s for this work).

An example result for TDOA = (-3, -2, -1, 0, 1, 2, 3) for the microphone pair (1-2, 1-3,

..., 1-8) is (2.57, 2.17, 1.85, 1.57, 1.29, 0.98, 0.57) rad or (147, 124, 106, 90, 74, 56,

33) degrees. It can now be seen that α runs from 0 to π with t = −3 being close to π

and t = +3 being close to 0. This means that a signal from the front will produce a
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maximum positive TDOA value and a signal from the back a maximum negative one,

while a signal from the side does not incur a time difference (T DOA = 0).

It is very important to note that α runs from 0 to π and not to 2π. This means that it is

not possible to tell whether a signal at a microphone pair arrives from the left or right,

as is illustrated in Figures 6.4 and 6.5. Further, note that the precision of the angle

derived from the TDOA is greatest for signals coming from the side, while it is least

for signals coming straight from the front or back.

Extrapolating from a microphone pair to a microphone array with eight microphones,

seven pairs of angles can be derived from seven different TDOA values, as shown in

Figure 6.6.

In Figure 6.6 the direction of sound is indicated by a blue arrow. Microphone 2 has

been selected as the reference microphone and the seven possible microphone pairs

are (2-3, 3-4, 2-5, 2-6, 2-7, 2-8, 2-1). Given a small positive TDOA value for the

microphone pair 2-7, two possible angles ϕ1 and ϕ2 can be determined. Different

TDOA values for the other pairs will result in a typical scenario as shown in Figure 6.6.

6.3 Sector activity (SA)

The task at hand now is to find the true direction of arrival (DOA). I have explored

five different filtering methods to find the correct DOA. These are all, optimised, wtia

(winner-takes-it-all), Gaussian and mixed.

For the all algorithm, all 14 angles are entered into the SA table and no filtering is

applied. For optimised, the sum of all the squared distances of each DOA (wrapped

on the full circle) is calculated and, of the two possible DOAs, the one with the larger

deviation to the minimal sum is discarded. For wtia, all but one DOA – that with the

smallest deviation from optimised – are discarded. For Gaussian, the circular mean and

variance of every DOA is calculated and the table entries are re-calculated based on

the smallest variance and the corresponding mean. For mixed1, only the DOA closest

to the circular mean is entered into the table.

The directivity pattern of an MVDR superdirective beamformer [Bitzer and Simmer,

1I first implemented my own function and later found an identical function called circ r as part of
CircStat, a Matlab™ toolbox for circular statistics [Berens, 2009]. The results for the last two are, as
expected, identical.
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Figure 6.4: TDOA for stereo microphone

with sound coming from the left

TDOA

Mic1

Mic2

Sound

Figure 6.5: TDOA for stereo microphone

with sound coming from the right
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Mic6 Mic4
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1
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Figure 6.6: Angle of arrival calculation from the TDOAs for an eight-channel microphone

array: the direction of sound is indicated by a blue arrow, microphone 2 has been

selected as the reference microphone and the seven possible microphone pairs are

(2-3, 2-4, 2-5, 2-6, 2-7, 2-8, 2-1), red arrows show the 14 possible angles of arrival.
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2001] for an 8-element microphone array with a diameter of 20 cm and a sample rate

of 16 kHz (the conditions used in the NIST recordings) shows a main lobe width of

10◦. In order to identify the angle of the speakers in relation to the array, I therefore

create a sector activity map of N = 36 possible sectors, one every 10◦. The TDOA

values for each microphone pair are estimated every 256 ms and the angle of arrival

values calculated. A counter value in the sector corresponding to that angle is then

incremented. I accumulate counts in five second windows with one second overlap

and record the highest scoring sector for each window, thus calculating the sector with

the most activity (the active sector) over five seconds for every second of recording.

The TDOA value outputs from the beamformer is only processed when speech is de-

tected, i.e. when the VAD output is active. A speaker entry is generated for 36 possible

SA sectors (one every 10°), i.e. one speaker is entered into the diarisation output for the

highest scoring sector on the circle at that time. If the highest scoring sector changes

during a single active VAD segment then this segment is split and two entries are made

to the diarisation output, one for the first sector (or speaker) and another for the second.

A typical SA map is shown in Figure 6.7.

Figure 6.7: Sector activity (SA) map from NIST RT06 meeting EDI 20050216-1051

The proposed methods is called VAD+SA and the diarisation error rate for the different

DOA filtering schemes is presented in Section 6.3.1 below.
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6.3.1 Preliminary results

A subset of the NIST RT meetings (those recorded at the University of Edinburgh,

IDIAP and TNO – see Table 5.1 for a full list) was recorded using an eight-element

circular microphone array of 20 cm diameter. These meetings are the only ones in the

NIST RT data set for which the relative locations of the microphones are known and

will henceforth be referred to as the “NIST RT AMI meetings”.

All diarisation experiments were carried out similarly to the VAD experiments pre-

sented in Section 5.3. Again, two different pre-processing methods for improved veri-

fication of the algorithms were used, i.e. two different noise reduction tools (QIO-FE

and the mdm tools) and two acoustic beamformers (BeamformIt and the mdm tools),

as shown in Figure 6.8.
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Figure 6.8: Flow diagram for the evaluation of the algorithm to determine the number of

speakers in a meeting

In the first experiment, the six methods for filtering the TDOA values from the beam-

forming on the circular array were evaluated in relation to the diarisation error rate.

Results are presented using two different pre-processing systems as well as two dif-

ferent VAD schemes. These are AZR and the best-performing VAD algorithm on the

NIST data, the QIO-FE VAD (see Chapter 5 for details).

Two different beamformers and two VAD schemes are analysed in order to confirm

the results from previous experiments on diarisation (cf. Section 3.2.2 on page 76) and

VAD (cf. 5.3 on page 107).
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Figure 6.9 shows the DER for the six DOA smoothing methods all, optimised, wtia,

Gaussian and mixed. Interestingly, the all scheme works best and any attempt to ‘im-

prove’ the TDOAs worsens the DER.

Figure 6.9: Sector activity map analysis for the NIST RT AMI meetings

Please note that the best performing VAD and acoustic beamforming tools remain the

best methods to generate the sector activity map.

Next, the results from experiments using speaker clustering are presented in Figure 6.10.

The speech segments found during sector activity detection with a maximum of 36

speakers are clustered using the ∆BIC criterion, i.e. adjacent speech segments are ana-

lysed as to whether they belong to the same speaker and merged if they do. For this,

if ∆BIC > 0 (as per Equation 2.41) then the speaker ID of the new speech segment is

replaced with the speaker ID of the previous speech segment.

The clustering is carried out over a look-back window of the previous eight speech

segments. With perfect TDOA estimation, the proposed method should be able to

determine whether the two speech segments which are compared are from the same

speaker or whether a speaker change has occurred. A look-back window of eight

segments (compared to the theoretically necessary two) is selected to allow for the

very short speech segment length in a typical conversation. In these experiments I

tried to determine the best ∆BIC penalty λ, as per Equation 2.41.

Figure 6.10 shows the DER after speech clustering on all EDI, TNO and IDI meetings

for the RT06, RT07 and RT09 evaluations. The first column (VAD+SA) shows the best



6.3. Sector activity (SA) 127

Figure 6.10: Clustering analysis for the NIST RT AMI meetings

results from the TDOA analysis, i.e. the all scheme shown in Figure 6.9 for QIO-FE

VAD and BeamformIt acoustic beamforming.

The remaining columns show the results after speech clustering for λ values of 4, 3,

2, 1 and 0.5 (as defined in Equation 2.38). The SA output from the TDOA analysis

contains 36 possible speakers. I expected the speech clustering algorithm to reduce this

to the real number (which is known to be four for all EDI, TNO and IDI RT meetings).

Unfortunately, the ∆BIC algorithm was unable to merge the apparent 36 speakers down

to four, as shown in Table 6.1.

Table 6.1: Number of speakers detected from the VAD+SA output before and after

speech clustering for the NIST RT AMI meetings

Meeting Number of speakers detected

before clustering after clustering

RT06 EDI 20050216-1051 17 17

EDI 20050218-0900 22 20

TNO 20041103-1130 29 28

RT07 EDI 20061113-1500 28 26

EDI 20061114-1500 23 23

RT09 EDI 20071128-1000 24 24

EDI 20071128-1500 24 24

IDI 20090128-1600 15 15

IDI 20090129-1000 24 24

At best the merging algorithm managed to reduce the number of speakers present by
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a maximum of two, but most of the time no clustering took place. I carried out a

series of experiments using the ∆BIC as the decision criterion as to whether to merge

two different speech segments, using the acoustic features (MFCCs) as well as GMMs

trained on these same speech segments. Unfortunately, the ∆BIC needs a few seconds

of speech data from each of the two speech segments to produce reliable results. This is

not what is observed in real speech from meetings, where the average speech segment

length is around 1.5 s and the mean speech segment length can be as low as 1 s, as

shown in Figure 6.11.
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Figure 6.11: Analysis of speech length in NIST RT09 meeting EDI 20071128-1000

My experiments on speaker clustering using the ∆BIC criterion show that the proposed

scheme only works well for minimum speech segment lengths of 3 s or more. When

compared with the average speech segment length of around 1.5 s in meetings, the

∆BIC criterion fails to process most of the speech segments correctly, as demonstrated

in Table 6.1.

The limitations of the ∆BIC criterion not only apply to clustering but also speech seg-

mentation. My experiments on speech segmentation using the ∆BIC criterion (both

on speech features, i.e. MFCC vectors, and GMMs of MFCC vectors) showed that

Equation 2.41 will almost always peak for any speech segment input. This results in

undesired splitting of the speech segments, making the speech segments even shorter

and the clustering of speech more difficult.
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Note that for the results presented in Figure 6.10 speech segmentation is bypassed as

it only splits everything into minimum length segments, leading to further degradation

of the output, as discussed above.

In order to overcome the problem of comparing short segments of speech I generate a

speaker matrix, as presented in the next Section.

6.4 Speaker matrix (SM)

Assuming that there is a speaker in every SA sector and given a pure speaker model

for each of them then, if the ∆BIC value of every incoming speech segment with the

reference speech segment of each sector is calculated according to Equation 2.41, then

only the true speaker will lead to a positive ∆BIC value.

If I now create a speaker matrix (of dimension N ·N = 36 · 36) in which one axis is

the active sector (from the SA map) of the incoming speech segment while the other

is the reference speech segments, then in theory only elements on the diagonal of the

speaker matrix will lead to positive ∆BIC values.

Leading on from here, if a counter value at position (xi,y j) of the speaker matrix (with

0≤ xi < N and 0≤ y j < N) is incremented if ∆BIC > 0, then every entry in the speaker

matrix represents a speaker position.

This leads to the following algorithm:

1. load VAD output and sector activity (SA) map

2. select reference speech segment for each sector

3. create empty speaker matrix

4. for each incoming speech segment

(a) calculate ∆BIC for each reference speech segment

(b) if ∆BIC > 0 then add 1 in speaker matrix at that position

First the VAD output and SA map are loaded. Then a reference speech segment needs

to be selected for each sector. To keep this simple and to avoid sophisticated algorithms

to determine the best reference segment, the longest speech segment is chosen for every
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sector from the VAD output and SA map. This reference speech segment will be stored

as si.

After this, using the VAD output, one speech segment after another is loaded in se-

quence and its sector looked up in the SA map. This sector corresponds to j and the

corresponding speech segment is s j. Now, for 0 ≤ n < N the ∆BIC can be calculated

according to Equation 2.41 and the count value of the speaker matrix (SM) at position

(i, j) incremented if ∆BIC > 0.

6.5 Speaker diarisation

In the ideal case the speaker matrix would only have entries on its diagonal because

the originally assigned sector would be the same as the sector with the highest ∆BIC

score. The indices of the entries would then correspond to sectors with speakers. In

reality this is not the case, as shown in Figure 6.12.

Figure 6.12: Speaker matrix (SM) from NIST RT06 meeting EDI 20050216-1051

The peaks in the SM tend to cluster in rows. In order to identify the sectors with

speakers I look for peaks in the entries on the diagonal of the sector matrix. The
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indices of the peaks correspond to the sector where I estimate a speaker is located –

these are the speaker sectors, shown in Figure 6.13.

Figure 6.13: Speaker matrix peaks from NIST RT06 meeting EDI 20050216-1051

Given the VAD output, the sector activity map and the speaker matrix, the number

of speakers and their position can now be determined after which clustering can be

performed to complete the diarisation process. This is carried out according to the

following algorithm:

1. load VAD, SA and SM

2. find peaks on the diagonal of the speaker matrix

(a) determine number of speakers

3. for each incoming speech segment

(a) assign incoming speech segment to closest speaker (i.e. SM peak)

After loading the VAD output, the sector activity map and speaker matrix I find the

maximum peak on the diagonal of the speaker matrix SMpeak = max(SMii) for 0≤ i < N.

Then, setting a threshold of SMth = 0.1 ·SMpeak, I look for any other value on the SM

diagonal that exceeds SMth. These are the speakers and their positions. I determi-

ned the threshold parameter 0.1 used to calculate SMth by visually analysing the noise

levels of a few speaker matrices.
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In the last diarisation step, the clustering process, I load the output of the VAD+SA

system described above and replace the speaker entries (from the SA) with the position

of the closest speaker, looking at the distance on the circle.

To summarise, in the first pass over the data the sector activity is calculated. In the

second pass the speaker matrix is generated and the speakers and their positions deter-

mined. Finally, in the third pass, each speech segment is assigned to the closest speaker

found in the speaker matrix, thus generating the diarisation output. The complete pro-

cess is shown in Figure 6.14.
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Figure 6.14: Flow diagram to determining the number of speakers in a meeting

A different description of the proposed algorithm can also be obtained from the Patent

application [Zwyssig, 2012].

The beauty of this straightforward process is that it can be converted into an online

system by means of a few simple steps, as described in the next section.

6.6 Online diarisation

Online, never-ending or incremental (real-time) speech processing systems start in

some pre-trained status and process the incoming speech on-the-go without stopping

and with limited delay to the output while learning from the data that is processed and
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therefore improving the output. Such systems need to be real-time, i.e. it must take

less time to compute the output from an incoming speech segment than the length of

said speech segment, otherwise delays would accumulate and the system eventually

stall. The time it takes to process a segment of data is called latency. Online operation

therefore requires that the latency tl of a speech segment of length ts is smaller or equal

to ts, i.e. tl ≤ ts. Online operation also demands that the data is processed continuously

and in real-time without prior availability.

Naturally such a system does need some time to process the data, i.e. signal processing

delays should be limited and acceptable to the receiver of the output, e.g. downstream

processes.

The most complex, effective and sophisticated online diarisation (and speaker and

speech recognition and speech understanding) system known at present was designed

by researchers at the NTT (Nippon Telegraph & Telephone Corp, see [Ishiguro et al.,

2012] for details), as presented in Sections 2.4 and 6.1.

It is important that the algorithm presented in this chapter is suitable for online proces-

sing. The few steps necessary to do this are presented in what follows.

Determining the number of (active) speakers in a meeting, as presented above, requires

some pre-processing, i.e. noise suppression, acoustic beamforming and VAD. All of

these algorithms work in an online manner while introducing some signal delay of a

few hundred milliseconds. It can therefore be assumed that the acoustic signal, the

TDOAs from the beamforming and the VAD output are available simultaneously for

online processing.

Calculating the sector activity is therefore straightforward, implying a further signal

processing delay of a few seconds (c.f. Section 6.3).

The critical component in online processing is the speaker matrix which requires re-

ference speech for each sector. This is obviously not available from the beginning.

On the contrary, diarisation following the VAD+SA principle outlined above requires

nothing more that the sector activities and the VAD output.

I therefore suggest starting the online diarisation system using the VAD+SA scheme

while gathering reference speech data for the individual sectors of the speaker matrix.

As soon as a speech segment of suitable purity arrives for a sector then the speaker

matrix can start operating as outlined in the VAD+SA+SM scheme. During the start-
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up phase, if only a few speakers appear present from the speaker matrix, clustering can

be executed as a mixture of the VAD+SA and VAD+SA+SM algorithms, i.e. if the

distance of an incoming speech segment to the closest speaker exceeds a pre-defined

threshold, then it is not assigned to a speaker in the matrix but remains at the location

as per the VAD+SA algorithm.

The reference speech segment for a sector can also be updated if a ‘better’ speech

segment arrives, and the counts in the speaker matrix should incur a forget-me factor,

i.e. should decrease over time as defined by a constant τSM.

The novel algorithm to determine the number of active speakers presented here is there-

fore not just straightforward but also well suited to off- and online computing.

6.7 Diarisation results

This section presents the results from the speaker diarisation experiments that were

carried out following the flow defined in Figure 6.14. Pre-processing of the eight-

channel audio data was carried out by performing single channel noise reduction using

the QIO-FE followed by acoustic beamforming using BeamformIt, after which VAD

was performed on the single enhanced audio channel using the QIO-FE.

Four diarisation experiments were conducted on the EDI, IDI and TNO meetings from

the RT06, RT07 and RT09 data sets (the ”NIST RT AMI meetings”), a total of nine

meetings. First the DER of the direct output of the sector activity map (VAD+SA) was

calculated, i.e. diarisation was performed with a fixed number of 36 speakers. This

was followed by the evaluation of the new algorithm (VAD+SA+SM) that uses the

number of speakers determined from the speaker matrix. Finally, in order to provide

baseline results, two open source diarisation systems, the SHoUT speech recognition

toolkit and the LIUM speaker diarisation system, were used to perform the diarisation.

The two baseline systems provide a comparison of top-down vs. bottom-up diarisation:

SHoUT uses bottom-up processing and LIUM top-down. The SHoUT diarisation sys-

tem was chosen here (in preference to ICSI) as it is open source software.

The results of the four experiments presented in Table 6.2 and Figures 6.15 and 6.16

show that providing the diarisation system with an accurate estimate of the active num-

ber of speakers present results in a considerable improvement in the diarisation output.
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Table 6.2: [%] DER, VER, FA, MS and estimated number of speakers (spkrs) for each

meeting for the NIST RT AMI meetings. FA denotes false alarm, MS denotes missed

speech.

VAD+SA (basic) VAD+SA+SM SHoUT LIUM

Meeting spkrs DER VER FA MS spkrs DER spkrs DER spkrs DER spkrs

RT06 EDI 20050216-1051 4 48.1 9.0 2.9 6.1 36 31.0 4 45.3 10 65.7 7

EDI 20050218-0900 4 53.2 8.9 2.5 6.4 36 30.4 5 49.8 9 67.2 7

TNO 20041103-1130 4 65.3 8.0 1.8 6.2 36 57.1 7 46.8 12 61.7 2

avg (RT06) 55.5 8.6 2.4 6.2 39.4 47.4 64.9

RT07 EDI 20061113-1500 4 44.6 4.7 4.2 0.5 36 31.8 4 56.7 14 72.5 1

EDI 20061114-1500 4 27.5 6.3 5.7 0.6 36 20.3 4 23.4 10 64.1 6

avg (RT07) 35.3 5.6 5.0 0.6 25.6 38.7 67.9

RT09 EDI 20071128-1000 4 34.6 3.9 3.2 0.7 36 16.7 4 23.4 8 56.2 3

EDI 20071128-1500 4 46.0 5.3 4.7 0.6 36 35.1 5 31.0 13 82.3 2

IDI 20090128-1600 4 27.8 1.6 0.7 0.9 36 12.0 4 23.8 9 19.7 19

IDI 20090129-1000 4 41.7 4.9 4.0 0.9 36 25.5 4 34.4 14 41.7 12

avg (RT09) 37.2 3.9 3.1 0.8 21.9 28.0 48.7

avg (all) 42.3 5.6 3.2 2.4 27.8 35.8 57.1

The basic VAD+SA method achieves an improvement of 26% relative / 15% absolute

compared to the LIUM tool. The VAD+SA+SM outperforms both SHoUT and LIUM,

giving an improvement of 51% relative / 29% absolute compared to LIUM and 22%

relative / 8% absolute compared to SHoUT. In addition, the number of speakers esti-

mated by the VAD+SA+SM system almost considerably closer to the actual number

of speakers in the meeting than either of the other systems.

It is unfortunately difficult to compare the DERs presented in Table 2.3 with state-of-

the-art performance as the authors of these diarisation systems do not provide detailed

results. I have managed to obtain comprehensive results from the SHoUT diarisation

toolkit (Marijn Huijbregts, personal communication, 23 November 2011) and compa-

red my findings (presented here) with those achieved by SHoUT on the NIST RT06,

RT07 and RT09 meeting data. The figures presented here match the results achieved by

Marijn Huijbregt with less than 2% absolute DER error. Marijn Huijbregt and I have

not managed to achieve identical DERs despite detailed tuning of many parameters.

Next, a detailed analysis of the results presented in Table 6.2 is carried out. This is

done using boxplots for easier evaluation, where the median is shown as the interface
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between the brown and red boxes, the lower quartile as a brown box, the upper quartile

as a blue box and the minimum and maximum DER as whiskers.

Figure 6.15 shows the average DER listed for the RT06, RT07 and RT09 data sets, and

Figure 6.16 shows the median, lower and upper quartile and minimum and maximum

DER combined for all RT data sets for the different algorithms.

Figure 6.15: [%] DER for all algorithms for the NIST RT AMI meetings

Figure 6.16: [%] DER variance for the complete NIST RT AMI meetings

As shown in Figures 6.15 and 6.16, the VAD+SA and VAD+SA+SM algorithms consis-

tently outperform the LIUM diarisation tool, while the VAD+SA+SM algorithm also

outperforms the SHoUT tool – both by a reduced average error and reduced mean and

interquartile range. Note though that diarisation using the VAD+SA algorithm cor-

responds to diarisation using location features only, diarisation with the SHoUT and
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LIUM toolkits uses acoustic features only, while the VAD+SA+SM algorithm uses

acoustic and location features.

Huijbregts et al. [2012] report 26.6% DER for the SHoUT diarisation system on the

complete test set of the NIST RT09 using acoustic features only. The 26.6% DER

reported is comparable with the 28.0% DER presented in Table 6.2. No published

results exist for the performance of the SHoUT tool on the NIST RT data using acoustic

and localisation features. The ICSI tools achieve 17.2% DER on the RT09 data set

using acoustic, other speech and localisation features (see Table 6.2). Unfortunately,

no data is available as to the number of speakers (or final number of clusters) detected

for any diarisation system on the NIST RT09 evaluation data.

This makes it difficult to compare the proposed VAD+SA+SM algorithm with state-of-

the-art diarisation systems, not least because the proposed algorithm does not contain

segmentation and clustering.

The main benefit of the VAD+SA+SM algorithm is that it provides any diarisation

system with a reliable and accurate estimate of the number of speakers present. This

information can be of significant advantage to any diarisation system as well as any

downstream processes such as speaker identification or speech recognition.

In addition to the NIST RT meetings, it is also of interest to verify the novel algorithm

for determining the number of speakers on the 2012 MMA corpus (cf. Chapter 4).

I verified the VAD+SA+SM algorithm on the four subsets of the 2012 MMA corpus,

the single speaker task WSJ and the two overlapping speakers task MSWSJ in the two

different environments, that is, in a meeting room and in a hemi-anechoic chamber.

The experiments were carried out following the flow outlined in Figure 6.14. Acoustic

beamforming was carried out using BeamformIt and the mdm tools. The results are

presented in Table 6.3.

Twelve single speakers were recorded for the WSJ and WSJ anechoic data sets, i.e. the

true number of speakers is one. Six pairs of speakers were recorded for the MSWSJ

and MSWSJ anechoic data sets, i.e. the true number of speakers is two. Table 6.3

shows the number of recordings for the different number of speakers found for five

different microphone arrays, using the VAD+SA+SM algorithm.

In the first row for the WSJ dataset, for the analogue microphone array with a diameter

of 20 cm, sampled at 16 kHz, using the BeamformIt tool, the correct number of one
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Table 6.3: Number of single speaker recordings (WSJ + WSJ anechoic) and num-

ber of dual speaker recordings (MSWSJ + MSWSJ anechoic) for different numbers of

speakers detected using the acoustic beamformers BeamformIt and mdm tools on the

2012 MMA corpus. Numbers in red indicate that the correct number of speakers was

detected; orange indicates near correct detection.

Data set Microphone Diameter Fs Number of speakers detected

[cm] [kHz] BeamformIt mdm tools

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 12 13

WSJ Analogue 20 16 10 1 1 9 2 1

Analogue 4 96 12 2 5 4 1

Digital 20 16 9 3 4 8

Digital 4 96 1 6 3 2 2 7 3

Digital 4 48 1 3 2 3 2 1 11 1

WSJ anechoic Analogue 20 16 10 2 10 1 1

Analogue 4 96 5 1 5 1 1 3 1 3 2 2

Digital 20 16 12 11 1

Digital 4 96 5 2 2 1 2 1 3 3 3 1 1

Digital 4 48 2 3 7 2 3 2 2 1 1 1

MSWSJ Analogue 20 16 6 3 3

Analogue 4 96 2 4 2 2 2

Digital 20 16 6 6

Digital 4 96 2 1 1 1 1 4 2

Digital 4 48 1 2 1 1 1 2 2 2

MSWSJ anechoic Analogue 20 16 1 3 2 4 2

Analogue 4 96 1 2 2 1 1 2 1 1 1

Digital 20 16 6 6

Digital 4 96 2 4 4 2

Digital 4 48 1 4 1 1 2 2 1
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speaker was found in 10 of 12 recordings, while in one recording two speakers and in

another recording three speakers were detected. For the mdm tools, the correct number

of one speaker was found in 9 of 12 recordings, while in two recordings two speakers

and in another recording three speakers were detected.

In the third row for the MSWSJ dataset, for the digital microphone array with a diame-

ter of 20 cm, sampled at 16 kHz, using either beamformer, the correct number of two

speakers was detected in all six recordings.

As shown in Table 6.3, the proposed algorithm to determine the number of speakers in a

meeting performs very well on the analogue and digital microphone arrays of diameter

20 cm. BeamformIt unfortunately only supports audio input sampled at 8 or 16 kHz.

Acoustic input at any other sample rate is automatically re-sampled to 16 kHz. For

the microphone arrays with diameter 4 cm sampled at 48 and 96 kHz, down-sampling

to 16 kHz leads to a huge loss in localisation accuracy. Indeed, if we calculate the

maximum possible TDOA as per Equation 6.2, then, given the specifications used for

the recordings of the 2012 MMA corpus, we get the following Table 6.4.

Table 6.4: Maximum possible TDOA values for a given microphone array dimension

and audio sample rate

D [cm] Fs [kHz] TDOAmax

0.20 16 ±9.3

0.04 16 ±1.9

0.04 48 ±5.6

0.04 96 ±11.2

When analysing the TDOA values that were generated using GCC-PHAT and the two-

stage Viterbi smoothing, I found them to be very stable for the analogue microphone

array with a diameter of 4 cm (IMR only) despite the small range. Unfortunately, this

was not the case for the audio signal in the hemi-anechoic chamber and for the digital

MEMS microphone array with a diameter of 4 cm. These TDOA values exceed the

maximum possible values most of the time which explains the poor performance of the

algorithm using BeamformIt on out-of-domain data.

The mdm tools support acoustic beamforming at any sample rate. The TDOA es-

timates should therefore work well for microphone array speech recorded at 48 and

96 kHz. The results for the mdm tools presented in Table 6.3 unfortunately show poor
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performance of the algorithm on all 4 cm microphone arrays.

I conclude that two requirements are crucial for the correct output of the proposed

algorithm to determine the number of speakers. First, the acoustic data needs to be

sampled at a sufficiently high frequency to give good TDOA estimates and, second,

TDOA smoothing as implemented in BeamformIt [Anguera et al., 2007] is essential.

Given these two factors, the sensitivity of the algorithm to the recording environment

should disappear.

6.8 Summary and conclusions

This chapter looked at the importance of knowing how many speakers are present in

a multi-party conversation, particularly relating to speaker diarisation, i.e. who spoke

when. A review of state-of-the-art diarisation systems shows that these systems do not

attempt to find this number and that creating a diarisation output using acoustic models

with the true number of speakers does not result in the best DER performance.

Obtaining a good estimate of the true number of active speakers is nevertheless a use-

ful parameter for diarisation and downstream processes, as was demonstrated by the

work presented in this chapter and also proved by the current best-performing speaker

diarisation system.

I have proposed a TDOA-based algorithm to determine the number of active speakers

in a meeting and applied this to the diarisation task. The proposed algorithm outper-

forms ∆BIC-based diarisation tools due to its improved estimation of the number of

speakers in the meeting. The algorithm is computationally less expensive than ∆BIC-

based methods and can be easily adapted so as to require only a single pass over the

data, making it suitable for online processing.

The proposed algorithm is not restricted to meeting recordings but ports well to any

multi-party conversation recorded with multiple microphones where the microphone

positions are known and the individual audio channels are synchronised. Assuming a

circular microphone array, two requirements are essential for the algorithm to work

correctly: first, the microphones must be placed at a sufficient distance for lower

sample rates (i.e. 20 cm for Fs = 16 kHz) or sampled at higher rates for smaller

geometries (96 kHz for 4 cm) and second, smoothing of the TDOA values must be

applied.
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The algorithm performs well on NIST RT data and the 2012 MMA corpus and gives a

much improved estimate of the active number of speakers compared to two publically

available state-of-the-art diarisation systems , the SHoUT bottom-up and the LIUM

top-down diarisation tools.

Please note that in the NIST RT data and the 2012 MMA corpus speakers typically

remain in a fixed location and do not move around. Such a restriction is not realistic and

moving speakers would significantly increase the error rate for TDOA-based systems.





Chapter 7

Speech separation

7.1 Introduction

Overlapping speech is common in normal human conversations such as meetings or

any situation involving two or more people [Shriberg et al., 2001]. Humans are excep-

tionally good at localising speakers and separating overlapping speech, even with mon-

aural hearing. This is due to the sound characteristic in the ear produced by the shape

of the pinna and the sound shade from the head and torso. Humans also constantly

move their head which assists sound source localisation and speech separation. These

human capabilities greatly surpass any machine algorithm, particularly in noise [Good

and Gilkey, 1996].

Attempts to mimic human speech localisation and separation have not so far produced

satisfactory results [Cooke et al., 2010, Barker et al., 2012] and a more practical and

successful solution to the problem appears to be to use arrays of multiple microphones.

If an audio signal is sampled at an appropriate frequency (observing Nyquist’s law) and

at the correct physical intra-microphone distance (adhering to the wavelength of sound

derived from the frequency range of human speech and the speed of sound in air) then,

using three or more microphones, speech can be localised and separated with good

accuracy [McDonough et al., 2008a].

This chapter presents speech separation and recognition experiments carried out on the

multiple microphone array corpus of single and overlapping speech (2012 MMA, cf.

Chapter 4) where the effect of post-filtering, echo suppression and binary masking are

looked at.

143
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The work presented in this chapter was carried out in collaboration with Friedrich Fau-

bel from the Saarland University and divided as follows. Recording and file preparation

were carried out by myself and speaker localisation and speech separation were perfor-

med using the Saarland University Beamforming Library which they very kindly made

available. Executing the speaker localisation and speech separation is computationally

very demanding and was therefore divided between the computers available to Frie-

drich Faubel and myself. I then conducted the speech recognition, model adaptation

and scoring.

7.2 Prior work

A review of overlap in natural speech and overlapping speech corpora was presented

earlier in Section 2.5.2. The work described there gives an analysis of the amount and

nature of overlapping speech in meeting conversations, but does not look at detecting

overlapping speech.

This section reviews detection and separation of overlapping speech.

Prior to speech separation, overlapping speech in multi-party conversations will need

to be detected and, in the case of speaker diarisation, attributed to the correct speaker.

Correctly detecting overlapping or simultaneous speech is an open research topic. Se-

veral groups have carried out research in detecting overlapping speech in meetings and

they usually report their results in terms of an improved DER.

Zelenak et al. [2012] present a review of the state-of-the-art of overlapping speech

detection. The authors divided the research roughly into two main areas, overlapping

speech detection using close talking microphones (i.e. each speaker present wears a

headset or lapel microphone) and overlap detection on distant speech data.

Overlap detection using distant microphones can be carried out using acoustic and

intra-microphone TDOA data, as proposed by Boakye et al. [2008], Vipperla et al.

[2012] and Zelenak et al. [2012].

In the original ICSI system [Friedland et al., 2012], VAD was carried out using two

HMM-based GMMs, one for speech and one for non-speech. Boakye et al. [2008]

modified the ICSI diarisation system’s VAD component by adding an additional GMM

trained to detect overlapping speech. Testing the modified VAD and diarisation engine
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on the AMI development set, the authors measured a DER reduction of 1.3% absolute

and 3.6% relative from 38.1% to 36.8% using the speech from the single distant (far-

field) microphone, i.e. for the sdm condition.

A detailed analysis shows that the modified system actually had an increased false

alarm detection rate from 0% to 1.8%, an increased speaker error from 19.8% to 20.3%

and a decreased missed speech error from 18.3% to 14.6%, resulting in an overall DER

improvement. Boakye et al. [2008] failed to report the actual overlap detection rate of

their method.

Looking at the proposed system and the findings presented in Sinclair and King [2013]

it could be inferred that the system presented by Boakye et al. [2008] is actually unable

to detect overlapping speech. Splitting the speech model into single and overlapping

speech components is more likely to generate a ‘purer’ speech model, resulting in a

significant decrease in missed speech at the cost of increased false alarms and speaker

error.

Vipperla et al. [2012] used an oracle overlap detection component to investigate the

detection capability of their diarisation engine. A similar effect to that seen in the ICSI

system can be observed, i.e. significantly reduced missed speech at the cost of increa-

sed false alarms and speaker error. Vipperla et al. [2012] used pure (non-overlapping)

speech for each given speaker to learn base models using spectral magnitude features,

therefore training a speaker model a priori. Incoming speech was then classified using

convolutive, non-negative sparse coding (CNSC) to capture spectro-temporal patterns.

Overlapping speech was detected if two speaker models activated, i.e. if their CNSC

activation energy exceeded a pre-defined threshold. The proposed scheme requires that

prior speaker models exist for each speaker in the test data.

Zelenak et al. [2012] complemented their GMM-HMM baseline system with an over-

lap detection component which combines spectral (audio) and spatial (TDOA) fea-

tures. The spectral features used are MFCCs, spectral flatness and the prediction error

from the LPC residual signal generation. The spatial features used are the TDOA co-

herence value, i.e. the value of the principal peak of the GCC, the coherence dispersion

ratio and the delta value of two adjacent TDOA estimations.

The authors trained three GMM-HMM models, a silence model, a speech model and an

overlapping speech model and performed diarisation using Viterbi decoding. Dimen-

sionality reduction and normalisation using sequential principal component analysis
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(PCA) was necessary to merge the two parallel streams in the GMM-HMM model.

The authors claim that:

“... [they] have observed that the time delay estimates produced by the
GCC-PHAT jump from one speaker to another at a very high rate as one
source dominates due to the non-stationarity of the voice.”

This statement is very surprising as it does not agree with my observation that TDOAs

are stable over a time period of several hundred milliseconds, justifying the typical

choice for calculating TDOAs every 256 ms for the BeamformIt tools and every 500 ms

for the mdm tools. Zelenak et al. [2012] also observed that the median overlap duration

in the AMI meeting corpus is rather short at 0.46 s. The proposed algorithm managed

to correctly detect 20% of the overlapping speech on the AMI data set and approxima-

tely 5% on the RT09 data set. Overall the DER decreases from 42.2% for the baseline

system by 1.2% absolute/2.7% relative to 41.0% for the proposed improved diarisation

system with overlap detection.

Looking at the detailed false alarm, missed speech and speaker error figures, I noticed

the same behaviour as presented by Boakye et al. [2008] and Vipperla et al. [2012], i.e.

a reduced false alarm rate compared to an increased missed speech and speaker error

rate, again indicating that the DER improvement might well be attributed to ‘purer’

speaker models than to overlap detection.

Unfortunately, the improvements suggested by these researchers are limited and few

results could be found that actually report on how much overlap was really detected.

Detecting overlapping speech therefore remains an open research problem.

The challenges to modern ASR systems posed by overlapping speech will be looked

at next.

The most systematic work in the field, using recordings of overlapped speech, is based

on the multi-channel Wall Street Journal audio visual (MC-WSJ-AV) corpus [Lincoln

et al., 2005], released for the second PASCAL Speech Separation Challenge (SSC2).

Initial experiments on these recordings demonstrated that the speech recognition WER

for overlapping speech can easily be double or triple that of a comparable single

speaker scenario [Himawan et al., 2008, McDonough et al., 2008a]. More recent ex-

periments on the single speaker part of the MC-WSJ-AV corpus have shown that it is

important for distant speech recognition to use sophisticated front-end processing on

multiple input channels [Kumatani et al., 2012]
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Speech recognition using a single distant microphone suffers significantly from ad-

ditive noise and reverberation. Overcoming this speech degradation is difficult using

back-end compensation techniques such as vector Taylor series (VTS), cMLLR or a

combination of both [Gales and Wang, 2011], or Bayesian feature enhancement [Krue-

ger et al., 2012]. Kolossa et al. [2011] achieved promising results by combining so-

phisticated front-end processing and back-end compensation techniques.

Although there has been a lot of recent research activity in single speaker distant speech

recognition (e.g. the CHiME challenge [Barker et al., 2012]), this has typically invol-

ved the artificial creation of data by convolving close-talking speech recordings with a

multi-channel room impulse response and then adding noise. Ideally, however, the cor-

pora would be recorded in different natural environments in order to capture the way in

which speakers change their speaking style in noise and reverberation [Pelegrı́n-Garcı́a

et al., 2011], and this has motivated the collection of the 2012 MMA corpus.

The following sections present algorithms and results on overlapping speech separa-

tion. First, (multiple) speaker localisation and speech separation algorithms are discus-

sed after which the experimental setup and data used are presented. This is followed

by the results achieved in our experiments and an analysis of them. The chapter closes

with a summary.

7.3 Speech separation

The next section describes the proposed speech separation algorithm which separates

overlapping speech using a combination of spatial filtering and crosstalk cancellation

as originally suggested by Himawan et al. [2008] and McDonough et al. [2008a]. This

is achieved using a two-stage approach in which (1) an initial beamformer separates the

speech based on spatial diversity after which (2) a cross-talk canceller further improves

the separation by post-processing the beamformer outputs. The section closes with a

description of the speaker localisation system.

7.3.1 Superdirective Beamforming

Beamforming provides an elegant way to extract the signal from a desired source

through spatial filtering. In the MSWSJ data sets the task is to separate two speak-
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ers located at directions

ak = [cosθk cosφk sinθk cosφk sinφk]
T , k ∈ {1,2} (7.1)

with θk and φk denoting the azimuth and elevation in relation to the array.

In order to use SDB for speech separation, a beamformer is pointed at each of the

speakers. The beamformer outputs Y1(ω, t) and Y2(ω, t) are obtained according to

Equations 2.9, 2.10 and 2.11 (cf. Section 2.1.2), and the corresponding separated

speech signals y1(t) and y2(t) are recovered using inverse Fourier transformation fol-

lowed by overlap-and-add.

As mentioned above, a two-stage approach is used for improved speech separation, i.e.

a post-processing stage follows the superdirective beamforming. Two post-processing

methods are proposed: (a) cross-talk cancellation using binary masking and (b) resi-

dual echo suppression. The next two sections give details of these algorithms.

7.3.2 Cross-Talk Cancellation

Overlapping speakers tend to use different frequency bands at a point in time [Belou-

chrani and Amin, 1998]. Yilmaz and Rickard [2004] demonstrated that this effect can

be used successfully for speech processing. The authors employed a post-processing

step in which the beamformer outputs Yk(ω, t) are multiplied by a binary mask Mk

whose components Mk(ω, t) identify which frequencies a speaker uses at time t, i.e.

Ŝk(ω, t) = Mk(ω, t) ·Yk(ω, t), k ∈ {1,2}. (7.2)

Near perfect demixing would be possible if the true masks were known [Yilmaz and

Rickard, 2004]. In practice, Mk(ω, t) needs to be estimated. This can be achieved

by comparing the power at the beamformer outputs Y1(ω, t) and Y2(ω, t) and then al-

locating the time-frequency unit (ω, t) to the stronger output [Himawan et al., 2008],

where

M̂k(ω, t) =

1, |Yk(ω, t)|2 ≥ |Yl(ω, t)|2 ∀ l

0, otherwise
. (7.3)
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The performance of binary masking can be improved in practice in two steps: (1)

smoothing |Yk(ω, t)|2 over time by convolving with a triangular filter kernel and (2)

through Welsh averaging of the smoothed masks M̂k(ω, t). This results in

M̄k(ω, t) = α M̄k(ω, t−1)+(1−α) M̂k(ω, t) (7.4)

with α = 0.9. Yilmaz and Rickard [2004] found that the optimum window length for

time-frequency masking is about 1024–2048 samples (at a sampling rate of Fs = 16 kHz).

We therefore used an FFT of length L = 2log2(F/32) with a window shift of L/32.

7.3.3 Residual echo suppression

Residual echo suppression is an alternative method to suppress the second of two over-

lapping speakers when carrying out speech recognition for one speaker. Enzner et al.

[2002] define residual echo as the remainder of insufficient echo cancelling in hands-

free telephone equipment. They propose that residual echo suppression is performed

in two stages: first the residual echo is estimated using the coherence function after

which it is suppressed using Wiener filtering.

Siegwart et al. [2012] found that residual echo suppression, used as a special speech

separation post-filter, leads to improved speech separation and WER on the overlap-

ping speaker task of the MC-WSJ-AV corpus.

In the first step, the cross-power spectral density (CSD) Φ̄y1y2 and the power spectral

densities (PSD) Φ̄y1y1 and Φ̄y2y2 are calculated from the instantaneous CSD and PSD

Φ values using Welsh averaging, as

Φ̄(ω) = α Φ̄(ω)+(1−α) Φ(ω) (7.5)

with α set so as to get a decay time of 25 ms (for best performance as per Siegwart

et al. [2012]), taking account of the sample rate of the input audio signal and the FFT

frame size and shift.
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The coherence γy1y2 between Y1 and Y2 can now be calculated as

γy1y2(ω) =
Φ̄y1y2(ω)√

Φ̄y1y1(ω)Φ̄y2y2(ω)
. (7.6)

The residual part of Yi that is contained in Y j is then approximated as

R̂i(ω) = γy1y2(ω) ·Y j(ω), j 6= i. (7.7)

Replacing |Yi|2 with Φ̄y jy j , the residual power Φ̂riri can be obtained by taking the mag-

nitude square as

Φ̂riri(ω) =
|Φ̄y1y2(ω)|2

Φ̄y1y1(ω)Φ̄y2y2(ω)︸ ︷︷ ︸
=|yy1y2 |

2

Φ̄y jy j(ω). (7.8)

Given the power spectrum of the residual echo, the Wiener filter equation can be sol-

ved, i.e. the clean speech power Φsisi is estimated as (Φyiyi−β Φ̂riri) where β denotes

the residual overestimation factor. The Wiener filter transfer function is therefore:

Hi(ω) =
max(Φ̄yiyi(ω)−β Φriri(ω),0)

Φ̄y jy j(ω)
, i ∈ {1,2} (7.9)

with β = 0.8 (for best performance as per Siegwart et al. [2012]).

Hi(ω) is then multiplied by the corresponding beamformer output Yi as per Equa-

tion 2.18.

7.3.4 Speaker localisation with a superdirective SRP-PHAT

Speaker localisation is the estimation of an acoustic point source given multiple micro-

phones and their positions. This section looks at speaker localisation using the SRP-

PHAT as defined above in Section 2.1.4.

Previously (cf. Section 2.1.4) I stated that:

“For source localisation using the SRP, a simple delay-sum beamfor-
mer searches a predefined spatial region looking for peaks in the power
spectrum.”
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The SRP can therefore be calculated as per Equations 2.14 and 2.15 (repeated here for

readability) as:

P(qqq) =
∫ +∞

−∞

|Y (ω)|2dω (7.10)

The location estimate is then found from

q̂qqs = argmax
qqq

P(qqq) (7.11)

One location estimate is calculated for the WSJ data sets while two estimates are re-

quired for the MSWSJ data sets. Single and multiple speaker localisation are looked

at next.

7.3.4.1 Multiple speaker localisation with superdirective SRP-PHAT

We propose using a superdirective variant of the steered response power with phase

transform (SRP-PHAT) method described by DiBiase [2000] and DiBiase et al. [2001]

to localise multiple speakers. The original SRP-PHAT is briefly revisited here in order

to explain the novel approach (c.f. Section 2.1.4). Our method essentially steers a

DSB into each possible direction a1(φ,θ) and then calculates the total power at the

beamformer output as

P1 {aaa1(φ,θ), t}=
∫

∞

−∞

‖wwwH(ω) · X̃XX(ω, t)‖2dω (7.12)

where

X̃i(ω, t) =
Xi(ω, t)
|Xi(ω, t)|

. (7.13)

X̃i(ω, t) is a whitened version of Xi(ω, t) and wwwH(ω) for the DSB can be calculated as

per Equations 2.6, 2.7 and 7.1.

Once the whole range

θ ∈ [0,2π], φ ∈ [−π/2,π/2] (7.14)
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has been scanned, the speaker is assumed to reside at that location a1(φ,θ) where

P{a1(φ,θ), t} is maximised.

The idea of the newly proposed superdirective SRP is now to simply replace the weight

vector w(ω) of the DSB by that of a SDB as per Equation 2.10. This should in principle

improve the localisation in reverberant environments.

Figure 7.1 (a) shows an SRP for two active speakers speaking with similar energy levels

while (b) shows the SRP where the second speaker is hidden by either a sidelobe of

the first one or speaks at a much reduced energy level.

(a) Two equal speakers (b) One dominant speaker

Figure 7.1: SRP map for dual speaker localisation showing two equal vs. one dominant

speaker

Unfortunately, scenario (b) is more often found in practice than (a) and our proposed

‘multiple speaker localisation method using superdirective SRP’ needs to be modified

for improved robustness, as described in the next Section 7.3.4.2.

7.3.4.2 Robust multiple speaker localisation

As shown in Figure 7.1 (b), the maximum SRP as per Equation 7.12 usually only

produces one active speaker as the second active speaker is suppressed by the first one.

We therefore propose a novel robust multiple speaker localisation method.

Once the location of the first (stronger) speaker has been found, we perform a second

SRP iteration in which one beamformer w1 is fixed on the position of the first speaker.

A second beamformer w2 scans all possible directions for the second speaker. During
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calculation of the response power
∫
|Y2(ω, t)|2dω in a particular direction, the effect of

the first speaker is cancelled by processing the output

Y2(ω, t) = wH
2 (ω)X̃(ω, t) (7.15)

with the binary masking method presented in Section 7.3.2. This effectively restricts

the localisation to those time-frequency units which are not used by the first speaker.

The SRP of the second speaker is therefore calculated as:

P2 {a2(φ,θ), t}=
∫

∞

−∞

M̂2(ω, t) · ‖wH
2 (ω) · X̃(ω, t)‖2dω (7.16)

with a2(φ,θ) scanning all possible directions.

In a similar way to Equation 7.3, the mask M̂2(ω, t) is set to 1 if the output power

|Y2(ω, t)|2 of the second (scanning) beamformer exceeds the output power |Y1(ω, t)|2

of the first beamformer (which is fixed on the first speaker). The mask is otherwise set

to 0.

The proposed method is remotely related to cancelling the GCC peaks corresponding

to the first speaker, as presented by Oualil et al. [2012].

Figure 7.2 (a), which is identical to Figure 7.1 (a), shows the results from the first SRP

map while Figure 7.2 (b) shows the second SRP map after the first speaker has been

masked.

Note that for WSJ data sets, the proposed method is being used to search for the po-

sition of one speaker, while for the MSWSJ data sets two speakers need to be located.

The proposed algorithm will find the number of peaks (and therefore speakers) which

it is set to look for, independently of the number of active speakers. Finding the true

number of active speakers, particularly on a frame basis, is an open research problem

as stated earlier (cf. Section 7.2).

7.4 Experiments

The proposed algorithms were verified on the WSJ and MSWSJ data sets of the 2012 MMA

corpus (see Chapter 4 for a detailed description). Two research questions were addres-

sed in the proposed speech separation experiment: (1) taking the recordings from both
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(a) First SRP map (b) Second SRP map - after masking the first speaker

Figure 7.2: Robust speaker localisation using the newly proposed two-pass SRP and

masking method

the IMR and the hemi-anechoic chamber, what is the effect of adding noise and rever-

beration to the interfering speech of the two speakers in a meeting room (T60 = 180 ms,

Steve Renals and Mike Lincoln, personal communication, 2012) and an almost noise-

less and reverberation-free environment and (2), using the 20 cm and 4 cm microphone

arrays, what is the effect of the reduced diameter of the array on the speaker localisation

and speech separation performance? The reduction in the dimension of the microphone

array is compensated by increasing the microphone sample rate1.

In order to verify these algorithms, the speech output quality was measured as WER on

the ASR performance. This is a much more practical measure for human understanding

of the results than verifying a speech separation system by giving SNR and speech

perception figures or the precision of the localisation.

The speech recognition results presented here were produced following the same setup

described in Zwyssig et al. [2010] to ensure validity of the experimental data and in

order to be able to compare the results. Baseline experiments were also carried out with

the MC-WSJ-AV corpus. This corpus was recorded with the eight-channel analogue

array with a diameter of 20 cm, the same array as used for the 2012 MMA corpus.

The recordings from the WSJ and MSWSJ data sets were processed as illustrated in

Figure 7.3.

1Note that the audio signal sample rate was increased by a factor of six from the DMMA.2 to the
DMMA.3 while the dimension was only reduced by a factor of five. This is not expected to cause any
difficulty and will be analysed in the upcoming experiments.
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Figure 7.3: Flow diagram for speech separation and ASR experiment

First, sound source localisation was carried out with the newly proposed method using

the audio signals from the eight channels. Beamforming and post-filtering was then

performed and one or two speakers were extracted from the audio inputs. Speech

recognition was carried out on the post-filtered signal and acoustic model adaptation

performed using the adaptation recordings. Recognition and scoring were conducted

with a context-dependent GMM-HMM system using the HTK toolkit.

Note that no filtering is applied to the audio signal before performing localisation,

therefore guaranteeing no modification of the input audio signal phase for best locali-

sation performance.

There is an acoustic mismatch between the WSJCAM0 training data and the micro-

phone array recordings which form the test data. To address this we used the adaptation

sentences recorded to carry out a two pass cMLLR adaptation of the model means and

variances, similar to my previous experiments (cf. Section 3.2.1 and [Zwyssig et al.,

2010]). We adapted the models to the individual channels and to the speakers, pooling

the 17 adaptation sentences recorded by each speaker. The recognition experiments

were then performed on the 5,000 word (closed vocabulary) sub corpus of WSJCAM0

from the matched array.

Modifications were necessary for the overlapping speaker experiments because the

identity and position of the individual speakers were not known. cMLLR adaptation

was therefore carried out for a speaker pair and not the individual speakers. This is

necessary because the identity of the individual speakers of the MSWSJ data sets is

not known a priori unless speaker identification has been carried out.



156 Chapter 7. Speech separation

7.5 Results and discussion

This section presents the results and discussion of the proposed speaker localisation

and speech separation algorithms. First, the localisation performance is shown follo-

wed by the presentation of the WER of the experiments and a detailed analysis.

Correct localisation is not the prime objective of our proposed speaker localisation

algorithm. The main aim is to direct one acoustic beam for single speaker and two

acoustic beams for overlapping speakers into the direction of arrival of the sound for

best speech recognition performance. It is nevertheless interesting to see how the lo-

calisation performs. This is illustrated in Figure 7.4.

Figure 7.4 shows that the proposed robust speaker localisation is working well, inde-

pendent of the array geometry or audio sample rate. The localisation accuracy in the

azimuth is correct within±2◦ while the elevation accuracy varies much more. The ele-

vation accuracy is not so precise because the microphone arrays used are flat, therefore

not allowing good elevation resolution, as shown in Figures 7.1 and 7.2. Figures (a)-(e)

show the speaker locations detected for the speakers T8 and T9 from the MSWSJ data

set and (f) shows the location for the speaker T9 from the MC-WSJ-AV stat data set.

Speaker T9 is reading prompts from 6 different positions, which is clearly visible in

the figure.

Good azimuth accuracy is much more important for better acoustic beamforming than

elevation accuracy, particularly for beamforming at higher audio frequencies. Looking

at Figure 2.1 (cf. Section 2.1) we can see that the acoustic beam is much narrower

for higher audio frequencies. A deviation of the localisation in the azimuth will lead

to an attenuation and distortion of the audio signal and subsequent degradation on

speech separation. Localisation in the elevation is less important as the audio beam is

much wider and therefore less sensitive to errors (see Figures 7.1 and 7.2) allowing the

speakers to sit or stand without localisation degradation.

Speaker localisation using SRP-PHAT is a means of acoustic scene analysis which

searches for the peaks in the acoustic power map. Multiple sources will appear as

multiple peaks where we find a main and possibly several competing sources. The

main source can be a person while an overlapping speaker is a competing source.

Depending on the acoustic properties (such as reverberation time) of the room where

the localisation is carried out, other sound sources will appear. One possible source is
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(a) Analogue microphone array (20 cm 16 kHz) (b) Analogue microphone array (4 cm 96 kHz)

(c) Digital microphone array (20 cm 16 kHz) (d) Digital microphone array (4 cm 96 kHz)

(e) Digital microphone array (4 cm 48 kHz) (f) Analogue microphone array (20 cm 16 kHz)

Figure 7.4: Speaker localisation distributions using the proposed robust speaker locali-

sation algorithm for the five different microphone arrays with two speakers (a-e) and for

a single moving speaker with one microphone array (f). Green circles show the position

of the first speaker, blue circles show the position of the second speaker.



158 Chapter 7. Speech separation

“ghosts” in the SRP map which may be generated by constructive interferences in the

acoustic map domain. Determining whether a peak in the SRP map is a real speaker or

an interference is an open research problem [Brutti et al., 2010].

We have analysed every recording of single and overlapping speech and in no case

did the proposed localisation algorithm fail to detect the correct position of the one

or two speakers. The acoustics in the IMR and hemi-anechoic chamber where the

recordings for the 2012 MMA corpus were carried is very good, resulting in fault-free

localisation.

Speech recognition performance is looked at next.

First, we compared our algorithm with the baseline results achieved on the MC-WSJ-

AV corpus, specifically on the single and overlapping tasks (cf. Section 2.5.2).

State-of-the-art speech recognition performance using the single stationary speaker

data of the MC-WSJ-AV corpus is 12.2% WER [Kumatani et al., 2012]. Our results

on the single speaker data (2012 MMA, WSJ, see Table 7.2), ranging from 13-25%,

are in line with those for all five microphone arrays using simple cMLLR adaptation2.

Word error rates achieved for the overlapping speech recognition task (olap) of the

MC-WSJ-AV corpus are presented in Table 7.1.

Table 7.1: Overlapping speaker WER [%] from the ASR experiments on the MC-WSJ-

AV corpus

Adaptation None channel speaker & channel

WER [%] WER [%] WER [%]

SDB 90.3 67.2 67.2

SDB+ZPF 87.6 63.2 63.2

SDB+RES 81.7 55.3 58.9

SDB+BM 73.8 46.3 48.6

SDB denotes superdirective beamforming on the two speaker locations, SDB+ZPF su-

perdirective beamforming followed by Zelinski postfiltering [Zelinski, 1988], SDB+RES

superdirective beamforming followed by residual echo suppression and SDB+BM su-

perdirective beamforming followed by binary masking. Note that [%] WER figures

reported in Table 7.1 averaged for nine speaker pairs.

2Note that the digital MEMS microphone array DMMA.2 (d = 20 cm, Fs = 16 kHz) is a prototype
only and shows increased noise and therefore also increased WER. The issues have been resolved with
the new array DMMA.3 (d = 4 cm).
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For the overlapping speaker scenario Himawan et al. [2008] achieved a 58% WER for

both speakers and 40% for the better speaker. McDonough et al. [2008a] achieved a

39.6% WER using a sophisticated 4-pass ASR system. Our best result of 46.3 % WER

for SDB+BM, achieved with simple two-pass MLLR adaptation, outperforms the si-

milar system presented by Himawan et al. [2008] but cannot match the recognition

performance of the sophisticated 4-pass ASR system by McDonough et al. [2008a].

Next, the performance of the proposed speech separation algorithms was analysed on

the WSJ and MSWSJ data sets of the 2012 MMA corpus. The WERs achieved are

presented in Table 7.2.

Our results on the WSJ data sets using superdirective beamforming (SDB) are simi-

lar to previous results achieved on the first DMMA.1 [Zwyssig et al., 2010], where

I demonstrated that simple cMLLR adaptation to the channel (i.e. microphone array

type) can be used to achieve almost identical speech recognition performance. The

WERs using SDB only can be improved by a few percent using Zelinski postfilte-

ring (SDB+ZPF). Using speaker and channel adaptation the WERs obtained from the

different microphone arrays are very closely matched.

For the multi-speaker MSWSJ speech separation task we achieved a lowest WER of

around 35%, again only using simple cMLLR adaptation to the channel. These results

were obtained with both residual echo suppression (RES) and binary masking (BM).

The best results were achieved by using SDB and residual echo suppression (SDB+RES)

or binary masking (SDB+BM). Residual echo suppression appears to be more effective

for analogue microphones, while binary masking works better for the MEMS micro-

phones. Speaker and channel adaptation is not effective for overlapping speech recog-

nition due to the data not being from one, but two speakers. Channel-only adaptation

is more effective as there is more adaptation data.

Next, a detailed analysis of the results presented in Table 7.2 is carried out. This is

done using boxplots for easier evaluation of the results, where the median is shown as

the interface between the brown and red boxes, the lower quartile as a brown box, the

upper quartile as a blue box and the minimum and maximum WER as whiskers.

Figures 7.5, 7.6 and 7.7 present a detailed analysis of the WERs for the four algorithms

SDB, SDB+ZPF, SDB+RES and SDB+BM on the WSJ and MSWSJ data sets of the

2012 MMA corpus.
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Table 7.2: [%] WER results from the ASR experiments on the single (WSJ) and over-

lapping speaker (MSWSJ) data sets (from the 2012 MMA corpus) in an IMR and hemi-

anechoic chamber

Corpus WSJ (IMR) WSJ (hemi-anechoic)

Microphone array Analogue Digital Analogue Digital

diameter [cm] 20 4 20 4 4 20 4 20 4 4

Fs [kHz] 16 96 16 96 48 16 96 16 96 48

WER WER WER WER WER WER WER WER WER WER

Adaptation [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

SDB None 23.2 26.3 45.3 32.3 29.4 18.0 20.6 37.1 21.1 20.8

cMLLR (channel) 17.9 18.2 29.7 21.4 20.0 16.4 17.6 26.3 17.9 17.9

cMLLR (speaker & channel) 16.1 17.3 25.6 19.7 18.2 14.4 15.8 24.9 15.0 15.6

SDB+ZPF None 21.8 26.3 35.3 33.0 29.6 18.0 20.5 36.1 21.0 20.7

cMLLR (channel) 16.8 18.1 19.3 21.7 20.0 17.0 16.8 25.9 17.9 18.0

cMLLR (speaker & channel) 13.9 17.0 18.7 20.1 18.2 14.7 14.9 23.8 14.9 15.6

Corpus MSWSJ (IMR) MSWSJ (hemi-anechoic)

SDB None 93.4 105.0 97.2 108.8 108.6 93.7 104.8 97.8 107.9 104.7

cMLLR (channel) 66.7 81.5 64.1 80.9 82.1 67.6 79.4 60.0 81.7 80.0

cMLLR (speaker & channel) 67.7 83.6 63.0 85.8 85.9 67.4 81.4 59.4 83.1 82.3

SDB+ZPF None 88.2 102.7 90.2 105.4 107.2 90.4 102.9 94.2 106.3 102.8

cMLLR (channel) 56.2 77.1 43.2 78.7 79.5 64.3 76.7 59.1 78.9 77.8

cMLLR (speaker & channel) 55.8 80.5 43.5 81.5 83.4 64.5 78.7 58.4 79.6 80.2

SDB+RES None 65.3 66.2 72.5 66.9 64.9 58.8 65.2 71.8 72.0 63.9

cMLLR (channel) 35.4 36.3 39.4 31.9 34.1 30.9 37.6 44.5 49.0 37.8

cMLLR (speaker & channel) 36.1 37.0 40.8 35.0 36.1 32.4 43.1 45.2 50.8 39.1

SDB+BM None 59.9 63.2 58.4 60.3 60.3 61.9 75.8 66.6 71.8 62.9

cMLLR (channel) 31.9 35.8 32.7 33.5 33.5 40.3 47.0 42.4 46.2 42.6

cMLLR (speaker & channel) 34.3 38.7 34.9 35.4 35.2 39.4 48.0 42.8 48.5 44.0
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(a) SDB (b) SDB and Zelinski postfiltering

Figure 7.5: [%] WER of the speech recognition experiments on the IMR WSJ data set

(2012 MMA corpus)

Figure 7.5 compares the WER performance using (a) SDB and (b) SDB+ZPF proces-

sing on the WSJ data set. The type of adaptation is indicated as ‘None’ for no adap-

tation, ‘cMLLR (ch)’ for microphone channel adaptation and ‘cMLLR (ch+spk)’ for

channel and speaker adaptation. For ‘cMLLR (ch)’ adaptation all adaptation sentences

for a microphone array type are pooled for the model adaptation while for ‘cMLLR

(ch+spk)’ the adaptation sentences for the individual microphone array and speaker

are pooled for the adaptation.

The microphone array type is indicted as <type> <diameter> <Fs>. a 20 16 is

therefore the analogue microphone array with a diameter of 20 cm, sampled at 16 kHz

while d 4 96 is the digital microphone array with a diameter of 4 cm, sampled at

96 kHz, i.e. the DMMA.3.

For the WSJ data sets, cMLLR adaptation leads not only to an improved mean and

median WER, but also to a significantly lower deviation. This is also the case for the

MC-WSJ-AV data set presented in Table 7.1 and the first experiments on the DMMA.1

presented in Zwyssig et al. [2010].

Figure 7.6 (a) and (b) and Figure 7.7 (a) compare the different postfiltering methods on

the MSWSJ data set. As stated above, SDB+RES and SDB+BM achieve best WERs

on the speech separation task. While the average values of the two schemes are com-

parable, the variance of the WERs is almost half using binary masking compared to

residual echo suppression.

Finally, Figure 7.7 (a) and (b) compare the WERs of the binary masking method

(SDB+BM) from a meeting room (IMR) and a hemi-anechoic chamber. Intuitively,
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(a) SDB and Zelinski postfiltering (b) SDB and residual echo suppression

Figure 7.6: [%] WER of the speech separation experiments on the IMR MSWSJ data

set (2012 MMA corpus)

(a) SDB and binary masking in IMR (b) SDB and binary masking in hemi-anechoic chamber

Figure 7.7: [%] WER of the speech separation experiments when performing binary

masking on the MSWSJ data (2012 MMA corpus)

the WER performance in an echo-free environment should be better than in a ‘normal’

meeting room. Looking at the results presented here, the contrary could be concluded,

i.e. that the performance in the IMR is better than in the hemi-anechoic chamber.

Unfortunately, the WER results in the hemi-anechoic chamber are affected by an out-

lier, shown by crosses in Figure 7.7 (b). If the outlier is removed from the statistics,

as shown in Figure 7.7, then it becomes apparent that the type of room neither de-

grades nor improves the speech separation performance. This could also be explained

by the fact that the IMR has been designed for best possible reverberation, as reflec-

ted by the very low reverberation time of T60 = 180 ms (compared to a recommended

reverberation time of 0.6 to 1 second for a conference room3).

3http://www.acoustics.com/conference_room.asp

http://www.acoustics.com/conference_room.asp
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Note that the results reported here are averages of six speaker pairs. We observed that

the WER for one speaker is usually significantly better then for the other one, e.g.

the reported WER of 31.5% for the analogue microphone array of 20 cm diameter is

a product of the average of 15% WER for the first better speaker and 57.2% WER

for the second speaker. This has previously been observed during speech separation

experiments on the MC-WSJ-AV corpus [Himawan et al., 2008].

Figure 7.8 shows the comparison of the average of two speakers (a) and the best

speaker (b).

(a) Two speakers (b) Better speaker

Figure 7.8: Comparison of WERs of two speakers vs. the better speaker alone on the

IMR MSWSJ data (2012 MMA corpus)

7.6 Summary and conclusions

This chapter looked at overlapping speech separation in different acoustic environ-

ments using microphone arrays built from digital MEMS and analogue microphones.

First, a review of the detection and separation of overlapping speech was presented.

I showed that detecting overlapping speech is a difficult problem and that approaches

based on acoustic models have had limited success so far, both in determining regions

of overlapping speech and the number of overlapping speakers.

Next, algorithms for speech separation, i.e. acoustic beamforming and postfiltering

were reviewed. Assuming that the regions of overlapping speech and the number of

sound sources are known, then acoustic beamforming alone is not sufficient to separate

the speakers but postfiltering of the speech signals is also required. This section there-

fore reviewed acoustic beamforming and presented multiple postfiltering techniques,
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i.e. residual echo suppression and binary masking.

After this, a novel algorithm to locate multiple speakers using binary masking was

presented.

This novel algorithm and the different postfiltering techniques were verified on the

MC-WSJ-AV and 2012 MMA corpora. All experiments were carried out following

the setup used for the MC-WSJ-AV corpus in order to guarantee their validity and

to compare the results with the state-of-the-art. Our speech separation experiments

were carried out by performing ASR and simple constrained MLLR adaptation on

the speech output, therefore allowing comparison of the results as WERs, a practical

measure for human understanding.

We found that our newly proposed multiple speaker localisation algorithm works very

well and that postfiltering is essential for good speech separation. Our experiments

show that binary masking and residual echo suppression perform best and that the

different methods produce similar results in an IMR and hemi-anechoic chamber.

To summarise, we demonstrated that the 2012 MMA corpus is a valuable extension

to the existing MC-WSJ-AV corpus, allowing research in speech separation on natu-

ral speech using recordings from five different microphone arrays, including MEMS

microphones. Using state-of-the-art speech separation, acoustic beamforming tech-

niques, post-filtering and simple constrained MLLR adaptation, we have obtained ba-

seline WERs in line with the state-of-the-art on the distant single speaker task, and de-

monstrated improved recognition accuracy on the overlapping speech separation and

recognition task.



Chapter 8

Summary, conclusions and outlook

The main objective of this thesis was to study the effects of the increased self-noise (or

decreased SNR) of digital MEMS microphones in speech processing applications.

MEMS microphones are in the process of replacing conventional analogue micro-

phones in consumer electronic devices such as smartphones, tablets and mobile com-

puters. These devices use speech processing extensively and it is therefore important

to analyse how existing speech processing methods and algorithms can be adapted to

audio data recorded with MEMS microphones.

The principal research question I aimed to answer was therefore:

What are the effects of the increased self-noise of MEMS microphones on
state-of-the-art voice activity detection, speaker diarisation, speech recog-
nition and speech separation methods?

This thesis has shown that the decreased SNR does not affect voice activity detection

or speaker diarisation and that well established speaker adaptation techniques such

as MLLR are sufficient to adapt existing acoustic models (trained on clean speech)

to the new acoustic environment and higher noise of speech recorded using MEMS

microphones.

No public MEMS microphone speech corpora existed before work on this thesis star-

ted. Multiple experiments were therefore designed using four different microphone

arrays, two of which were newly developed and manufactured. The newly manufactu-

red arrays are the DMMA.2 and DMMA.3.

These microphone arrays were built using two different microphone types (analogue

165
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capacitive and digital MEMS) and two different microphone array geometries (20 cm

and 4 cm). The larger geometry would typically be found in an instrumented meeting

room and the smaller one on a mobile device. The audio from the four arrays was

sampled at three different sampling rates in order to compensate for the smaller array

geometry (16 kHz for 20 cm and 48 kHz/96 kHz for 4 cm), therefore allowing good

spatial resolution for superdirective acoustic beamforming.

The microphone arrays with a diameter of 20 cm were used to record a corpus of six

meetings from which 72 minutes were annotated for speaker diarisation experiments.

Later, after designing the DMMA.3 and its analogue counterpart, these were used to

record the 2012 MMA corpus. The 2012 MMA corpus contains four subsets. These

are (1) read WSJ sentences from a single stationary speaker (WSJ dataset); (2) read

WSJ sentences from two overlapping speakers (MSWSJ dataset); four or six statio-

nary speakers playing Settlers of Catan (Settlers dataset); and (4) four mobile speakers

playing Warhammer 40,000 (Wargames dataset). The WSJ, MSWSJ and Settlers da-

tasets were recorded in an instrumented meeting room and a hemi-anechoic chamber.

The Wargames dataset was recorded in an instrumented meeting room and the players

wore location tracking devices.

The AD IMR meeting corpora contains confidential information and is only accessible

to researchers at the University of Edinburgh. The 2012 MMA corpus was recorded

with the aim of allowing unrestricted access to the wider research community and I am

working with the LDC to release the recordings.

Using existing meeting recordings provided by the NIST RT challenges and the newly

recorded MEMS microphone corpora (AD IMR and 2012 MMA) I analysed the fol-

lowing speech processing methods:

• voice activity detection (VAD)

• speaker diarisation

• speech recognition

• speech separation

Voice activity detection: using the NIST RT data, an analysis and comparison of well-

known, commonly used and novel VAD methods for speaker diarisation and speech

recognition was carried out. It transpired that great care is required when designing
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a VAD algorithm in order for it to perform better than without VAD, especially in

meetings. The results showed that VAD based on Gaussian mixture models (GMM)

and multilayer perceptrons (MLP) performs significantly better than methods based on

speech activity level or speech periodicity. Overall MLPs perform best on the NIST

RT07 and RT09 evaluation data, both in terms of the lowest mean and lowest variance.

Speaker diarisation: The AD IMR meeting corpus was recorded and annotated in

order to carry out speaker diarisation experiments. These experiments compared (1)

the analogue microphones and digital MEMS microphones (DMMA.2) and (2) two

different acoustic beamformers and TDOA smoothing techniques. It was shown that

the digital MEMS microphone array achieves identical diarisation performance to the

analogue array, that TDOA smoothing leads to improved diarisation and that superdi-

rective beamforming is of no benefit to diarisation.

Identifying the number of speakers in a multi-party conversation is an important task

when carrying out speaker diarisation. This thesis presented a novel algorithm for

determining the number of active speakers in a meeting, given audio data recorded

using a microphone array of specified dimensions, i.e. known number of microphones

and their relative positions, and synchronised audio channels. The proposed algorithm

works well on the NIST RT corpora and provides an accurate number of active speak-

ers present in a meeting to downstream speaker diarisation, speaker identification and

speech recognition systems. The algorithm is also well suited to online processing.

Speech recognition and speech separation: a novel multiple speaker localisation

algorithm was presented and its performance measured along with the effect of three

different post-filtering schemes on the speech separation task using the WSJ and MSWSJ

datasets of the 2012 MMA corpus. Speech recognition and speaker adaption expe-

riments showed that the proposed algorithms performed comparably to state-of-the-

art speech recognition algorithms on the single speaker recognition tasks and outper-

formed state-of-the-art methods on the overlapping speech separation task.

The work presented on speech separation in this thesis is the outcome of collabo-

ration between Friedrich Faubel from Saarland University and myself in which we

have shown that our methods port well to speech recorded with digital MEMS and

analogue microphones in both a normal meeting room and a hemi-anechoic chamber

using simple cMLLR adaptation.

However, this thesis also highlighted that there are some unresolved issues.
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VAD and speaker diarisation performance varies greatly over different meetings. The

reasons for this are unknown and this thesis has shown that the amount of overlapping

speech and minimum, average and maximum speech segment length are not correlated

with the VAD and diarisation error rate.

In addition, the short average speech segment length of less than 1.5 s typically found

in meeting conversation remains a major problem for speaker diarisation systems.

The DER is also normally lower for state-of-the-art diarisation systems if the number

of speakers detected is overestimated and if short speech segments are ignored. Over-

estimating the number of speakers present in a conversation will cause problems for

downstream processes as does ignoring short speech segments. Neither of these issues

has been addressed so far.

This thesis has also shown that the problem of overlapping speech detection has not

yet been solved.

To summarise, the main contributions of this thesis are:

• a study of VAD algorithms on meeting recordings

• a comparison of speaker diarisation performance using analogue and MEMS

microphone arrays and different acoustic beamforming and TDOA smoothing

methods

• the development of a novel algorithm to determine the number of active speakers

in a meeting recorded using a microphone array of known geometry

• the development of a novel overlapping speaker localisation method (by F. Fau-

bel) and a study of speech separation using analogue and MEMS microphone

arrays and different acoustic beamformer post-filtering methods

• a corpus of read and conversational speech using analogue and MEMS micro-

phone arrays and speaker localisation equipment
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8.1 Outlook

Nowadays it is considered normal to use speech activated Internet search on mobile

devices to e.g. find a particular tourist attraction while exploring a foreign city. Many

also control their computers using oral commands and dictate e-mails and letters on a

daily basis.

The speech technology required for voice activated search and dictation is gradually

finding its way into business life and many people look forward to seeing their meetings

recorded and analysed, relieving them of the chore of manually typing meeting minutes

and lists of actions and decisions. The armed forces, police, fire brigade and health

care professionals in particular require meetings to be recorded for analysis or future

reference. These groups will also want to have instant access to records of past events

during meetings.

Speech acquisition for speech processing technologies is changing from close talk-

ing or headset microphones to distant microphones, as observed by the AMI/AMIDA

consortium.

MEMS microphones are omnipresent in todays’ mobile devices such as smartphones,

tablets and ultrabooks, laptops, headsets, gaming, cameras, televisions, hearing aids,

etc. and have found their way into all speech processing domains so it is to be hoped

that the analyses, methods and corpora presented here will be useful beyond this thesis.

Audio processing on mobile devices – using MEMS microphones or not – is also

moving from mono to stereo or three channels. Smartphones today have at least two

microphones, one in the region of the mouth and one or two on the opposite side, allow-

ing advanced methods for e.g. noise suppression and echo cancelling. The research

presented in this thesis made use of many, i.e. usually eight microphone channels.

Adapting and testing the proposed methods and algorithms to two or three channels

would expand their range of application.

Another trend is the incorporation of audio and video information for improved speech

processing. Our speaking habits and gestures contain much useful information which

could and should be exploited for e.g. better meeting analysis. This requires sophisti-

cated video processing techniques which are known to suffer from harsh environments

such as low or degraded video quality, varying lighting conditions or speaker feature

detection in the presence of facial hair or (reflections from) glasses.
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Nevertheless, video features are essential for conversation analysis and have therefore

been included in all corpora presented in this thesis. Audio and video features can

easily complement each other for best performance and should ideally be combined

in the instrumented meeting room in a briefcase. The IMR in a briefcase would be

a self-contained box performing high-quality audio and video recording as well as

screen capture, and output the data in pre-processed compressed form for downstream

processing and machine and human analysis.

I would therefore like to suggest several ways in which the tools and techniques pre-

sented in this thesis might be extended for further investigation, such as:

• Speaker localisation performance in the elevation would improve if the micro-

phone array contained a 3D element. Adding an extra microphone to the DMMAs

which is not in the horizontal plane could be a requirement for the design of the

DMMA.4.

• The DMMAs could be extended to fulfill the requirements of the IMR in a brief-

case by adding video recording capabilities. Two problems that would need to

be addressed for this are: (1) choosing a video camera and a lens which allow

panoramic recording and (2) transferring the large amounts of video data to the

recording equipment.

• The corpora used for this thesis and for the rich transcription of meetings contain

both audio and video data. Audio-visual (AV) processing could be used to in-

crease the performance of VAD, speaker diarisation, speaker localisation, etc.

• The Settlers and Wargames components of the 2012 MMA corpus promise in-

teresting new problems for AV VAD, speaker diarisation, speaker localisation,

etc., one of which is overlap detection.

• Our work on speech separation showed good performance but did not look into

overlapping speech detection. Overlap detection is an open research topic to

which the Settlers and Wargames data sets could contribute.



Appendix A

Consent forms

Participants of the recordings for the 2012 MMA corpus were asked to fill in a form

confirming that their recordings can be used for research. The form provided for the

AMI/DA meeting recordings was used for the WSJ, MSWSJ and (first) Settlers data-

sets while a modified form was used for the Wargames recordings. Later participants

of Settlers recordings were asked to fill in a newer form. These forms are attached

here.
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           AMI Meetings Corpus Consent Form   Version 1.1, October 8, 2004 

 
___________________________________________________________________________________________________  

 
Multi-modal research requires large amounts of acoustic recordings of spoken language, along with high quality video, and 
other multi-modal data recordings. Our goal is to compile such a corpus. This corpus will include a large number of Non-
Native-English-Speakers, and will therefore be unique from those compiled at other institutions.   
 
We are asking that when you participate in meetings in our specially equipped recording rooms, you allow us to record the 
meeting data. You may record multiple meetings, but will only need to complete this form once. Your participation is 
voluntary and you may stop at any point. The data will initially be used by the AMI Project Partners. It is possible however 
that at a later stage we will make some or all of the data available to the wider research community, in both transcribed and 
digitised formats. 

No one other than the project staff will have access to any forms you provide to us. However, your name and general 
demographics may be mentioned in the course of your meeting(s), and you may be recognisable to some people. For this 
reason it is impossible to completely guarantee anonymity for things you may say. Some general demographics are also 
typically included in the scientific documentation of corpora and in published findings (e.g. age, dialect information) 
however, under no circumstances will your name and contact information be divulged as part of the published demographic 
information.  

Please remember that comments you make about people or companies can defame them or invade their privacy, even if 
you/they are not specifically named but are still recognizable, so it is your responsibility to monitor your speech/behavior.    
If you are concerned about any of your data, please advise us immediately and we can arrange for you to review the 
meeting(s) online. On your request we can remove a part of a meeting.  
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

 

By signing this form, you agree to allow us to record you and accept responsibility for your conduct in the meeting(s). It is 
your responsibility to monitor your own speech and actions during the meeting(s), and advise us if any data should be 
removed.  
 
To indicate that you wish to participate as outlined above, please complete the following: 

 

I, (please print name)......................................................................................................................... 

have read this form, agree to its content and agree to take part in the research on these terms. 

Signature: ........................................................................ Date: ...................................................... 

Age: (optional)................................................................. Sex: ........................................................ 

 

Are you a native English speaker?    

  Yes, please indicate your country and region ................................................................................ 

  No, please indicate your native language...................................................................................... 

      How many months have you spent living in an English speaking country? ................................... 

      Which English speaking country have you lived in?..................................................................... 

       

Please list any other language influences (other languages spoken, dialects, etc) ................................ 

......................................................................................................................................................... 

 

Please provide your email address (or other contact information) so that we can contact you if 
necessary. 

......................................................................................................................................................... 

......................................................................................................................................................... 

......................................................................................................................................................... 

Figure A.1: AMI consent form used for 2012 MMA WSJ, MSWSJ and (first) Settlers data sets
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Multi-modal research requires large amounts of acoustic recordings of spoken language, along with high quality video, and 
other multi-modal data recordings. Our goal is to compile such a corpus. This corpus will include usage of digital MEMS 
microphones and speaker tracking technology, and will therefore be unique from those compiled at other institutions.  

We are asking that when you participate in our specially equipped recording rooms, you allow us to record the data. You 
may record multiple meetings, but will only need to complete this form once. Your participation is voluntary and you may 
stop at any point. The data will initially be used by the Universities of Edinburgh, Sheffield and their partners. It is possible 
however that at a later stage we will make some or all of the data available to the wider research community, in both 
transcribed and digitised formats. 

No one other than the project staff will have access to any forms you provide to us. However, your name and general 
demographics may be mentioned in the course of the recording, and you may be recognisable to some people. For this 
reason it is impossible to completely guarantee anonymity for things you may say. Some general demographics are also 
typically included in the scientific documentation of corpora and in published findings (e.g. age, dialect information). 
However, under no circumstances will your name and contact information be divulged as part of the published 
demographic information. 

Please remember that comments you make about people or companies can defame them or invade their privacy, even if 
you/they are not specifically named but are still recognizable, so it is your responsibility to monitor your speech/behaviour. 

If you are concerned about any of your data, please advise us immediately and we can arrange for you to review the 
recording(s) online. On your request we can remove parts. 
____________________________________________________________________________________________________ 

By signing this form, you agree to allow us to record you and accept responsibility for your conduct. It is your responsibility 
to monitor your own speech and actions during the recordings(s), and advise us if any data should be removed. 

To indicate that you wish to participate as outlined above, please complete the following: 

I, (please print name)......................................................................................................................... 
have read this form, agree to its content and agree to take part in the research on these terms. 

Signature: ........................................................................ Date: ..................................................................... 

Age: (optional)................................................................. Gender: ....................................................................... 

Are you a native English speaker? 

 Yes, please indicate your country and region ................................................................................ 

 No, please indicate your native language ...................................................................................... 
How many months have you spent living in an in an English speaking country? ......................... 
Which English speaking country have you lived in?....................................................................... 

Please list any other language influences (other languages spoken, dialects, etc) 
…………………………………………….......................................................................................................................... 

Please provide your email address (or other contact information) so that we can contact you if necessary. 

………………................................................................................................................................ ........................ 

Figure A.2: 2012 MMA Wargames gamers consent form
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University of Edinburgh, School of Informatics                                                     Speaker Release Form v3.1e 

 
 

Speaker Release Form 
 

 
Contributor’s Name: ................................................. 
 
Contributor’s Age ……………................................... 
 
Contributor’s Address: …………………………….... 
 
                                     ……………………………… 
 
                                     ……………………………… 
 

Date of Recording: ………………………………….. 

 

The University of Edinburgh, a charitable body registered in Scotland with registration No: 
SC005336, Old College, South Bridge, Edinburgh EH8 9YL (“the University”) will record audio and 
video of the Contributor taking part in game interactions with other participants for the purpose of 
speech and interaction data collection (“your Contribution”).   
 

1 You hereby agree to the recording of your Contribution and grant to the University all 
rights including, without limitation, copyright and performers’ property rights in your 
Contribution and all consents necessary to enable the University to make the fullest use 
of your Contribution worldwide, in perpetuity, in any and all media, whether now known 
or hereafter developed or discovered, without liability, further payment or 
acknowledgement to you.   

 
2 You acknowledge that the unscripted interactions being recorded during this data 

collection may include personal data (as defined in the Data Protection Act 1998) and 
you hereby grant the University permission to include the unscripted interactions in your 
Contribution, for the purposes set out in clause 1, above. Your name, age and address 
details from this form will not be stored as part of your Contribution. 

 
3 In return for providing your Contribution, the University shall pay you a fee of £7 (seven 

pounds Sterling), which shall be in full and final settlement of any payments that are or 
may be due to you howsoever arising.  No further sums of any nature for any reason 
shall be due to you for the provision of your service or the exploitation of your 
Contribution in any media at any time. 

 
4 You acknowledge that your Contribution will be used in connection with the research 

activities of the Centre for Speech Technology Research at the University’s School of 
Informatics.  

 
5 You acknowledge and agree that the University shall be entitled to use, edit, copy, issue 

or make available to the public, add to, adapt, exploit or translate your Contribution at 

Figure A.3: 2012 MMA Settlers gamers consent form (page 1/2)
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the University’s discretion.  In particular, you acknowledge that the University shall be 
entitled to commercially licence your Contribution and/or works derived from your 
Contribution and that the University may distribute your Contribution on a worldwide 
basis, including by means of the internet.  

 
6 In respect of your Contribution, you hereby irrevocably waive in favour of the University, 

its assignees and licensees, to the fullest extent permitted by law, the benefit of all moral 
rights and performers’ rights arising under the Copyright, Designs and Patents Act 1988 
or similar rights arising under the laws of any jurisdiction including, without limitation, the 
right to be identified as the performer in relation to your Contribution and the right to 
object to derogatory treatment of your Contribution. 

 
7 You acknowledge that the University does not necessarily undertake to broadcast or 

otherwise exploit your Contribution. 
 

8 You acknowledge that the University shall not be liable for any loss, damage or injury 
suffered by you in connection with your participation in the recording of your Contribution 
other than death or personal injury caused by the University’s negligence. 

 
9 The University’s rights hereunder may be freely assigned or licensed by the University. 

 
 

 
I hereby acknowledge and accept the above provisions of this release form. 
 
 
Signed ……………………………………… 
 
Date ………………………………………… 
 
 
 
 
 
Recording Supervisor’s name................................................................. 
 
Signed..................................................................................................... 

 
 
 
     

Figure A.4: 2012 MMA Settlers gamers consent form (page 2/2)
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