373 research outputs found

    Étude expérimentale de l’impact d’une suspension active à actionneurs magnétorhéologiques glissants sur le confort d’un véhicule automobile

    Get PDF
    Les fabricants automobiles sont continuellement à la recherche de moyens pour rendre leurs véhicules plus confortables et sécuritaires pour mieux satisfaire leur clientèle. Une suspension active est le moyen le plus efficace d’augmenter le confort d’une voiture tout en maintenant la sécurité de ses occupants. Les systèmes de suspension automobiles conventionnels sont munis d’un amortisseur et d’un ressort montés en parallèle entre chaque roue et la caisse de la voiture. Ils présentent un compromis fondamental entre le confort des usagers et la tenue de route d’un véhicule puisque leurs paramètres de conception (rigidité et amortissement) sont fixes et ne sont pas adaptés à toutes les conditions d’opération. Une suspension active inclut des actionneurs qui modulent la force de suspension pour procurer le comportement idéal au véhicule selon les conditions d’opération, ce qui permet à un véhicule d’atteindre des niveaux supérieurs de confort en conditions d’opérations normales tout en demeurant sécuritaire lors de manœuvres d’urgence. Depuis la fin des années 1980, plusieurs compagnies ont tenté d’implanter des technolo- gies de suspensions actives pour augmenter le confort de leurs véhicules. Des actionneurs hydrauliques, électromécaniques et pneumatiques ont été proposés. Par contre, ces tech- nologies n’ont pas connu un grand succès, ce qui s’explique entre autres par des coûts exorbitants, une masse trop élevée, un coût énergétique trop élevé ou un manque de per- formance du système. La technologie de suspension active à actionneurs à embrayages magnétorhéologiques glissants semble prometteuse sur tous ces plans. Cette technologie n’a toutefois pas encore été validée sur une suspension active de voiture. Cette thèse de doctorat porte sur l’étude de l’effet d’une suspension active à actionneurs à embrayages magnétorhéologiques glissants sur le confort d’un véhicule automobile. Quatre actionneurs à embrayages magnétorhéologiques sont d’abord conçus et validés expérimen- talement. Ils sont ensuite installés sur une voiture d’essais instrumentée (BMW 330Ci). Un contrôleur de suspension active par impédance variable est développé analytiquement avant d’être optimisé expérimentalement et comparé à la suspension d’origine du véhicule sur une route fermée. La suspension active améliore le confort de 67% à 65 km/h et de 61% à 80 km/h. De plus, lors d’essais sur bosses, la suspension active permet de réduire le mouvement de tête des occupants du véhicule d’un facteur 10 et améliore leur confort de 128%. Les données expérimentales de performance d’une voiture munie d’une suspension active complète, le contrôleur par impédance robuste et intuitif à calibrer ainsi que l’analyse détaillée de l’effet d’une suspension active sur le confort d’une voiture représentent d’im- portantes contributions originales dans le domaine des suspensions actives et le domaine automobile en général

    Power transmission systems: from traditional to magnetic gearboxes

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Integrated automotive control:robust design and automated tuning of automotive controllers

    Get PDF

    DYNAMIC ANALYSIS OF VEHICLE SYSTEMS Development of a driving simulator Analysis and design of an automatic transmission for motor-scooters

    Get PDF
    In this work, two researches in the field of dynamic analysis of vehicle systems are presented. The first part of the thesis deals with the development of a driving simulator. This activity was carried out in the framework of a research project co-funded by the Italian Ministry of Education, Universities and Research (MIUR). It aimed at developing a driving simulator for the analysis of the driving style, in order to identify potentially dangerous conditions coming from a non proper interaction between driver, vehicle and environment, especially those related to low driver’s attention. As core part of the driving simulator, a vehicle simulation model, which reproduces the behaviour of the main vehicle systems, was developed. The simulator is made of a fixed driving platform, a single channel visual system and allows to acquire all driver’s inputs and vehicle motion signals. The system was involved in experimental campaigns which allowed the development of the driving style analysis techniques and demonstrated the reliability and the capability of the system. The second part of the thesis treats the dynamic analysis and design of a high efficiency automatic transmission for motor-scooters and was carried out in the framework of the Italian MUSS project funded by the Italian Ministry of Economic Development. Motor-scooters are currently almost always equipped with CVT transmission with rubber belt. This transmission can be very cheap to manufacture, it has good comfort performance but low mechanical efficiency. An alternative automatic transmission was analysed and different architectures were studied. The system is based on a discrete ratio gear box with mechanical control of the gear shit by means of centrifugal clutches and free wheels. A dynamic model of the transmission was developed and its behaviour was investigated by means of results of simulated manoeuvres, highlighting the positive and negative aspects of the system. Finally, a preliminary design was also carried out with reference to an application of the transmission in a hybrid powertrain

    Integrated Thermal and Energy Management of Connected Hybrid Electric Vehicles Using Deep Reinforcement Learning

    Get PDF
    The climate-adaptive energy management system holds promising potential for harnessing the concealed energy-saving capabilities of connected plug-in hybrid electric vehicles. This research focuses on exploring the synergistic effects of artificial intelligence control and traffic preview to enhance the performance of the energy management system (EMS). A high-fidelity model of a multi-mode connected PHEV is calibrated using experimental data as a foundation. Subsequently, a model-free multistate deep reinforcement learning (DRL) algorithm is proposed to develop the integrated thermal and energy management (ITEM) system, incorporating features of engine smart warm-up and engine-assisted heating for cold climate conditions. The optimality and adaptability of the proposed system is evaluated through both offline tests and online hardware-in-the-loop tests, encompassing a homologation driving cycle and a real-world driving cycle in China with real-time traffic data. The results demonstrate that ITEM achieves a close to dynamic programming fuel economy performance with a margin of 93.7%, while reducing fuel consumption ranging from 2.2% to 9.6% as ambient temperature decreases from 15°C to -15°C in comparison to state-of-the-art DRL-based EMS solutions

    Model Based Optimal Longitudinal Vehicle Control

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2016Thesis (Ph.D.) -- İstanbul Technical University, Institute of Science and Technology, 2016Otomotiv sektöründeki zorlu rekabet ortamı göz önüne alındığında, otomotiv üreticileri müşterilerine daha çekici ve fonksiyonel araçlar sunabilmak için birbirleri ile sürekli bir yarış halindelerdir. Maliyet, emisyon, yakıt ekonomisi, gürültü ve titreşim, dayanıklılık, performans ve araç sürüş özellikleri gibi kriterlerde yapılan iyileştirmeler sayesinde üreticiler rakip firmaların araçlarına göre daha avantajlı bir yere gelmeyi hedeflerler. Bu özelliklerin her biri müşterilerin kullandığı / kullacağı araç için olumlu bir algı oluşturulmasında önemli katkısı vardır. Bilişim ve elektronik sektöründeki araştırma ve gelişmeler faaliyetleri sonucunda elde edilen yeni teknolojiler ışığında otomobil mimarisindeki elektro-mekanik istemlerin kullanımı oldukça artmıştır. Buna ek olarak malzeme bilimi ve üretim teknolojisinde gelişmeler ışığında dizel yakıtlı içten yanmalı motorlarun tork ve güç eğrileri 20 yıl önce üretilen motorlardaki tork ve güç seviyelerine göre neredeyse 2 katına çıkmıştır. Ayrıca araçların ivmelenme manevralarındaki hızlanma tepki seviyeleri de özellikle hava yolu kontrolündeki yenilik ve gelişmeler doğrultusunda oldukça artmıştır ve araçları çok daha çevik ve sürücülerin gaz pedalı hareketine bağlı isteklerine çok daha fazla duyarlı hale getirmiştir. Motor tork ve güç kapasitelerindeki gelişmeler doğrultusunda araçların gaz pedalı tepkileri ciddi oranda değişmiş ve iyi bir araç sürüş özellikleri kalibrasyonuna ihtiyaç doğmuştur. Tüm gelişmelerin neticesinde araç sürüş özellikleri, müşteri memnuiyeti kriterleri arasında önemli bir paya sahip olmuştur. Bu tez çalışması araç sürüş üzellikleri simulasyon programları ve model bazlı kontrol algoritmaları kullanarak iyileştirmeyi amaçlamaktadır. Aracın güç ünitesi olan motorlardan tekerlekler vasıtasıyla yola olan tork ve kuvvet iletimi son derece karmaşık bir yapıya sahiptir ve araç sürüş özellikleri düşünüldüğünde dikkatli bir şekilde ele alınmalıdır. Aracın gaz pedalı hareketine olan tepkisi gecikme içermemeli, yeteri kadar hızlı ve seri olmalı aynı zamanda vurma, sarsıntı, salınım ve yığılma gibi hata modları içermemelidir. Bununla birlikte araç aktarma organları bileşenlerindeki doğrusal olmayan sistemler düşünüldüğünde, yukarıda bahsedilen araç sürüş özellikleri beklentilerini karşılamak son derece zorlu bir hal almaktadır. Eski araçlardaki gaz pedalı ve kelebeği arasındaki bağlantı teli vasıtasıyla sağlanan mekanik araç doğrusal ekseni kontrolünden farklı olarak, günümüzün modern araçları elektromekanik sistemler ile donatılmıştır. Motor kontrol üniteleri araç dorusal ekseni hareketini regülatif ve müşteri beklentileri ile uyumlu şekilde sağlamak için onlarca sensör sinyalini algıladıkdan sonra milisaniyeler içersinde işleyerek, motor ve araç aktüatörlerinin kontrolü için uygun sinyalleri üretirler. Araç sürüş özellikleri algoritmları düşünüldüğünde otomobil üreticileri gaz pedalı deplasmanına bağlı sürücü tork isteğini yumuşatan veya filtreleyen algorithmalar kullanırlar. Bu algoritmalar genellikle harita bazlıdırlar ve ana misyonları özellikle araç aktarma organlarındaki dişli mekanizmalarındaki boşluklardan geçerken geçerken tork artış ve azalma hızlarını limitleyerek araç sürüş özelliklerini iyileştirmektir. Sistem herhangi bir kapalı döngü içermediği için, bu algoritmalar subjectif kalibrasyon yöntemleri olarak tanımlanabilirler ve sistemin doğru çalışması, bu haritaları kalibre edem kalibrasyon mühendisinin hislerine ve yeteneğine bağlıdır. Ayrıca bu haritalardaki araç hızı, pedal pozisyonu ve vitese bağlı kombinasyonlar içerirler ve tüm olası koşulları içeren bir kalibrasyon yapılması oldukça zaman almaktadır. Mevcut kalibrasyon yapısının yukarıda bahsedilen kusurları göz önüne alındığında; araç sürüş özelliklerinin iyileştirilmesi için performans ve konfor gibi birbirleriye çelişen isteklerin optimizasyonunu barındıran gelişmiş tork kontrolü, otomobil üreticileri ve akademik dünyada son derece ilgi çeken bir konu haline gelmiştir. Araç doğrusal ekseni hareket kontrolü algoritmalarının başarılı bir şekilde kullanılabilmesi için motorun anlık olarak ürettiği torkun bilinmesi oldukça önemlidir. Günümüz araçlarının yanma kontrolü incelendiğinde, mevcut yapının harita bazlı olduğu görülür ve bu yapıda üretilen torkun doğrulaması yapılmamaktadır. Bu haritalar motor test dinamometrelerinde normal hava koşulları için (25 derece sıcaklık ve deniz seviyesi irtifa) doldurulurlar. Genellikle bu haritaların eksenleri motor hızı ve istenilen indike tork şeklinde olup, haritanın içeriğini ise istenilen yanma parametresinin belirtilen motor hızı ve indike torktaki değeri oluşturur. Bu yapı araçlarda kullanılırken bazı sıkıntılar yaratabilir. Motorlarda yanmayı oluşturan yakıt yolu parametreleri kontrolü çok daha hassas bir şekilde yapılırken (istenilen yakıt özellikleri: basınç, zamanlama ve miktar), gecici rejim manevraları düşünüldüğünde hava yolu parametreleri özellikle turbo şarj içeren dizel motor motorlarda istenilen değerden sapma gösterebilir. Bu durum “turbo gecikmesi” olarak adlandırılır ve üretilen torku ciddi şekilde etkiler. Aşırı sıcak yada soğuk ve yüksek irtifa koşulları düşünüldüğünde üretilen torktaki sapmalar çok daha fazla olur. Literature incelendiğinde araç eksenel doğrultusu için geliştirilen motor tork kontrol algoritmaları bakımından istenilen anlık torkun motor tarafından verildiği düşünülür. Fakat yukarıda belirtilen nedenlerden dolayı bu durum gerçekleşemez. Bu yüzden literaturde belirtilen araç doğrulsal ekseni için geliştirilen motor tork kontrolü algoritmalarında motor tork karakteristiği ya hiç düşünülmemiştir yada bazı temel gecikme ve filtrele fonksiyonları ile modellenmiştir. Tüm bu anlatılanlar düşünüldüğünde bu tez çalışmasının temelini oluşturan motor tork modeli içeren araç doğrusal ekseni kontrol algoritması literatürdeki diğer çalışmaşlarda ayrışır. Önerilen “Silindir için basınç öngörümlü motor tork kontrol modeli algoritması” araç sürüş özellikleri kontrol yapısı ile uyumlu bir şekilde çalışarak araç tepki karakterini iyileştirir. Bu çalışma kapsamında MATLAB/Similink modelle ortamında, 4 atalet kütlesi, 2 set yay ve sönüm elemanı ve lastik karakteristiği içeren, 4 serbbestlik dereceli bir aktarma organları modeli oluşturulmuştur. Sadece araç doğrusal ekseni araç dinamiğini içeren model validasyonu, gaz basma ve gazdan çekme gibi yük değişimi manevralarını içeren araç seviyesi tesler ile yürütülmüştür. Test ölçüm sonuçları ve model çıktıları karşılaştırıldığında geliştirilen aktarma organları modelinin araç doğrusal ekseni hızlanma profili için karşılaşılan hata modlarını da içerecek şekilde yansıttığı görülmüştür. Son olarak araç aktarma organları uygulaması düşünüldüğünde, araç sürüş özelliklerini iyileştirme için sürücü talebi doğrultusunda oluşan tork isteğini araç doğrulsal ekseni hareketinde oluşabilecek salınımları engelleyen model bazlı öngörümlü tork kontrol algoritması geliştirilmiştir. Bu algoritmada 4 serbestlik dereceli model, içerdiği doğrusal olmama durumu yüzünden kullanılamamıştır. Bu yüzden basitleştirilmiş 2 ve 3 serbestlik dereceli araç aktarma organları modelleri oluşturulmuştur. Yapılan çalışmalar doğrultusunda hem 2 hem de 3 serbestlik dereceli modellerin, model bazlı öngörümlü tork kontrol algoritmasını düzgün şekilde çalıştırabilmek için yeterli doğruluk ve çözünürlükde olduğu görülmüştür. Bu çalışmanın amacı kapalı devre bir araç sürüş özellikleri algoritması ortaya çıkarmak olduğu için ve geliştirilen algoritma teknik nedenler dolayısıyla araçta denenemediği için, 4 serbestlik dereceli motor aktarma organları modeli, 2 ve 3 serbestlik dereceli motor aktarma organları modelli içeren model bazlı öngörümlü tork kontrol algoritmalarını çalıştırmak üzere kullanılmıştır. Geliştirilen 2 ve 3 serbestlik dereceli modellerin araç sürüş özellikleri önemli derecede iyileştirdiği görülmüştür. Özellkile ivmelenme profilinin düzgünlüğü ve neden olusan sistem gecikmesi düşünüldüğünde 2 serbestlik dereceli aktarma organları modeli bazlı kontrol algoritmasnın daha iyi sonuç verdiği görülmüştür. Geliştirilen tork kontrol modelli aktarma organları bazlı araç salınımları ciddi oranda azaltsada, tamamen ortadan kaldırmadığı görülmüştür. Bu doğrultuda araç ivmelenme karakteristiğinden minimum seviyede ödün vererek, oluşan salınımları daha da azaltmak ve ivmelenme profilini daha düzgün hale getirmek için temel olarak motor ve araç hızı farkını elimine etme prensibine dayanan bir doğrulsal (P) kontrolcü, model bazlı öngürümlü tork kontrol algoritmasına eklenmiştir. Literatürde bu konuda yapılan çalışmalar incelendiğinde tüm araçtırmacıların model bazlı öngürümlü algoritmayı tek başına kullandıkları görükmektedir ve bu çalışmada önerilen doğrusal kontrolcü eklenmiş model bazlı öngörümlü tork kontrol algoritması bir yenilik olarak mevcut literatür içeriğine eklenmiştir.Considering the competitive environment in automotive industry, original equipment manufacturers (OEMs) in this industry are in a challenging competition with each other to offer their customers more attractive vehicles. Cost, emissions, fuel economy, noise vibration & harshness (NVH), durability, performance and driveability properties make a product able to distinguish from its competitors’ products. Each of these attributes has a major contribution of forming a perception of the customers’ choosiness. New technologies as a result of the research and developments activities in electronics resulted with complex electro-mechanical systems in automobiles. With the addition of recent developments in materials and manufacturing processes on top of it, especially in diesel fuelled internal combustion engines (ICE), torque and power delivery had almost doubled with respect to the conventional engines developed not more than two decades ago. Additionally as a result of latest developments at air path and gas exchange systems control, torque build up rate had significantly increased enabling the vehicles to be more agile and reactive to load change request manoeuvres. As a result of all these capability improvements, vehicle response characteristics to high torque and power capacity engines changed extremely altering the necessity of proper and robust driveability calibration requirements. Driveability properties of the vehicles had gained significant importance in terms of customer satisfaction. This dissertation focuses on improving vehicle driveability properties taking advantage of simulation tools and model based control. The overall profit of this thesis is providing improved driveability via using engine torque production and vehicle models and controllers at the same time. Torque transmission from the vehicle’s power unit to the road surface via tires is a complex structure which should be handled with extreme care considering the overall driveability performance of the vehicle. An agile throttle response of the vehicle is aimed without error modes like acceleration initial kick, bump, response delay, stumble or shuffle. However considering the nonlinearities resulting from the complex structures at the drivetrain of the vehicle, this requirement becomes significantly challenging. Despite mechanical control at longitudinal motion in conventional vehicles, modern vehicles are equipped with electromechanical systems. Thanks to technological developments in the automotive industry that current capability of the vehicles enables us to develop better platforms for improving driveability characteristics. Modern engine control units (ECUs) have the capability of processing thousands of signals in a less than tens of milliseconds and as a result regulate numerous actuators which results with displacement of the vehicle complying all regulative requirements and customer expectations. Acceleration throttle pedal input signal is recorded by electronic control unit, processed and finally used to control the parameters for the combustion systems. In terms of driveability control, automotive manufacturers’ engine control algorithms employ input shaping or simple filtering algorithms. These algorithms use look-up tables and main control strategy is to slew the pedal oriented torque request for the tip-in and tip-out manoeuvres in an open loop control methodology especially in backlash transition region of the driveline. Considering the fact that there is no close loop control and these features become subjective calibration methodologies and outcome becomes strongly dependant on calibrator’s capability and performance. Moreover filling look-up tables for all gear, engine speed and pedal position combinations requires significant amount of calibration development time. Taking into consideration all of these obstacles of the current driveability features, the subject of automated torque control for improved driveability is a state of the art research topic both within automotive manufacturers and academic researchers as it can be described as an optimization problem dealing with performance and comfort counter measures. Knowledge of the instantaneous produced torque by the engine is a key item with respect to satisfying above stated attributes in vehicle longitudinal motion control. Currently common approach for combustion management is the usage of look-up table based structures with the drawback of poor conformity of the produced torque. Look-up tables define air and fuel quantity setpoints in order to produce requested indicated torque without feedback of the produced torque. These look-up tables are filled at engine dynamometer test benches at normal ambient conditions. In general fuel and air quantity setpoint maps have the axes of engine speed and indicated torque and requested amount of desired variable is filled to the corresponding point of the look-up table. In real world driving conditions fuel quantity control is robust however especially with turbocharged systems; requested air quantities may deviate from the setpoint values especially when considering transient manoeuvres. This phenomenon is called “turbo/boost lag” and significantly affects the produced torque. The situation is much worse for non-standard conditions, extreme hot and cold and altitude. In the literature most of the proposed vehicle longitudinal motion control related engine torque control algorithms base on the fact that requested torque will be generated immediately from the diesel engine. However as explained above this is not the case in real life applications. Therefore engine characteristic is either not included or covered with a simple filtering algorithm in conventional vehicle longitudinal motion related engine torque control methodologies. Engine brake torque model combined driveability control algorithm proposed in this thesis is differentiated from the previous studies in the literature within this perspective. Proposed “In cylinder pressured based engine brake torque model algorithm” works in harmony with the driveability control structure and improves overall vehicle response characteristics. Within the scope of this study a 4 degree of freedom powertrain model consisting of 4 inertias, 2 set of spring and damper elements with tyre characteristics, is built in MATLAB/Simulink environment. Model validation considering longitudinal vehicle dynamics is performed with employing vehicle level tests using a tip-in followed by a tip-out acceleration pedal signal input load change manoeuvres. Comparison of simulation results and measured vehicle test data shows that proposed model is capable of capturing vehicle acceleration profile revealing unintended error states for the specified input signals. Considering the driveability control perspective, a Model Predictive Control (MPC) algorithm employed to manipulate the pedal map oriented torque demand signal in an automotive powertrain application in order attenuate the powertrain oscillations in longitudinal vehicle motion control. 4 mass model could not be employed at with the MPC algorithm due to very high level of nonlinearity. Therefore two simplified versions of 2 and 3 mass models have been developed. It has been verified that both 2 and 3 mass vehicle models are accurate enough to employ the MPC torque control algorithm. As the aim of this study is to develop a close loop driveability algorithm for real world applications, the 4 mass vehicle model is used as replacement environment for the subjected vehicle in order to employ 2 and 3 mass vehicle model based control algorithm. MPC algorithms via using both models showed good capability, however smoothness of the driving profile with the 2 mass vehicle model is slightly better than the 3 mass model. Moreover to further improve the powertrain oscillations without compromising from overall system response speed, an additional anti-shuffle control element, basically a P controller based on the speed difference of engine and vehicle speeds, has been implemented to the MPC control algorithm. Literature review about the engine torque control for improved driveability show that all the researcher use MPC alone. Proposed MPC with additional P controller is a new contribution to the literature in the subjected area of research.DoktoraPh.D

    Systems modelling and simulation in the product development process for automotive powertrains : executive summary

    Get PDF
    This submission is a summary of the ten submissions that form the Engineering Doctorate Portfolio. The aim of the portfolio is to demonstrate the benefit of applying systems modelling and simulation in a modified powertrain product development process. A description is given of the competitive pressures that are faced by motor manufacturers in the global automotive business environment. Competitive pressures include a requirement for reduced time to market, exacting product quality standards, manufacturing over-capacity that increases fixed costs and compromises profit margins, and legislation that is increasingly difficult to meet. High-level strategic responses that are being made by manufacturers to these pressures are presented. Each strategic response requires organisational changes and improved approaches to the way in which day-to-day business is conducted. Computer Aided Engineering (CAE) is presented as an approach that can help to improve the competitiveness of motor manufacturers by reducing product development time and the level of hardware prototyping that is required. An investigation in five engineering companies yielded a number of observations about the use of CAE and its integration into product development. Best practice in the implementation of CAE in the product development process is defined. The use of CAE by a leading motor manufacturer in powertrain development is compared with the best practice model, and it is identified that there is a lack of coherence in the application of CAE. It is used to tackle specific problems but the use of CAE is not integrated into the product development process. More importantly, it was found that there is limited application of systems modelling and simulation, which is a critical technique for the effective integration of vehicle systems and the development of on-board vehicle control systems. Before systems modelling and simulation can be applied III powertrain development, an appropriate set of tools and associated modelling architecture must be determined. An appraisal of a range of different tools is undertaken, each tool being appraised against a set of criteria. A combination of DymolaIModelica and MATLAB/Simulink tools is recommended as the optimum solution. DymolaIModelica models of the vehicle plant should be embedded into Simulink models that also contain controller and driver models. MATLAB should be used as the numerical engine and for the creation of user environments. Transmission calibration is selected as a suitable pilot example for applying systems modelling and simulation in powertrain development. Best practice in CAE implementation and the systems modelling and simulation architecture are validated using this example. Simulation models of vehicles equipped with CVT and discrete ratio automatic transmissions are presented. A full description of the operation of the transmission system, of the simulation model itself, and of the validation of the model is presented in each case. The potential benefit of the CVT model in transmission calibration is demonstrated. A Transmission Calibration Simulation Tool (TCST) is described within which the discrete ratio simulation model is encapsulated. The TCST includes a user environment in which the simulation model can be parameterised, a variety of simulation runs can be specified, and simulation results are processed. Development of the TCST requires an objective measure of driveability effects that are influenced by the transmission shift schedule. A method for objective assessment of driveability is developed, correlated, and implemented as an integral part of the TCST. This element of the TCST allows trade-off exercises to be conducted between fuel economy and driveability. The development of a transmission calibration based on experimental testing is compared with a similar exercise based on simulation testing. This study shows that, if the TCST is properly integrated into the transmission calibration process, the vehicle test time taken to optimise the calibration for fuel economy could be reduced by six weeks, and a week of calibrator time could be saved. Thus, the aim of the submission is fulfilled, since the benefit of applying systems modelling and simulation in the powertrain development process has been demonstrated. It is concluded that a consistent approach is required for effectively integrating systems modelling and simulation into the product development process. A model is proposed that clarifies how this can be achieved at a local level. It is proposed that in the future, the model is applied whenever systems modelling and simulation is introduced into a powertrain department

    Study of innovative electric machines for high efficiency vehicular traction applications

    Get PDF
    This thesis collects some of the work accomplished during the PhD research activity focused on the study of special electric machines for vehicle traction applications. The work is divided into due parts. The rst part is mainly technological and covers some studies and experimental activities concerning new technical solutions to solve some common issues in operation of electric motors for automotive use, namely ux weakening and cogging torque. The second part has a more theoretical nature and focuses on some methods for electric machine modeling and analysis which has been developed to facilitate the study and design optimizations carried out during the PhD research work. The chapters in the rst part address the following topics: 1. Development and testing of an interior-permanent-magnet motor prototype fully conceived, designed and manufactured at the University of Trieste to implement a new concept of flux weakening system at high speeds. The concept has been also protected through a pending patent. 2. Multi-objective design optimization of an interior permanent magnet reluctance-assisted synchronous motor for the automotive industry. The design optimization was meant to support an industrial development project which is still in progress so no prototype has been built yet. 3. Study of a new optimized magnetic wedge design capable of reducing cogging torque in automotive propulsion motors having open stator slots. The second part proposes some analytical and numerical results that have been worked out to approach the modeling and optimization of various kinds of permanent magnet synchronous motors. The main problem to which these chapters try to answer is to nd suciently fast but accurate methods for permanent magnet analysis without time-consuming finite-element transient analysis. The proposed methods have been successfully integrated into design optimization programs used in the industrial environment in the development of innovative electric machines not only for the automotive industry

    Control of a mechanical hybrid powertrain

    Get PDF

    Model-based control for automotive applications

    Get PDF
    The number of distributed control systems in modern vehicles has increased exponentially over the past decades. Today’s performance improvements and innovations in the automotive industry are often resolved using embedded control systems. As a result, a modern vehicle can be regarded as a complex mechatronic system. However, control design for such systems, in practice, often comes down to time-consuming online tuning and calibration techniques, rather than a more systematic, model-based control design approach. The main goal of this thesis is to contribute to a corresponding paradigm shift, targeting the use of systematic, model-based control design approaches in practice. This implies the use of control-oriented modeling and the specification of corresponding performance requirements as a basis for the actual controller synthesis. Adopting a systematic, model-based control design approach, as opposed to pragmatic, online tuning and calibration techniques, is a prerequisite for the application of state-of-the-art controller synthesis methods. These methods enable to achieve guarantees regarding robustness, performance, stability, and optimality of the synthesized controller. Furthermore, from a practical point-of-view, it forms a basis for the reduction of tuning and calibration effort via automated controller synthesis, and fulfilling increasingly stringent performance demands. To demonstrate these opportunities, case studies are defined and executed. In all cases, actual implementation is pursued using test vehicles and a hardware-in-the-loop setup. • Case I: Judder-induced oscillations in the driveline are resolved using a robustly stable drive-off controller. The controller prevents the need for re-tuning if the dynamics of the system change due to wear. A hardware-in-the-loop setup, including actual sensor and actuator dynamics, is used for experimental validation. • Case II: A solution for variations in the closed-loop behavior of cruise control functionality is proposed, explicitly taking into account large variations in both the gear ratio and the vehicle loading of heavy duty vehicles. Experimental validation is done on a heavy duty vehicle, a DAF XF105 with and without a fully loaded trailer. • Case III: A systematic approach for the design of an adaptive cruise control is proposed. The resulting parameterized design enables intuitive tuning directly related to comfort and safety of the driving behavior and significantly reduces tuning effort. The design is validated on an Audi S8, performing on-the-road experiments. • Case IV: The design of a cooperative adaptive cruise control is presented, focusing on the feasibility of implementation. Correspondingly, a necessary and sufficient condition for string stability is derived. The design is experimentally tested using two Citroën C4’s, improving traffic throughput with respect to standard adaptive cruise control functionality, while guaranteeing string stability of the traffic flow. The case studies consider representative automotive control problems, in the sense that typical challenges are addressed, being variable operating conditions and global performance qualifiers. Based on the case studies, a generic classification of automotive control problems is derived, distinguishing problems at i) a full-vehicle level, ii) an in-vehicle level, and iii) a component level. The classification facilitates a characterization of automotive control problems on the basis of the required modeling and the specification of corresponding performance requirements. Full-vehicle level functionality focuses on the specification of desired vehicle behavior for the vehicle as a whole. Typically, the required modeling is limited, whereas the translation of global performance qualifiers into control-oriented performance requirements can be difficult. In-vehicle level functionality focuses on actual control of the (complex) vehicle dynamics. The modeling and the specification of performance requirements are typically influenced by a wide variety of operating conditions. Furthermore, the case studies represent practical application examples that are specifically suitable to apply a specific set of state-of-the-art controller synthesis methods, being robust control, model predictive control, and gain scheduling or linear parameter varying control. The case studies show the applicability of these methods in practice. Nevertheless, the theoretical complexity of the methods typically translates into a high computational burden, while insight in the resulting controller decreases, complicating, for example, (online) fine-tuning of the controller. Accordingly, more efficient algorithms and dedicated tools are required to improve practical implementation of controller synthesis methods
    corecore