399 research outputs found

    Simultaneous asynchronous microphone array calibration and sound source localisation

    Full text link
    © 2015 IEEE. In this paper, an approach for sound source localisation and calibration of an asynchronous microphone array is proposed to be solved simultaneously. A graph-based Simultaneous Localisation and Mapping (SLAM) method is used for this purpose. Traditional sound source localisation using a microphone array has two main requirements. Firstly, geometrical information of microphone array is needed. Secondly, a multichannel analog-to-digital converter is required to obtain synchronous readings of the audio signal. Recent works aim at releasing these two requirements by estimating the time offset between each pair of microphones. However, it was assumed that the clock timing in each microphone sound card is exactly the same, which requires the clocks in the sound cards to be identically manufactured. A methodology is hereby proposed to calibrate an asynchronous microphone array using a graph-based optimisation method borrowed from the SLAM literature, effectively estimating the array geometry, time offset and clock difference/drift rate of each microphone together with the sound source locations. Simulation and experimental results are presented, which prove the effectiveness of the proposed methodology in achieving accurate estimates of the microphone array characteristics needed to be used on realistic settings with asynchronous sound devices

    Incorporation of acoustic sensors in the regulation of a mobile robot

    Get PDF
    This article introduces the incorporation of acoustic sensors for the localization of a mobile robot. The robot is considered as a sound source and its position is located applying a Time Delay of Arrival (TDOA) method. Since the accuracy of this method varies with the microphone array, a navigation acoustic map that indicates the location errors is built. This map also provides the robot with navigation trajectories point-to-point and the control is capable to drive the robot through these trajectories to a desired configuration. The proposed localization method is thoroughly tested using both a 900 Hz square signal and the natural sound of the robot, which is driven near the desired point with an average error of 0:067 m.This is an Accepted Manuscript of an article published by Taylor & Francis in Advanced Robotics on 01/01/2019, available online: http://www.tandfonline.com/10.1080/01691864.2019.1573703.”Peer ReviewedPostprint (author's final draft

    Localization of sound sources : a systematic review

    Get PDF
    Sound localization is a vast field of research and advancement which is used in many useful applications to facilitate communication, radars, medical aid, and speech enhancement to but name a few. Many different methods are presented in recent times in this field to gain benefits. Various types of microphone arrays serve the purpose of sensing the incoming sound. This paper presents an overview of the importance of using sound localization in different applications along with the use and limitations of ad-hoc microphones over other microphones. In order to overcome these limitations certain approaches are also presented. Detailed explanation of some of the existing methods that are used for sound localization using microphone arrays in the recent literature is given. Existing methods are studied in a comparative fashion along with the factors that influence the choice of one method over the others. This review is done in order to form a basis for choosing the best fit method for our use

    Audio Fingerprinting for Multi-Device Self-Localization

    Get PDF
    This work was supported by the U.K. Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/K007491/1

    Self-localization in Ad Hoc Indoor Acoustic Networks

    Get PDF
    The increasing use of mobile technology in everyday life has aroused interest into developing new ways of utilizing the data collected by devices such as mobile phones and wearable devices. Acoustic sensors can be used to localize sound sources if the positions of spatially separate sensors are known or can be determined. However, the process of determining the 3D coordinates by manual measurements is tedious especially with increasing number of sensors. Therefore, the localization process has to be automated. Satellite based positioning is imprecise for many applications and requires line-of-sight to the sky. This thesis studies localization methods for wireless acoustic sensor networks and the process is called self-localization.This thesis focuses on self-localization from sound, and therefore the term acoustic is used. Furthermore, the development of the methods aims at utilizing ad hoc sensor networks, which means that the sensors are not necessarily installed in the premises like meeting rooms and other purpose-built spaces, which often have dedicated audio hardware for spatial audio applications. Instead of relying on such spaces and equipment, mobile devices are used, which are combined to form sensor networks.For instance, a few mobile phones laid on a table can be used to create a sensor network built for an event and it is inherently dismantled once the event is over, which explains the use of the term ad hoc. Once positions of the devices are estimated, the network can be used for spatial applications such as sound source localization and audio enhancement via spatial filtering. The main purpose of this thesis is to present the methods for self-localization of such an ad hoc acoustic sensor network. Using off-the-shelf ad hoc devices to establish sensor networks enables implementation of many spatial algorithms basically in any environment.Several acoustic self-localization methods have been introduced over the years. However, they often rely on specialized hardware and calibration signals. This thesis presents methods that are passive and utilize environmental sounds such as speech from which, by using time delay estimation, the spatial information of the sensor network can be determined. Many previous self-localization methods assume that audio captured by the sensors is synchronized. This assumption cannot be made in an ad hoc sensor network, since the different sensors are unaware of each other without specific signaling that is not available without special arrangement.The methods developed in this thesis are evaluated with simulations and real data recordings. Scenarios in which the targets of positioning are stationary and in motion are studied. The real world recordings are made in closed spaces such as meeting rooms. The targets are approximately 1 – 5 meters apart. The positioning accuracy is approximately five centimeters in a stationary scenario, and ten centimeters in a moving-target scenario on average. The most important result of this thesis is presenting the first self-localization method that uses environmental sounds and off-the-shelf unsynchronized devices, and allows the targets of self-localization to move

    Spatial Sound Localization via Multipath Euclidean Distance Matrix Recovery

    Get PDF
    A novel localization approach is proposed in order to find the position of an individual source using recordings of a single microphone in a reverberant enclosure. The multipath propagation is modeled by multiple virtual microphones as images of the actual single microphone and a multipath distance matrix is constructed whose components consist of the squared distances between the pairs of microphones (real or virtual) or the squared distances between the microphones and the source. The distances between the actual and virtual microphones are computed from the geometry of the enclosure. The microphone-source distances correspond to the support of the early reflections in the room impulse response associated with the source signal acquisition. The low-rank property of the Euclidean distance matrix is exploited to identify this correspondence. Source localization is achieved through optimizing the location of the source matching those measurements. The recording time of the microphone and generation of the source signal is asynchronous and estimated via the proposed procedure. Furthermore, a theoretically optimal joint localization and synchronization algorithm is derived by formulating the source localization as minimization of a quartic cost function. It is shown that the global minimum of the proposed cost function can be efficiently computed by converting it to a generalized trust region subproblem. Numerical simulations on synthetic data and real data recordings obtained by practical tests show the effectiveness of the proposed approach

    Studies on noise robust automatic speech recognition

    Get PDF
    Noise in everyday acoustic environments such as cars, traffic environments, and cafeterias remains one of the main challenges in automatic speech recognition (ASR). As a research theme, it has received wide attention in conferences and scientific journals focused on speech technology. This article collection reviews both the classic and novel approaches suggested for noise robust ASR. The articles are literature reviews written for the spring 2009 seminar course on noise robust automatic speech recognition (course code T-61.6060) held at TKK

    Audio-based localization for ubiquitous sensor networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2005.Includes bibliographical references (p. 97-101).This research presents novel techniques for acoustic-source location for both actively triggered, and passively detected signals using pervasive, distributed networks of devices, and investigates the combination of existing resources available in personal electronics to build a digital sensing 'commons'. By connecting personal resources with those of the people nearby, tasks can be achieved, through distributed placement and statistical improvement, that a single device could not do alone. The utility and benefits of spatio-temporal acoustic sensing are presented, in the context of ubiquitous computing and machine listening history. An active audio self-localisation algorithm is described which is effective in distributed sensor networks even if only coarse temporal synchronisation can be established. Pseudo-noise 'chirps' are emitted and recorded at each of the nodes. Pair-wise distances are calculated by comparing the difference in the audio delays between the peaks measured in each recording. By removing dependence on fine grained temporal synchronisation it is hoped that this technique can be used concurrently across a wide range of devices to better leverage the existing audio sensing resources that surround us.(cont.) A passive acoustic source location estimation method is then derived which is suited to the microphone resources of network-connected heterogeneous devices containing asynchronous processors and uncalibrated sensors. Under these constraints position coordinates must be simultaneously determined for pairs of sounds and recorded at each microphone to form a chain of acoustic events. It is shown that an iterative, numerical least-squares estimator can be used. Initial position estimates of the source pair can be first found from the previous estimate in the chain and a closed-form least squares approach, improving the convergence rate of the second step. Implementations of these methods using the Smart Architectural Surfaces development platform are described and assessed. The viability of the active ranging technique is further demonstrated in a mixed-device ad-hoc sensor network case using existing off-the-shelf technology. Finally, drawing on human-centric onset detection as a means of discovering suitable sound features, to be passed between nodes for comparison, the extension of the source location algorithm beyond the use of pseudo-noise test sounds to enable the location of extraneous noises and acoustic streams is discussed for further study.Benjamin Christopher Dalton.S.M
    corecore