
Lin et al. EURASIP Journal on Audio, Speech, andMusic Processing 2014, 2014:25
http://asmp.eurasipjournals.com/content/2014/1/25

RESEARCH Open Access

Musical note analysis of solo violin recordings
using recursive regularization
Yi-Ju Lin, Tien-Ming Wang*, Ta-Chun Chen, Yin-Lin Chen, Wei-Chen Chang and Alvin WY Su

Abstract

Composers may not provide instructions for playing their works, especially for instrument solos, and therefore,
different musicians may give very different interpretations of the same work. Such differences usually lead to time,
amplitude, or frequency variations of musical notes in a phrase in the signal point of view. This paper proposes a
frame-based recursive regularization method for time-dependent analysis of each note presenting in solo violin
recordings. The system of equations evolves when a new frame is added and an old frame is dropped to track the
varying characteristics of violin playing. This method is compared with a time-dependent non-negative matrix
factorization method. The complete recordings of both BWV 1005 No. 3 played by Kuijken and 24 Caprices op. 1 no.
24 in A minor played by Paganini are used for the transcription experiment, where the proposed method performs
strongly. The analysis results of a short passage extracted from BWV 1005 No. 3 performed by three famous violinists
reveal numerous differences in the styles and performances of these violinists.

Introduction
Analyses of performances are mostly subjective in the
domain of musicology. Objective analysis has become
possible with advances in information technologies and
sound/music analysis tools, such as pitch/partial tracking,
score alignment/following, melody tracking, and extrac-
tion. Non-negative matrix factorization (NMF) [1] is a
popular tool for musical signal analysis such as pitch esti-
mation, chord recognition, and automatic transcription
[2-4]. In NMF, the matrix of the input magnitude spec-
trum is decomposed into the product of two matrices.
One matrix is formed by a certain number of magnitude
spectra and is called the template matrix or dictionary
matrix. The other matrix is the intensity information of
the notes and is called the intensity matrix or activation
matrix. When considering the decomposition of audio
recordings, these matrices are, for both NMF and the pro-
posed method, related to several notes, each with a quasi-
harmonic spectrum activating during a specific time
period. Furthermore, NMF is usually used on the Fourier
spectrogram which is easy to apply time-frequency mask-
ing but hard to extract time-varying sources. Some addi-
tional models are needed to enforce the procedure of
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decomposition, such as time-dependent parametric and
harmonic templates [5] and Markov-chained base [6]. On
the other hand, decomposing constant-Q spectrograms is
difficult to apply time-frequency masking but shows good
potential to deal with spreading of higher harmonic fre-
quencies when the pitch is getting higher, such like scale
invariance across linear frequency [7] and shift invari-
ance across log-frequency [8]. State-of-the-art methods in
these areas can be found in the annual Music Information
Retrieval Evaluation eXchange (MIREX) [9].
Good results can be achieved when the number of notes

and/or the spectra information of notes is known a priori.
In the analysis of polyphonic recordings, to determine
the number of notes appearing in a single time frame is
firstly discussed. A harmonic structure is generally desir-
able, and the spectral bases are usually constrained to be
harmonic in the applications [10]. A fixed number of tem-
plates are usually set in previous works according to the
note range of interest. Pitches of a violin can, however,
vary continually, and fixed pitch templates are unsuitable
in the analysis of bowed string instruments. Two issues
are then welcome to be discussed in this work: (a) how
to determine the exact number of notes and (b) how to
model the time-varying notes with suitable templates.
Methods to estimate the possible number of notes

have been discussed in [11,12]. In [13], a dynamic note
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number detection for NMF is proposed to analyze solo
bowed string instrument recordings. Since fixed template
is employed in [13], a note with a time-varying spectrum
which resulted from performing skills such as vibrato and
portamento is encouraged to be obtained by using multi-
ple templates. In [5], the time-dependent parametric and
harmonic templates are applied to NMF when the pitch
of a note varies. The method provides a parametric repre-
sentation of the harmonic atoms, which can depend on a
fundamental frequency parameter, a chirp parameter, and
so on with respect to time. It can therefore represent a
time-varying note by using only one single template.
Recursive regularization [14] has been widely applied

in the areas of system identification, image restoration,
noise reduction, echo cancellation, and blind deconvolu-
tion [15,16]. The proposed method decomposes the mag-
nitude spectrogram into the product of a template matrix
and an intensity matrix based on the modified version of
the previous work in high-resolution image reconstruc-
tion [16]. In this work, a new algorithm is developed such
that the two matrices are updated whenever a new frame
is added and an old frame is dropped. This online scheme
is similar to the so-called online dictionary learning but
does not keep a global dictionary for identified patterns,
i.e., musical notes of the same pitch. To analyze violin solo
recordings, we regard each note as one single source in
this paper. Some works have been proposed for online
dictionary learning using L2 norms [17,18], KL diver-
gence [19], and IS divergence [20]. Here, we considered L2
norms to simplify the derivations of the proposed recur-
sive algorithm. Similar to [16], the new iterative update
procedure also eliminates the matrix inversion operation
to reduce the computational complexity. Because the con-
vergence of the recursive regularization has been well
addressed, those who are interested could find related
materials in [16]. The systematic flow proposed in the pre-
vious work [13] to find a new note template is modified
for the application of this work. The concepts of harmonic
and sparseness constraint [21,22] are also adopted. The
proposed method is compared with the time-dependent
NMF method [5] by using the complete recordings of
BWV 1005 No. 3 played by Kuijken [23] and 24 Caprices
op. 1 no. 24 in A minor played by Paganini [24]. Finally,
the proposed method is tested using Bach solo violin
recordings by three violinists, that is, Arthur Grumiaux,
Sigiswald Kuijken, and Hilary Hahn [23,25,26]. It is easy
to identify the differences in their playing styles when
note-by-note spectral and intensity information is avail-
able. The insightful discussions will be discussed in the
‘Results’ section.
The remainder of this paper is organized as fol-

lows: The ‘Formulation of regularized analysis system’
section presents the basic formulation of the decom-
position problem using the regularization method. The

‘Frame-based recursive regularization analysis’ section
presents the frame-based recursive regularization anal-
ysis method. We then present some experiments and
corresponding results in the ‘Experiments’ and ‘Results’
sections. Lastly, the ‘Conclusions’ section offers the con-
clusion and the discussion of future works.

Formulation of regularized analysis system
Let m be the number of consecutive frames. Each frame
has 2n samples. Discrete Fourier transform (DFT) is per-
formed for each frame to obtain its magnitude informa-
tion.We obtain anm-by-nmatrix,V, whereVji represents
the magnitude of the ith Fourier coefficient of the jth
frame. Let r be the number of pitches present in these
frames. We obtain an r-by-n template matrix, W, where
Wki represents the magnitude of the ith Fourier coeffi-
cient of the kth template. Finally, we obtain an m-by-r
intensity matrix, H, where Hjk represents the intensity of
the kth template of the jth frame. Hence, W and H are
used to construct V, as follows:

V = HW. (1)

A cost function can be set as

D = ‖V − HW‖2. (2)

Subsequently, the template matrix and the intensity
matrix can be obtained easily as

W = (H�H)−1(H�V) (3)

H� = (WW�)−1(WV�). (4)
The result can be obtained by evaluating (3) and (4)

iteratively. Although (1) is similar to NMF in its formu-
lation, (3) and (4) do not enforce the factorization of
a non-negative matrix into two non-negative matrices,
in comparison to NMF. Since the goal is to get a rea-
sonable distribution of frequency energies, the negative
elements ofW andH can be set to zeros to re-evaluate the
equations and obtain a non-negative result in every itera-
tion. Notice that the matrix V is represented as (1) rather
thanV = WH commonly used in NMF-related literatures
to make the derivatives of following formulations more
readable without loss of generality.
To improve (3) and (4), a penalty term is added to sup-

port a temporal smoothness mechanism in the context
of the proposed online scheme. For example, (2) can be
modified to

J = ‖V − HW‖2 + λ‖W − CW‖2 + γ ‖H − CH‖2, (5)

where λ > 0 and γ > 0 are carefully chosen to ensure the
stability of the solution. Such a process is called regular-
ization [14]. Since both frequency response and intensity
of a note evolve slowly in a short time, CW is determined
as a template matrix in the previous update iteration,
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where λ is a corresponding penalty factor to achieve spec-
tral smoothness. Similarly, CH and γ are the terms related
to temporal smoothness. The solution becomes

W = (H�H + λI)−1(H�V + λCW), (6)

H� = (WW� + γ I)−1(WV� + γC�
H). (7)

In our experience, the system described by (6) and (7)
requires a smaller number of iterations than NMF to con-
verge. Furthermore, the system also requires a smaller
number of frames than NMF to obtain reasonably good
results. The ‘Experiments’ section presents the simulation
results of the proposedmethod and a comparison to other
methods.
The proposed method is designed by considering the

following issues. Firstly, it is crucial to determine the
exact number of templates to obtain reasonably good
results. Such an issue is widely discussed in [13] for con-
ventional NMF-based methods. Secondly, it is crucial to
determine in which manner the penalty term is set in (5).
Finally, matrix inversion consumes substantial computing
power, compared to the gradient descent algorithms used
in NMF. These problems are discussed in the following
section.

Frame-based recursive regularization analysis
Refined update rules
This section presents the high computation complexity
problem caused by matrix inversions. The template and
intensity matrices can be adaptively learned from the cur-
rent input frame and some previous input frames. For
brevity, we present only the derivation to recursively eval-
uate the time-varying template matrix W. The derivation
of the update rule for the intensity matrix H is omitted.
Let the system start with the firstm input frames.mmust
not be large when the signal varies rapidly. Let the r-by-
n template matrix for the lth input frame be denoted by
W(l), which is obtained using frame-l, frame-(l − 1), . . .,
and frame-(l − m + 1). V(l) and H(l) are subsequently
defined as

V(l) = [ v(l − m + 1)v(l − m + 2)v(l − m + 3) . . . v(l)]� (8)

H(l) = [h(l − m + 1)h(l − m + 2)h(l − m + 3) . . . h(l)]� ,
(9)

where
v(q) = [ vq1vq2vq3 . . . vqr]� (10)

h(q) = [hq1hq2hq3 . . . hqr]�, (11)
l − m + 1 ≤ q ≤ l. Hence, the cost function in (5) for
frame-l is rewritten as

J = ‖V(l) − H(l)W(l)‖2 + λ‖W(l) − CW(l)‖2
+ γ ‖H(l) − CH(l)‖2. (12)

Subsequently, the template matrix is obtained as

W(l) = (H�(l)H(l) + λI)−1(H�(l)V + λCW(l)). (13)

Therefore, to obtain the template matrix and the corre-
sponding intensity values for every new input frame, (6)
and (7) must be re-evaluated when a new input frame is
added. A recursive procedure is proposed to reduce the
number of matrix inversions. First, two new matrices are
defined as

P(l) = (H(l)�H(l) + λI)−1 (14)

R(l) = H(l)�V(l) + λCW(l), (15)

where

P(l) =

⎛
⎜⎜⎜⎜⎜⎜⎝
[h�(l − m + 1) . . .h�(l)

] ×

⎡
⎢⎢⎢⎢⎢⎢⎣

h�(l − m + 1)
h�(l − m + 2)

.

.

.
h�(l)

⎤
⎥⎥⎥⎥⎥⎥⎦
+ λI

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

=
(

l∑
k=l−m+1

h�(k)h(k) + λI

)
−1

(16)

R(l) = [h�(l − m + 1) . . .h�(l)
] ×

⎡
⎢⎢⎢⎢⎢⎢⎣

v(l − m + 1)
v(l − m + 2)

.

.

.
h(l)

⎤
⎥⎥⎥⎥⎥⎥⎦

+ λCW(l)

=
l∑

k=l−m+1
h�(k)v(k) + λCW(l).

(17)

Therefore,W(l) = P(l)R(l) and the template matrix for
frame-(l+1) can also be calculated byW(l+1) = P(l+1)
R(l + 1).
Similar to (16) and (17), we obtain

P(l + 1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

[h�(l − m + 2) . . . h�(l + 1)
]

×

⎡
⎢⎢⎢⎢⎢⎢⎣

h(l − m + 2)
h(l − m + 3)

.

.

.
h(l + 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

+ λI

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

=
(

l+1∑
k=l−m+2

h�(k)h(k) + λI

)−1

(18)



Lin et al. EURASIP Journal on Audio, Speech, andMusic Processing 2014, 2014:25 Page 4 of 13
http://asmp.eurasipjournals.com/content/2014/1/25

R(l + 1) = [h�(l − m + 2) . . .h�(l + 1)
]

×

⎡
⎢⎢⎢⎢⎢⎢⎣

v(l − m + 2)
v(l − m + 3)

.

.

.
v(l + 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

+ λCW(l + 1)

=
l+1∑

k=l−m+2
h�(k)v(k) + λCW(l + 1).

(19)

We define

P̃(l) =

⎛
⎜⎜⎜⎜⎜⎜⎝

[
0 h�(l − m + 2) . . . h�(l)

]

×

⎡
⎢⎢⎢⎢⎢⎢⎣

0
h(l − m + 2)

.

.

.
h(l)

⎤
⎥⎥⎥⎥⎥⎥⎦

+ λI

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

=
(

l∑
k=l−m+1

h�(k)h(k)

+ λI − h�(l − m + 1)h(l − m + 1)

)−1

.

(20)

By using theWoodbury matrix identity [27],

(A + BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1

(21)

holds withA = P(l)−1 = ∑l
k=l−m+1 h�(k)h(k) + λI, B =

h�(l−m+ 1), C = −1, and D = h(l −m+ 1). Therefore,
we obtain P̃(l) without matrix inversion by

P̃(l) = P(l) − P(l)h�(l − m + 1)h(l − m + 1)P(l)
h(l − m + 1)P(l)h�(l − m + 1) − 1

.

(22)

Next,

P(l + 1) =
⎛
⎝ l∑

k=l−m+2

h�(k)h(k)

+λI + h�(l + 1)h(l + 1)

⎞
⎠

−1

.

(23)

By using (21) with A = P̃(l)−1 = ∑l
k=l−m+2 h�(k)h(k) +

λI, B = h�(l + 1), C = +1, and D = h(l + 1), we obtain

P(l + 1) = P̃(l) − P̃(l)h�(l + 1)h(l + 1)P̃(l)
h(l + 1)P̃(l)h�(l + 1) + 1

. (24)

A matrix inversion is unnecessary when R(l + 1) is
achieved by

R̃(l) = R(l)−h�(l−m+1)h(l−m+1)−λCW(l) (25)

R(l+1) = R̃(l)+h�(l+1)h(l+1)+λCW(l+1). (26)
The oldest frame is removed by using (22) and (25),

and the new input frame is added by using (24) and (26).
Hence, the template matrix for each new input frame
can be computed recursively without matrix inversion
by using the results generated by previous input frames.
Since both frequency response and intensity of a note
evolve slowly in a short time, CW and CH are determined

Start

Note detection using WGCDV

Update W and H

If new notes are detected

Note

template

extraction

Add a new frame

Initialize Guard template

If equation (31) holds

If any new frame is available

End

Yes

No

Update W and H
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Note

template

extraction

Note detection using WGCDV

Yes

Drop the
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No

Yes
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Figure 1 The procedure of the proposed system. The block
diagram of the proposed system with the recursive regularization
procedure.
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Figure 2 An example of extracted harmonic structures. The original Guard template is separated into C4 and D4 constrained templates and a
new Guard template. Sound source: Kuijken’s recording on BWV 1005 No. 3 [23].
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(c)
Figure 3 A chirp signal varies from C5 to A5 in 1,000 time frames. (a) The original spectrogram. (b) The reconstructed spectrogram of [5].
(c) The reconstructed spectrogram of the proposed method.
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Figure 4 Six vibrating notes presented in the following order: E5, D5, C5, B4, A4, G4, and A4+B4. The spectrograms of (a) the original, (b) the
harmonic-constrained NMF [13], (c) time-depend parametric NMF [5], and (d) the proposed method of G4, A4, B4, C5, D5, and E5 notes that include
vibrato.

by the the results of W and H obtained in the previous
update iteration, i.e.,CW is updated byCW(l+1) = W(l).
The intensity matrix is subsequently calculated. Similar

to (13), the intensity matrix for the (l−m+1)th frame, the
(l − m + 2)th frame, . . ., and the lth frame is obtained as

H�(l) =
(
W(l)W�(l) + γ I

)−1
(W(l)V�(l)+γCH�).

(27)

Subsequently, the intensity information corresponding to
the template matrix of the (l + 1)th frame is computed as

h�(l + 1) =
(
W(l + 1)W�(l + 1) + γ I

)−1

×
(
W(l + 1)v�(l + 1) + γCH�(l + 1)

)
.

(28)

In (28), CH�(l + 1) can be set to H�(l) because it is
assumed that the intensity cannot change abruptly. The
forgetting factors λ and γ can determine the effects of old
frames. They are both set to 100 in this work. The time-
varying template matrix and the corresponding intensity
matrix can be calculated alternatively when a new input
frame is added. Further details and the overall procedure
are presented in the following section.

Analysis procedure
As shown in Figure 1, the analysis system started from
only one template initialized with random values, which is
called Guard template. An initialization loop determines
all possible note templates and evaluates the template
matrix and the intensity matrix in the same time. After
the initialization loop, the main loop takes care of the
new frame addition, the new note template detection,
the offset note template evaluation, and the old frame
removal. For the new note template detection, we used the
weighted greatest common divisor and vote (WGCDV)
[28] method to detect new tones in Guard template by
using a floating point GCD lookup table and a frame-
based correction method. WGCDV estimates F0 in three
steps: (a) locates the peaks of the frequency response of

Table 1 Objective performance comparison

SIR SAR SDR

NMF with harmonic constraints [13] 26.08 6.19 6.13

Time-dependent parametric NMF [5] 23.06 6.78 6.56

Proposed method 29.08 6.74 6.70

Objective performance comparison of NMF with harmonic constraints [13],
time-dependent parametric NMF [5], and the proposed method by using SIR,
SAR, and SDR.
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Table 2 Transcription results 1

Accuracy (Acc), % Precision (P), % Recall (R), % F-measure (F), %

NMF with harmonic constraints [13] 79.64 86.27 90.97 88.56

Time-dependent parametric NMF [5] 81.94 86.87 93.53 90.08

RR without online scheme [14] 77.45 78.81 97.82 87.29

Proposed method 83.36 97.28 85.35 90.93

Transcription report of the proposed work in the analysis of Kuijken’s recording on BWV 1005 No. 3.

the current frame and regards them as possible partials,
(b) finds a likely GCD value for each partial pair using
a lookup table method, (c) weights the likely GCD val-
ues and voting the deterministic GCD according to the
spectral energy. Once a harmonic structure is recognized
within Guard template at the current frame, these har-
monic peaks will be extracted from Guard template and
a corresponding new template is added to the original
template matrix.
Figure 2 shows an example of extracted harmonic struc-

tures of C4 andD4 notes from the original Guard template
by using a mask function, S. As shown in Figure 2, each
mask function represented in a dashed line can be defined
by a harmonic set corresponding to the detected note as
follows:

Sj =
N∑

p=1
I(pfj − ε, pfj + ε), (29)

where I(α, β) = 1 in the interval [α, β]; otherwise, it is
0. fj is the fundamental frequency of the jth recognized
tone, and p is the partial index. ε is set at 3% of the partial
frequency, pfj.
Subsequently, the new template is computed by

Wl
j = Slj ⊗ Wl

0, (30)

where Slj is the mask function of frame-l. In (30), Wl
0 =

[Wl
01Wl

02 . . .Wl
0n]T represents the original Guard tem-

plate of frame-l, and ⊗ is the element-wise multiplication.
The number of templates, r, is equal to j + 1. The proce-
dure described in the previous section is performed again
for frame-(l + 1) to obtain the new template matrix and
intensity matrix.

A re-estimation of the pitch of each note based on the
updated template matrix is necessary because all tem-
plates, as well as pitches, can vary by frame. Consequently,
the mask functions of all templates must be updated.
Because each template contains only one harmonic set,
CW(l + 1) in Equation 13 is computed by S(l) ⊗ W(l),

where S(l) =
[
Sl0Sl1 . . .Slr

]T
. Based on Equation 5, the

iterative update procedure forces W(l + 1) to retain har-
monic structures for all the notes as much as possible,
depending on the regularization parameter, λ.
Finally, a musical note is muted eventually after it is

played for a while. In this study, a note is removed from
the analysis process by removing its template and the cor-
responding intensity information. A note can be removed
if

l−k∑
q=l

|hqi| ≤ T , 1 ≤ i ≤ r. (31)

That is, the ith note is removed after frame-l if Equation 31
holds. T is empirically set to 0.1 in this work. By removing
such notes, the computation complexity is also reduced.

Experiments
Database
Two excerpts are generated by aMIDI synthesizer for pre-
liminary tests. Firstly, a synthetic chirp signal is generated,
and its pitch varies from C5 to A5 in 1,000 time frames.
The second test uses a signal with vibrating notes includ-
ing six notes in the following order: E5, D5, C5, B4, A4, G4,
and A4+B4. A vibrato effect is generated by setting proper
MIDI commands. All parameter sets are the same as those
in the previous test. Moreover, two recordings, the BWV
1005 No. 3 performed by Kuijken [23] and RWC database

Table 3 Transcription results 2

Accuracy (Acc), % Precision (P), % Recall (R), % F-measure (F), %

NMF with harmonic constraints [13] 56.22 57.09 97.64 71.98

Time-dependent parametric NMF [5] 74.11 75.29 97.94 85.13

RR without online scheme [14] 49.27 50.71 94.93 66.01

Proposed method 76.26 85.99 87.08 86.53

Transcription report of the proposed work in the analysis of RWC database C038.
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C038 [24], are used to evaluate the accuracy of all meth-
ods, as proposed in [29]. The former contains 587 notes
that are manually annotated as the ground truth. The lat-
ter contains 1,745 notes whose ground truth is provided
from the syncRWC annotations [30].

Parameters
The window size is 4,096 samples, the hop size is 256
samples, and the sampling rate is 44.1 kHz. A Hamming
window and 4096-FFT are subsequently applied.

Performance evaluation
An objective measure for evaluating the performance
of a source separation method proposed in [31] is
adopted for the following discussion. To compare dif-
ferent approaches, the signal-to-distortion ratio (SDR),
the signal-to-artifact ratio (SAR), and the signal-to-
interference ratio (SIR) are computed with each note as
the target. In this work, we considered each note as a sep-
arate source. The SIR, SAR, and SDR values of these notes
are averaged respectively.
To evaluate the performance of music transcription, we

chose note-level metrics with a tolerance of one window
before and after the reference onset time. Overall accuracy
is defined as

Acc = TP
FP + FN + TP

, (32)

where TP (true positives) is the number of correctly tran-
scribed voiced notes (within a quarter tone distance in
frequency and 50-ms onset distance in time), FP (false
positives) is the number of unvoiced notes transcribed as
voiced, and FN (false negatives) is the number of voiced
notes transcribed as unvoiced. This measure is defined for
note-based onset evaluation in this case and is bounded
by 0 and 1, with 1 corresponding to perfect transcription.
Another metric, called F-measure, is defined as

F = 2
P · R
P + R

, (33)

whereas

P = TP
TP + FP

(34)

R = TP
TP + FN

, (35)

where P and R represent the precision rate and recall rate,
respectively.

Results
The first preliminary test: glissando
The first part of this section presents a comparison of
the proposed method by using a glissando signal to the
conventional NMF method with harmonic constraints
on matrix W [32] and the time-dependent parametric

Table 4 Complexity comparison

Numbers of matrix multiplications Big-O

Update rules (m − k + 1)(2nrk + 2r2n + 2r2k + 2rn+ 2rk) O(mkrn)
of NMF

Proposed (m − k)(2r2n + 9rn + 2r3 + 15r2 + 4r) O(mr2n)
update rules +(2r2n + 2krn + 4r3 + (2k + 2)r2)

The complexity of the proposed update rule is compared with the NMF update
method.

NMF method [5] that uses the same harmonic struc-
ture for different notes of the same instrument. For
the time-dependent parametric NMF, 10 templates are
used to cover the possible pitch range of the signals.
For the proposed method, it started with the initialized
Guard template, and the required number of templates
is determined adaptively during the analysis process.
Figure 3a shows the original spectrogram of the note,
and Figure 3b,c shows the reconstructed spectrograms
that resulted from the time-dependent NMF method and
the proposed method, respectively. In [5], the pitch of a
template is constrained to vary within a fixed semitone;
therefore, a number of discontinuous effects occurred
among the templates, as shown in Figure 3b. Moreover,
10 note templates are required for the time-dependent
NMF approach in this case. Because the pitch of a tem-
plate is allowed to vary freely in the proposed method,
only one template is required to represent the chirp signal.
This accounts for the superior performance of the pro-
posed method in which the signal varies more than one
semitone.

The second preliminary test: vibrato
In this case, a synthetic signal with six vibrating notes
appearing in the following order, E5, D5, C5, B4, A4, G4,
and A4+B4, is used. Figure 4 shows the simulation results.
Figure 4b shows that the harmonic-constrained NMF is
limited in presenting the signal with frequency modula-
tion because of the consistency of the templates. As dis-
cussed in [13], separation performance can be improved
by increasing the number of templates for each note. The
time-dependent parametric NMF performs efficiently in
signal that includes vibrato effects; the result is shown
in Figure 4c. The only disadvantage is that the ampli-
tudes of the partials are not determined independently

Figure 5 BWV 1005 No. 3. Five notes in the bracket are analyzed.
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from time to time, as shown in the circled region of
Figure 4c. The amplitude set trends toward the average
among all played notes. The spectrogram obtained from
the proposed method is closer to the original spectro-
gram than those obtained from NMF methods. Table 1
shows the separation results of all methods. The time-
dependent NMF experiences a number of interference
errors from the additional partial energy shown in the
circled region of Figure 4c. By considering the SAR, the
proposed method preserves most of the vibrato effects
in all cases, whereas the harmonic-constrained NMF pre-
serves only steady partial energies. Based on the success
of bothmeasures, the proposedmethod scores the highest
SDR as well.

Main experiments
The system is tested on the complete recordings of BWV
1005 No. 3 played by Kuijken [23] and 24 Caprices op.
1 no. 24 in A minor played by Paganini from RWC
database [24]. A total of 587 + 1,745 notes are annotated
as the ground truth. The analysis is performed blindly;
however, pitches outside the possible range are excluded.
Additional score information is also excluded from the
process.
Table 2 shows the results of analyzing Kuijken’s record-

ing. It indicates that 501 notes are correctly detected (TP),
14 detected notes are not in the score (FP), 86 of 587 notes
are not detected (FN), 18 notes are missed because their
octave notes are too strong, 4 notes are missed because

(a)

(b)

(c)
Figure 6 Analysis of Grumiaux’s recording. (a) Original spectrogram, (b) spectrogram of B4 and C5 notes, and (c) intensity matrices.
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their perfect fifth notes are too strong, 56 notes remain
in Guard templates because the automatic detection
method fails to extract them from Guard template, and 8
notes are mixed with other detected notes because their
pitches are close to those of certain high intensity notes.
Hence, the following results are obtained: precision rate=
501/(501+ 14) = 97.28%, recall rate = 501/(501+ 86) =
85.35%, accuracy = 501/(501 + 14 + 86) = 83.36%, and
F-measure = 90.93%.
The second recording contains more complicated per-

forming styles with larger amount of notes than the first
one. False alarms are enormously increased compared

with the first recording especially in NMF case, since
the energies of overlapping partials of voiced notes and
unvoiced notes interfere each other in the intensity matrix
H. The performance of the proposed method maintains
balance between precision and recall rate. Its number of
unvoiced notes transcribed as voiced and voiced notes
transcribed as unvoiced is lower than NMF and TD-NMF.
That shows our approach is more stable than NMF and
TD-NMF.
In Tables 2 and 3, the recursive regularization method

without the online scheme means that the sliding frame
size is maximized to the whole signal duration. It is

(a)

(b)

(c)
Figure 7 Analysis of Kuijken’s recording. (a) Original spectrogram, (b) spectrogram of B4 and C5 notes, and (c) intensity matrices of all notes.
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notable that, according to accuracy and F-measure of
the transcription report, the results of this conven-
tional recursive regularization method provides a baseline
performance of the proposed algorithm. This work takes
advantages of high-speed property of recursive regular-
ization and improves the performance by imposing the
proposed online scheme.

Complexity
In addition, the complexity of the proposed update rules
is compared with the NMF as shown in Table 4. Let n be
the number of frequency bins,m be the number of frames,
and r be the number of templates. Supposem input frames
are set to be processed and only k frames are analyzed
for each iteration, where k < m. For each iteration, the
complexities of two update rules are O(krn) and O(r2n).

The complexity of the proposed update rules is similar
to traditional NMF update rules in the case of regarding
Euclidean distance as the cost function. Under the similar
computational complexity, the proposed method is able
to handle the time-varying music features and offer better
results.

Performance analysis
Here, the proposed method attempts to analyze the per-
formances of three violinists of different generations:
Arthur Grumiaux, Sigiswald Kuijken, and Hilary Hahn.
The signals are extracted from their CDs [23,25,26]. The
following passages excerpted from BWV 1005 No. 3 are
used to compare their performances. The musical score
is shown in Figure 5. This study analyzes the signals of
the short period during five notes in the bracket. The

(a)

(b)

(c)
Figure 8 Analysis of Hahn’s recording. (a) Original spectrogram, (b) spectrogram of B4 and C5 notes, and (c) intensity matrices of all notes.
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original spectrograms and the analysis results are shown
in Figures 6, 7, and 8.
According to the figures, a notable difference is that the

pitches of Kuijken’s performance are one semitone lower
than those of the other violinists’ since the instruments are
usually used in historically informed performances (HIP),
and musicians usually follow the tradition of the period
during which the music is composed. Secondly, violin-
ists use vibrato techniques frequently. We can observe the
vibrato effects of B4 note in the performance played by
Hahn, as shown in Figure 8, compared to those played
by Grumiaux and Kuijken, as shown in Figures 6 and 7,
respectively. Thirdly, Kuijken’s style is distinct. He freely
used numerous trills, which were not indicated in the
score of Bach’s solo violin works. This can be viewed
in Figure 7b,c. As shown in Figures 6c and 8c, C5 is
off and B4 is on. After B4 continues for a period of
time, it is off and C5 is on again. Moreover, C5 is the
strongest note in Grumiaux’s playing, whereas B4 is the
most prominent note in Hahn’s playing. Comparatively,
Kuijken played equal intensity on these two notes. Hahn’s
recording sounded brighter than the other two recordings
since the spectral energy of the G3 note in Hahn’s record-
ing is larger than the others’. This may be caused by the
decision of her balance engineer since the lower notes are
weak in amplitude in all of her recordings. A notable mis-
take is also observed, that is, both Kuijken and Grumiaux
played an extra D4 note, which is not in the original score.
Thismay be a coincidence, or it is possible that they used a
different score edition. Finally, their tempi also differ con-
siderably. Kuijken used 1.68 s (290 frames) to finish the
short passage, whereas Grumiaux used 1.83 s, and Hahn
used 2.37 s. Hahn’s tempo is 40% slower than Kuijken’s.
As an HIP musician, Kuijken played faster than the other
violinists.

Conclusions
A recursive regularization analysis method is proposed to
analyze acoustic recordings of solo violin works. Similar to
NMF, the proposed method factorizes the matrix formed
with the Fouriermagnitude coefficients ofmultiple frames
into a template matrix and an intensity matrix. The frame-
by-frame-based procedure is designed for time-varying
musical signals, such as solo violin recordings. The sys-
tem of equations is updated by adding a new frame and
dropping an old frame to avoid the problems of mostNMF
methods when the signal varies substantially. The pro-
posed method is compared to the time-dependent NMF
method by using two synthesized signals and exhibited
superior SDR performances. The objective performance
of the proposed method is also verified. For Kuijken’s
recording of BWV 1005No. 3, the precision rate is 97.28%,
the recall rate is 85.35%, and the F-measure is 90.93%. For
a larger recording database fromRWCC038, the precision

rate is 85.99%, the recall rate is 87.08%, and the F-measure
is 86.53%. It shows the stability of our approach. Finally,
the proposed method is used to analyze the recordings
of J.S. Bach’s BWV 1005 No. 3 by three violinists, that is,
Arthur Grumiaux, Sigiswald Kuijken, and Hilary Hahn.
The results show that the time-varying characteristics of
most notes appearing in the recordings can be tracked
efficiently. The styles of the three violinists are easily
distinguished through the separated results.
We are currently investigating possible approaches to

improve the extraction of new notes fromGuard template.
An octave errormay occur in our case because of the over-
lapping partials of the octave notes. In addition, because
of the basis of the least-squares method, the performance
of the proposed method with respect to signals of small
amplitude, such as higher partials, is not as effective as
NMF using other types of cost functions such as KL and
IS divergences. The derivation of other cost functions into
the proposed method may improve performance. More-
over, a supervised learning procedure can be introduced
if note activations are available. Note activations can not
only eliminate pitch detection errors but also constrain
the intensity matrix for each note. As our approach pre-
servesmoremusical characteristic details in the note level,
nearly perfect decomposition is possible if it incorporates
with more constraints, such as timbre, inharmonic bias,
and phase. Therefore, many music information retrieval
tasks are suitable to take our approach as a preprocessing,
for example, player identification or expressive remix.
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