5,422 research outputs found

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    A new approach to seasonal energy consumption forecasting using temporal convolutional networks

    Get PDF
    There has been a significant increase in the attention paid to resource management in smart grids, and several energy forecasting models have been published in the literature. It is well known that energy forecasting plays a crucial role in several applications in smart grids, including demand-side management, optimum dispatch, and load shedding. A significant challenge in smart grid models is managing forecasts efficiently while ensuring the slightest feasible prediction error. A type of artificial neural networks such as recurrent neural networks, are frequently used to forecast time series data. However, due to certain limitations like vanishing gradients and lack of memory retention of recurrent neural networks, sequential data should be modeled using convolutional networks. The reason is that they have strong capabilities to solve complex problems better than recurrent neural networks. In this research, a temporal convolutional network is proposed to handle seasonal short-term energy forecasting. The proposed temporal convolutional network computes outputs in parallel, reducing the computation time compared to the recurrent neural networks. Further performance comparison with the traditional long short-term memory in terms of MAD and sMAPE has proved that the proposed model has outperformed the recurrent neural network

    AMANDA : density-based adaptive model for nonstationary data under extreme verification latency scenarios

    Get PDF
    Gradual concept-drift refers to a smooth and gradual change in the relations between input and output data in the underlying distribution over time. The problem generates a model obsolescence and consequently a quality decrease in predictions. Besides, there is a challenging task during the stream: The extreme verification latency (EVL) to verify the labels. For batch scenarios, state-of-the-art methods propose an adaptation of a supervised model by using an unconstrained least squares importance fitting (uLSIF) algorithm or a semi-supervised approach along with a core support extraction (CSE) method. However, these methods do not properly tackle the mentioned problems due to their high computational time for large data volumes, lack in representing the right samples of the drift or even for having several parameters for tuning. Therefore, we propose a density-based adaptive model for nonstationary data (AMANDA), which uses a semi-supervised classifier along with a CSE method. AMANDA has two variations: AMANDA with a fixed cutting percentage (AMANDA-FCP); and AMANDA with a dynamic cutting percentage (AMANDADCP). Our results indicate that the two variations of AMANDA outperform the state-of-the-art methods for almost all synthetic datasets and real ones with an improvement up to 27.98% regarding the average error. We have found that the use of AMANDA-FCP improved the results for a gradual concept-drift even with a small size of initial labeled data. Moreover, our results indicate that SSL classifiers are improved when they work along with our static or dynamic CSE methods. Therefore, we emphasize the importance of research directions based on this approach.Concept-drift gradual refere-se à mudança suave e gradual na distribuição dos dados conforme o tempo passa. Este problema causa obsolescência no modelo de aprendizado e queda na qualidade das previsões. Além disso, existe um complicador durante o processamento dos dados: a latência de verificação extrema (LVE) para se verificar os rótulos. Métodos do estado da arte propõem uma adaptação do modelo supervisionado usando uma abordagem de estimação de importância baseado em mínimos quadrados ou usando uma abordagem semi-supervisionada em conjunto com a extração de instâncias centrais, na sigla em inglês (CSE). Entretanto, estes métodos não tratam adequadamente os problemas mencionados devido ao fato de requererem alto tempo computacional para processar grandes volumes de dados, falta de correta seleção das instâncias que representam a mudança da distribuição, ou ainda por demandarem o ajuste de grande quantidade de parâmetros. Portanto, propomos um modelo adaptativo baseado em densidades para dados não-estacionários (AMANDA), que tem como base um classificador semi-supervisionado e um método CSE baseado em densidade. AMANDA tem duas variações: percentual de corte fixo (AMANDAFCP); e percentual de corte dinâmico (AMANDA-DCP). Nossos resultados indicam que as duas variações da proposta superam o estado da arte em quase todas as bases de dados sintéticas e reais em até 27,98% em relação ao erro médio. Concluímos que a aplicação do método AMANDA-FCP faz com que a classificação melhore mesmo quando há uma pequena porção inicial de dados rotulados. Mais ainda, os classificadores semi-supervisionados são melhorados quando trabalham em conjunto com nossos métodos de CSE, estático ou dinâmico

    Research on operation optimization of building energy systems based on machine learning

    Get PDF
    北九州市立大学博士(工学)本研究では、建築エネルギーシステムの運用を最適化するために機械学習を応用し、建築エネルギーシステムの運用コストを削減し、再生可能エネルギーの自給率を向上させることを重点的に扱っています。これらの一連の研究成果は、この分野に新たな知見をもたらし、建築エネルギーシステムの経済的効率を向上させるのに役立っています。In this study, we focus on applying machine learning to optimize the operation of building energy systems, with a primary emphasis on reducing the operational costs of these systems and enhancing the self-sufficiency of renewable energy. This series of research outcomes has brought new insights to the field and contributes to improving the economic efficiency of building energy systems.doctoral thesi

    CPS Data Streams Analytics based on Machine Learning for Cloud and Fog Computing: A Survey

    Get PDF
    Cloud and Fog computing has emerged as a promising paradigm for the Internet of things (IoT) and cyber-physical systems (CPS). One characteristic of CPS is the reciprocal feedback loops between physical processes and cyber elements (computation, software and networking), which implies that data stream analytics is one of the core components of CPS. The reasons for this are: (i) it extracts the insights and the knowledge from the data streams generated by various sensors and other monitoring components embedded in the physical systems; (ii) it supports informed decision making; (iii) it enables feedback from the physical processes to the cyber counterparts; (iv) it eventually facilitates the integration of cyber and physical systems. There have been many successful applications of data streams analytics, powered by machine learning techniques, to CPS systems. Thus, it is necessary to have a survey on the particularities of the application of machine learning techniques to the CPS domain. In particular, we explore how machine learning methods should be deployed and integrated in cloud and fog architectures for better fulfilment of the requirements, e.g. mission criticality and time criticality, arising in CPS domains. To the best of our knowledge, this paper is the first to systematically study machine learning techniques for CPS data stream analytics from various perspectives, especially from a perspective that leads to the discussion and guidance of how the CPS machine learning methods should be deployed in a cloud and fog architecture

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics
    corecore