10 research outputs found

    Primal-Dual Algorithms for Non-negative Matrix Factorization with the Kullback-Leibler Divergence

    Get PDF
    Non-negative matrix factorization (NMF) approximates a given matrix as a product of two non-negative matrices. Multiplicative algorithms deliver reliable results, but they show slow convergence for high-dimensional data and may be stuck away from local minima. Gradient descent methods have better behavior, but only apply to smooth losses such as the least-squares loss. In this article, we propose a first-order primal-dual algorithm for non-negative decomposition problems (where one factor is fixed) with the KL divergence, based on the Chambolle-Pock algorithm. All required computations may be obtained in closed form and we provide an efficient heuristic way to select step-sizes. By using alternating optimization, our algorithm readily extends to NMF and, on synthetic examples, face recognition or music source separation datasets, it is either faster than existing algorithms, or leads to improved local optima, or both

    Combining blockwise and multi-coefficient stepwise approches in a general framework for online audio source separation

    Get PDF
    This article considers the problem of online audio source separation. Various algorithms can be found in the literature, featuring either blockwise or stepwise approaches, and using either the spectral or spatial characteristics of the sound sources of a mixture. We offer an algorithm that can combine both stepwise and blockwise approaches, and that can use spectral and spatial information. We propose a method for pre-processing the data of each block and offer a way to deduce an Equivalent Rectangular Bandwith time-frequency representation out of a Short-Time Fourier Transform. The efficiency of our algorithm is then tested for various parameters and the effect of each of those parameters on the quality of separation and on the computation time is then discussed

    Multichannel audio source separation with deep neural networks

    Get PDF
    International audienceThis article addresses the problem of multichannel audio source separation. We propose a framework where deep neural networks (DNNs) are used to model the source spectra and combined with the classical multichannel Gaussian model to exploit the spatial information. The parameters are estimated in an iterative expectation-maximization (EM) fashion and used to derive a multichannel Wiener filter. We present an extensive experimental study to show the impact of different design choices on the performance of the proposed technique. We consider different cost functions for the training of DNNs, namely the probabilistically motivated Itakura-Saito divergence, and also Kullback-Leibler, Cauchy, mean squared error, and phase-sensitive cost functions. We also study the number of EM iterations and the use of multiple DNNs, where each DNN aimsto improve the spectra estimated by the preceding EM iteration. Finally, we present its application to a speech enhancement problem. The experimental results show the benefit of the proposed multichannel approach over a single-channel DNN-based approach and the conventional multichannel nonnegative matrix factorization based iterative EM algorithm

    Online Non-Negative Convolutive Pattern Learning for Speech Signals

    Full text link

    Audio source separation for music in low-latency and high-latency scenarios

    Get PDF
    Aquesta tesi proposa mètodes per tractar les limitacions de les tècniques existents de separació de fonts musicals en condicions de baixa i alta latència. En primer lloc, ens centrem en els mètodes amb un baix cost computacional i baixa latència. Proposem l'ús de la regularització de Tikhonov com a mètode de descomposició de l'espectre en el context de baixa latència. El comparem amb les tècniques existents en tasques d'estimació i seguiment dels tons, que són passos crucials en molts mètodes de separació. A continuació utilitzem i avaluem el mètode de descomposició de l'espectre en tasques de separació de veu cantada, baix i percussió. En segon lloc, proposem diversos mètodes d'alta latència que milloren la separació de la veu cantada, gràcies al modelatge de components específics, com la respiració i les consonants. Finalment, explorem l'ús de correlacions temporals i anotacions manuals per millorar la separació dels instruments de percussió i dels senyals musicals polifònics complexes.Esta tesis propone métodos para tratar las limitaciones de las técnicas existentes de separación de fuentes musicales en condiciones de baja y alta latencia. En primer lugar, nos centramos en los métodos con un bajo coste computacional y baja latencia. Proponemos el uso de la regularización de Tikhonov como método de descomposición del espectro en el contexto de baja latencia. Lo comparamos con las técnicas existentes en tareas de estimación y seguimiento de los tonos, que son pasos cruciales en muchos métodos de separación. A continuación utilizamos y evaluamos el método de descomposición del espectro en tareas de separación de voz cantada, bajo y percusión. En segundo lugar, proponemos varios métodos de alta latencia que mejoran la separación de la voz cantada, gracias al modelado de componentes que a menudo no se toman en cuenta, como la respiración y las consonantes. Finalmente, exploramos el uso de correlaciones temporales y anotaciones manuales para mejorar la separación de los instrumentos de percusión y señales musicales polifónicas complejas.This thesis proposes specific methods to address the limitations of current music source separation methods in low-latency and high-latency scenarios. First, we focus on methods with low computational cost and low latency. We propose the use of Tikhonov regularization as a method for spectrum decomposition in the low-latency context. We compare it to existing techniques in pitch estimation and tracking tasks, crucial steps in many separation methods. We then use the proposed spectrum decomposition method in low-latency separation tasks targeting singing voice, bass and drums. Second, we propose several high-latency methods that improve the separation of singing voice by modeling components that are often not accounted for, such as breathiness and consonants. Finally, we explore using temporal correlations and human annotations to enhance the separation of drums and complex polyphonic music signals
    corecore