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Abstract: This article considers the problem of online audio source separation. Various algo-
rithms can be found in the literature, featuring either blockwise or stepwise approaches, and using
either the spectral or spatial characteristics of the sound sources of a mixture. We offer an algo-
rithm that can combine both stepwise and blockwise approaches, and that can use spectral and
spatial information. We propose a method for pre-processing the data of each block and offer a way
to deduce an Equivalent Rectangular Bandwith time-frequency representation out of a Short-Time
Fourier Transform. The efficiency of our algorithm is then tested for various parameters and the
effect of each of those parameters on the quality of separation and on the computation time is then
discussed.
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Combinaison des approches par blocs et
pas-à-pas en un cadre général pour la séparation

en ligne de sources audio

Résumé : Cet article traite du problème de la séparation en line de sources
audio. Les différents algorithmes présentés dans la littérature sont basés soit sur
une approche par blocs soit sur une approche pas-à-pas et ils utilisent soit les
caractéristiques spectrales soit les caractéristiques spatiales des sources sonores
qui composent le mélange. Nous proposons un algorithme qui peut combiner les
approches par blocs et pas-à-pas et utiliser à la fois des informations spectrales
et spatiales. Nous introduisons une méthode de pré-traitement des données
sur chaque bloc et une façon de calculer une représentation temps-fréquence
sur l’échelle Equivalent Rectangular Bandwith à partir d’une transformation de
Fourier à court terme. Nous évaluons la performance de notre algorithme avec
différentes valeurs de paramètres et discutons l’effet de ces valeurs sur la qualité
de séparation et le temps de calcul.

Mots-clés : séparation en ligne de sources audio, factorisation matricielle
positive, bloc coulissant, gradient stochastique.



A general framework for online audio source separation 3

1 Introduction

Audio source separation is the process of recovering a set of audio signals from
a given mixture signal. This can be addressed via established approaches such
as Independent Component Analysis (ICA), binary masking, and Sparse Com-
ponent Analysis (SCA) [1], or more recent approaches such as local Gaussian
modeling and Nonnegative Matrix Factorisation (NMF) [2]. Most algorithms
are offline (also known as batch) algorithms which process the mixture signal
as a whole. In this paper, we focus on online audio source separation instead,
whereby only the past samples of the mixture are available in order to estimate
the sources at a given time. This constraint arises in particular in real-time
scenarios, such as real-time speech separation for voice command, live remixing
of songs by disk-jockeys, or spatial upmixing of streaming audio, as may be
necessary when the 3D audio processing is performed at the consumer’s side of
the audio chain, like in the case in the BiLi project.

A few online implementations have been designed for time-domain ICA [3–
6], frequency-domain ICA [7–12] and post-filtering [13–15], localisation-based
time-frequency masking [16–21], spectral continuity-based separation [22], pitch-
based separation [23] and NMF [24–27]. However, these algorithms rely either on
spatial diversity [13,15,19,20] or on spectral diversity [22,24,25,27] alone. Such
algorithms are not capable of separating mixtures where several sources have the
same spatial position and several sources have similar spectral characteristics.
For example, in pop music, the voice, the snare drum, the bass drum and the
bass are often mixed to the centre and several voices or several guitars are
present.

To address this issue, we adopt the FASST audio source separation frame-
work introduced in [28]. This framework generalises a number of algorithms such
as certain forms of ICA and NMF, and it enables the specification of additional
constraints on the source spectra such as harmonicity. By jointly exploiting
spatial and spectral diversity, it makes it possible to robustly separate difficult
mixtures such as above. This is exemplified by the fact that FASST performed
best among the two algorithms [28, 29] that suceeded in separating all sources
from professionally mixed music recordings in the 2011 Signal Separation Eval-
uation Campaign (SiSEC) [30].

Approaches for online audio source separation fall into three categories.
A first set of approaches operates on a single time frame of the input time-
frequency representation. This has been used for localisation-based and pitch-
based separation [17, 23], but this does not allow tracking of parameters such
as source positions or source spectra over time. The sliding block (also known
as blockwise) approach, as used in, e.g., [13, 15, 22, 27], consists in applying
the offline audio source separation algorithm to a block of M time frames.
Once the model parameters have been estimated from the observed signal in
the whole block, they are used to separate the mixture in one or more time
frames (e.g, the last ones of the block) before sliding the processing block by
that number of frames. This approach is computationally costly but accurate
because the parameters used to separate each time frame are estimated from a
larger block [13]. The stochastic gradient (also known as stepwise) approach,
as used in, e.g., [7, 16, 24, 25], offers to update the model parameters in each
time frame by interpolating the parameters of the previous frame with some
estimate of the parameters in the current frame weighted by a step size coef-
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4 Simon & Vincent

ficient α. This approach, which is commonly used for dictionary learning and
optimisation [31–33], is faster than the blockwise approach but it can lead to
less accurate parameter estimates. A few authors combined the blockwise and
the stepwise approaches [11, 24] but they did not provide an experimental as-
sessment of the benefit of this combination in terms of source separation quality.

In this paper, we propose an iterative online algorithm for the FASST frame-
work that combines the blockwise and the stepwise approaches1. By contrast
with the above algorithms, our algorithm is more general in that it can jointly
exploit spatial and spectral diversity and it relies on three hyper-parameters:
the block size M and two step sizes αspat and αspec which make it possible to
adapt the spatial parameters and the spectral parameters at different rates. In-
formal tests showed an improvement of separation when using ERB filterbanks
over when using Short-Time Fourier Transform (STFT); in the validation ex-
periment, we therefore approximated an ERB filterbank by averaging over the
frequency bins of a STFT. As a by-product, we provide a way of circumventing
the annealing procedure in the original FASST algorithm in [28], which would
require a large number of iterations per block. Finally, we assess the benefit
of preiterations, i.e., iterations to update the temporal parameters of the last
frames prior to updating all the other parameters. We assess the impact of
these different hyper-parameters experimentally on a set of real-world music
mixtures and show that whilst the set of parameters that achieves the best
separation quality is content-dependent, one can find a set of parameters for
which the separation quality is comparable to that achieved using the optimal
parameters.

The structure of the rest of the paper is as follows. The original offline
framework is summarized in Section 2. Section 3 presents the proposed online
algorithm. Objective experiments are presented in Section 4. Conclusions and
future perspectives are drawn in Section 5.

2 General audio source separation framework

2.1 Model

We operate in the time-frequency domain by means of the Short-Time Fourier
Transform (STFT). In each frequency bin f ∈ [1, F ] and each time frame n ∈
[1, N ], where F is the number of time-frequency bins in a time frame and N is
the total number of time frames, the multichannel mixture signal x(f, n) can
be expressed as

x(f, n) =

J∑
j=1

cj(f, n) (1)

where J is the number of sources and cj(f, n) is the STFT of the multichannel
signal of the j-th source.

We assume that cj(f, n) is a complex-valued Gaussian random vector with
zero mean and covariance matrix Rcj (f, n)

cj(f, n) ∼ Nc(0,Rcj
(f, n)) (2)

1A preliminary version of this online algorithm using a single step size α and smaller-scale
experimental evaluation was introduced in [34], without using pre-iterations.
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A general framework for online audio source separation 5

and that Rcj
(f, n) factors as

Rcj (f, n) = vj(f, n)Rj(f) (3)

where Rj(f) is the spatial covariance matrix of the j-th source, and vj(f, n) is
its spectral power.

The spectral power vj(f, n) is modeled via a form of hierarchical NMF [28],

as shown in the example in Fig. 1. The matrix of spectral variances Vj ,
[vj(f, n)]f,n is first decomposed into the product of an excitation spectral power
Vx

j and a filter spectral power Vf
j

Vj = Vx
j �Vf

j (4)

where � denotes entrywise multiplication. Vx
j is further decomposed into the

product of a matrix of narrowband spectral patterns Wx
j , a matrix of spectral

envelope weights Ux
j , a matrix of temporal envelope weights Gx

j , and a matrix
of time-localised temporal patterns Hx

j , so that

Vx
j = Wx

jU
x
jG

x
jH

x
j . (5)

Vf
j is decomposed in a similar way.

This factorisation enables the specification of various spectral or temporal
constraints over the sources. For example, harmonicity can be enforced by
fixing Wx

j to a set of narrowband harmonic patterns [28]. For other examples
of use of FASST, see [35–37], or Fig. 1. This figure shows how the notes
played by a guitar get decomposed into spectral information, which contains
the frequencies present in each of the notes played by the guitar, and temporal
information, which shows when each note is played. Fig. 1 also shows that each
note is composed of several spectral patterns. In the case where the spectral
information would be set, e.g. in a case where the spectral fine structures
and spectral enveloppes of the guitar would have been learned prior to the
separation, matrices Wx

j and Ux
j would be fixed while matrices Gx

j and Hx
j

would be left uncontrained.

2.2 Offline estimator

In an offline context, the model parameters are estimated in the Maximum
Likelihood (ML) sense.

The log-likelihood logL is defined using the empirical mixture covariance
matrix R̂x(f, n) [38] as

logL =
∑
f,n

− tr (R−1
x (f, n)R̂x(f, n))− log det(πRx(f, n)) (6)

where

Rx(f, n) =

J∑
j=1

Rcj
(f, n) (7)

is the mixture covariance predicted by the model.
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Figure 1: Example of FASST representation of a sequence of notes played by a
guitar. Units are in dB.

In [28], Rj(f) was expressed as Rj(f) = Aj(f)AH
j (f), and Aj(f) was esti-

mated instead. This resulted in an annealing procedure, which would translate
into a large number of iterations per block in our context. In order to circum-
vent it, we assume that Rj(f) is full-rank and then we directly estimate Rj(f)
instead, similarly to [38].

A Generalised Expectation-Maximisation (GEM) algorithm combined with
Multiplicative Updates (MU) is then applied to the complete data {cj(f, n)}.
In the E-step, the natural statistics are computed as per [38]

Ωj(f, n) = Rcj (f, n)R−1
x (f, n) (8)

(9)R̂cj
(f, n) = Ωj(f, n)R̂x(f, n)ΩH

j (f, n) + (I−Ωj(f, n))Rcj
(f, n)

where Ωj is the multichannel Wiener filter, I is the I × I identity matrix and I
is the number of channels of the mixture.

In the M-step, the model parameters are updated as in [28,38] by maximizing
the cost function Q in (33), which leads by derivation of Q to the updates shown
in (11), (12), (13), (14) and (15).

(10)Q =
∑
j,f,n

− tr (R−1
cj

(f, n)R̂cj
(f, n))− log det Rcj

(f, n)

Rj(f) =
1

N

N∑
n=1

1

vj(f, n)
R̂cj

(f, n) (11)

Wx
j = Wx

j �
[Ξ̂j �Vx

j .
−2 �Vf

j .
−1](Ux

jG
x
jH

x
j )T

Vx
j .

−1(Ux
jG

x
jH

x
j )T

(12)

Inria



A general framework for online audio source separation 7

Ux
j = Ux

j �
Wx

j
T [Ξ̂j �Vx

j .
−2 �Vf

j .
−1](Gx

jH
x
j )T

Wx
j
TVx

j .
−1(Gx

jH
x
j )T

(13)

Gx
j = Gx

j �
(Wx

jU
x
j )T [Ξ̂j �Vx

j .
−2 �Vf

j .
−1]Hx

j
T

(Wx
jU

x
j )TVx

j .
−1Hx

j
T

(14)

Hx
j = Hx

j �
(Wx

jU
x
jG

x
j )T [Ξ̂j �Vx

j .
−2 �Vf

j .
−1]

(Wx
jU

x
jG

x
j )TVx

j .
−1

(15)

In these equations, .p denotes entrywise raising to the power p, N is the
number of time frames in the STFT of the signal, and Ξ̂j = [ξ̂j(f, n)]f,n, where

ξ̂j(f, n) is given by

ξ̂j(f, n) =
1

I
tr(R−1

j (f)R̂cj
(f, n)). (16)

Wf
j , Uf

j , Gf
j and Hf

j are updated in a similar way.
The separated sources are then obtained via multichannel Wiener filtering as

ĉj(f, n) = Ωj(f, n)x(f, n). (17)

3 Online estimation

3.1 Combined blockwise and stepwise approach

We now consider an online estimation context. We split the data into blocks
indexed by t and shifted by D STFT frames. Each block covers M STFT frames
indexed by n with tD−M+1 ≤ n ≤ tD, where M = 1 for the stepwise approach
and M = N for the full offline approach. Figure 2 illustrates the decomposition
of x(f, n) into blocks.

At each block, several iterations can be performed in order to estimate the
model parameters. At each iteration, the expectation of the natural statistics
is computed using (8) and (9) for tD −M + 1 ≤ n ≤ tD.

The algorithm in Sec. 2 is therefore adapted to the online constraint. The
E-step remains the same as for the offline approach, applied to the blocks of M
frames. The M step is modified by applying a weighted averaging over time.
The original Q function in (33) is therefore modified into

(18)

Q(t) = (1− α)Q(t−1)

+ α

∑
j,f

tD∑
n=tD−M+1

− tr (R−1
cj

(f, n)R̂(
cj
f, n)− log det Rcj

(f, n)


where α is a step size coefficient α ∈ ]0; 1] used to stabilise the parameter updates
by averaging over blocks.

We assume that the ideal spatial and spectral parameters vary little from
one block to the next. The partial derivatives of (18) leads to the new updates

of R
(t)
j , Ux

j
(t) and Wx

j
(t) for the block of signal available at time t.

RR n° 8766
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Block(t)

Block(t+1)

D new frames

x(f,n)

Figure 2: Evolution of the blocks of signal across time.

The spatial covariance matrix is then updated as follows:

(19)R
(t)
j (f) = (1− α)R

(t−1)
j (f) + α

(
1

M

tD∑
n=tD−M+1

1

vj(f, n)
R̂cj

(f, n)

)

where the superscript (t) denotes the estimated parameters for the block t.
The temporal envelope weights Gx

j
(t) and the time-localised temporal pat-

terns Hx
j
(t) are updated using (14) and (15) for tD −M + 1 ≤ n ≤ tD, as they

are expected to significantly vary between blocks.
The variations of the narrowband spectral patterns Wx

j
(t) and of the spectral

envelope weights Ux
j
(t) are expected to be smaller and can be smoothed using the

stepwise approach. The updates are therefore calculated by using the derivative
of (18) in reference to Wx

j given in (20) and that of (18) in reference to Ux
j

given in (21). This leads to the updates of Wx
j
(t) and of Ux

j
(t) in (26) and (27).

Detailed derivation is given in Sec. A.

where Ξ̂
(t)
j is computed as in (16). Gf

j
(t)

, Hf
j
(t)

, Wf
j
(t)

, and Uf
j
(t)

are updated
in a similar way.

After each EM iteration, Wf
j , Uf

j , Gf
j and Hf

j , Wx
j , Ux

j , and Gx
j are nor-

malized to 1 and Hx
j is normalized to the energy of V˙j.

Although (19) to (27) look similar to the stepwise local Gaussian model
update in [39] and the stepwise NMF updates in [25], there are two crucial
differences:

� The framework introduced in the current paper is more general in the
sense that it uses hierarchical NMF, enabling the user to apply more spe-
cific constraints than when using shallow NMF and to solve more difficult
separation problems sur as such as those arising in music.

� The models it estimates take into account both the source’s spatial and
spectral diversity.

Inria



A general framework for online audio source separation 9

∂Q(t)

∂Wx
j

= Mx
j
(t) −Cx

j
(t) (20)

∂Q(t)

∂Ux
j

= Nx
j
(t) −Dx

j
(t) (21)

where

(22)Mx
j
(t) = (1− α)Mx

j
(t−1) + α[Ξ̂j �Vx

j .
−2 �Vf

j .
−1](Ux

jG
x
jH

x
j )T

(23)Cx
j
(t) = (1− α)Cx

j
(t−1) + αVx

j .
−1(Ux

jG
x
jH

x
j )T

(24)Nx
j
(t) = (1− α)Nx

j
(t−1) + αWx

j
T [Ξ̂j �Vx

j .
−2 �Vf

j .
−1](Gx

jH
x
j )T

(25)Dx
j
(t) = (1− α)Dx

j
(t−1) + αWx

j
TVx

j .
−1(Gx

jH
x
j )T

Wx
j
(t) = Wx

j
(t) �

Mx
j
(t)

Cx
j
(t)

(26)

Ux
j
(t) = Ux

j
(t) �

Nx
j
(t)

Dx
j
(t)
. (27)

� It is not limited to the sole use of the latest audio frame: the algorithm
blockwise in addition to being stepwise.

3.2 Different α coefficients for spatial and spectral param-
eters

We found in [34] that the use of a single stepsize coefficient α tended to cause
a divergence of the spatial parameters over time and therefore a degradation
of the separation quality. In addition, in most commercial music recordings —
the intended application context of this article —, the spatial position of the
sources evolves slowly if at all, contrarily to their spectro-temporal content. In
other source separation contexts, we may aim to separate moving sources that
change little in terms of spectral content.

We therefore propose in this paper to use two distinct stepsize coefficients in
]0; 1]: a spatial stepsize coefficient αspat in (19) and a spectral stepsize coefficient
αspec in (22) to (25).

3.3 Initialisation and preiterations

The spatial covariance matrices R
(t)
j are initialised to R

(t−1)
j . The narrowband

spectral patterns W
x(t)
j , the spectral envelope weights U

x(t)
j , and the temporal

RR n° 8766



10 Simon & Vincent

envelope weights G
x(t)
j are initialised to W

x(t−1)
j ,U

x(t−1)
j , and G

x(t−1)
j .

The temporal weights of the last D frames of Hx
j
(t) are randomly initialised

and then normalised to the mean spectral power of the signal:

(28)Hx(t)
j (p, k) = εj(p, k, t)Ṽj

where Ṽj is defined by

(29)Ṽj =
1

FM

tD∑
f,n=tD−M+1

Ξ̂
(t)
j

and εj(p, k, t) is defined by

εj(p, k, t) = 0.75 | κ | +0.5 (30)

and κ is a random variable following a normal distribution.
The remaining of Hx

j
(t) is initialised to

(31)Hx(t)
j (p, k) = Hx(t−1)

j (p, k +D) + γεj(p, k, t)Ṽj

for all p and k ∈ [1;M −D]. The role of the added noise is to prevent the

estimator from being locked to a zero value if there was a zero in Hx
j
(t−1).

Wf
j
(t)

, Uf
j
(t)

, Gf
j
(t)

, and Ht
j
(t)

are initialized in a similar way to Wx
j
(t),

Ux
j
(t), Gx

j
(t), and Hx

j
(t).

Running the algorithm described above on each new block may have a draw-
back: since the temporal weights of the new D frames are randomly initialised,
the source models may start to converge for the first few iterations of the M−D
first frames of the block towards a local optimum that would lead to a bad sep-
aration. To avoid that, we propose to preprocess the last frame of each block
by running the algorithm on the whole block while fixing all the parameters of
the models except the temporal weights of the last D frames. An iteration of
this preprocessing is what we call a preiteration.

4 Experimental evaluation

4.1 ERB filterbank approximation from an STFT

Online processing of filterbanks is not a trivial matter. However, as explained
in Section 1, ERB filterbanks lead to a better source separation than STFT
representations of the signal. For this reason, we chose to simulate an ERB
filterbank by concatenating for each time frame different bins of the covariance
matrix of the mixture.

Once the filters for the different sources have been estimated using the algo-
rithm, the filters are applied by expanding the ERB representation of the filters
into a STFT representation of the filters: a single ERB filter coefficient is then
applied to several STFT bins of the mixture signal, using the reverse of the
weighting used for the concatenation.

In equations (7), (8), (9), (16), (17), (19) and (29), we replace the frequency
index f by b, where b is the index of the frequency band.

Inria



A general framework for online audio source separation 11

Parameter Values
Number of iterations [2, 5, 10, 30]

Number of pre-iterations [0, 2, 5, 10]
M [1, 2, 10, 25, 100]
γ [0, 0.1, 0.25, 0.5]

αspat [0.02, 0.05, 0.1, 1]
αspec [0.02, 0.05, 0.1, 1]

Table 1: Values tested for each parameter of the proposed algorithm

4.2 Data and algorithm settings

For our experiments, we processed five 10 s long stereo commercial pop record-
ings taken from the QUASI database [40,41] . Each recording involves 4 sources
sampled at 44.1 kHz: bass, drums, a guitar and a voice, and their respective
effects (delays, reverberation, . . . ).

A 350 bands simulated ERB filterbank was used, following the method de-
scribed in Section 4.1. The energy in the ERB bands was estimated using an
averaging over the frequency bins of a 2048 point STFT. For the offline algo-
rithm as well as for the online algorithm, each of the modeled sources were
constrained in a way similar to Section V.C in [28]. In the case of an harmonic

source, Wx
j
(t) was fixed to a set of narrowband harmonic spectral patterns and

the spectral envelope weights in Ux
j
(t) were updated, whereas for bass and per-

cussive sources, Wx
j
(t) was a fixed diagonal matrix and Ux

j
(t) was a fixed matrix

of basis spectra learned over a corpus of bass and drum sounds.

Separation performance was estimated for 4096 different sets of conditions
of the online algorithm (number of iterations, number of pre-iterations, block
size m, γ, αspat and αspec) and 100 iterations for the offline algorithm in [28].
Table 1 specifies the values tested for each parameter. We set D = 1, which
corresponds to a low-latency scenario.

The performance of the algorithms was evaluated with respect to the Signal-
to-Distortion Ratio (SDR), Signal-to-Interference Ratio (SIR), source Image to
Spatial distortion Ratio (ISR) and Source-to-Artifacts Ratio (SAR) as defined
in [42]. For each set of conditions, each of these criteria was averaged over all
the mixtures and all the separated sound sources.

The conditions where the block size M equals 1 are equivalent to a pure step-
wise approach, while the conditions where αspat and αspec equal 1 are equivalent
to a pure blockwise approach.

4.3 Results per song

Table 2 reports the SDR measured for each song’s best conditions, SDR mea-
sured for the overall best condition, SDR measured offline and for the best
blockwise and best stepwise conditions. Table 3 shows the values of the param-
eters that led to the online result. It can be seen that there is no consensus for
the best case scenario, except for αspec, where the highest value seems best for
four of the five songs. For these four songs, the results obtained with the online
algorithm are better than with the offline algorithm. These values may seem

RR n° 8766



12 Simon & Vincent

Song online individual online global Offline blockwise stepwise
best case SDR best case SDR SDR best case SDR best case SDR

1 1.10 0.65 0.71 0.97 0.97
2 1.76 1.56 2.07 1.76 1.38
3 1.13 0.85 0.66 1.01 0.95
4 3.92 2.14 5.60 2.42 3.92
5 2.49 2.34 1.24 2.38 2.49

Table 2: Best case scenario online, average best case scenario online and offline
SDR for each song

Song N. iter N. preiter M γ αspat αspec

1 30 2 10 0.25 1 0.02
2 10 10 100 0 0.1 1
3 2 0 10 0.1 0.05 0.1
4 5 0 2 0.5 0.1 0.1
5 30 0 2 0.1 0.05 0.02

Global best case 2 5 25 0 1 1

Table 3: Best sets of parameters for each song and on average.

Song pure spectral SDR pure spatial SDR Mixed
1 0.72 0.92 0.71
2 2.08 1.24 2.07
3 0.65 0.68 0.66
4 5.73 1.79 5.60
5 1.18 1.00 1.24

Table 4: SDR for each song for the pure spectral, pure spatial and combined
spectral and spatial offline algorithms.

low, but they are averaged for all sources. With the source material used in
the experiment, the snare drum tended to play at the same position and at the
same time as the voice, the algorithm therefore tended to associate some drum
elements to the voice, thus reducing the SDR of the voice. Efficient methods
for separating the voice from drums exist but are not the focus of this article.

Table 4 shows the comparison of pure spectral, pure spatial, and combined
spectral and spatial algorithms for the offline framework on the five songs tested
in the experiment.

4.4 Best results on average

Averaging the results over all songs gives a set of parameters that give, on
average on all five extracts songs, the best SDR. Table 2 shows the SDR of
each song with this set of parameters. These parameters are 2 iterations, 5
preiterations, γ = 0, M = 25, αspat = 1 and αspec = 1.

The parameter values for each song’s best case scenario differ from one an-
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Variables d.f. F p
Song number*Number of iterations 12 175 0

Song number*Number of pre-iterations 12 3.7 0
Song number*M 16 79 0
Song number*γ 12 21 0

Song number*αspat 12 2 0.01
Song number*αspec 12 31 0

Table 5: Results of the N-way ANOVA conducted on the raw results, show-
ing the effect of the interaction between the choice of the song and the other
parameters

other, and the values of the average best set of parameters differ from all of
them, making the best over all sets of parameters a blockwise condition. How-
ever, none of the individual best cases followed blockwise conditions, implying
that future work should be conducted on how to estimate the best set of pa-
rameters for a given song.

Table 2 also shows the results for pure blockwise (the best case for each song
with the limitation αspat = αspec = 1) and pure stepwise approaches (M = 1,
αspat < 1 and αspec < 1). Our combined approach offers on average a better
SDR than pure blockwise and stepwise approaches, although some individual
best cases were stepwise. For the stepwise approach, the number of preiterations
was set to 0, as it would act on the whole block.

4.5 Analysis of variance

In order to estimate the effect of each of the parameters on the SDR, an N-way
analysis of variance (ANOVA) was performed on the results. It showed that
when optimised for each song (i.e looking at the interaction between the choice
of the song and each parameter), all parameters have a significant effect on
the SDR (p < 0.05). This means that changing the value of only one of these
parameters could significantly alter the SDR. However, as can be seen in Table
5, the number of pre-iterations and the value of αspat have a smaller influence
on the SDR than the other parameters (their F-value, indicating how strong the
effect is, is smaller than for the other parameters).

Performing an ANOVA on the SDR averaged over all songs confirms the re-
sults of the earlier ANOVA and indicates that the effect of M is not as significant
as the other parameters, see Table 6.

4.6 Computational power

While the F-values of the ANOVA showed us how strong was the effect of each
parameter on the SDR, it tells nothing of the effect of a parameter on the
computational complexity of the algorithm. As shown in Sec. 4.5, if one wants
to decrease the computational power, one can do it by decreasing the number
of pre-iterations without significantly decreasing the SDR.

When fixing all but one parameter, the effect of this parameter on the com-
putational power depends on which parameter is varied. For example, unless
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Variables d.f. F p
Number of iterations 3 2260 0

Number of pre-iterations 3 2 0.04
M 4 24 0
γ 3 184 0

αspat 3 8 0
αspec 3 2101 0

Table 6: Results of the N-way ANOVA conducted on the results averaged over
all songs

they are fixed to 1 (i.e a blockwise approach), αspat and αspec have no influence
on the number of operations performed by the algorithm. Similarly, γ has no
influence on the computational power unless it is set to 0, since when it is set
to zero, equation (32) becomes

(32)Hj(p, k)x
(t)

= Hj(p, k +D)x
(t−1)

.

However, even in that case, its influence is extremely small.
In order to estimate the effect of the number of iterations, the number of

pre-iterations and M on the computational power, we measured the CPU time
necessary to run the algorithm on the first mixture with various numbers of
iterations (2, 4, 6, 8, and 10), numbers of pre-iterations (0, 2, 4, 6, 8, and 10)
and values of M (2, 4, 6, and 8). The effect of one of these three parameters on
the computational power was estimated by averaging the CPU time for all the
other parameters.

Figure 3 shows the effect of these three parameters on the computation time
(forcing the algorithm to use a single thread). It can be seen that the effect
of the number of iterations is far superior to the effect of the number of pre-
iterations or the size of the block M . In the algorithm, M only has an effect

on the size of the matrices Hx
j
(t), Hf

j
(t)

, Vx
j
(t), and Vf

j
(t)

, whereas the number
of iterations has an effect on all the operations. The effect of the number of
pre-iterations is somewhat between both.

The computation time shown here makes it not possible to process the data
in real-tim, but it is similar to that of the matlab implementation of the FASST
framework it was based on. Version 2.0 of the FASST framework has been
greatly optimized, however, and the C++ version now runs almost real time
if less than 20 iterations are conducted. A similar optimization of this online
algorithm will be considered as well.

5 Conclusion

In this paper, new approaches to online source separation were proposed, com-
bining stepwise and blockwise approaches, using pre-iterations to limit diver-
gence of the model and to speed-up the processing, and making use of two sep-
arate stepwise coefficient to adjust separately the speed of convergence of the

Inria



A general framework for online audio source separation 15

0 1 2 3 4 5 6 7 8 9 10
1500

2000

2500

3000

3500

4000

M
e

a
n

 C
P

U
 t

im
e

 (
s)

 

 

M

number of iterations

number of pre−iterations

Figure 3: CPU time necessary to run the separation algorithm on a 20 seconds
song as a function of number of iterations, number of pre-iterations and M.

spatial and spectral models of the sources. The use of separate stepsize coeffi-
cients for spatial and spectral parameters offers an increased flexibility in terms
of constraints applicable to the source models as well as computational power.
However, the ANOVA performed on the results of our experiment showed that
the most computationnaly intensive parameter is also the parameter that has
the most effect on the selected quality metrics of the separated audio sources.

This paper showed that the use of preiterations improved the quality of the
separation at a minimal additional computational cost.

It also offered a solution to make use of ERB time-frequency representation
when only STFT frames are available.

However, results of informal listening tests suggest that future work should
be conducted on modifying the quality metrics (SDR, SIR, ISR, and SAR)
and perceptual estimations of the PEASS toolbox to adapt it to the temporal
evolutions of the models that can occur in online source separation.

The best sets of parameters were found for each song for SDR measurements
and it was shown that the algorithm described in this paper perfoms on average
better than the state of the art offline, as well as pure blockwise or pure stepwise
blind source separation in a majority of cases for commercial recordings.
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A Derivative of the Q-function

Q(t) = (1− α)Q(t−1) + α

∑
j,f,n

− tr (R−1
cj

(f, n)R̂cj (f, n))− log det Rcj (f, n)


(33)

devient

(34)

Q(t) = (1− α)Q(t−1)

+ α

∑
j,f,n

− tr (R−1
j (f)v−1

j (f, n)R̂cj (f, n))− log det Rcj (f, n)



(35)Q(t) = (1−α)Q(t−1)+α

∑
j,f,n

−Iξ̂j(f, n)

vj(f, n)
−I log vj(f, n)− log det Rj(f)



(36)
∂Q(t)

∂vj(f, n)
= (1− α)

∂Q(t−1)

∂vj(f, n)
+ α

(
Iξ̂j(f, n)

v2j (f, n)
− I

vj(f, n)

)
,

therefore

(37)
∂Q(t)

∂Vj
= (1− α)

∂Q(t−1)

∂Vj
+ α

(
IΞ̂j �Vj .

−2 − IVj .
−1
)
.

Hence, when using

(38)
∂Q(t)

∂Wx
j

=
∂Q(t−1)

∂Vj

∂Vj

∂Vx
j

∂Vx
j

∂Wx
j

,

we obtain

(39)

∂Q(t)

∂Wx
j

= (1− α)
∂Q(t−1)

∂Wx
j

+ α
(

(IΞ̂j �Vx
j .

−2 �Vf
j .
−1)(Ux

jG
x
jH

x
j )T

− IVj .
−1(Ux

jG
x
jH

x
j )T
)
.

According to [43], the multiplicative update is therefore obtained by multi-
plying with the positive component of equation 39 and dividing by its negative
component, thus leading to equation 26.

Inria



A general framework for online audio source separation 17

References

[1] S. Makino, T.-W. Lee, and H. Sawada, Blind Speech Separation, 1st ed.
Springer, Sep. 2007.

[2] E. Vincent, M. G. Jafari, S. A. Abdallah, M. D. Plumbley, and M. E.
Davies, “Probabilistic modeling paradigms for audio source separation,” in
Machine Audition: Principles, Algorithms and Systems. IGI Global, 2010,
pp. 162–185. [Online]. Available: http://hal.inria.fr/inria-00544016/en/

[3] H. Buchner, R. Aichner, and W. Kellermann, “A generalization of blind
source separation algorithms for convolutive mixtures based on second-
order statistics,” IEEE Transactions on Speech and Audio Processing,
vol. 13, no. 1, pp. 120–134, 2005.

[4] R. Aichner, H. Buchner, F. Yan, and W. Kellermann, “A real-time blind
source separation scheme and its application to reverberant and noisy
acoustic environments,” Signal Processing, vol. 86, pp. 1260–1277, 2006.

[5] P. B. Batalheiro, M. R. Petraglia, and D. B. Haddad, “Online subband
blind source separation for convolutive mixtures using a uniform filter bank
with critical sampling,” in Proceedings of the 8th International Conference
on Independent Component Analysis and Signal Separation, 2009, pp. 211–
218. [Online]. Available: http://link.springer.com/chapter/10.1007/978-3-
642-00599-2˙27
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