191 research outputs found

    Automated Comparison of Scanpaths in Dynamic Scenes

    Get PDF

    Automated Comparison of Scanpaths in Dynamic Scenes

    Get PDF

    Ensuring the Take-Over Readiness of the Driver Based on the Gaze Behavior in Conditionally Automated Driving Scenarios

    Get PDF
    Conditional automation is the next step towards the fully automated vehicle. Under prespecified conditions an automated driving function can take-over the driving task and the responsibility for the vehicle, thus enabling the driver to perform secondary tasks. However, performing secondary tasks and the resulting reduced attention towards the road may lead to critical situations in take-over situations. In such situations, the automated driving function reaches its limits, forcing the driver to take-over responsibility and the control of the vehicle again. Thus, the driver represents the fallback level for the conditionally automated system. At this point the question arises as to how it can be ensured that the driver can take-over adequately and timely without restricting the automated driving system or the new freedom of the driver. To answer this question, this work proposes a novel prototype for an advanced driver assistance system which is able to automatically classify the driver’s take-over readiness for keeping the driver ”in-the-loop”. The results show the feasibility of such a classification of the take-over readiness even in the highly dynamic vehicle environment using a machine learning approach. It was verified that far more than half of the drivers performing a low-quality take-over would have been warned shortly before the actual take-over, whereas nearly 90% of the drivers performing a high-quality take-over would not have been interrupted by the driver assistance system during a driving simulator study. The classification of the take-over readiness of the driver is performed by means of machine learning algorithms. The underlying features for this classification are mainly based on the head and eye movement behavior of the driver. It is shown how the secondary tasks currently being performed as well as the glances on the road can be derived from these measured signals. Therefore, novel, online-capable approaches for driver-activity recognition and Eyes-on-Road detection are introduced, evaluated, and compared to each other based on both data of a simulator and real-driving study. These novel approaches are able to deal with multiple challenges of current state-of-the-art methods such as: i) only a coarse separation of driver activities possible, ii) necessity for costly and time-consuming calibrations, and iii) no adaption to conditionally automated driving scenarios.Das hochautomatisierte Fahren bildet den nächsten Schritt in der Evolution der Fahrerassistenzsysteme hin zu vollautomatisierten Fahrzeugen. Unter definierten Bedingungen kann dabei der Fahrer die Fahraufgabe inklusive der Verantwortung über das Fahrzeug einer automatisierten Fahrfunktion übergeben und erhält die Möglichkeit sich anderen Tätigkeiten zu widmen. Um dennoch sicherzustellen, dass der Fahrer bei Bedarf schnellstmöglich die Kontrolle über das Fahrzeug wieder übernehmen kann, stellt sich die Frage, wie die fehlende Aufmerksamkeit gegenüber dem Straßenverkehr kompensiert werden kann ohne dabei die hochautomatisierte Fahrfunktion oder die neu gewonnenen Freiheiten des Fahrers zu beschränken. Um diese Frage zu beantworten wird in der vorliegenden Arbeit ein erstes prototypisches Fahrerassistenzsystem vorgestellt, welches es ermöglicht, die Übernahmebereitschaft des Fahrers automatisiert zu klassifizieren und abhängig davon den Fahrer "in-the-loop" zu halten. Die Ergebnisse zeigen, dass eine automatisierte Klassifikation über maschinelle Lernverfahren selbst in der hochdynamischen Fahrzeugumgebung hervorragende Erkennungsraten ermöglicht. In einer der durchgeführten Fahrsimulatorstudien konnte nachgewiesen werden, dass weit mehr als die Hälfte der Probanden mit einer geringen Übernahmequalität kurz vor der eigentlichen Übernahmesituation gewarnt und nahezu 90% der Probanden mit einer hohen Übernahmequalität in ihrer Nebentätigkeit nicht gestört worden wären. Diese automatisierte Klassifizierung beruht auf Merkmalen, die über Fahrerbeobachtung mittels Innenraumkamera gewonnen werden. Für die Extraktion dieser Merkmale werden Verfahren zur Fahreraktivitätserkennung und zur Detektion von Blicken auf die Straße benötigt, welche aktuell noch mit gewissen Schwachstellen zu kämpfen haben wie: i) Nur eine grobe Unterscheidung von Tätigkeiten möglich, ii) Notwendigkeit von kosten- und zeitintensiven Kalibrationsschritten, iii) fehlende Anpassung an hochautomatisierte Fahrszenarien. Aus diesen Gründen wurden neue Verfahren zur Fahreraktivitätserkennung und zur Detektion von Blicken auf die Straße in dieser Arbeit entwickelt, implementiert und evaluiert. Dabei bildet die Anwendbarkeit der Verfahren unter realistischen Bedingungen im Fahrzeug einen zentralen Aspekt. Zur Evaluation der einzelnen Teilsysteme und des übergeordneten Fahrerassistenzsystems wurden umfangreiche Versuche in einem Fahrsimulator sowie in realen Messfahrzeugen mit Referenz- sowie seriennaher Messtechnik durchgeführt

    Scanpath modeling and classification with Hidden Markov Models

    Get PDF
    How people look at visual information reveals fundamental information about them; their interests and their states of mind. Previous studies showed that scanpath, i.e., the sequence of eye movements made by an observer exploring a visual stimulus, can be used to infer observer-related (e.g., task at hand) and stimuli-related (e.g., image semantic category) information. However, eye movements are complex signals and many of these studies rely on limited gaze descriptors and bespoke datasets. Here, we provide a turnkey method for scanpath modeling and classification. This method relies on variational hidden Markov models (HMMs) and discriminant analysis (DA). HMMs encapsulate the dynamic and individualistic dimensions of gaze behavior, allowing DA to capture systematic patterns diagnostic of a given class of observers and/or stimuli. We test our approach on two very different datasets. Firstly, we use fixations recorded while viewing 800 static natural scene images, and infer an observer-related characteristic: the task at hand. We achieve an average of 55.9% correct classification rate (chance = 33%). We show that correct classification rates positively correlate with the number of salient regions present in the stimuli. Secondly, we use eye positions recorded while viewing 15 conversational videos, and infer a stimulus-related characteristic: the presence or absence of original soundtrack. We achieve an average 81.2% correct classification rate (chance = 50%). HMMs allow to integrate bottom-up, top-down, and oculomotor influences into a single model of gaze behavior. This synergistic approach between behavior and machine learning will open new avenues for simple quantification of gazing behavior. We release SMAC with HMM, a Matlab toolbox freely available to the community under an open-source license agreement.published_or_final_versio

    Visual complexity in human-machine interaction = Visuelle Komplexität in der Mensch-Maschine Interaktion

    Get PDF
    Visuelle Komplexität wird oft als der Grad an Detail oder Verworrenheit in einem Bild definiert (Snodgrass & Vanderwart, 1980). Diese hat Einfluss auf viele Bereiche des menschlichen Lebens, darunter auch solche, die die Interaktion mit Technologie invol-vieren. So wurden Effekte visueller Komplexität etwa im Straßenverkehr (Edquist et al., 2012; Mace & Pollack, 1983) oder bei der Interaktion mit Software (Alemerien & Magel, 2014) oder Webseiten (Deng & Poole, 2010; Tuch et al., 2011) nachgewie-sen. Obwohl die Erforschung visueller Komplexität bereits bis auf die Gestaltpsycho-logen zurückgeht, welche etwa mit dem Gestaltprinzip der Prägnanz die Bedeutung von Simplizität und Komplexität im Wahrnehmungsprozess verankerten (Koffka, 1935; Wertheimer, 1923), sind weder die Einflussfaktoren visueller Komplexität, noch die Zusammenhänge mit Blickbewegungen oder mentaler Beanspruchung bisher ab-schließend erforscht. Diese Punkte adressiert die vorliegende Arbeit mithilfe von vier empirischen Forschungsarbeiten. In Studie 1 wird anhand der Komplexität von Videos in Leitwarten sowie der Effekte auf subjektive, physiologische und Leistungsparameter mentaler Beanspruchung die Bedeutung des Konstruktes im Bereich der Mensch-Maschine Interaktion untersucht. Studie 2 betrachtet die dimensionale Struktur und die Bedeutung verschiedener Ein-flussfaktoren visueller Komplexität genauer, wobei unterschiedliches Stimulusmaterial genutzt wird. In Studie 3 werden mithilfe eines experimentellen Ansatzes die Auswir-kungen von Einflussfaktoren visueller Komplexität auf subjektive Bewertungen sowie eine Auswahl okularer Parameter untersucht. Als Stimuli dienen dabei einfache, schwarz-weiße Formenmuster. Zudem werden verschiedene computationale und oku-lare Parameter genutzt, um anhand dieser Komplexitätsbewertungen vorherzusagen. Dieser Ansatz wird in Studie 4 auf Screenshots von Webseiten übertragen, um die Aussagekraft in einem anwendungsnahen Bereich zu untersuchen. Neben vorangegangenen Forschungsarbeiten legen insbesondere die gefundenen Zusammenhänge mit mentaler Beanspruchung nahe, dass visuelle Komplexität ein relevantes Konstrukt im Bereich der Mensch-Maschine Interaktion darstellt. Dabei haben insbesondere quantitative und strukturelle, aber potentiell auch weitere Aspekte Einfluss auf die Bewertung visueller Komplexität sowie auf das Blickverhalten der Be-trachter. Die gewonnenen Ergebnisse erlauben darüber hinaus Rückschlüsse auf die Zusammenhänge mit computationalen Maßen, welche in Kombination mit okularen Parametern gut für die Vorhersage von Komplexitätsbewertungen geeignet sind. Die Erkenntnisse aus den durchgeführten Studien werden im Kontext vorheriger For-schungsarbeiten diskutiert. Daraus wird ein integratives Forschungsmodell visueller Komplexität in der Mensch-Maschine-Interaktion abgeleitet

    Context-Aware Driver Distraction Severity Classification using LSTM Network

    Get PDF
    Advanced Driving Assistance Systems (ADAS) has been a critical component in vehicles and vital to the safety of vehicle drivers and public road transportation systems. In this paper, we present a deep learning technique that classifies drivers’ distraction behaviour using three contextual awareness parameters: speed, manoeuver and event type. Using a video coding taxonomy, we study drivers’ distractions based on events information from Regions of Interest (RoI) such as hand gestures, facial orientation and eye gaze estimation. Furthermore, a novel probabilistic (Bayesian) model based on the Long shortterm memory (LSTM) network is developed for classifying driver’s distraction severity. This paper also proposes the use of frame-based contextual data from the multi-view TeleFOT naturalistic driving study (NDS) data monitoring to classify the severity of driver distractions. Our proposed methodology entails recurrent deep neural network layers trained to predict driver distraction severity from time series data
    corecore