2,883 research outputs found

    Online quantum mixture regression for trajectory learning by demonstration

    No full text
    In this work, we present the online Quantum Mixture Model (oQMM), which combines the merits of quantum mechanics and stochastic optimization. More specifically it allows for quantum effects on the mixture states, which in turn become a superposition of conventional mixture states. We propose an efficient stochastic online learning algorithm based on the online Expectation Maximization (EM), as well as a generation and decay scheme for model components. Our method is suitable for complex robotic applications, where data is abundant or where we wish to iteratively refine our model and conduct predictions during the course of learning. With a synthetic example, we show that the algorithm can achieve higher numerical stability. We also empirically demonstrate the efficacy of our method in well-known regression benchmark datasets. Under a trajectory Learning by Demonstration setting we employ a multi-shot learning application in joint angle space, where we observe higher quality of learning and reproduction. We compare against popular and well-established methods, widely adopted across the robotics community

    Spatio-temporal learning with the online finite and infinite echo-state Gaussian processes

    Get PDF
    Successful biological systems adapt to change. In this paper, we are principally concerned with adaptive systems that operate in environments where data arrives sequentially and is multivariate in nature, for example, sensory streams in robotic systems. We contribute two reservoir inspired methods: 1) the online echostate Gaussian process (OESGP) and 2) its infinite variant, the online infinite echostate Gaussian process (OIESGP) Both algorithms are iterative fixed-budget methods that learn from noisy time series. In particular, the OESGP combines the echo-state network with Bayesian online learning for Gaussian processes. Extending this to infinite reservoirs yields the OIESGP, which uses a novel recursive kernel with automatic relevance determination that enables spatial and temporal feature weighting. When fused with stochastic natural gradient descent, the kernel hyperparameters are iteratively adapted to better model the target system. Furthermore, insights into the underlying system can be gleamed from inspection of the resulting hyperparameters. Experiments on noisy benchmark problems (one-step prediction and system identification) demonstrate that our methods yield high accuracies relative to state-of-the-art methods, and standard kernels with sliding windows, particularly on problems with irrelevant dimensions. In addition, we describe two case studies in robotic learning-by-demonstration involving the Nao humanoid robot and the Assistive Robot Transport for Youngsters (ARTY) smart wheelchair

    A Quantum-Statistical Approach Toward Robot Learning by Demonstration

    No full text
    Statistical machine learning approaches have been at the epicenter of the ongoing research work in the field of robot learning by demonstration over the past few years. One of the most successful methodologies used for this purpose is a Gaussian mixture regression (GMR). In this paper, we propose an extension of GMR-based learning by demonstration models to incorporate concepts from the field of quantum mechanics. Indeed, conventional GMR models are formulated under the notion that all the observed data points can be assigned to a distinct number of model states (mixture components). In this paper, we reformulate GMR models, introducing some quantum states constructed by superposing conventional GMR states by means of linear combinations. The so-obtained quantum statistics-inspired mixture regression algorithm is subsequently applied to obtain a novel robot learning by demonstration methodology, offering a significantly increased quality of regenerated trajectories for computational costs comparable with currently state-of-the-art trajectory-based robot learning by demonstration approaches. We experimentally demonstrate the efficacy of the proposed approach

    Robot Learning from Human Demonstration: Interpretation, Adaptation, and Interaction

    Get PDF
    Robot Learning from Demonstration (LfD) is a research area that focuses on how robots can learn new skills by observing how people perform various activities. As humans, we have a remarkable ability to imitate other human’s behaviors and adapt to new situations. Endowing robots with these critical capabilities is a significant but very challenging problem considering the complexity and variation of human activities in highly dynamic environments. This research focuses on how robots can learn new skills by interpreting human activities, adapting the learned skills to new situations, and naturally interacting with humans. This dissertation begins with a discussion of challenges in each of these three problems. A new unified representation approach is introduced to enable robots to simultaneously interpret the high-level semantic meanings and generalize the low-level trajectories of a broad range of human activities. An adaptive framework based on feature space decomposition is then presented for robots to not only reproduce skills, but also autonomously and efficiently adjust the learned skills to new environments that are significantly different from demonstrations. To achieve natural Human Robot Interaction (HRI), this dissertation presents a Recurrent Neural Network based deep perceptual control approach, which is capable of integrating multi-modal perception sequences with actions for robots to interact with humans in long-term tasks. Overall, by combining the above approaches, an autonomous system is created for robots to acquire important skills that can be applied to human-centered applications. Finally, this dissertation concludes with a discussion of future directions that could accelerate the upcoming technological revolution of robot learning from human demonstration

    Probabilistic Learning by Demonstration from Complete and Incomplete Data

    No full text
    In recent years we have observed a convergence of the fields of robotics and machine learning initiated by technological advances bringing AI closer to the physical world. A prerequisite, however, for successful applications is to formulate reliable and precise offline algorithms, requiring minimal tuning, fast and adaptive online algorithms and finally effective ways of rectifying corrupt demonstrations. In this work we aim to address some of those challenges. We begin by employing two offline algorithms for the purpose of Learning by Demonstration (LbD). A Bayesian non-parametric approach, able to infer the optimal model size without compromising the model's descriptive power and a Quantum Statistical extension to the mixture model able to achieve high precision for a given model size. We explore the efficacy of those algorithms in several one- and multi-shot LbD application achieving very promising results in terms of speed and and accuracy. Acknowledging that more realistic robotic applications also require more adaptive algorithmic approaches, we then introduce an online learning algorithm for quantum mixtures based on the online EM. The method exhibits high stability and precision, outperforming well-established online algorithms, as demonstrated for several regression benchmark datasets and a multi-shot trajectory LbD case study. Finally, aiming to account for data corruption due to sensor failures or occlusions, we propose a model for automatically rectifying damaged sequences in an unsupervised manner. In our approach we take into account the sequential nature of the data, the redundancy manifesting itself among repetitions of the same task and the potential of knowledge transfer across different tasks. We have devised a temporal factor model, with each factor modelling a single basic pattern in time and collectively forming a dictionary of fundamental trajectories shared across sequences. We have evaluated our method in a number of real-life datasets.Open Acces

    Robot learning from demonstration of force-based manipulation tasks

    Get PDF
    One of the main challenges in Robotics is to develop robots that can interact with humans in a natural way, sharing the same dynamic and unstructured environments. Such an interaction may be aimed at assisting, helping or collaborating with a human user. To achieve this, the robot must be endowed with a cognitive system that allows it not only to learn new skills from its human partner, but also to refine or improve those already learned. In this context, learning from demonstration appears as a natural and userfriendly way to transfer knowledge from humans to robots. This dissertation addresses such a topic and its application to an unexplored field, namely force-based manipulation tasks learning. In this kind of scenarios, force signals can convey data about the stiffness of a given object, the inertial components acting on a tool, a desired force profile to be reached, etc. Therefore, if the user wants the robot to learn a manipulation skill successfully, it is essential that its cognitive system is able to deal with force perceptions. The first issue this thesis tackles is to extract the input information that is relevant for learning the task at hand, which is also known as the what to imitate? problem. Here, the proposed solution takes into consideration that the robot actions are a function of sensory signals, in other words the importance of each perception is assessed through its correlation with the robot movements. A Mutual Information analysis is used for selecting the most relevant inputs according to their influence on the output space. In this way, the robot can gather all the information coming from its sensory system, and the perception selection module proposed here automatically chooses the data the robot needs to learn a given task. Having selected the relevant input information for the task, it is necessary to represent the human demonstrations in a compact way, encoding the relevant characteristics of the data, for instance, sequential information, uncertainty, constraints, etc. This issue is the next problem addressed in this thesis. Here, a probabilistic learning framework based on hidden Markov models and Gaussian mixture regression is proposed for learning force-based manipulation skills. The outstanding features of such a framework are: (i) it is able to deal with the noise and uncertainty of force signals because of its probabilistic formulation, (ii) it exploits the sequential information embedded in the model for managing perceptual aliasing and time discrepancies, and (iii) it takes advantage of task variables to encode those force-based skills where the robot actions are modulated by an external parameter. Therefore, the resulting learning structure is able to robustly encode and reproduce different manipulation tasks. After, this thesis goes a step forward by proposing a novel whole framework for learning impedance-based behaviors from demonstrations. The key aspects here are that this new structure merges vision and force information for encoding the data compactly, and it allows the robot to have different behaviors by shaping its compliance level over the course of the task. This is achieved by a parametric probabilistic model, whose Gaussian components are the basis of a statistical dynamical system that governs the robot motion. From the force perceptions, the stiffness of the springs composing such a system are estimated, allowing the robot to shape its compliance. This approach permits to extend the learning paradigm to other fields different from the common trajectory following. The proposed frameworks are tested in three scenarios, namely, (a) the ball-in-box task, (b) drink pouring, and (c) a collaborative assembly, where the experimental results evidence the importance of using force perceptions as well as the usefulness and strengths of the methods

    Learning shared control by demonstration for personalized wheelchair assistance

    Get PDF
    An emerging research problem in assistive robotics is the design of methodologies that allow robots to provide personalized assistance to users. For this purpose, we present a method to learn shared control policies from demonstrations offered by a human assistant. We train a Gaussian process (GP) regression model to continuously regulate the level of assistance between the user and the robot, given the user's previous and current actions and the state of the environment. The assistance policy is learned after only a single human demonstration, i.e. in one-shot. Our technique is evaluated in a one-of-a-kind experimental study, where the machine-learned shared control policy is compared to human assistance. Our analyses show that our technique is successful in emulating human shared control, by matching the location and amount of offered assistance on different trajectories. We observed that the effort requirement of the users were comparable between human-robot and human-human settings. Under the learned policy, the jerkiness of the user's joystick movements dropped significantly, despite a significant increase in the jerkiness of the robot assistant's commands. In terms of performance, even though the robotic assistance increased task completion time, the average distance to obstacles stayed in similar ranges to human assistance

    Statistical unfolding of elementary particle spectra: Empirical Bayes estimation and bias-corrected uncertainty quantification

    Full text link
    We consider the high energy physics unfolding problem where the goal is to estimate the spectrum of elementary particles given observations distorted by the limited resolution of a particle detector. This important statistical inverse problem arising in data analysis at the Large Hadron Collider at CERN consists in estimating the intensity function of an indirectly observed Poisson point process. Unfolding typically proceeds in two steps: one first produces a regularized point estimate of the unknown intensity and then uses the variability of this estimator to form frequentist confidence intervals that quantify the uncertainty of the solution. In this paper, we propose forming the point estimate using empirical Bayes estimation which enables a data-driven choice of the regularization strength through marginal maximum likelihood estimation. Observing that neither Bayesian credible intervals nor standard bootstrap confidence intervals succeed in achieving good frequentist coverage in this problem due to the inherent bias of the regularized point estimate, we introduce an iteratively bias-corrected bootstrap technique for constructing improved confidence intervals. We show using simulations that this enables us to achieve nearly nominal frequentist coverage with only a modest increase in interval length. The proposed methodology is applied to unfolding the ZZ boson invariant mass spectrum as measured in the CMS experiment at the Large Hadron Collider.Comment: Published at http://dx.doi.org/10.1214/15-AOAS857 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org). arXiv admin note: substantial text overlap with arXiv:1401.827
    • 

    corecore