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Abstract

This work analyses the eye-tracking technology and, asit@ome, it presents an idea
of implementing it, along with other kinds of technology, vehicles. The main
advantage of such an implementation would be to augment saideydriving. The
setup and the methodology used for detecting human actidtingeraction using the
means of the eye-tracking technology are investigatexbdReh in that area is growing
rapidly and its results are used in a variety of caBes.main reasons for that growth
are the constant lowering of prices of the special egeip that is necessary, the
portability that is available in some cases as well ag#éisness of use that make the
usage of that technology more user-friendly than it wiasvayears ago.

The whole idea of eye-tracking is to track the movemehtbe eyes in an effort to
determine the direction of the gaze, using sophisticatedeva@f and purpose built
hardware. This manuscript, makes a brief introduction itigtery of eye monitoring
presenting the very early scientific approaches used @ffart to better understand the
movements of the human while tracking an object or dunm@aivity. Following,
there is an overview of the theory and the methodologg tstrack a specific object.
As a result there exists a short presentation ofrtiage processing and the machine
learning procedures that are used to accomplish such taskeafi@erwe further
analyze the specific eye-tracking technologies and techsitpa¢ are used nowadays
and the characteristics that affect the exact chofi@ye-tracking equipment. For the
appropriate choice we have to take into account the aresednch-interest in which
the equipment will be used. In addition, the main caiegof eye-tracking applications
are presented and we shortlist the latest state of rtheya-tracking commercial
systems. Following, we present our first approach, tryingescribe an eye-tracking
device that could be used in vehicles offering much bsé#iety standards, controlling
various parameters, continuously checking the readingbe ofiver and alerting him
for potential imminent collision incidents. Finally, we deiserthe existing way fo
connecting a device, in our case an ayeker, can be connected to an automobile’s
system.



Contents

ADSTTACT ...ttt ettt e h ettt 1
(O] 01T 0| K= PSPV OPRRTO PP 2
FIQUIES . ..ttt ettt e b e s ht ettt e bt sttt b e nan e e beeaes 5
TABIES....cee ettt s 6
ACKNOWIEAGIMENTS. ...ttt ettt et sae ettt e b st e eneennees 7
(O 0 F=T (=7 PP PRSP UURRTRRRPPN 8
INEFOTUCTION. ...ttt esb e sbe e 8
1.1A general introduction into the eye-tracking technolagy..........cccccevevvevieeicenenen. 8
1.2Task and Contribution of the ThesSIS.........cccccceeviiiiiiiii e 11
1.3Structure of the TRESIS.........ccciiiiiiii e 12

(O 0T o] =] 2RSS 14
2.1 A Century of EYe MONITOMNG.......cccveiiiieriieeiie e eciee e see e sreesereesree e seve e 14
2.2 HUMAN EYE PhYSIOIOQY......uiiiiiieciieciit ettt e see e tae e nae e 18
2.2.1 Structure of the HUMAN EY......ccvvveiiie e 18

2.3 The Human Eye as a Digital Camera..........c.ccocvveevviieeeiie e 20
2.4 IMAQGE FOIMEALS.....cciiiiiieiiiiiee ittt e sriree e et e e s e srtrae e e etaaeeesssbreeessssneeesssnneeesnnsneeesennns 22
2.4.1 Image File Format Standards.........ccccveeviieiiie et 23
2.4.2 JPEG StANUAL......cc.eiiiiiiiiieiieieetese ettt 24
2.4.3 Baseline JPEG AlQOTithImL......c.oooiiieiie ettt 24

oI To [T B o 1 T4 o] L= SRS 26
2.6 MPEG STANUAIM.......c.eiiiiiiiiieiesteeeeeete ettt s ne e 28
2.7 MAChINE LEAINING.......cccveeiiiieeiiee e ciee ettt st e e stre e sr e e sebe e etaeessteeetaeesaraeenneas 29
2.7 L INEFOAUCTION......eviiiieitcit ettt et s 29
2.7.2 Classification of Machinge Learning...........coceevvveviiieeciieecciee s 31
2.7.2.1 ROE LEAINING.....cuiiiiiiieciii ettt ettt rtee e et s e e sbe e e saae e steeeneeas 31
2.7.2.2 Learning from INSTrUCHIQN..........coeeiiieiiie et 31
2.7.2.3 Learning bY ANGIOQY.........ccocviiiiieiiie ettt ettt e 32
2.7.2.4 Learning from EXamPles.........ccoveiiiiiiiii ettt 33
2.7.2.5 Supervised Maching Learning...........cccoueeeceeeiiieeiieesiee e 33
2.7.2.6 Reinforcement LEarNinNG.......ccccucuveecieeiieeeeiee e eeeee st svee et e e sre e e seveeeaeeas 34
2.7.2.7 Machine Learning used in eye-tracking........c.ccccoevvveviieeviiec e 35
2.7.2.8 Unsupervised Learning........cccccceeerirerierenieeeieeenieeeesieeesieeseeeesaeeeseeee e 38

2.8 Tracking and Eye-Tracking SOIULIONS..........ccooviiieiiiiiiee e 39



2.8. 1 TracCKiNg OVEIVIEW. .....ccouuiiiiiiieiieeite ettt 39

2.8.2 Tracking @n ODJECL........ccviiiiiiieiteeee et 39
2.9 Eye-tracking Technologies and TEChNIQUES..........coveriiriienienienie e 43
2.10 Eye-tracking VS. Gaze-tracCking..........cccueeueeriierrenieeieeniieniie et 48
2.11 Eye-tracking iN PraCtiCe.........coiueriiiiiienieeieeieestee sttt 49
2.12 ChoOSING 8N EYE-TFACKET........ceiiiriiiiieiieete ettt s 51
2.13 Video based eye-tracking algorithms..............coceevieiiiniiinieniene e 51

2.13.1 Feature-based and model-based appraaches.........c.ccccoeveviviercieenneenenee, 51
2.14 Starburst Algorithm for Infrared Eye-tracking..........cccccvevvvevcveenceencieesiee e, 55

2.14.1 NOISE REUAUCTION.......oviiiiiiiiiieiciitetcseee e 56

2.14.2 Corneal reflection detection, localization and remova.............c.cccccceeeeeenee. 57

2.14.3 Pupil Contour deteCtioN..........cevvieicireciee e seve e 60

2.14. 4 EINlPSE FItlING.....eiieieeeiie ettt ettt e et e e stve e st e e aae e sraeenneas 64

2.14.5 Model based OptimiZation...........cccccvveeiiieriie e 68

2.14.6 CaliDration.........cceviiiiiiieieiieeee e 69
2.15 Image-Video Compression in eye-tracking..........cccvevcveeevvresieeesveesee e svee e 72
B NSl =011 o [T To T = (o] G SRS 73

(O 0 F=T o] =] g PR USPRI 80
3.1 Eye-tracking APPIICALIONS......cccvviiiieiie ettt 80
3.2 Commercial APPHCALIONS.........cueieiiieiiiecee e aae e 81
3.3 EYE-TrACKET TYPES ... vi ettt ettt ettt ettt s e e st e e et e e sab e e e taeenaaeeeraeens 83
3.4 Commercial eye-tracking SYStEMIS........ccccviiiiiriiieecee e 85
3.5 Open source gaze-tracking, freeware and low cost ey@aac............ccceeevveenneee.. 88
3.6 Driving and eye-tracking reSearChL..........cocevvve i eciee e 91

(1 T o] (=] SRR 104
Presentation of the objective and initial algorithm design...........ccccocovvevviieviieencinenn, 104
B 1 OVEIVIEW. ...ttt sttt sttt ettt sttt s b et st et b e et e bt et e bt esteenesanenne 104
4.2 Presentation of the objective of this study..........ccceeveiiiiiicii e 105
4.3 Theoretical challenges in the deSigN...........oooviiiiiiiciee e 111

(01 T o] (=] < TR TSR 114
Integrating an eye tracker to an automohlile............ccoveeiiiiicii e, 114
5.1 Consideration in installation of an eye-tracker in ackehi...........c..cccceeevvvennennne. 114
5.2 Communication between the eye-tracker and vehicularasér......................... 117
5.3 A more detailed view on the CAN DUS SYSIEM.........cccvveviciiee e, 119



5.3.1 CAN DUS AIrCNITECIULE. ...t e e e e e e e e et e e e e e e eaeeeees 122

5.3.2 ECU CAN INEITACE......ccutiiiieiiieeeieeie et e 124
5.3.3 CAN BUS PIrOLOCOL.......eoiiiiiiiiiieiieeie ettt 125

5.4 Fusing an eye-tracker in a VENICIE...........cooiiiiiiiii e 127
5.5 Further recommendation for an improved SYStem.........cccecveveerieeiieeneeneenane 131
CRAPLEL Bttt ettt sttt s bt e e 134
CONCIUSION. ...ttt ettt sttt et be e st e ate e bt e s eaeeeareeneas 134
(23] o] [ToT=q =T o] o 1V USSR 136



Figures

Figure 1. 1: The cones and rods on the human eye .........ooooeviiiiiiiieiei e, 9
Figure 2. 1: The structure of the eye [78].....cceeeeiieiiiii e, 19
Figure 2. 2: Digital Camera Signal Processing FIOW ..........ccooviiiiiiiiiiiiiiieeeeceeeeeeeeeceeeeee e, 22
Figure 2. 3: Linear separable classes [107] ...cccceeeeeeeiiiiiieeeeeececcceeeeeeeeee e 35
Figure 2. 4: Classification of a given set of data a) linear and b) polynomial (0=2) [107] ....... 36
Figure 2. 5: Types of Maching Learning......ccooeeeeeeeeeiiiecececccc e 38
Figure 2. 6: The pupil and the corneal reflection...........ccooveeiiiiii i, 43
Figure 2. 7: Locating the centre for an ellipse that is partially occluded .................oeeee. 55
Figure 2. 8: (a) The original image. (b) The image with noise reduction. (c) The image with the
corneal reflection removed after noise reduction. [35].......ccuvuiiiiiieiiiiiiiiiiiiieeee e 57

Figure 2. 9: Pupil feature detection. (a) Pupil contour edge candidates are detected along the
length of a series of rays extending from a best guess of the pupil centre. Pupil contour
candidates are marked using crosses. Note that two contour candidates are incorrect - one
ray reaches the border and does not generate a candidate. (b) For each pupil contour
candidate another set of a rays are generated that create a second set of pupil contour
candidates (c) pupil contour candidates not on the pupil contour can lead to additional
feature points not on the contour however these are typically not consistent with any single
BIlIPSE. [B5] ceetiiiiiiiiiiiiiiiie ettt — et ettt ettt tataa et et e et e et ae rrrraaaraaa—————. 60
Figure 2. 10: Pupil feature detection. (a) The original starting point (yellow circle) shoots rays
(blue) to generate candidate pupil points (green crosses). (b&c) The candidate pupil points
shoot rays back towards the start point to detect more candidate pupil points. (d) All the
candidate pupil points are shown. The average of these locations is shown as a red circle.
This location seeds the next iteration. (e) The results of the second iteration. (f) The starting
locations from all iterations show a rapid convergence. [34] ........coooeieiiiieeeeieiiiiieeeeeeeeeeee, 61
2. 11: (a) Example set of feature points with only 2 outliers. (b) Poorly fit ellipse resulting
from least-squares approach. (c) Inliers (green) and outliers (red) differentiated by RANSAC.
(d) An example with more outliers. (e) Best-fitting ellipse using only inliers. (f) Best-fitting
ellipse using model-based optimization. [34]........cuiiiiiiiiiiiiiiieieeieeeeeeeeeeeeeee e 66
Figure 2. 12: (a) The histogram of iterations of pupil feature detection. (b) The percentage of
outliers in processed videos. (c) The histogram of RANSAC iterations. (d) The histogram of

iterations of model-based optimization. [34]........cccciiiiiiii 69
Figure 2. 13: Block diagram illustrating a passive eye monitoring system [36]..................... 75
Figure 3. 1: The Seeing Machines' DSS SUite [74] .....ccooeieieeeei i, 98
Figure 3. 2: The DSS SOftWaAre [74] ...ccoeee oottt e e e e e 99
Figure 3. 3: The Seeing Machines' faceLAB approach. [74]........coooeeeiiieiiiieieeeeeeeeeeeeeeeeeee, 100
Figure 3. 4: Fixations of a user while driving, using the faceLAB approach. [74]................. 101
Figure 4. 1: General Motor's recent HUD capture [88] ........ccoooeeiiieiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee, 106
Figure 4. 2: Capture from the Tobii’s approach about eye-tracking and HUD [90] .............. 108
Figure 4. 3: Initial design of the algorithm concerning the problem proposed.................... 110
Figure 5. 1: Components of Driver Fatigue Detection systems [95] ...........ceeeeeeeieeeeeeeeeeennn. 114
Figure 5. 2: Placement of camera unit [95] .....coeeeeeeiiiieee e, 115
Figure 5. 3: Typical ECUs on CAN-bUS [98] .....ccooeiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e, 118
Figure 5. 4: Data transmission rates on the CAN bus system........cccccceceeeiiiiiiiiiiiiiieen e 120
Figure 5. 5: A typical CAN bus system [99] ......ccooeiiiiiiii e, 121


file:///C:/Users/vasilis/Google%20Drive/City%202/Thesis/To%20send/MPhil%20fin%20after%20viva.docx%23_Toc429931618
file:///C:/Users/vasilis/Google%20Drive/City%202/Thesis/To%20send/MPhil%20fin%20after%20viva.docx%23_Toc429931618
file:///C:/Users/vasilis/Google%20Drive/City%202/Thesis/To%20send/MPhil%20fin%20after%20viva.docx%23_Toc429931629

Figure 5. 6: Typical CAN bus architecture [100]........ccooeveiiiiiiiiiieeiieeeeeeeeeeeeeeerrerr e 123

Figure 5. 7: ECU CAN Structure [100] .....cceeeeeeeiiiiiiiieeeeeeeeeiiiicie e e e e e e eeeet e e eeeeeeeesrnneeeeeeeeennns 124
Figure 5. 8: CAN message [ayout [101]....ccceeeeeeieiiiiiieieicsscccsess s s 125
Figure 5. 9: CAN arbitration field. The message ID is sent in binary form. A message ID equal
to 211 is transmitted by sending bits for 128+64+16+2+1=211 [101] ......ccccecurrrnmrrrnrrnnnnnns 127
Figure 5. 10: Various sensory inputs to Driver assistive system [102] ..............ceeeeeeeeeeeennn. 129
Figure 5. 11: Algorithm for Driver Fatigue Detection Systems [103] ..........ceeeeeeeeeieeeeeeeeennn. 130
Tables

Table 2.1: Tasks in which tracking an object is required.........ccccccvmieriiiiiiiiinin 40
Table 2.2: Reasons causing tracking procedure problems .........ccccccvvuiiiiiiiiiiiiiiiieiiiiieieeennns 40
Table 2.3: Ways of representing the shape of an object........ccccccuviiiiiiiiiiiiiiiie 42

Table 2.4: Fixation-derived metrics and how they can be interpreted in the context of
interface design and usability evaluation. References are given to examples of studies that
have USEd EaCh MELIIC. ..uviiiiiiiiiiiiieee et e e s e e e e e e s s abaaeeeeeessssaabbaees 46
Table 2.5: Saccade-derived metrics and how they can be interpreted in the context of
interface design and usability evaluation. References are given to examples of studies that
have USEd EaCh MELIIC. ..uiiiiiiiiiiiiiiee ettt e e e s s s bbabe e e e e e s sssaabraees 47
Table 2.6: Scanpath-derived metrics and how they can be interpreted in the context of

interface design and usability evaluation.................ccccc 48
Table 2.7: Accuracy of the different calibration methods. [34]......cccovvivviiiiiiiiiiiiiiiiiiiiiiiinnnn, 71
Table 5. 1: Mitigation Strategy based on severity of iNnput ........cccccvvviiiviiiiiiiiiiiiaes 132



Acknowledgments

| would like to thank Dr. loannis M. Aslanides, MD, PhD, FR®@®p Medical Director
and founder of Emmetropia, Mediterranean Eye Institute, supported me mentally
and also, sponsored my studies. Without him this thesisdwmyer become true.

Also the staff of Emmetropia, Mediterranean Eye lagtitand its research laboratory
—Optotech- that mostly aims its research in eye-trackipdi@tions and technologies,
must be thanked for their support and help.

Furthermore, | really owe many thanks to my supervisor MeBakocevic from the
City University of London for his assistance, support andlessd patience in
supervising the writing of this thesis.

Above all, my thanks go to my family as their continuous el support were vital
for the creation of this thesis. | would like to especididgicate this thesis to my late
father.



Chapter 1

Introduction

1.1 A general introduction into the eye-tracking technology

Eye-tracking is the process of calculating the motiothefeye relatively to the head.
An eye-tracker is a device for measuring eye positiongg@adnovement. ye-trackers

are used in research mainly on the visual system, in biagke
psychology/psycholinguistics, marketing, product design antgpasdevice for human

computer interaction.

Our eyes are vital in order to accomplish even the simfasks that are just part
of our routine during everyday tasks. Specifically, we ne@dsaght to read, learn,
watch, navigate etc. again and again but in most cases wetdeally control the
movements of our eyes which seem to happen automatibatiks to orders coming
from our brain. Even though, watching seems a ratherlsitapk to all of us, it is in
fact a very complex process which requires constanplsagnof the various stimuli
that exist around us and then make the movement requiredttthe eye accordingly.
Our brain, gathers that series of images, peeseile scene and processes the
information obtained.

To better understand eye-tracking a brief introductiongaleith key technical
details will follow in this section and those subjects Wl further analysed, in detail,
in Chapter 2. When we are seeing something or someoneredtigt happens is that
the light gets through the eye via the pupil, the imagerized upside down in the
crystalline lens and it is finally projectedhthe retina at the back of the eye. The retina

is full with special cells separated into two groups, thaees (that are responsible for



the high visual detail and the colour vision) and the (tds are responsible for vision

under dim light as they are very sensitive to it).

Figure 1. 1: The cones and rods on the human e%/e

Those cells convert the incoming light into electrisajnals which are sent
through the optic nerve, to the visual cortex. Interestirgough, the most important
characteristic in eye-tracking is not an eye moventaritthe occasions in which the
eye stays still over a certain period of tifi@is lack of movement is called a fixation
and it takes place when we are gathering informati@m frour environment.
Nevertheless, even during a fixation the eye is never tdlllas three separate types
of tiny movements are present. Those are drifts, mémoades and tremor and are so
fast and small that cannot be easily, if ever, deteloyedll the eye-trackers (mainly
because of the high frequency needed by the hardware). witinthe fixation another
type of eye movement is present which is called saccatls éime very fast movement

of the eye from one fixation point to another.

Y Image source:
http://www.mhhe.com/biosci/esp/2001_gbio/folder_structure/an/m3/s3/anm3s3_4.htm

9



Nowadays, the most common method for recording the eye nieme order to
estimate the gaze point of a subject, is by trackingoti@l and a corneal reflection
(some systems require more than one) of the eyecdimeal reflection results after
iluminating the eye with one (or more) infrared sourcernder to avoid natural light
reflections. A typical video-based eye-tracker in ordecdfrulate where someone
looks follows three major steps: image acquisition, inaagdysis, and gaze estimation.
The eyetracker’s software takes into account the fact that the relative positions of the
pupil and thecorneal reflection change in a very specific way. The lpmpives faster
and the corneal reflection moves slowly. Based on Huwdf the eye-tracker measures

the relative distance between them and calculates #eepgssition each time.

By understanding the way the eyes are moving, while readihgoking at an
image, we can export useful information about the proceba¢sake place during
those tasks. In general, eye-tracking is used in atyaridields, like designing human-
computer interfaces, monitoring the training evolution ikdftg/drivers, in marketing
researches and in defensive systems to name a few.

Specifically, concerning the human-computer interfaces, exaseptaking the
software or the hardware more user-friendly this kindechmology can be used to
broaden the communication, learning and in general integacapacities of people
who are disabled. When, used in a simulator the eyettigacian offer to the trainer
important information about the scanning patterns of tiege reducing significantly
the time needed to fully train an apprentice. In marketihg researchers have the
ability to understand what really catches the attenti@paftential customer, where to

put their products and so on. Finally, eye-tracking is ajreadd in some cases by the
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defense industry mainly helping the pilots to control (sefayet, open fire) their

weapon systems using their eyes only.

1.2 Task and Contribution of the Thesis

Themain objective®f this thesisare:

e To present a thorough investigation of the eye-trackingnisogy along
with its scientific background.

e To describe the scenario of a ngehicular application, based on the
eye-tracking technology, which potentially can make thelevllriving
procedure a lot safer than it is today.

e To present the existing ways a device can be fused in ttensy/sf an

automobile.

In the literatue, and nowadays in the market, there are some applications
proposed and used that have the same goal as the onemeenabove. The vast
majority of those approaches are using the eye-trackirigntdogy as a way to
detect the gaze of the driver and determine if the divabout to fall asleep, if
he spends lots of time not looking at the road or thearsrof the vehicle but to
other things (e.g. radio, mobile phone, other passengé¢he car) and in general
to detect any kind of concentration loss by the drivercase such a loss is
detected usually a sort of alarm sounds and a sloweciglis proposed by the
system. In reality though, the vast majority of those devicssdatect the eye,
checking if it is open or not, and as a consequence thieedé&s not aware of

where the driver is looking each specific moment.
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The goal of proposing a design framework of a new appragto add extra
safety control measures using the eye-tracking. In combimmawith other
technologies, that modality could help the driver avoid logkanound to gather

information concerning the car and make it easier to refoaused on the road.

In general, the thesis presents in detail the eyeitrgd¢kchnology and its way of
operation and finally introduces a concept that could iner¢hs safety standards
during driving a vehicle. With the combined advantages of egistimd well-known
modalities and technologies, it is possible to make drianggveryday task of millions
of people, significantly safer without having to spend Iét®oney to acquire any kind

of special and expensive equipment.

1.3 Structure of the Thesis

The thesis is structured as follows. In chapter 2 a celngmsive analysis of
existing theoretical solutions for tracking and eye-tnagkéspecially is described.
Existing eye-tracking applications and especially some usedthicle systems are
presented in chapter 3. In chapter 4, the new approachsgepo this thesis is
introduced as well as an initial algorithm design andéstetical challenges. This new
approach is based on existing technologies such as theaelag, the HUDs one and
the one that uses GPS devices in vehicles to detect theposition of a car every
specific moment. Following, in chapter 5, the way a devae be integrated in the

systems o&nautomobile is presented. Finally in chapter 6, where #ggitoncludes,

12



thereis a summary of the previous chapters and the main aaby@seind drawbacks of

the approach are discussed.
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Chapter 2

2.1 A Century of Eye Monitoring

Scientific study of human eye movements began inldtee 19th century, and
employed a variety of measurement techniques. Many sgsteuth as that of
Delabarre [1] were mechanical, while others like Dodge and {Zjnesed photography.
Since their inception, eye monitoring systems have eenlronsidered important
innovations in-and-of themselves, but rather toolsdhaiv scientists to study the gaze
behaviour of experimental subjects. While much informatiomceming basic
mechanisms can be gleaned from responses to the tmohiaddoratory studies, there
is also much interest in behaviousscurring in the “real world”. Over time,
technological advances have allowed eye monitoringesystto emerge from the
laboratory, and today the use of eye-tracking in the studthefperformance of
everyday tasks is routine in a number of applied dis@pl{3]. To name some of those
disciplines, the eye-tracking is used in research comgethe reading process in order
to understand the way the reader is scanning a text, the lnommguter interaction, in
vehicle simulators and also in professional training ifilgeathletes) as a mean to see

through the eye of the user and analyse the eye movepatitérn used in a task.

In the late 1940s, researchers used cameras to record thesgments of pilots
in the cockpit [4]. Eye-tracking systems such as thege wadined in the following
decades, and a host of techniques appeared, including eleatography (EOG) and
magnetic search coil [5, 6]. But it was the advent gftali technology and image
processing in the 1970s which marked the opening of a new erdeaf-based eye
monitoring. Research continued in the 1970s under sponsamsimpife U.S. Air Force

to improve cockpit usability [4]. Today, many companies roffeleo -based eye

14



monitoring systems at affordable prices.

Historically, eye monitoring systems were developed in supgdgohysiological
research on the oculomotor system. Eye monitoring sgstemld be classified into
two categories: invasive and active vs. non-invasive andvpass this latter category
the experimental subject is often not aware of the poesef the eye monitoring system

as no device is being actively attached to the physical body.

In an early study of fixational eye movements, Horaeedv placed a drop of
mercury in his eye, while an iron bar pressed his head fagdynst a granites lab [6].
Fortunately, it is unnecessary to go to such heroic lengthg! thNéaertheless, it is still
difficult to make measurements having a precision compatablee physiological
noise level: subjects can generally maintain fixation tdiwit few minutes of arc,
while a typical video-based system will produce errors as lasga degree unless
special care is taken. To make ultra-precise measuregnzentsmber of approaches
have been developed over the years. For example, mabeetic search coil system
[5], a small loop of wire is placed in the eye; in humpahis is usually done with a
special contact lens, while for animal research the enésusually surgically placed
under the conjunctiva. The position and orientatiorhefdoil (and hence the eye) is
determined by measuring the currents induced by three, mutuditgorial external
magnetic fields. The search coil has the advantagetatquiring the head to be fixed,
although it must remain in the volume enclosed by the &eils. It is fairly complex
and expensive, but is unigue in enabling very accurate deteimidgaze while still
allowing free head movement. But the placement of tlilércthe eye is intrusive and

can cause discomfort to the subject.
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Another high-precision eye-tracker is the Dual PurkinjegenDPI) tracker [7]. It
uses fast optical servos to track the first and fourtkiRjerimages (reflections of the
illuminator from the refracting surfaces of the eyd)eTirst Purkinje image is a virtual
image formed by the front surface of the cornea, whildabgh Purkinje image is a
real image formed by the (concave) rear surface ofttpgtalline lens. These two
images fortuitously both fall morerless in the plane of focus of the pupil, and can
sometimes be observed in video images of the eye,uglthgood sharp focus is
required to see the dim fourth image. The design oDfetracker is such that there is
no relative motion between the two images if the egiesiates without rotating, while
the relative positions encode the rotational state. Wihniée DPI tracker provides
excellent performance in terms of sensitivity and tempbeaddwidth, it requires
stabilization of the head (usually with a dentaptession or “bite-bar”), and is thus

unsuitable for measurements in “natural” conditions.

The electro-oculogram (EOG) is a measurement made usttgoeles attached to
the skin around the eye region. The accumulationlesdtrical charges in the retina
gives the eye a dipole moment, and motion of the ayeeas the electrical potential to
vary in the surrounding region. After calibration, regdiof these voltages can be used
to infer into eye gaze direction. Unfortunately, the @ipunoment changes as the visual
stimulation impinging on the retina changes, which lintits accuracy in practical
situations. The EOG is simple to implement, and relatively in cost, but the

electrodes are somewhat intrusive, and require a bétopgime.

The aforementioned methods are relatively invasive anccaase discomfort to
the subject. Moreover, they provide indirect measures of isHalling on the retina,
and are subject to mechanical artifacts. For instahed@)P| tracker generates spurious

transients caused by “wobble” of the eye’s lens following rapid saccadic movements,
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while users of search coil systems must worry about gjgpéthe coil relative to the
eye. Retinal imaging, on the other hand, provides a dineetsure of what is on the
retina. In the scanning laser ophthalmoscope (SLO) [8lasarlbeam provides
illumination for imaging retinal structures, while simultaosly allowing modulation
of the beam intensity to deliver patterned stimulatioecédt SLO designs have in-
corporated adaptive optics to correct the eye’s aberrations [9], enabling the acquisition

of diffraction-limited images of retinal structuresgdamages of the foveal cone mosaic.
Using an adaptive-optics-enhanced SLO (AOSLO), it has beewnshbat the
functional foveal “center” (defining the line-of-sight) has a slightly different position

for steady fixation target versus smooth pursuit of a ngptanget [10].

Today, the majority of eye monitoring systems in genesa are based on digital
images of the front of the eye, captured with a remoteovidenera and coupled with
image processing and machine vision hardware and software. Steinsgse called
passive eye monitors, or video-based eye-trackers. Whes slystems first appeared,
they generally required special-purpose image-processing hartbaaltew real-time
measurement of gaze. Today, thanks to the steady secoéanicroprocessor power, it

is possible to do a decent job entirely with software.

Passive eye monitoring technology became popular by beingletaty remote
and non-intrusive, while offering reasonable accuracy atffandable cost. It can be
slower (sampling at about 30 to 60Hz in most of the times)les& accurate than
invasive eye monitoring techniques, but provides a more nauparience for the
subjects. In many applications, the available accuracybaadequate to answer the
guestions of interest. This technology, for exampleywal a disabled person to
compose electronic messages, browse and navigate throughage$, turn on{b

monitors, or call an assistant. Installed in a motdricle, a passive eye monitor can
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continuously evaluate the driver’s fatigue and distraction [11, 12, 13], and generate
appropriate vigilance warnings. Numerous other applicatieasanave benefitted from
the recent advances in the theory and practice of vidsedbapproaches: military,
medicine, information security and retrieval, typing anddmeg, online search,

marketing, augmented and virtual reality, and video gamesne @& few.

2.2 Human Eye Physiology

For the human eye to work properly the light of the emmment has to enter the
visual system and be focused on the fovea. The hunemaey, most of the times, as
motion detectors even though they can detect only s@lben by identifying objects
and giving information to the brain in order to calculatesietial relationships among
different stimuli. Whenever we are fixating on a targateyes are making small, very
fast movements, called saccades, during which we are btind. the brain that
processes the obtained information and so that we cagnieeabjects. The fact that
we recognize things is the result of the learning prodedseiists as long as we live

and use our eyes and is performed by the brain’s neural organization [84].

2.2.1 Structure of the Human Eye

In Figure 2.1 we can see the basic structure efeye which is the organ
responsible for ousight. Light reflected from an object enters the eye through the
cornea, which is itsirst layer (cornea can be divided in more layers e.g. Bowman’s,

but a full anatomic description is not needed for the puspotthis thesis). Then the
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light enters through the pupil, in the centre of the @&l passes through the crystalline
lens, which is behind. At this stage, right after the crystalline lens, the ieag the
form of light waves, is reversed and turned upside-down, artat form passes
through the vitreous humor (a sort of gelatine that malbtt fills the eyeball). Finally,
the light waves are focused on the retina at the batloEthe eye.

At this point, the acquired signal travels to the bthsnks to a vast network of
optic nerves. The retina itself is formed by photoreceptthish are divided in groups.
Firstly, at the centre of the fovea there are thoked cones (colour sensors). The
cones are responsible for the colour vision and thereéhaee kinds of them that are
more sensitive in different colours (i.e. red, greenepl The density of the cones is

high centrally and gets lower at the periphery.

Muscles to

move eye \
Lens
P> j Retina
o

Muscles to \\
-— adjust lens \ ,Fovea

Optic nerve
to brain

Figure 2. 1: The structure of the eye [78]

In the free space among cones there is the otherdfiptiotoreceptors, called rods.
Those cannot “detect” colour and offer grey, peripheral vision as well as the ability to

see in mesopic or scotopic conditions (dim light). In galnehe cones need high
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ilumination environment to work properly offering maximum reson but reduced
sensitivity [78].

The number of the cones varies from six to seven milliathen in the same time
the number of the rods is exceptionally bigger ranging ftdtto 130 million. The
optical signal is transferred from the photoreceptothecoptic nerve, using fibres, at
the optic chiasma and then to the brain [84]. Each laleobrain gets half an image,
preventing blindness in case one of the eyes is losttwW parts of the visual field are
connected in the brain area where the visual regadnghe two hemispheres are

connected.

2.3 The Human Eye as a Digital Camera

In general, we can think the way the human eye is fomicty as a digital camera
that continuously takes images from the environment. 8 oages are sent via the
optic nerve to the brain for further processing. Theesaay, an eye-tracking device
captures the eye of the subject at all times and trasghet acquired images to a
computer for further processing.

The digital cameras are divided in two groups; those usireyged Coupled
Devices (CCD) and those using Complementary Metal Oxidec®aductor (CMOS)
Sensors.

In the first case there is am x m grid of photo diodes (photosensors) in a
rectangular shape. Each one of those diodes is sensifigat intensity, which is used
asa measure to perceive the power emitted by a light souac@anmticular direction
converting light energy into a voltage. On the othanchthe CMOS camera is similar

to the CCD one; differentiating in that the photo diodepdaced by a CMOS sensor.
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Each CMOS sensor is made by a number of transistors thaisad for the electric
signal amplification. In practice, CMOS sensors are noisier than CCD sensors, but they
consume less power and are less expensive. Those photo dicgesars that detect
the light and capture the images from the environment ark hiveche cones and rods
that were mentioned above in the section about structtine tluman eye.

The camera works like the human eye also when thed@iditions are changing
asthe pupil automatically dilates or shrinks according ® liht conditions. When
there is enough light the camera aper{gmntrolling the amount of light that reaches
the camera sensodpes not have to be large. On the contrary, if the igghtt enough
then the camera aperture has to be enlarged since theacaitheneed more light to
form the image. The distance between the focal pihtiee lens and the surface of the
sensor grid gives us the focal length of a digital camghe focal length value is
required to select thmagnification degree which is requested to the digital camera.
Again, the human eye is functioning in a similar way lubmnatically. Depending on
the stimulus we are fixating on the eye lens accommodaiggocuses as needed to
get the clearer possible image.

The elementary unit of a digital image is named piwich is an abbreviation of
“picture element Different resolutions can be used to capture images by @asing
different amount of pixels. When we are talking about tesolution we usually have
to do withan image using a matrix of 320 x 240pixels, whereas in medium resolution
each image is generaltgpresented by means of 640 x 480 pixels. At high resolution
the image is represented by 1216 x 912 pixels. Even though that kind of resolutions are
nowadays obsolete they are still in use in various eeking applications. The image
size in pixels, which corresponds to the size of the @€the CMOS grid, is called

spatial resolution of the camera.
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Finally, there are two othémportant parameters of the digital camera, the field of
view and the sensor resolution. The field of view (or FOV) is the area of the scene that
the digital camera can acquire. This is equal to thetwtal dimension of the region
that includes all the objects of interest. The semssslution SR) of a digital camera
Is given by:

Fov

where OR stands for the minimum object resolution (theedgion of the smallest

object that can be seen by the camera).

Figure 2. 2: Digital Camera Signal Processing Flow

2.4 Image Formats

There is a variety of file types used to store digitalgesabased on particular
standards called image file format standards. In the majority of cases the images are
compressed as otherwise a lot of memory would be reqdihede mage file formats
can be divided into two main categories: non-loasyge file formats and lossy image

file formats. In the notessy image file formats the compression stage does not imply

2 Image source:
http://av.jpn.support.panasonic.com/support/global/cs/dsc/knowhow/knowhomBO0. ht
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an information loss. Hence after the decompression we obtain the original file before
the compression. Respectively, in the lossy formascdmpression stage implies an

information loss.

2.4.1 Image File Format Standards

In this sectionthe most popular image file formats are mentioned, with a brief
description of them, with the exception of JPEG. Thamdard, as the most common,
will be presented in more detail in Section 2.4.Rose formats are the following: a)
Tagged Image File Format (TIFF) this format, its extension is .tif orfftican be used
to manage a variety different types of images such as bitmaps and compressed colou
images in an efficient way. TIFF is generally a non-lossmpression format (TIFF
also provides lossy compression schemes, even thoughatbeless popular), b)
Portable Network Graphics (PNG), its extension is .png, is a format that provides
lossless storage of raster imagesG@phics Interchange Format (GIF), supports 8-
bit colour images and is generally used in application progfeargsword processars
Internet Explorer) in the Windows environment,R)stscript, this format, developed
in the UNIX environment, is used for printing. In this forngaey-level images are
represented by decimal or hexadecimal numerals written irA8@II format and
finally e) Portable Image File Formats which are popular image file formats that
include portable bitmap, portable greymap, portable pixmap and pom&tilerk map,
whose file extensions are, accordingly, .pbm, .pgm, .ppm and .pnmeTikofrmats
are convenient format to store the images since they suppariety of images with

increasing complexity, ranging from bitmaps to colour images.
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2.4.2 JPEG Standard

JPEG, whose file extension is .jpg, is the acronym of “Joint Photographic Experts
Group’. JPEG is the first international image compression standard for continuous-tone
still images. This standard is the result of joinffo#s by the International
Telecommunication Union (ITU), the International Organaatior Standardization
(ISO) and the International Electrotechnical Commissi&&fland its official name is:
ISO/IEC IS 10918:1: Digital Compression and Codn@ontinuous-tone Still Images
JPEG is very important since the widely used video standard M®bB&sed orit.
JPEG generally performs a lossy compression and it hamfmies (sequential lossless
sequential DCT-based mode, progressive DCT-based mode, hieaantioide) and
several options. Here we will describe the JPEG basic gadtyorithm (baseline JPEG

algorithm) which is based on tlhtuffman coding for entropy encoding.

2.4.3 Baseline JPEG Algorithm

The baseline JPEG algorithm is formed by the following steps:

1. Colour space transformation: Firstly, the image isreded from RGB space
into a space similar to the colour spaces used in NTS®Ahdystems. A matrix for
each single component is built. Each matrix is fortag@lements with range from O
to 255.

2. Downsampling: The chrominance components are downsized.dBacof the
matrices used is reduced by a factor of two in horiz@mta vertical directions (JPEG

offers the possibility of reducing by a factor of 2 only in thazemtal direction). The
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element values are then centred around zero by subgra@from each one of them.
Finally each matrix is divideth blocks of 8x8 pixels.

3. Discrete cosine transform: The 8x8 blocks of each component are converted to
the frequency space using a two-dimensional Discrete Cosamsform (DCT). DCT
output is an 8x8 matrix of DCT coefficients. Theoretically, DCT is non-lossy, but in
practice there is some information loss becauseeontvitable approximation errors.

4. Quantization: The physiological fact that the humanannot discriminate the
exact magnitude of a high-frequency brightness variagiosed in JPEG to reduce the
amount of information in the high frequencies. This idgrened in the Quantization
step, where less important DCT €éfeents, in generahose that are related to high
frequencies, are deleted. This lossy transformatipernformed by dividing each DCT
codficient by a weight taken from a table (quantization tatfi@)l weights are 1, then
the transformation does not really have affgat but if the weights increase quickly
from the origin then the céficients related to high frequency, are significantly
downsized.

5. Average value reduction: In this step the value (0,réme value) of each
block, which is given by the value at the top left cornenediiced, by replacing it with
the dfference between actual average value and the averagefdlegrevious block.
This difference is generally small since the average value® dfitlck do not dfer a
lot with each otherAs a result, replacing each average value with fferdince with
the average value of the previous block implies that masieafiew average values are
very small. During average value reduction, the other DCTicgents do not change.

6. Linearization: In this step the linearization of thechlis performed. The block
Is linearized using a particular zigzag scheme. The zigzhgnse produces a high

density of zeros at the end of the block making possildede a relatively big area of
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the block with a unique value (zero at this tim&fter the linearization process, the
Image can be represented as a unique list of numbers.
7. Hufman coding: Finally, the list of nhumber is coded by using @heve

mentionedHuffman coding.

JPEG is very popular mainly because its compression rateyidigh (most of the
times no less than 20:1). The decoding procedure of a JPE@ mequires performing
the above-described algorithm backwards. In general, encadohglecoding a JPEG

image requires the same computational resources [84].

2.5 Video Principles

Our ability to see, without understanding that in realityanelooking a sequence
of discrete images, comes from the fact that each projected image is “held” for a few
milliseconds before being deleted. For that illusion to worperly a minimum
projection speedf 25 images per second is necessary. A good way to undersdaond vi
is to consider the black-and-white television model [81)oritter to represent the 2D
image, the camera scans fast from the left to the egt slower from up to down
recording the light intensity on the screen, usinganb of electrons. Each completed
scan constitutes a frame and after getting one the b&mis sll-over again. To
reproduce the image, the receivers repeat the scanning usitgatismitted signal
which is the intensity, in function of time. Nowadays, C@@eo cameras are
integrated, but still there are some CRTs (Cathode Rdg)Tscreens that work that
way. The exact parameters of the scanning procedure chagdiagdo the television

standard in use each time. For example, the Europeadastls, PAL (Phase
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Alternative Line) and SECAM (SEquentiel Couleur Avec M@dSequential Colour

With Memory) have 625 scanning lines and a ratio betweendheohtal and the

vertical equal to 4, making 25 frames per second. On ther didind, the NTSC
(National Television Standard Committee), which is usedhe U.S.A., has 525
scanning lines, the same ratio between horizontal angethieal dimension, which is

4, producing 30 frames per second. In the case of colauidieln, the very same
scanning pattern is used but there are three synchronisa@relbeams- one for each
of the primary colours (Red, Green Blue). After thensiag procedure, no matter
which television standard is used, the three colour sigu@stransformed to one
luminance and two chrominance signals (to obtain thode #aadard uses different
transformations). As the human eye is more sendibiieminance it is the luminance
signal that has to be transmitted more accurately ohiosktthree.

Concerning the digital video which is a sequence of framash of them is a
digital image, whose basic element, as we have sdée,ixel. In digital video colour
each one of the primary colours is represented by bightAs a consequence, more
than sixteen millions of colours can be representeceidlitital colour videos, whereas
the human eye can detect about 17,000 of them.

In order to produce a uniform movement, digital video has taajisat least 25
frames per second. In digital video, the rate betwherhbrizontal and the vertical
dimension is 4 and the digital screen resolutismmlly has 640x480 (or 800x600)
pixels. Highdefinition television standards have different parameters though, the
digital screerhas 1280x720 pixels and the ratio between the horizontal and the vertical
dimension is 16, like the European standard for Digiide¥ Broadcasting (DVB). It
is obvious that the digital video, in order to be used in eagrgomputers and tasks

has to be compressed. The most commonly used standaed$HG one.
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2.6 MPEG Standard

Compression is a crucial topic for the storage of digi@o. In this section, we
briefly describe the MPEG (Motion Picture Experts Group) standard [82], paying
particular attention to MPEG-2. The MPEG-1 (Internatior&andard 11172) was
designed for a video-recorder at 1.2 Mbps. MPEG-2 (Intemealt Standard 13118)
was designed in a way to compress video signals from 4 to 6 iMipder to be used
in NTSC and PAL television systems. Both MPEG-1 and MPEGse spatial and
temporal redundancies in the video. A spatial redundancybeagxploited coding
separately each frame by means of JPEG. A further cesiprecan be obtained by
the fact that consecutive frames are most of thestiragy similar (temporal redundancy)
[84]. The digital video system (DV), used in digital videomeras, codes each frame
separately by means of JPEG. Since coding has to be pedfarmeal time, it is a lot
faster to code each frame separately. Nevertheless thbetwo consecutive frames
are not similar the above strategy fails. As a reauthethod of motion compensation
is needed to compress the information. In particularf=@R produces three different
types of frame:

« I-frame (Intra-frame): still images coded using the JPEG rdetbgy

« P-frame (Predictive frame): this corresponds to tfiedince between the actual
frame and its predecessor.

 B-frame (Bidirectional frame): this corresponds to differences between the

actual frame, its predecessor and its successor.

I-frames are still images compressed the JPEG appro#chasdescribed above

Those I-frames have to be produced periodically, maindaiee MPEG can be used
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for the transmission of television signal. Given tiatvers get connected to a channel
randomly, if each frame was depending on the precedingh@meanyone who has
missed the first frame could never decode the succeeding ones. In addition, that
repetition corrects any kind of problems caused in ¢hseframe was originally
received wrongly.

P-frames code thefterences between two consecutive frames. They are based o
the idea of macroblocks] §x16 pixels in luminance andx8 pixels in the chrominance
components). A macroblock is coded looking for in the phegeframe the very same
macroblock or another macroblock whiclffelis slightly from it.

The B-frames are similar to P-frames, with thffedence that they code both the

differences of the actual frame with the preceding andubeseding frame.

2.7 Machine Learning

2.7.1 Introduction

In order to automate the eye detection and create a refeidtacker we can use
machine learning. Thanks to machine learning the acquired viddme Gamalysed by a
computer that will detect the eye without needing any kindnedlvement by the

personnel in charge of the measurements.

Machine learning can be defined as the process of programanimuters in order
to get optimal results on a specific task by using taughtriexmpe or data that act as
examples for certain cases [91]. In other words, macharihg is the effort made to

study and model, usually using computers, the learning procels its
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In those cases we already have a working computer modeinbatder to
ameliorate its effectiveness certain methods are usedlansfer past experience or
training data, in an effort to optimise the parametersribdel uses to make a decision.
Those computer programs can be used either in order tatert@ortant information
from the used/input data (descriptive model) or in an eféogredict the results that
will occur in the future (predictive model)). In some cafigere are models that are
both descriptive and predictive [91].

There are some main research areas around which maehimeng has been

developed:

» Task-oriented studies, which have to do with the developmiefgaoning
systems to improve performance in a set of tasks whialmeéady known.

« Cognitive simulation, which has to do with research andpcoen simulation
of learning processes as they are used by humans.

 Theoretical analysis, which has to do with research invéstigthe potential

use of learning algorithms and methods no matter what spjbiecative domain.

Machine learning strives to make possible using alreadyirgxisixamples or
already solved analogue problems as input to computers progratiiberefore make
the computers learn from therm addition another challenge that researchers are
facing is to make the computers learn by observing and imitaBnigin facts and
actions or based on the analysis of past mistakes. Anatpertant aspect of machine
learning is that since those machines are going to inteittcpeople their concept and
acquired skills must be understandable making the intenawith humans as friendly

as possible. [84]
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2.7.2 Classification of Machine Learning

The different learning types can be classified into four differesmtegories
according to the effort that is required by the teacheteamnder: rote learning, learning

from instruction, learning by analogy and learning from exaspl

2.7.2.1 Rote Learning

In rote learning, the new knowledge is directly implantethenlearner that does

not have to reach any deduction. The variants of thisodanclude [84]:

» The machine learnsy being programmed or modified by the userIn that case
the learner’s side has to do nothing at all except follow the predefined instruc{iams
obvious example here is the usual style of computer prognag).

» The machine learns by memorizing given facts and dathatrcase there is no
deductionfrom the learner’s side (that is practically how the very first database systems

used to work).

2.7.2.2 Learning from Instruction

Learning from instruction consists, as its very namggssts,of acquiring
knowledge from a teacher. The new information is intedrafieh prior knowledge for

effective use. The learner is required to perform some dedudiut it is the teacher
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that has to present and offer the knowledge in a wayltbaearner can receive and
absorb it As learning from instruction is similar to education metheately used, the

system must be built accordingly, so it can store aadthe acquired knowledge. In
that case the task would be to build a system that carptaaod store a set of
instructions so it can apply this learned knowledge effdgtivehen needed. An

example of such case would be when a computer systems kbarrules of a card game
along with certain advice on how to win. D.J. Mostow desdréech a system in [92]

back in 1983.

2.7.2.3 Learning by Analogy

Learning by analogy consists in using existing knowledge andftraming it in a
form that can be used in the new situation. In suchey taes learner has to make more
deductions, in order to retrieve the pre-acquired knowledgesfinan it accordingly,
apply it to the new situation and then store the new knowlexigeotential future use
[84]. Examples concerning such systems have been descriligad/bydh et al. at [94]
and by J.G. Carbonell [93] who used as an example the cas$ecima person wanted
to travel in another city but all the flights were bookieden though that person had
never travelled again with a train he knew it was possideusing in an analogous
way the knowledge he had for plane travelling he managekettk the availability of
a train ticket to his destination, make the payment, aatithe station on time and get

on board the correct train to his destination.
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2.7.2.4 Learning from Examples

In this case the amount of deduction required by the lesradot bigger compared
to the previous ones as the computer system has to indeceial concept description
after analysing a set of examples of that concept. isut, the main problem of the
learning procedure, is to determine a general rule thatiegplee results exploiting the
limited sample size of the examples that were used as[BjuiThere are three general
categories in which the learning techniques fit: supervisedhifggr reinforcement

learning and unsupervised learning.

2.7.2.5 Supervised Machine Learning

In this category, the data is a sample of input-output patt@ecognition of
handwritten letters and digjtsThe task here i® find a function that maps any input
to an output that can foresee future input- output obsengtminimizing the errors.
According to the outputspe, supervised learning can be distinguished in classification

and regression learning [91].

2.7.2.5.1Classification Learning

In case the output has no structure, except whether tweels are equal or not,
then we are talking about classification learning (eaclobtiee elements of the output
space is called a class). The majority of the pattecognition tasks belong to that
category and the algorithm that is used to solve a probieinat kind is called classifier

[91]. A very well-known type of a classification problemwieen an Optical Character
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Recognition (OCR) software tries to recognize a charaot@an image format and

recognises it as a specific letter of the alphabet [84].

2.7.2.5.2 Regression

In case the output is the values of a series of coniswariables, then we are
talking about regression learning. A typical exampla i&gression problem would be
to estimate therice of a used car using as input the car’s characteristics such as the
brand, the year it was manufacturigsl mileage and other information that might affect

its worth (e.g. performed services, accident recor(l git].

2.7.2.6 Reinforcement Learning

In certain occasions, the output of our system isjusitone but a sequence of
actions. As a consequendde importance of a single action is minimal and what
matters is to perform a sequence of correct actionsder to accomplish the original
goal. In other words, an action is correct as long aspiaiit of a good set of actions. In
such a case, the machine learning program evaluates tlts tgsaiset of actions and
learns from past correct ones to creatgeneral policy.Those learning methods are
known as reinforcement learning algorithms [91].

A typical example of that case is a learning to playsstgame. If the right piece
is moved each time the reward will be to win the game. ©rahtrary, a bad decision
about a piece movement will result in losing the game. fabethat the reward is
delayed and does not occur right after the decision takealso typical for

reinforcement learning. As a consequence the algorithmtakestlecisions balancing
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between exploitation (to get the reward) and exploratiomagtuire and absorb more

knowledge) [84].

2.7.2.7 Machine Learning used in eye-tracking

In an effort to ameliorate the eye detection resultsnoeye-tracker the usage of
Support Vector Machines (SVM) [105] has been introduced [106, 108,39B].is a
two-class classification method of supervised learning thds the optimal decision
hyper-plane [107]. At the very beginning of their appeara® models were used
for the classification of linearly separable classeshjécts. To give an example we
can suppose that we have some objects that they belaiitpéo one of two possible
classes. Those classes would be class +1 and class #lisAbvious in Fig. 2.3 it is

possible to discriminate the two classes and separate them.

Figure 2. 3: Linear separable classes [107]

35



For each of the classes the SVM finds a hyperplane hawengaximum margindin
Fig2.3). H1 is called the hyperplane defining the border osctds and H2 is the
hyperplane H2 defining the border of class -1. The two cialbgelcts on the borderline
of class +1 and the three circled objects on the bamdeosf class -1 are called support

vectors.

Nevertheless, there are cases where the classed tenseparated with a linear
classifier. In those cases, nonlinear functions (knosvkeginels) are used in order to
map the objects into a feature space, where classeseadyl separable. The SVM
kernels that are more widely used are the Gaussian kethee|solynomial kernels and

the Radial Based Function (RBF) kernels.

Figure 2. 4 Classification of a given set of data a) linear and b) polynomial (6=2)
[107]

Unfortunately as there is no theoretical way to predict the bestltiag kernel the
identification of the best function to use comes afbgnerimentation. In all cases,

training data are needed for the SVM to be trained and tasudtptimal hyperplane.
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In machine learning and eye-tracking the training data censistnages that are
used as input to the SVM. This training set has two sub-setsagesnone with eye
images (class +1) and one with “no-eye” images (class -1). The first set of images (class
+1) has to be as generic as possible in order to trai8\Wh in recognising an eye in
as many situations as possible. As a result, the eye irhagedo be from a variety of
people with and without glasses and they have to be ta&endifferent postures.
After, finalising the training data the optimal parametensthe SVM have to be
identified. This procedure can be rather time consuming sisci was mentioned
before only with experimentation we can find the besbsparameters. For instance,
Zhu and Ji in [106] experimented with three kernel types (lingalynomial-of 3
different degrees- and Gaussian-of 4 differenand achieved the highest accuracy
score when using a Gaussian kernel wishcd 3. In another case though [108], Huang

et al. had the best performance using polynomial keofed¥ degree.

Furthermore, the SVM training is not completed in this sthgmost cases, to get
a high level of accuracy thousands of data (in our cgs@®ages) have to be used and
then the SVM is tested on other data that are still elledh Subsequently, the
administrator has to evaluate the results of the SVM, thiedmislabelled data, label
them correctly and add them to their correct training Beén the SVM is retrained,
with the new set of data, from the very beginning. Mimle procedure might be

repeated several times until the accuracy level isgsdnd stable as it gets.
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2.7.2.8 Unsupervised Learning

As it was shown above in supervised learning, the aim isata lseow to connect
the input to the correct output given that an administragacher) has provided the
algorithm with the necessary daf@n the contrary, in unsupervised learning, we only
have input data. The goal is to detect similarities in thatiand we want to see what
generally occurs as a result and what does not [@ijs, whenever the input data
consists of objects that are not associated with target svalige have a case of
unsupervised learning (there is no teacher). Typical pkawf an unsupervised
learning task is the problem of image segmentation.ifstance our input could be
several images taken by a camera and the task is toe&atentify which of them

were acquired indoors and which outdoors.

Types of Machine
Learning

Unsupervised
Learning

* Classification ‘ Supervised Reinforcement

* Regression Learning Learning

Try to perform a
Classification sequence of
Regression actions to reach
the goal

Trytofind a
structure in
unlabeled data

Figure 2. 5: Types of Machine Learning
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2.8 Tracking and Eye-Tracking solutions

2.8.1 Tracking Overview

In this chapter the existing tracking solutions will belgred by emphasizing
especially on the eye-tracking approaches used until now. {@he most challenging
problems in computer vision is tracking an object through @vehmera inputThere
is a variety of factors that can affect the difftgun tracking such as the camera
motion, obstacles that may appear in the scenegaigthe appearance pattern
of an object, blunt-curt changes in the motionkaf bbject etcTracking is
usually used as part of other applications that reqheexactiocation
of a specificobjectall the time [14]

Specifically, in eye-tracking applications what are trying to detect the
whole time is the eye(s) of a user and throughhiegaze in order to know
where exactly he sees its specific moment. Eveanghave shall see that this
kind of technology is rapidly expanding in a vayief areas, at the moment
is mainly in research on the visual system, in psymgy, in cognitive

linguistics and in product design [58].

2.8.2 Tracking an object

2.8.2.1 Introduction

As it was mentioned above trying to track an object is raiimportant and
interesting in computer science. As the computers gedrlzett! better nowadays with

constant increase of their analysis power and the dphieans (video cameras) get
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cheaper and of higher quality, the need to develop new, rapi@ and more robust
object tracking algorithms became possible, in order to hesa in automated video
analyses of several types. The tracking procedure usidg@a input, can be described
as an effort to anticipate the path that the objerttefest is going to follow, as it keeps
moving in the area of interest, and then redetectat.dd so, the tracker tries to
recognize and label all the tracked objects in each frdrtfeea/ideo input. In general
there are three key steps in order to perform a tragkimgedure using a video input:
a) detect the object that interests us, b) follow-tithek object in each frame and c)
analysis of the tracks of that object usually trying to recogtszieehavior [14]. As a

result, tracking an object is used in vital tasks sucha@setmentioned below:

Tasks Rough Description

HCI (Human Computer Interaction)  Eye or gaze tracking and mostly use c
that data as input info to computer
software

Monitor the traffic Collect information about the traffic
flow so the responsible agency can ac
accordingly

Recognition based on motion Identification of people by using uniqu
facial or walking characteristics and
patterns

Automated surveillance Automatic detection of suspicious in
sensitive areas that are monitored
continuously

Table 2.1: Tasks in which tracking an object is required

The main reasons that cause problems in tracking an abgttose:

Noise in the video signal
Hardware failure to process data in real-time
Quick and significant changes in the light of the sd@hanination)
Objects with abnormal or complex shapes
Non lineal or abnormal motion of the object of intéres
Obstacles “hiding” part of the object we want to scan
Information loss as the object moves in a 3D environmashinge are analyzing it
using 2D images
Table 2.2: Reasons causing tracking procedure problems
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To make things simpler we can add some sort of limitationsumsgstems
concerning what we want to detect every time. Generally, knosarge of the
characteristics of the object we want to track can reabke things easier. Those
characteristics can be the shape of the objecizési§it is going to be one or more of
them etc. Additionally, we can make assumptions, provitiagwe have a minimum
of information about the movement of the object. Int tt@se, we can assume for
example that the object that interests us will have aofimmotion with a steady

velocity.

2.8.2.2 Representingan object

The object of interest that we want to track depends eveeydimthe task that we
want to fulfill. That could, for instance, either the g)eof a user, people wandering in
a room or walking on a road, vehicles on the roads diyaThe major characteristic
used for the purpose of tracking an object is its shapethEgourposes of this thesis

the most common shape representations are going toelfly described.

Way of Shape Representation Brief Description

By using a point (centroid) [110] This kind of representation is working

better when trying to track objects that

represent a small portion of the image

By using geometric shapes [111] In that case basic geometric shapes
(circle, ellipse, rectangular, etc.) are
used to represent the object of interes
which is mostly of compact nature

By using the contour or the silhouette This way of representation is more

of the object [112] suitable in order to track objects of
complex shape, whereas the contour
practically is the line that defines the
boundary of the object and silhouette !

By using a number of points
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its “negative”-the area inside the
contour

Object’s skeleton [113] With this method firstly the object’s
silhouette is found and then a medial
axis transform is applied

Combination of basic geometric Basic geometric shapes (circles, ellips

shapes [114] etc.) are combined and group in order
track an object. Mainly used to track
human bodies or other objects of
articulated shape

Table 2.3: Ways of representing the shape of an object

2.8.2.3Tracking by selecting a feature

When trying to track an object another critical step isldtermine if that object
has any kind of unique feature which can make its discriminatidrthus the effort to
track it easier. This kind of feature is affected bywlag we represent the appearance
of the objects in the application we are using. Theegfar case the objects are
represented by using histograms the color can be this ugtwed [14]. On the other
hand, the texture can be used to track an object. Wentakmation about the texture
of an object by quantifying properties like its regularity ais smoothness and thus
measuring the intensity variation of a surface [115]. Adlsmther feature used is the
edges of the object. Its boundaries can generate a uniguewhah makes it easily
detected by the application [116]. Finally, the last featiaéecan be used is the optical
flow one. The optical flow is measured thanks to the bmiggs limitations as we can

assume that the brightness of neighboring pixelsnsistent in a frame sequence [117]

The truth is that at this moment lots of the trackitgpathms in use have the

ability to combine more than one of those features, whitieaime are mostly chosen
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in a manually way. However, more and more research and ifidedicated to solve

that problem and make the feature selection fully autorfistg].

Whichever method is going to be used to track an objectdaiigy to need a sort
of mechanism in order to detect it. A rather common soiuis trying to detect an
object in one frame; but to avoid false positive detestiother methods take
information from a sequence of frames. In that case,algorithm tries to detect

differences in consecutive frames [14].

2.9 Eye-tracking Technologies and Techniques

The most widely used current designs of eye-trackers are-bas. A camera
focuses on one or both eyes and records the moveméet\dswer looks at some kind
of stimulus. Most modern eye-trackers use contrast toddbatcenter of the pupil and
use infrared and near-infrared non-collimated light to eraatorneal reflection (CR).
The vector between these two features can be used to eggag intersection with a

surface after a simple calibration for an individual [57]

Figure 2. 6: The pupil and the corneal reflection
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Two general types of eye-tracking techniques are used: Bughitehd Dark Pupil.
Their difference is based on the location of the illumarasource with respect to the
optics. If the illumination is coaxial with the opticaltpathen the eye acts as a
retroreflector as the light reflects off the retoraating a bright pupil effect similar to
red eye. If the illumination source is offset from théag path, then the pupil appears

dark because the retroreflection from the retinaresctid away from the camera [57].

Bright Pupil tracking creates greater iris/pupil contragivatg for more robust
eye-tracking with all iris pigmentation and greatly reskignterference caused by
eyelashes and other obscuring features. It also allavisafcking in lighting conditions
ranging from total darkness to very bright. But bright pigghniques are not effective

for tracking outdoors as extraneous IR sources interféhemonitoring.

Eye-tracking setups vary greatly; some are head-moumte, iequire the head to
be stable (for example, with a chin rest), and sometion remotely and automatically
track the head during motion. Most use a sampling rate¢ lefhat 30 Hz. Although
50/60 Hz is most common, today many video-based eye-traakerst 240, 360 or
even 1000/1250 Hz, which is needed in order to capture the detzal wdity rapid eye

movements during reading, or during studreseurology [52, 57].

Eye movements are typically divided into fixations (motsewhen the eyes are
relatively statioary, taking in or “encoding” information) and saccades, when the eye
gaze pauses in a certain position, and when it moves toeanpuikition, respectively.
The resulting series of fixations and saccades isccallscanpath. Most information
from the eye is made available during a fixation, but not durs@caade. The central
one or two degrees of the visual angle (the fovea) prak@bulk of visual information;

the input from larger eccentricities (the periphery)ess informative. Hence, the
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locations of fixations along a scanpath show what méiion located on the stimulus
were processed during an eye-tracking session. On avéirkag®ns last for around
200ms during the reading of linguistic text and 350ms during theingeof a scene.
Preparing a saccade towards a new goal takes around 200ms [57].

Scanpaths are useful for analyzing cognitive intent, inteaesl salience. Other
biological factors (some as simple as gender) may tatifecscanpath as well. Eye-
tracking in HCI typically investigates the scanpath @sability purposes, or as a

method of input in gaze-contingent displays, also knosvgeae-based interfaces [16].

Details on Eye-Movement Metrics

The main measurements used in eye-tracking researthyas mentioned before,
are fixations and saccades, which are quick eye movemeniging between fixations.
There are also a multitude of derived metrics that §tem these basic measures,

including gaze and scanpath measurements. Pupil size and béirsdkeatlso studied.

Fixations: Fixations can be interpreted quite differently dependinghercontext. In
an encoding task (e.g., browsing a web page), higher fixaBgadncyon a particular
area can be indicative of greater interest in thgetasuch as a photograph in a news
report, or it can be a sign that the target is complesome way and more difficult to
encode [17, 18]. However, these interpretations may \mrged in a search task: A
higher number of single fixations, or clusters of fixasioare often an index of greater
uncertainty in recognizing a target item [17]. The duratiba fixation is also linked
to the processing-time applied to the object being fixated [ti8]widely accepted that

external representations associated with long fixaBoasot as meaningful to the user
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as those associated with short fixations [19]. Fixatiomdd metrics are described in

the following Table.

Eye-Movement
Metric
Number of
fixations overall

What it Measures
More overall fixations indicate less efficient seafpbrhaps
due to sub-optimal layout of the interface).

Fixations per area
of interest

More fixations on a particular area indicate that itmisre
noticeable, or more important, to the viewer than othesisa

Fixations per area
of interest and
adjusted for text
length

If areas of interest are comprised of text only, theam
number of fixations per area of interest should be divioye
the mean number of words in the text. This is necedsa
separate out: (i) a higher fixation count simply becabseet
are more words to read, from (i) a higher fixation co
because an item is actually harder to recagniz

Fixation duration

Longer fixation duration indicates difficulty in extrag
information, or it means that the object is more emgam
some way.

Gaze (also
referred to as
“dwell, fixation
cluster” and
“fixation cycle”)

Gaze is usually the sum of all fixation durations withil
prescribed area. It is best used to compare attentioibdisid
between targets. It can also be used as a measu
anticipation in situation awareness if longer gazesofalan
area of interest before a possible event occurring.

Fixation spatial
density

Fixations concentrated in a small area indicate fatuasel
efficient searching. Evenly spread fixations refl
widespread and inefficient search.

Repeat fixations
(also called “post
target fixations”)

Higher numbers of fixations off-target after the tarbaes
been fixated indicate that it lacks meaningfulness oriliigib

Time to first
fixation on-target

Faster times to first-fixation on an object or areamthat it
has better attention-getting properties.

Percentage of
participants
fixating an area of
interest

If a low proportion of participants is fixating an aréattis
important to the task, it may need to be highlighteg
removed.

On-target (all
target fixations)

Fixations on-target divided by total number of fixations
lower ratio indicates lower search efficiency.

Table 2.4: Fixation-derived metrics and how they can be interpretenh the context
of interface design and usability evaluation. References are given to exales of
studies that have used each metric.

Saccades:No encoding takes place during saccades, so they cannas tatlything

about the complexity or salience of an object in theriace. However, regressive

saccades (i.e., backtracking eye-movements) act as a measure of procegsin
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difficulty during encoding [2D Although most regressive saccades (or “regressions”)

are very small, only skipping back two or three letterseading tasks, much larger
phrase-length regressions can represent confusion in hegleéprocessing of the text
[20]. Regressions could equally be used as a measure ghimo value, in that there
should be an inverse relationship between the number of segresand the salience

of the phrase. Saccade-derived metrics are describeabla 2.5.

Eye-Movement What it Measures
Metric
Number of More saccades indicate more searching.
saccades
Saccade Larger saccades indicate more meaningful cues, asiaient
amplitude drawn from a distance.
Regressive Regressions indicate the presence of less meaningful cues
saccades
(regressions)
Saccades Any saccade larger than 90 degrees from the saccade that
revealing marked | preceded it shows a rapid change in direction. This could
directional shifts | that the user’s goals have changed or the interface layout do
not match the user’s expectations.

Table 2.5: Saccade-derived metrics and how they can be interpretedthe context
of interface design and usability evaluation. References are given toaemples of
studies that have used each metric.

Scanpaths: A scanpath describes a complete saccade-fixate-saceqdense. In a
search task, an optimal scan path is viewed as beingighttae to a desired target,
with relatively short fixation duration at the target JJ18canpaths can be analyzed

guantitatively with the derived measures described in T2ble

Eye-Movement

Metric What it Measures
Scanpath A longer-lasting scanpath indicates less efficieansing.
duration
Scanpath length | A longer scanpath indicates less efficient searchindh§ps
due to a sub-optimal layout).
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Spatial density

Smaller spatial density indicates more direct search.

Transition matrix

The transition matrix reveals search order in terms o
transitions from one area to another. Scanpaths with an
identical spatial density and convex hull area can have
completely different transition valuesone is efficient and
direct whilst the other goes back and forth between areas,
indicating uncertainty.

Scanpath
regularity

Once “cyclic scanning behaviou? is defined, deviation froma
“normal” scanpath can indicate search problems due to lack o
user training or bad interface layout.

Spatial coverage
calculated with
convex hull area

Scanpath length plus convex hull area define scanning in a
localised or larger area.

Scanpath This can determine a participant’s search strategy with menus,

direction lists and other interface elements (e.g. top-downatsoim-up
scanpaths). “Sweep” denotes a scanpath progressing in the
same direction.

Saccade/fixation | This compares time spent searching (saccades) to time spg

Ratio processing (fixating). A higher ratio indicates more pesing

or less searching.

Table 2.6: Scanpath-derived metrics and how they can be interpred in the
context of interface design and usability evaluation.

Blink rate and pupil size: Blink rate and pupil size can be used as an index of cognitive
workload. A lower blink rate is assumed to indicate a higheklwad, and a higher
blink rate may indicate fatigue [21, 22]. Larger pupils may sld@ate more cognitive
effort [23, 24]. However, pupil size and blink rate can be determinedany other
factors, such as ambient light levels, so are opetothamination [25]. For these

reasons, pupil size and blink rate are less often useceitragking research [26].

2.10 Eye-tracking vs. Gaze-tracking

Eye-trackers necessarily measure the rotation of tlee vath respect to the
measuring system. If the measuring system is head moagedth EOG, then eye-

in-head angles are measured. If the measuring systebiesrtaunted, as with scleral
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search coils, or tad mounted camera (“remote”) systems, then gaze angles are

measured.

In many applications, the head position is fixed usingealiat, a forehead support
or something similar, so that eye position and gaze arsattme. In other cases, the
head is free to move, and head movements are measuhnesystéms such as magnetic

or video based head trackers.

For head-mounted trackers, head position and direct®added to eyer+-head
direction to determine gaze direction. For table-mountstenys, such as search colls,

head direction is subtracted from gaze direction tordate eyein-head position. [16]

In [27] Yu and Eizenman, presented a new methodology to datethe pointef-
gaze with a head-mounted eye-tracking system. It combite well-known
homography algorithm with distortion compensation, to deterrthe pointef-gaze
from point correspondences in images obtained by theragkeit’s scene camera. This
methodology does not require either a separate head gagkgstem or accurate 3-
measuremrmts of objects in the subject’s field of view to determine the visual scanning
behavior (i.e. viewing time and viewing frequency of each opj@te pointef-gaze
estimation methodology can be used to assess visual sggratterns accurately (to
less han 0.90°). As such, it can provide insights into selective attention processes that
can aid in the diagnosis and evaluation of subjects miibd disorders. The reduced
complexity of the methodology allows it to be used in agpibns that require

portability, flexibility, and a changing visual scene [27].

2.11 Eye-tracking in practice
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A great deal of research has gone into studies of tishanesms and dynamics of
eye rotation, but the goal of eye-tracking is mostrofb estimate gaze direction. Users
may be interested in what features of an image draeyiagor example. It is important
to realize that the eye-tracker does not provide absgage direction, but rather can
only measure changes in gaze direction. In order to kmewigely what a subject is
looking at, some calibration procedure is required in whiehstibject looks at a point
or series of points, while the eye-tracker records éiigevthat corresponds to each gaze
position. (Even those techniques that track featureseofdiina cannot provide exact
gaze direction because there is no specific anatofemire that marks the exact point
where the visual axis meets the retina, if indeed tlsesadh a single, stable point.) An
accurate and reliable calibration is essential for obtainvalid and repeatable eye
movement data, and this can be a significant challerg®h-verbal subjects or those

who have unstable gaze.

Each method of eye-tracking has advantages and digadesnand the choice of
an eye-tracking system depends on considerations of mostpglication. There is a
trade-off between cost and sensitivity, with the mesisiive systems costing many
tens of thousands of dollars and requiring considerable tesgpéo operate properly.
Advances in computer and video technology have led to thredagement of relatively
low cost systems that are useful for many applicatiand fairly easy to use.
Interpretation of the results still requires some ll@fexpertise, however, because a

misaligned or poorly calibrated system can produce wildlynewus data [16].
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2.12 Choosing an eye-tracker

One difficulty in evaluating an eye-tracking systenhatthe eye is never still, and
it can be difficult to distinguish the tiny, but rapiddasomewhat chaotic movements
associated with fixation from noise sources in thetegeking mechanism itself. One
useful evaluation technique is to record from the two eyedtsineously and compare
the vertical rotation records. The two eyes of a nbrsudject are very tightly
coordinated and vertical gaze directions typically agree tioirwi#/- 2 minutes of arc
(RMS of vertical position difference) during steady fima. A properly functioning
and sensitive eye-tracking system will show this levelgréament between the two
eyes, and any differences much larger than this can usballattributed to

measurement error.

2.13 Video based eye-tracking algorithms

2.13.1 Feature-based and model-based approaches

Eye-tracking algorithms can be classified into two appresdypically: the
feature-based and the model-based. The first approachesd detd localize image
features related to the position of the eye. A commpnalmong feature-based
approaches is that a criterion (e.g., a threshold¢esled to decide when a feature is
present or absent. The determination of an appropthieeshold is most of the times
adjusted by the user as a free parameter. The trackkdefeavary widely across
algorithms but most often rely on intensity leveldntensity gradients. For example,

in infrared imagery and the dual-threshold technique, an apatelgriset intensity
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threshold can be used to extract the region correspondihg pupil. The pupil center
Is concerned to be the geometric centethefidentified region. The intensity gradient
can also be used to detect the pupil contour in infrared spertrages [28, 29] or the
limbus in visible spectrum images [30, 31]. Least-squaredif80, 28, 32] or circular
Hough transform [33] can then be used to fit an ellipse ocle to these feature points.
However, as the feature point detection may be affidnyehe eyelashes and the eyelids
of the user, some additional process is needed to eliminseeféature points (which
are called outliers). Pupil feature points are detedtstyaadial vectors in [29], but a
method of rejecting outlines is not given. Feature p@resdelimited in a quadrilateral
formed by the eye corners, the uppermost point of the wgyedd and the lowermost
of the lower eyelid [30]. A double ellipse fitting approastused in [28]. First, roughly
detected feature points are used for ellipse fitting. And fés&ure points are detected
again by using the center of first ellipse as startingtp&inally, an ellipse is fitted to
the feature points that are close enough to the firgisell A curvature function is
applied to eliminate the artifacts of pupil edge in [32]. Hosvethese methods may
not be robust enough to a relatively large number of ositied may not be able to

remove all of them [34, 35].

On the other hand, model-based approaches do not explididigt deatures but
mostly find the best fitting model that is consistenthwihe image. For example,
integro-differential operators can be used to find the littistgfcircle [36] or ellipse
[37] for the limbus and pupil contour. This approach requiresrdinuous search of
the model parameter space that maximizes the integrddeofi¢rivative along the
contour of the circle or ellipse. The model-based approactprovide a more precise
estimate of the pupil center than a feature-based appgozei that a feature criteria

IS not in use to compute the image data. However, gradieimigues cannot be used
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without a good first guess for the model parameters. #esat, the gain in accuracy
of a model-based approach is obtained at a significattrcoerms of the time needed
for the calculations and the flexibility. However, theeusf multisale image

processing methods [38], in combination with a model-baggutoach, is very

promisingfor real-time performance [39, 335].

Robust non-intrusive eye detection and tracking is aiarstep of any eye-
tracking system. It is fundamental for human compubégraction, attentive user
interfaces and understanding human affective statest Bassade detectors typically
use Haar-like features that calculate very fast using irdermediate image
representation called “Integral Image”. Nevertheless, Haar-like features are less
discriminative for describing information when the textw®fi high frequency. Levi
and Weiss [40] proposed a set of features based on locabeadgtation histograms
(EOH). The discrete Adaboost algorithm used a decision stitanp,kind of threshold-
type weak hypothesis with binary output but a lot of infornmaisolost when using this
approach. The histograms are used to approximate complekutisins of positive
and negative training samples by dividing the feature sp&zen@ny subregions with
the same width. Then a weak classifier based on a lodkhkp function is built by
calculating the log-ratio on each subregion. Althoughhiséogram weak classifier
seems to achievebetter performance, two issues remain. The first oneetos how
many bins should be used in order to build the weak clasditiersecond one is that
regular histograms with the same bin width are good to destaita that are generally
uniform. If the data distribution is not uniform at all ahé tetails of the high density
portion of the data should be captured, the number oshimsld be bigger.

This means that a large amount of bins are lost whereifoWrdensity region as

they are not needett seems that the key is dividing the strong classifiey steps-
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stages. This approach decouples the detecting learning priobdeseveral sublearning
problems. The decision taken for each specific stagsifdasstill may not be the best
concerning the overall performance of the cascade. Xiaal. [41] proposed an
algorithm called the “Boosting Chain” to combine the classification score in earlier
cascade stages into the boosting learning in later stigesBoosting Chain still
requires many training parameters in each cascade stageg Bmoptimal set of these
training parameters is difficult and takes lots timesc@ae of Feed-Forward Classifiers
improved and modified from the Real AdaBoost Algorithm thatettged by Chen
and Chen [42] might be applied. Thare systemsuch as the one presented in][40
fully automatic that operate in real-time at a high lexfeaccuracy. Automatic face
detection has to be performed when a new user appears image or when the
tracking process has to be restarted because the userdmasut of track for a certain
period of time [4].

In a try to build an eye-tracking system with a robust poeiiter estimation
algorithm Long et al. [1I5developed an algorithm name@wo-Step Processing
Algorithm” in order to reach an even higher speed. This algorithmtfasks the

approximate position of the pupil and then determines a sill image window
enclosing the pupil for further processing. The image is dowpleal ati * i rate of

the original resolution to facilitate the location b&tpupil center. Then, the system
specifies a tiny trace window slightly larger than theedietd pupil area so that no pixel
gets lost. The tiny image is processed at full pixel dgngsolution using the
symmetric mass center algorithm which was also develop&driyet al. to locate the
accurate position of the pupil center. The centeradgralgorithm safely assumes that
the pupil area can be approximated by a circle or an elliggs.assumption will be

wrong whenever the eye lid covers part of the pupil areasagdimng to lead to large
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measurement error. The symmetric mass center algotitiimes only the non-
occluded, symmetric portion of the pupil area to estimatpubpé center. Suppose that
an ellipse is partially occluded as shown in the Figure belloevmass center of the
non-occluded area will not yield the correct ellipse cerftesm geometric properties
of ellipses, it is known that if we find the maximum paraligom SE:1SsEs, the mass
centre of the area enclosed $I)E1S3E3. According to the authors their method
offered an improvement of the processing rate to about 23800% of the original

one. [15]

Figure 2. 7: Locating the centre for an ellipse that is partially occided

2.14 Starburst Algorithm for Infrared Eye-tracking

As each company manufacturing eye-trackers uses custoatggeihms to detect
the eye, that are not presented publically for commeraabies, we are going to see
in more detail the open-source algorithm named Starbuistréasonable to assume
that the general idea remains the same in each cagbartie way those different

algorithms function is more or less the same.

55



Starburst is a robust eye-tracking algorithm that combirsgare-based and model-
based approaches to achieve a good trade-off between rumpérrftemance and
accuracy for dark-pupil infrared imagery. The algorithigoal is to locate the pupil
center and the corneal reflection in order to relagevector difference between these
measures to specific coordinates in the scene imagdedm with, the algorithm
locates and rem@sthe corneal reflection from the image. At this ppihe pupil edge
points are located using a repetitious feature-based teehriige best possible ellipse
is fit to a subset of the detected edge points using tineldda Sample Consensus
(RANSAC) algorithm [43]. The best fitting parameters nfrathis feature-based
approach are then used to begin a local model-based s$eatbk ellipse parameters

that maximizes the fit to the image data [34].

2.14.1 Noise Reduction

Due to the use of a low-cost head-mounted eye-trackex paiscause significant
problems. Thus, the algorithm reduces the noise preséme images. There are two
types of noise, shot noise and line noise. To reducghtitenoise a 5 x 5 Gaussian filter
is applied with a standard deviation of 2 pixels. The lingsenis fictitious and a
normalization factor can be applied in each line to shétrhean intensity of the line
to the running average derived from previous frames. This fadkr &ach line | is:

C(i,D) = BIG, D+ (1 —-B)C@i—-1,1 (2
wherel(i, 1) is the average line intensity of line | in frame i nd 0.2. For i = 1,
C(i,1) = I(i,1). This noise reduction technique is optional whenever theitdgois

used combined with an eye-tracker capable of capturing snaigle significantly less
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noise. The effect of the noise reduction can be seEigure 2.8 (compare (a) and (b)).

[35]

2.14.2 Corneal reflection detection, localization and removal

In infrared spectrum, eye-tracking using the dark-pupil technithes,corneal
reflection corresponds to one of the brightest regioise eye image. As a result, the
corneal reflection can be obtained by using thresholdsieMer, a steady threshold
across observers and even within observers is not thesblesion. Therefore, an
adaptive thresholding technique is used in each frameder ¢o localize the corneal
reflection. In addition, as the cornea roughly extendwupe limbusthe search for
the corneal reflection can be limited to a square rediomerest with a half-width of
h = 150 pixels. To start with, the maximum threshold is usexidate a binary image
in which only the values above the threshold are takentasi@ corneal reflection.

It is likely that the largest candidate region is attiallg to the corneal reflection, as

any other specular

(a) (b) (c)

Figure 2. 8: (a) The original image. (b) The image with noise reductioric) The image
with the corneal reflection removed after noise reduction. [35]
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reflections tend to be quite small and located of taezp(e.g., near the corner of the
iImage where the eye lids meet). The ratio between #e @irthe largest candidate
region and the average area of other regions is compstbkd threshold is lowered.

Firstly, the ratio increases because the corneakteftewill grow in size faster
than other areas. This growth happens as the intensity obrneal reflection decreases
towards its edges. Generally, a lower threshold will causeegase in false candidates.
The ratio will begin to drop as the false candidatesipecmore prominent and the size
of the corneal reflection region becomes large. thheshold that generates the highest
ratio is taken as the optimal one. The locatiorhefdorneal reflection is then given by
the geometric center {xyc) of the largest region in the image using the adaptively
determined threshold.

While the approximate size of the corneal reflection banderived using the
thresholded region from the localization step, thisoregoes not typically include the
entire profile of the corneal reflection. To determihe full extent of the corneal
reflection, there is the assumption that the intgngibfile of the corneal reflection
follows a symmetric bivariate Gaussian distribution. Thhs, radius r is calculated
where the average decline in intensity is maximized andrtéiated to the radius with
maximum decline for a symmetric bivariate Gaussian (i.edasaof one standard
deviation). As a result, the full extent of the caineflection can be taken as 2.5r to
capture 98% of the corneal reflection profile. A NelderaBlleSimplex search that

minimizes is used to find r

[1(r+d, X,Yc,0) do / [1(r-8, X.,yc,0) do (3)
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whered = 1, and I(r, x, yp) is the pixel intensity at angleon the contour of a circle

defined by the parameters r, x and y. The search ialinéd with r=/area/pi, where
area is the number of pixels in the thresholded rediba.search requires on average
only 2.3 percent of the algorithm's runtime.

Radial interpolation is then used to remove the correfddction. Firsly, the
central pixel of the identified corneal reflectiorgien is set to the average of the
intensities along the contour of the region. Therefeh pixel between the center and
the contour, the pixel intensity is determined via line#erpolation. An example of

this process can be seen in Figure 2.9 (compare (b) pri84¢35].
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2.14.3 Pupil Contour detection

For the starburst algorithm a novel feature-based metlasddeveloped in order
to detect the pupil contour. While other feature-based approappgsedge detection
to the entire eye image or to a region of interest atdbe estimated pupil location,
these approaches can be computationally wasteful as the qmumpdur frequently
occupies very little of the image and not all the pupittour points are necessarily

needed for accurate estimation of the pupil contour.

(@) (b) (c)

Figure 2. 9: Pupil feature detection. (a) Pupil contour edge calidates are detected
along the length of a series of rays extending from a best gsex the pupil centre.
Pupil contour candidates are marked using crosses. Note thatvé contour
candidates are incorrect - one ray reaches the border and doestngenerate a
candidate. (b) For each pupil contour candidate another set of ays are generated
that create a second set of pupil contour candidates (c) pumbntour candidates
not on the pupil contour can lead to additional feature points nobn the contour
however these are typically not consistent with any single ellipse. [35]
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Figure 2. 10: Pupil feature detection. (a) The original starting pint (yellow circle)

shoots rays (blue) to generate candidate pupil points (green @ses). (b&c) The
candidate pupil points shoot rays back towards the start point to etect more

candidate pupil points. (d) All the candidate pupil points areshown. The average
of these locations is shown as a red circle. This location seeds tfext iteration. (e)
The results of the second iteration. (f) The starting locatias from all iterations

show a rapid convergence. [34]

With this approach edges are detected atosipall number of rays that extend from a
central best guess of the pupil centereEhrays can be seen in Figure 2.9 (a). For
robustness to inaccuracy of the starting point, edgeslsoaletecteth asmall number

of rays extending from the initial set of detecteddess returning in the direction of

the starting point. These retimg rays can be seen in Figure 2.9 ((b) &(c)). This two-
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stage detection method takes advantage of the ellipticlleppdthe pupil contour to

preferentially detect features on the pupil contour.

For each frame, a location is chosen that represkatbest guess of the pupil
center in the frame. For the first frame this camérmined either manually or taken
as the center of the image. For subsequent frames, thefood the pupil center
calculated from the previous frame is used. Next, the de@gmA along N rays,
extending radially away from this starting point, are pefedently evaluated pixel by
pixel until a threshola is exceeded. Given that the dark-pupil technique is used, only
positive derivatives (increasing intensity as the rayreldpare considered. When the
above-mentioned threshold is exceeded, a feature gailafined at that location and
the processing along the ray is paused. If the ray exteritie border of the image, no
feature point is defined. An example set of candidatiifegoints is shown in Figure

2.10 (a).

For each of the candidate feature points, the aboweided feature-detection
process is repeated. However, rays are limiteg=te50 degrees around the ray that
originally generated the feature point. The motivatiorifoiting the return rays in this
way is that if the candidate feature point is indeedhenpupl contour (as shown in
Figure 2.10 (b)), the returning rays will generate additideature points on the
opposite side of the pupil such that they are all cardistith a single ellipse (i.e., the
pupil contour). However, if the candidate is ootthe pupil (e.g., see Figure 2.10 (c)),
this process will generate additional candidate featurggydhat are not necessarily
consistent with any single given ellipse. Thus, this proeethinds to increase ratio of

the number of feature points on the pupil contour oventimeber of feature points not
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on the pupil contour. Given that feature points defined largeA are more likely to
be located on the pupil contour (as this is the strongegje contour), the number of
returning rays is variable and set W/®. Note that the minimum number of rays is 5

because by definition a feature point is determined by o.

The two-stage feature-detection process improves thestimdss of the method to
poor initial guesses for the starting point. This is a gnobivhen an eye movement is
made as the eye can rapidly change positions from franmartee f This is especially
true for images obtained at low frame ratésr example, shown in Figure 2.10 (a) is
such a case. While the initial set of rays only detegtsfeature points on the pupil
contour, the return rays from these two points detect mamg points on the contour
(see Figure 2.10 (b)). The combined set ofudieapoints is shown in Figure 2.10 (d)
and the number of points on the contour well exceeds thibsef the contour. However,
the feature points are biased to the side of the pupiboomearest the initialization
point. Although another iteration of the ray process wouidimze this bias, the
computational burden grows exponentially, with each it@natand thus that would be
an inefficient strategy.

At this point, an ellipse could be fitted to the candidai@ts; however, the bias
would induce a significant error into the fit. To eliminaies tbias, the above described
two-stage feature-detection process is iterated. Foy éesation, after the first one,
the average location of all the candidate featuretpdiom the last iteration is taken as
the next starting lo¢eon. The red circle in Figure 2.10 (d) shows the startingt goin
the second iteration. The detected feature locationhéosecond iteration are shown
in Figure 2.10 (e). Note the sdmce of a strong bias. Figure 2.10 (f) shows how the

central locations rapidly converge to the actual pupilereithe iteration is halted when
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the center of the detected feature points changethissl = 10 pixels (for this specific
modality). When the initial guess is a good estimate efpipil center, for example
during eye fixations which occupy the majority of the feamonly one iteration is
required. When the initial estimate is not good, typycalhly a few iterations are

required for convergence.

The histogram of the iteration count is shown in Figul 4a) for the videos
recorded. Note that 93% of the iteration counts are tlesa or equal to 5. If
convergence is not reached within i = 10 iterations, esrasometimes during a blink
when no pupil is visible, the algorithm halts and beginsgssiog the next frame. On
average, the feature-detection process requires 27 percinat aljorithm’'s runtime.

[35]

2.14.4 Ellipse Fitting

Given a set of candidate feature points, the negtaitéhe algorithm is to find the
best fitting ellipse. While other algorithms commonly usesiesquares fitting of an
ellipse to all the feature points, gross errors madé&enféature-detection stage can
strongly influence the accuracy of the results. Giersthe detected feature points
shown in Figure 2.11 (a) and the resulting best-fit ellipsig the least-squares
techniques shown in Figure 2.11 (b). Notice that a few fegikirgs not on the pupil
contour dramatically reduce the quality of the fit to an ueptable level. To address
this issue, the Random Sample Consensus (RANSAC) parddigmodel fitting is
applied[43]. This case is the first application of RANSAC in tomtext of eye-tracking,

however RANSAC is frequently applied to other congpwtision problems (e.g., see
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[44]). RANSAC is an effective technique for model fitting ke tpresence of a large
but unknown percentage of outliers in a measurement safpielier is a sample in
the data attributable to the mechanism being modeled whereaslianis a sample
generated through error and is attributable to another meohanbt under
consideration. Inliers are all of those detected featoirgs that correspond to the pupil
contour and outliers are feature points that corresponchér obntours, such as that
between the eye lid and the eye. Least-squares methodd aesailable data to fit a
model because it is assumed that all of the sampleslames and that any error is
attributable exclusively to measurement error. On the othel, FRAANSAC admits the
possibility of outliers and only uses a subset of the daté thef model. In detall,
RANSAC is an iterative procedure that selects many smallamatom subsets of the
data, uses each subset to fit a model, and finds the tiaddias the most agreement
with the data set as a whole. In most cases, the twe $ature-detection process
results in very few outliers (e.g., see Figure 2.11\t))e in other cases, outliers are
much more prevalent (e.g., see Figure 2.11 (d)). Theldistn of outlier percentages

for the testdvideos is shown in Figure 2.12 (b).
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(c) o (d)

(f)

2. 11: (a) Example set of feature points with only 2 outliers. (lPoorly fit ellipse
resulting from least-squares approach. (c) Inliers (green) ah outliers (red)
differentiated by RANSAC. (d) An example with more outliers. (e) Bst-fitting
ellipse using only inliers. (f) Best-fitting ellipse using moddbased optimization.
[34]

On average, 17 percent of the feature points are outlidnis relatively high
amount of outliers is due to the fact that a low-costtegeker was used, constructed
from off-the-shelf parts, which introduces significantage noise into the videos.
Given the presence of these outliers, it is importanise the RANSAC paradigm to

find the ellipse that best fits the pupil contour.

66



The following procedure is repeated R times. First, five $asnare randomly
chosen from the detected feature set given that thie imitiimum sample size required
to determine all the parameters of an ellipse. Singularé/Becomposition (SVD) on
the conic constraint matrix generated with normalizetuie-point coordinates [45] is
then used to find the parameters of the ellipse that plgrféstthese five points. The
parameters of the ellipse must be real, the ellipseecenust be inside of the image,
and the major axis must be less than two times therraixis. Otherwise, five more
points are randomly chosen and a new ellipse fit, unsieglw@nstraints are met. Then,
the number of candidate feature points in the dataaeatnee with this model (i.e. the
inliers) are counted. This set is called the consereug\ter the necessary number of
iterations, an ellipse is fit to the largest conses&tge.g., see Figure 2.11 (e)). Inliers
are those sample points for which the algebraic distamthe ellipse is less than some
threshold. This threshold is derived from a probabilisticehaf the error expected
based on the nature of our feature detector. It is asstnaiethe average error variance
of the feature detector is approximately one pixel andttiserror is distributed as a
Gaussian with zero mean. Thus to obtain a 95% probabiityatlsample is correctly
classified as an inlier, the threshold should be deriven &oé distributon with one
degree of freedom [44]. This results in a threshold wigt@f 1:96 pixels. Because it is
often computationally infeasible to evaluate all posddsgure point combinations, the
number of random subsets to try must be determined in ahatgdsures that at least
one of the randomly selected subsets contains only inlibrs.can be guaranteed with
probability p = 0.99

R= log(1-p)/log(1-w) (4)
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where w is the proportion of inliers in the sample. Alifjo w is not known a priori, its
lower bound is given by the size of the largest consesetifeund. Thus R can initially
be set very large and then set lower based on Equasistih& iteration proceeds. The
number of necessary iterations can be further reducedtmaehhat a new largest
consensus set is detected, by iteratively re-estimtienghodel using all the members
of the consensus set until the total number of inlieranesconstant. The histogram
of RANSAC iterations for the tested videos is shown guFe 2.12 (c). Note that the
median number of iterations is only 8 and the RANSAC mdittelg on average

utilizes 5.5 percent of the algorithm's runtime [34].

2.14.5 Model based Optimization

Although the accuracy of the RANSAC fit may be sufficifemtmany eye-tracking
applications, the result of ellipse fitting can be inyaw through a model-based
optimization that does not rely on feature detectianfiid the parameters, the major
and minor axis a and b, the center coordinate (X, y) @matientatiornn of the best
fitting ellipse, we minimize

- [(( S T (0+8,b+8,a,x,y,0)d0)/ ([ (a-8,b-8,a,x,y,0)d0))] (5)

using a Nelder-Mead Simplex search whére 1 and | (a, bg, X, vy, 0) is the pixel
intensity at angl® on the contour of an ellipse defined by the parametérsxay and
a. The search is initialized with the best-fitting elépgarameters as determined by
RANSAC. An example of model-based optimization can be seEigure 2.11 (f). The

probability distribution of optimization iterations is@avn in Figure 2.12 (d). The mean
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number of iterations is 74 and, on average, model-baseahization requires 17

percent of the algorithm's runtinje4, 35].

2.14.6 Calibration

In order to calculate the point of gaze in the scenggéna mapping must be

constructed between eye-position coordinates and scege-itoardinates. Either the

pupil center or the vector difference between the papiter and the corneal reflection

certer can be used. The vector difference leads to
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Figure 2. 12: (a) The histogram of iterations of pupil feature detdmn. (b) The
percentage of outliers in processed videos. (c) The histogram of RANSAC

iterations. (d) The histogram of iterations of model-based optimization.34]
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superior performance because it reduces sensitivity sligpage of the headgear. The
mapping can be initialized by relating known eye positions tavkngcene locations.
The typical procedure in eye-tracking methodology is tosoneathis relationship
through a calibration procedure. During calibration, the ssequired to look at a 3x3
grid of scene points for which the positions in the sear@ge are known. While the
user is fixating each scene poist = (x,;, V.;), the eye positiorei = (x,;, Vi) IS

measured.

The particular mapping used by different eye-tracker matwrars and different
research group varies widely. The first mapping that washeéed was a first-order
linear mapping. For each correspondence betvisgeand ei, two equations are
generated that constrain the mapping:

Xsi = Oxo T Ox1Xei T Ax2Yei (6)

Vsi = Oyg + Ay1Xe; + Ay Y0 (7)

wherea,; anda,; are undetermined coefficients of the linear mapping. Thisal

formulation results in six coefficients that need ¢odetermined. Given the nine point
correspondences from the calibration and the resultingob8traint equations, the
coefficients can be solved for in the least-squaresesaising SVD. Nonlinear
mappings were also considered using this framework includimgpdearder and third-
order polynomial mappings. The second-order mapping includesixalidditional
higher order terms.

Another non-linear method that was considered was to usa@gnaphic mapping.
In that case the mapping H is generate2k3 matrix that has eight degrees of freedom,

between the scene poit (x,, v, 1), and the pupil-CR vectoé = (x,,y.,1). To
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determine the entries of H, a constraint matrix is ggre using measured point
correspondences. Each correspondence generates twoaitdsisand thus four
correspondences are sufficient to solve for H up to sEatally the null space of the
constraint matrix can be determined through SVD to provide\HD Sroduces the
mapping H that minimizes the algebraic error. Once thepmg is determined, the

user's point of gaze in the scene for any frame casthblished as = H é.

Calibration Error
Method (degrees)

Linear 0.77

2nd-order polynomial 0.57

3rd-order polynomial 0.64

Homographic 0.58

Table 2.7: Accuracy of the different calibration methods. [34]

The average errors obtained are shown in Table 2.7. Aflpmmgs provide
reasonable accuracy. However, the second-order mapping arjfaphic mappings
result in the best performance. The lack of cross-téwmts the third-order mapping.
However, it is expeed that the third-order mapping would result in accuracy
comparable to the second-order mapping, given that rfficorrespondences will be
available to include the cross-terms. Overall, the eh@t mapping makes little
difference but that of a non-linear model should be prede However, a more
comprehensive investigation that examines the abilityesfeéhmappings to extrapolate

outside of the nine-point calibration grid would be valuaBie B5].
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2.15 Image-Video Compression in eye-tracking

In our days the wide spreafimobile and portable devices, wireless sensor network
technologies as well as cutting-edge biomedical microsysfe.g. camera micro-pill),
require imaging front-end that acquire the image, proeesktransmit data using very
low power.

In general, in a video communication application, a pa@ncoder and decoder is
required. The image encoder converts, at each timensgepampled versiom, of the
pixel value into a digital fornd,. The codeword is then transmitted over the cha@nel
to the decoder, which reconstructs the pixel valjas close as possible to the original
image source. The most efficient way to handle nonsiatyosignals, such as pixel
intensity, is to continuously adapt the encoder/decoder pavatckward adaptation,
the transmitted codeword is used to adjust the encoder pgaranjé6]

For this purpose, and because of the very rapid emerggnC®OS imaging
technology which is the technology of choice for pbke digital imaging products
Shoushun et al. approached this field by proposing an adaptimtzgtian scheme
based on a boundary adaptation procedure followed by areaffailine quadrant tree
decomposition algorithm in order to achieve low-power and rgélust image
compression integrated together with a digital CMOS imagsosem that paper they
reported the theory, simulation, VLSI design, and expetialeneasurements of a
single-chip CMOS image sensor and a compression procéssonormalized power
and the silicon area of their on-chip compression processre compared with a
number of image compression on-chip solutions. They showat] while their

processor is very compact (less than 55 k transistopteimenting all modes of
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operation), it also features a much lower power consumpti®@n compared with other
processors realized in similar technological procegids [

The modern CMOS technology was a matter of researchbglZamora et al. in
[76]. In their study they presented new approaches and catedipolicies, in the area
of Power Management, for wireless video sensor netwtrkg,discussed techniques
for analytically predicting their performance, and rateegive simulations using each
PM policy to obtain power-savings estimates in an effornéke those sensors less
power consuming. Thus, it seems that CMOS technology méyet Ibts to offer in the
future eye-tracking.

Unfortunately, in eye-tracking devices it is not that éasyse Multi-View Tracking
techniques in wireless sensor networks the same wayatigeysed in a variety of
occasions (e.g. in traffic surveillance, aircraft contnodl guide, security surveillance
and so on) [4Jas we can’t afford to have a tracker with lots of nodes tracking the eye
of the subject. In that case the wearer of the device wealduncomfortably and in

addition the power needed for more than one node to wotht ineggome a problem

2.16 Building Blocks

The minimal hardware requirements for an eye monitorysesn are a digital
camera and a personal computer with a suitable inteffaeefeasibility of creating a
low-cost eye monitoring device for personal use has besmiaed in [4]. Their study
shows that the hardware components of their low costreysa® be assembled from
readily available consumer electronics afiitbe-shelf parts for fewer than 30 dollars
with an existing personal computer. On an Apple Power Bookgapheir proof of

concept eye monitoring device operates in near realttsing prototype Jitter software
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at over 9 frames per second, and within 1 degree of gaze err

Figure 2.13 illustrates a block diagram of a typical passygemonitoring system
including hardware and software. This system includes a videorigpmagimera and an
infrared light illuminator, coupled to a vision processor whinhurn, is coupled to a
host processor. The video imaging camera may include a @@O$ active-pixel
digital image sensor mounted as a chip onto a circuidb@ne example of a CMOS
active-pixel digial image sensor is Model No PB-0330, commercially availableghwhi
has a resolution of 640H x 480V. Other imaging cameras, like webcams, may be
employed depending on the application field. To achievastoless to environmental
variations in the ambient illumination, it is common toage the eye in the near-
infrared (NIR), with a filter on the camera to block visiligght, and controlled NIR
illumination provided by light emitting diodes (LEDs). In masguations useful
images may be obtained with available natural light, batuse of controlled NIR
illumination assures consistent lighting conditions ssra range of environmental
conditions. Lighting conditions are one of the mogtamiant problems to be addressed
when the eye monitoring system is employed in real dipgracenarios like driving a
vehicle. In order to minimize the interference from lightirces beyond the IR light
emitted by the LEDs, a narrow band pass filter centerec dtED wavelength could
be attached between the CCD camera and the lens [48hd2eet al [48] reported that
when such a filter is employed in their real-time videsdd pupil tracking system for
monitoring driver vigilance, the problem of artificial lighand vehicle light has been
solved almost completely. Further, they made two impbgaints: (1) this filter added
a new drawback for it reduces the intensity of the imagetlae noise is considerably
amplified by the automatic gain controller (AGC) integratethe camera, and (2) this

filter does not eliminate the sunlight interference if-te&ving scenarios, except for
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cases when the light intensity is very low.
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Figure 2. 13: Block diagram illustrating a passive eye monitoring system [36]

Once an image has been acquired by the camera, it is hemeassed to a
processor using a frame grabber or digital interface. In some systems, a “‘smart camera”
may be employed which performs significant computation®arbusing dedicated
hardware such as a fully-programmable gate array (FPGA) riRegs of the specific
implementation, the vision processor is generally resplen®r controlling activation
of the IR light illuminator(s), controlling the cameeand processing the acquired video
images. Control of the video imaging camera may include atimadjustment of the
pointing orientation, focus, exposure, and magnificatiaachEvideo frame image is

processed to detect and track the spatial location of dm&tloeyes of the subject (eye
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finding and eye-tracking routines). The detected eyaés) be analyzed (eye analysis
routine) to determine eye gaze vector(s) and eye closaties ait one or both eye(s).
After determining the gaze direction and/or the eye clogate,ghe eye monitoring
system can then detect inattention and fatigue. Thephosessor may also interface to
control devices that employ the determined eye informakon example, eye closure
state maybe used in a drowsy driver application to initi@t@uatermeasure such as an
audible warning.

The robustness and accuracy of the software building bisdtscial in practice.
False eye position detection or mistracking of the puitliproduce large errors in gaze
vector estimation and noisy eye monitoring data. Thugmeffort has been expended
in the computer vision community to develop effective lewel building blocks,
including automatic detection of human eyes, modeling of the eyes’ structure,
appearance changes across subjects and lighting condtriacisng of spatial eye
coordinates, identifying pupil, iris, eyelids, and eye-c@nlecations, estimating,
calibrating and tracking gerson’s gaze direction. In [49, parts | and II] Dr. Hammoud
describes thoroughly the existing methods and analyzes new, premising
approaches, to overrun problems as: eye region modelingutih@atic eye position
detection and spatial eye position tracking (ParLdw level building blocks) and
others like: gaze calibration, gaze & eye pose trackingegadmages interpretation
(Part II- Mid level building blocks).

The accuracy of gaze tracking, pupillometry, or other omeas will generally
scale linearly with the number of pixels per eye. Thasre faced with a tradeoff: high
accuracy demands high magnification (narrow field of view), ewttie ability to track
moderate head movements requires a wide field of view.appeach is to satisfy

both desires by having two or more cameras: a wide-fieleea finds the face and the
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eyes within it, while a steerable, narrow-field camem@violes a magnified image of
the eye. Moderately-priced pan/tilt/zoom cameras are a#gadiut do not move fast
enough to follow rapid head movements. Mirror galvanometkrs redirection of the
narrow{ield camera’s line-of-sight during vertical blanking, but add significantly to
system cost. Thanks to the introduction of CMOS cambias csupporting areaf
interest readout, these mechanical solutions can now bessdpd by a single high-
resolution sensor with a wide angle view of the workingir@. In this case, the entire
image is searched to find the eyes, while the programmadd@fmterest provides a
“digital pan”.

In a pupil-imaging system, accuracy can be increased byasiogethe optical
magnification, up to the point at which the pupil fills the eniinage- or slightly less
than the entire image, to allow some range of moveniémier these conditions, a
typical eye with a 7mm pupil, imaged by a 640 %480 sensor, will produce 1 pixel of
image motion for a rotational movement of arourd®minutes of arc. To obtain a
higher optical gain, it is necessary to image a strectmaller than the pupil. Retinal
imaging offers the possibility of imaging extremely smatlstures; even a crude
imaging setup is capable of achieving an optical gain of 1 pixehage motion per
arc minute [50 The AOSLO described above produces 1 pixel of image matioa f
few arc seconds. It has also been suggested that bloodsviesge sclera might be
imaged at high magnification for high-precision gaze trackimgile this approach
deserves to be investigated, potential problems include shallow-ofefitld at high
magnification (necessitating dynamic focusing), and thietfet the blood vessels are
not rigidly embedded in the sclera, but are supported abbyeithin clear membrane
known as the conjunctiva, and so may themselves moveegfect to the eye as the

eye moves.
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The capability to actively control multiple illuminators camnhance the
performance of an eye monitoring system. The pupilfigdask can be simplified by
exploiting the fact that the eye is a natural retroreftedthis approach is well known
by dark-bright pupil technique. Light entering the eye flecged by the retina, and
passes back out towards the illuminator. When the eyeviediédrom the direction of
the illuminator the pupil appears filled with (red) light. This is the origin of the “red-
eye” effect in flash photographs, which can be eliminated by moving the flash away
from the camera lens. The pupil reflex can be isolayextibtracting an image collected
with off-axis illumination from one collected with on-axikimination [51, 52]. The
two images may be collected using a single camera angotal multiplexing, or
multiple cameras using wavelength multiplexing. In anr@gng twist on the idea of
wavelength multiplexing, a sensor chip has been demonstrated wbirporates a
checker board NIR filter array, providing a single-camerat®n with wavelength
multiplexing [53]. Wavelength multiplexing is generally superim temporal
multiplexing, which suffers from motion and interlacefacts.

The subtraction of dark-pupil image from bright-pupil imagsults into a very
short list of potential eye/pupil candidates which are furftiered using machine
learning techniques. Besides the pupil detection algorithmsyistem includes pupil
tracking and glint localization in order to estimate theegagctor. While clean images
of the eye, generated by such an imaging system, ateebBlaeasy to analyze, it is
nevertheless difficult to build a passive eye monitosygtem that works reliably with
all members of a large population in all operating scesaByewear such as prescrip-
tion glasses and sunglasses are particularly comraltenges, introducing clutter
around the eye and occlusion of some key eye featurang€s in magnification of

the eye caused by the power of the eyeglass lens canafjgrbe calibrated out, but
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bright specula highlights from metal frames can confoumgls searches for the glint
which are based on finding pixels whose values exceed atfixeshold. Similarly,
threshold-based approaches to finding the (dark) pupil cdailbd by mascara and
cosmetic products applied to the eyelashes. These typeshiéms arise indoors under
the best of conditions; outdoors, the problems are pielti. For example, many people
wear sunglasses while driving which make the eyes nearlyliejisvhile sunglasses
are generally designed to block visible and ultraviolet(Ughtli little can be safely
assumed about their NIR transmission. In [48] it sroeeported that when the sunlight
or the lights of moving vehicles directly illuminate the driver’s face, an increase of the

pixel levels is noticed, causing the pupil effect to disappea
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Chapter 3

3.1 Eye-tracking Applications

A wide variety of disciplines use eye-tracking techniquesluding cognitive
science, psychology (notably psycholinguistics, the vistald paradigm), human-
computer interaction (HCI), marketing research and medasearch (neurological
diagnosis). Specific applications include the tracking @yovement in language
reading, music reading, the perception of advertising, tae playing of sport. [34

Uses include:

Cognitive Studies
Medical Research
Human Factors
Computer Usability
Translation Process Research
Vehicle Simulators
In-vehicle Research
Training Simulators
Virtual Reality

Adult Research
Infant Research
Adolescent Research
Geriatric Research
Primate Research
Sports Training

fMRI / MEG / EEG

Commercial eye-tracking (web usability, advertising, minige automotive,

vV V V V V V V V V V V V V V V V V

etc.)

» Finding good clues
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» Communication systems for disabled

» Improved image and video communications

3.2 Commercial Applications

In recent years, the increased sophistication and abiiggsof eye-tracking
technologies have generated a great deal of interesheincommercial sector.
Applications include web usability, advertising, sponsorship, meckdesign and
automotive engineering. In general, commercial eye-tngclstudies function by
presenting a target stimulus to a sample of consumers whigeatracker is used to
record the activity of the eye. Examples of targéni may include websites,
television programs, sporting events, films, commercialagamines, newspapers,
packages, shelf Displays, consumer systems (ATMskobesystems, kiosks), and
software. The resulting data can be statistically aedlyand graphically rendered to
provide evidence of specific visual patterns. By examiningifira, saccades, pupil
dilation, blinks and a variety of other behaviors redeen< can determine a great deal
about the effectiveness of a given medium or produbtle/gome companies complete
this type of research internally, there are many prigatbepanies that offer eye-tracking

services and analysis.

The most prominent field of commercial eye-trackingeegsh is web usability.
While traditional usability techniques are often quite powénfproviding information
on clicking and scrolling patterns, eye-tracking offere #bility to analyze user
interaction between the clicks. This provides valuable insigh which features are
the most eye-catching, which features cause confusion andh whe&s are ignored

altogether. Specifically, eye-tracking can be used tesassearch efficiency, branding,
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online advertisements, navigation usability, overall desigd eany other site
components. Analyses may target a prototype or competiton sitilition to the main

client site.

Eye-tracking is commonly used in a variety of differeadvertising media.
Commercials, print ads, online ads and sponsored programallazenducive to
analysis with current eye-tracking technology. Analysesi$ on visibility of a target
product or logo in the context of a magazine, newspaper iteiebs televised event.
This allows researchers to assess in great detail tew@tample of consumers fixates
on the target logo, product or advertisements. In this wagdaertiser can quantify

the success of a given campaign in terms of actuahatention.

Eye-tracking provides package designers with the opportunikataiae the visual
behavior of a consumer while interacting with a tagggtkage. This may be used to
analyze distinctiveness, attractiveness and the tepadnice package to be chosen for
purchase. Eye-tracking is often utilized while the targedpet is in the prototype
stage. Prototypes are tested against each other and comspetitexamine which

specific elements are associated with high visibility apoeal.

One of the most promising applications of eye-trackingaresh is in the field of
automotive design. Research is currently underway to mttegrye-tracking cameras
into automobiles. The goal of this endeavor is to provides¢hécle with the capacity
to assess in real-time the visual behavior of the driMee. National Highway Traffic
Safety Administration (NHTSA) in the United States of étina estimates that
drowsiness is the primary causal factor in 100,000 policetegbaccidents per year.
Another NHTSA study suggests that 80% of collisions occur wititee seconds of a

distraction. By equipping automobiles with the ability to nhmnidrowsiness,
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inattention, and cognitive engagement driving safety couldrdmatically enhanced.
Lexus has equipped its LS 460 with the first driver monitoresysh 2006, providing

a warning if the driver takes his or her eye off the r&&d. [

Since 2005, eye-tracking is used in communication systendidabled persons:
allowing the user to speak, send e-mail, browse the Intarmeperform other such
activities, using only their eyes. Eye control works ewéen the user has involuntary
movements as a result of Cerebral palsy or othebitliges, and for those who have
glasses or other physical interference which would lingteffectiveness of older eye

control systems.

Eye-tracking has also seen minute use in autofocus stiki@aequipment, where

users can focus on a subject simply by looking at it tHrahg viewfinder [16].

3.3 Eye-tracker types

Eye-trackers measure rotations of the eye in onewdral ways, but principally they

fall into three categories:

1. One type uses an attachment to the eye, such as a spetaitdens with an
embedded mirror or magnetic field sensor, and the moveohéme attachment
is measured with the assumption that it does not slipfiignily as the eye
rotates. Measurements with tight fitting contact leinsege provided extremely

sensitive recordings of eye movement, and magneticltseails are the method
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of choice for researchers studying the dynamics and lymaephysiology of

eye movements.

. The second broad category uses some non-contact, optietdod for
measuring eye motion. Light, typically infrared, is eefed from the eye and
sensed by a video camera or some other specially desigtieal sensor. The
information is then analyzed to extract eye rotation folanges in reflections.
Video based eye-trackers typically use the cornealctedte (the first Purkinje
image) and the center of the pupil as features to track tower A more
sensitive type of eye-tracker, the dual-Purkinje eyek&nd&6], uses reflections
from the front of the cornea (first Purkinje image) ahd back of the lens
(fourth Purkinje image) as features to track. A still moressee method of
tracking is to image features from inside the eye, suctheasetinal blood
vessels, and follow these features as the eye rot@ipscal methods,
particularly those based on video recording, are widely fegeglaze tracking

and are favored for being non-invasive and inexpensive.

. The third category uses electric potentials measured \gtttredes placed
around the eyes. The eyes are the origin of a stekedyric potential field,
which can also be detected in total darkness and if #®a closed. It can be
modeled to be generated by a dipole with its positive fgdleeacornea andst
negative pole at the retina. The electric signal taat be derived using two
pairs of contact electrodes placed on the skin around geeise called
ElectroOculoGram (EOG). If the eyes move from thereeposition towards

the periphery, the retina approaches one electrode thikileornea approaches

84



the opposing one. This change in the orientation oflifpe@le and consequently
the electric potential field results in a change in neasured EOG signal.
Inversely, by analyzing these changes eye movements caackedr Due to
the discretisation given by the common electrode setaséparate movement
components - a horizontal and a vertical - can betifteth The potential
difference is not constant and its variations makéatlenging to use EOG for
measuring slow eye movements and detecting gaze direet@®.is, however,
a very robust technique for measuring saccadic eye movsm@m&sociated with
gaze shifts and detecting blinks. It is a very light-weigbpraach that, in
contrast to current video-based eye-trackers, only requwery low
computational power, works under different lighting conditiamsl can be
implemented as an embeddedf-@®ntained wearable system [77]. It is thus
the method of choice for measuring eye movements in encdally-life

situations and REM phases during sleep. [16]

3.4 Commercial eye-tracking systems

Nowadays, there are several companies offering eye-tcaddaipment for a
variety of purposes. Some of the most well-known of tlaen shown on the table

below:
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Manufacturer Type of Eye-tracking Device

Alphabio Technologies
AmTech GmbH

Applied Science Laboratories

Arrington Research

Cambridge Research System
Ltd.
Chronos Vision

Ergoneers Dikablis
EyeTech Digital Systems
EveTracking, Inc.

Fourward Technologies, Inc.

Interactive Systems Labs

ISCAN

LC Technologies Inc.

Mangold International

NAC Image Technology
Ober Consulting Poland,
JAZZ-novo

Ober Consulting Poland,
Saccadometer

Eyeputer, a head mounted 3-D video eye-track
Pupillograhic Sleepiness Test (PST), ta
mounted, monocular, video based systems.
ASL, eye-tracking and pupillometry systems, b
head mounted and remote.

ViewPoint EyeTracker, both remote and he
mounted, video based.

MR-Eyetracker, a low-cost, contact-free e
tracker for fIMRI & MEG.

Eye-tracking devices are used in e.g. Neuroscie
ophthalmology, refractive surgery or clinic
research. The classic Chronos Eye-tracker
deployed on the International Space Station (I
in early 2004 and is in continuous use for the st
of eye and head coordination during long-te
stays in the weightlessness of spaceflight.
Head-mounted lightweight eye-tracking systen
VT series, eye-tracking equipment
Technology developed byarshall & CERF, Sar
Diego State University

Advanced Dual-Purkinje-Image (DPI) Eyetrack
mainly for research purposes.

Model-based face and gaze tracking (from vit
image), Carnegie Mellon University.

Eye & Target Tracking Instrumentation, he
mounted and remote eye-tracking systems, si
and multiple target video tracking systems.
Eye tracking systems and software for hun
factors research.

MangoldVision for lightweight, portable ey
tracking, solutions for both remote and he.
mounted eye-tracking. Software for data recorc
and analysis.

NAC EMR-9 eye path tracking.

Portable multisensor system with IR based ¢
tracker. Head rotation and tilt measurement, bl
pulse monitoring, voice recording and optiol
video context recording, designed to study hur
interaction with environment.

Portable eye movement laboratory for study
saccadic reactions using multiple diagnos
experiments, integrated stimulation and ¢
movement measurement and recording Sys
head mounted.
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http://www.irisa.fr/lagadic/demo/demo-focaliseur/demo-focaliseur-eng.html
http://www.amtech.de/
http://www.a-s-l.com/
http://arringtonresearch.com/
http://www.crsltd.com/tools-for-functional-imaging/mr-safe-eye-tracking/
http://www.crsltd.com/tools-for-functional-imaging/mr-safe-eye-tracking/
http://www.chronos-vision.de/en/eye-tracking-products.html
http://www.ergoneers.com/en/hardware/eye-tracking/
http://www.eyetechds.com/
http://www.eyetracking.com/
https://newscenter.sdsu.edu/education/crmse/sandra_marshall.aspx
https://newscenter.sdsu.edu/education/crmse/sandra_marshall.aspx
http://www.fourward.com/
http://www.is.cs.cmu.edu/
http://www.iscaninc.com/
http://www.lctinc.com/
http://www.mangold-international.com/
http://www.nacinc.com/products/product-archive/
http://www.ober-consulting.com/9/lang/1/
http://www.ober-consulting.com/9/lang/1/
http://www.ober-consulting.com/11/lang/1/
http://www.ober-consulting.com/11/lang/1/

Optomotor Laboratories

Primelec, D. Florin

Seeing Machines

SensoMotoric Instruments
GmbH

Smart Eye AB

SR Research Ltd

Synthetic Environments, Inc.

Thomas RECORDING GmbH

Tobii Technology

Express-Eye, a stand-alone eye-tracker \
saccade analysis, and FixTrain, a small hand
device for daily training of saccadic eye movem
control.

CS681, a digitally controlled scleral search c¢
system for the linear detection of 3D angular ¢
and head movements.

faceLAB, a 3D head position and eye-ge
direction tracking system (VOG based).
Remote and head mountétl;Speed eye and ga:
tracking for research and applied science, o
programming interface and comprehens
stimulus/analysis software.

Eye-tracking analysis based on any stanc
camera(s), analog or digital.

EyeLink 1000 and Eyelink II, video based, he
mounted eye-tracking system (EyeLink 1000 F
has been announced).

EyeTalk integrates voice recognition and e
tracking.

Eye-Tracking-System (ET-49/50) Syste
constructed for neuro-scientific purposes ¢
enables a laboratory to correlate the monkey's
position.

Tobii X2 Light Eye Tracker, can be mounted o!
laptop or PC monitor for a compact, portable
tracking solution, Tobii Glasses 2, a ne
unobtrusive and mobile eye tracker (he
mounted eye tracker) for capturing natu
behavior in both real-world research, To
TX300, collects gaze data at 300 Hz yet allc
large head movements. The system is designe
studies that require a higher sampling rate, T
T60 and T120 Eye-trackers - both integrated in
17" TFT monitor also T60XL is available witn
24" TFT Monitor, and Tobii X60 and X120 Ey:s
tracker - a standalone eye-tracking unit desig
for eye-tracking studies relative to any surface.

Table 3.1: Table list of the main eye-trackers for eye movememn¢search,

analysis and evaluation
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http://www.optom.de/
http://www.primelec.ch/products.htm
http://www.seeingmachines.com/
http://www.ekstremmakina.com/EKSTREM/product/facelab/index.html
http://www.smivision.com/en/gaze-and-eye-tracking-systems/home.html
http://www.smivision.com/en/gaze-and-eye-tracking-systems/home.html
http://www.smarteye.se/
http://www.eyelinkinfo.com/
http://eyetalksystems.com/eyetalk_eye_voice_software.aspx
http://www.thomasrecording.com/neuroscience-products/eye-tracking-systems/
http://www.tobii.com/en/eye-tracking-research/global/products/

3.5 Open source gaze-tracking, freeware and low cost eye-tracking

The following table contains low-cost, free and open soayeetracking systems
research prototypes and information that should help idibgilyour own eye-tracker.
Some of them are targeted at people with disabilities-¢eytrol systems), some for

more general eye-tracking and research.

Open source eye-tracking

Name Description

openEyes open-source open-hardware toolkit

low-cost real-time eye-tracking

Opengazer open-source gaze tracker for ordine
webcams
TrackEvye real-time Tracking of Human Eyes Usit

a Webcam. Implemented in C++ usi

the OpenCV library

ITU Gaze Tracker works with a webcam or video came

with  night vision and infrarec

illumination

Freeware ge-tracking

Name Description
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http://thirtysixthspan.com/openEyes/
http://www.phy.cam.ac.uk/research/research-groups/ig/dasher/index
http://www.codeproject.com/KB/cpp/TrackEye.aspx
http://nuigroup.com/forums/viewthread/5022/

myEye eye-tracking software to allow people
with severe motor disabilities to use
gaze as an input device for interacting

with a computer

Open source and freeware eye movement analysis tools

Name Description
OGAMA open source software designed to
(OpenGazeAndMouseAnalyzer) analyze eye and mouse movements ir

slideshow study designs

RITCode analysis tool for captured eye-tracker
video files, created by the Rochester
Institute of Technology Visual

Perception Lab

ETU Driver Eye-Tracking Universal (Standard)
Driver, which helps the developer to
build tracker-independent applications

and test them off-line with a gaze data

simulator
Name Description
I14Control® alow-cost eye control system
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http://myeye.jimdo.com/
http://didaktik.physik.fu-berlin.de/projekte/ogama/
http://didaktik.physik.fu-berlin.de/projekte/ogama/
http://sourceforge.net/projects/ritcode/
http://www.eyeinteract.com/show.php?app=27
https://cyber.felk.cvut.cz/demos/the-system-i4control/

Haytham Eye-tracker alow cost eye-tracker

Research Prototypes

Name Description

FreeGaze a gaze tracking system for everyday

gaze interaction by Takehiko Ohno et

GoldenGaze alow-cost IR-based eye-tracking
system, developed at Universitét

Koblenz-Landau. Droege et al.

Miscellaneous

Name Description

Blink- It asystem for environment control and
communication for entirely disabled
people. Not eye-tracking but reacts to

eye blinks

xuuk eyeboxZM it detects when an eye is looking at it ¢

reasonable cost

Table 3.2: Table list of low-cost, free and open source eyetking systems

Practical tips onBuilding a lightweight eyetracking headgémrJ.S. Babcock and J.B.

Pelz. Proceedings of ETRA 2004
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http://pitlab.itu.dk/available-hardware/mobile-and-remote-eye-tracking-systems
http://www.brl.ntt.co.jp/people/takehiko/freegaze/index.html
https://www.rlp-forschung.de/public/facilities/412/publications/58963
http://www.ober-consulting.com/13/lang/1/
http://www.xuuk.com/eyebox2/
http://www.cis.rit.edu/people/faculty/pelz/publications/ETRA04_babcock_pelz.pdf

Practical tips onReal Time Eye-tracking and Blink Detection with USB Caasday

Chau, M. and Betke, M. Boston University Computer Sciencériiegl Report No.

2005-12.

For more related references, see:

http://wiki.cogain.org/index.php/Bibliography Gaze Interaction

3.6 Driving and eye-tracking research

The use of mobile eye-tracking equipment in active mosnehparticipants, like
driving, is not a new idea. The first mobile eye-trackes weeated in the 50s by
Norman Mackworth. Actually, it was Mackworth and Thomas wWinstly used a
mobile eye-tracker to record the gaze of a driver in 1962. Nwless, we had to wait
for 20 years, for user-friendlier devices of this kind Kie 80s the video cameras where
significantly smaller and the usage of computers to anahgseeicorded images was
possible) [57]. A great review concerning the methods and wagsingg/e-tracking
experiments was created by Duchowski in 2002 [58].

During driving we expect lots and different eye movemeateggies and patterns
to be followed as it is a rather complex activity. Asigadrsomeone has to keep an eye
on the road itself (e.g. turns), to monitor the othersusarthe road (e.g. other vehicles
and pedestrians), to pay attention on the road signs andisectn decide, after the
feedback he gets by evaluating all the above informatioererio steer and control the
speed of his vehicle. Thus, driving is a very complex tasksanvery interesting to

monitor with eye-tracking equipment.
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http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.73.3862
http://wiki.cogain.org/index.php/Bibliography_Gaze_Interaction

The most important factor during driving is obviously the pescof steering as
everything else follows. The eyes give to the brairttedl necessary information to
decide when exactly to turn the steer and how much, a growseeds excellent eye-
hand (and arm) coordination. In 1978, Edmund Donges, using aglsuinulator,
describes that basically there are two sorts of sigrthktdriver. Firstly, the feedback
signals (lateral and angular deviation from the road-edimte, differences between the
road curvature and the vehicle’s path curvature), and feed-forward or anticipatory
signals obtained from more distant regions of the road up soaRkead in time

(corresponding to 27.44 meters -90 feet- at 48.28B0 mph) [59].

The findings of Donges have been confirmed almost 20 yemrsvafds on real
roads and on a simulator by Land & Lee in 1994 [60] and Land &vblad in 1995
[61] respectively. In general, several studies, except timesgioned above, took place
during the last years (eg. Zwahlen, 1993 [62], Underwood, Chaj@namglall, Cooper,

& Wallin, 1999 [63], Land & Horwood, 1995 [61], Land, 1998 [64], Summala,
Nieminen, and Punto, 1996 [65], Mourant and Rockwell, 1970 [66]) coincethe

way the driver is looking around.

Studies, mainly on U.S. roads that had predominantly low tunes found only
a weak relationship between gaze direction and steeringh®wther hand, on a
winding road in Scotland, where continuous visual control wesrgial, a much more
precise relationship was seen. Moreover it was founddtinadrs spent much of their
time looking at the tangent point on the up-coming bewlditanas shown that curves
of gaze direction and steering wheel angle are alrdestical. The implication is that

this angle, which is equal to the eyehead plus the head-body angle when the
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driver is looking at the tangent point, is translatederarless directly into the motor

control signal for the arms.

Simulator studies showed that feed-forward information ftbendistant part of
the road was not on its own sufficient to give good steehingrder to maintain good
lane position it was required a view of the road only a fetres ahead and this region
provided much of the feedback information identified by Donlgesrestingly this part
of the road was rarely fixated compared with the morawlisbngent point region, but
it was certainly seen and used. The principal conclusiom flhese studies is that
neither the far-road feed-forward input nor the neadfeadback input are sufficient

on their own, but the combination of the two allows &sturate driving [57]

Nowadays we know that the eyes are not absolutely glued tartherit point, but
can take time out to look at other things. These exawssiwe accomplished by gaze
saccades and typically last between 0.5 and 1 s. The pibbalbithese off-road
glances occurring varies with the stage of the bendtligatvehicle has reached, and
they are least likely to occur around the time of ety a new bend. At this point
drivers fixated the tangent point 80% of the time. It setrat special attention is
required at this time, presumably to get the initial estinoditthe bend’s curvature

correct [57].

Sometimes the eye must be used for two different fumetid the same time, and
as there is only one fovea and the off-axis vision ig,gbe visual system has to resort
to timesharing. A good example of this is when the drivereigotiating a bend and so

needs to look at the tangent point, while passing a cyefietneeds to be checked on
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repeatedly. The record shows that the driver alternateslhgaween tangent point and
cyclist several times, spending half a second on eaals fidt only does gaze switch
between tasks, so does the whole visual-motor controgéraydPresumably, whilst
looking at the cyclist, the information from the tangent point is kept “on hold” at its
previous value. In urban driving this is even more importargaas traffic situation
and road sign competes for attention. To the best dtmawledge, there has been no
study of where drivers look in traffic, but it is believdat drivers foveate the places
from which they need to obtain information: the car innfrahe outer edges of
obstacles, pedestrians and cyclists, road signs ant tigfits and so on. In general,
speeds of 48.28 Km/h -30 mph- or less only require periphemddge information

for adequate steering [57].

Until now it is the applications on driving simulators thaemm to be more
interesting for the researchers and thus the majority of studies didn’t take place in real
life. Driving simulators have taken advantage of eye-irgcko monitor eye position
and point of gaze for auto design, safety and instructiam. example Professor
Schieber (University of South Dakota’s Heimstra Human Factors Labs’ Visual
Performance Laboratory) is using ASL’s eye-tracking equipment in order to assess
differences in the legibility and visibility of highway s among adults. As a
secondary field of research there is an attempt to diesizethe differences in visual
information available in nighttime versus daytime driving sserAdditionally, the
University of Massachusetts uses this kind of technologgetelop manufacturing
tutorials and pursue a broad range of visualization studies [67].

In addition, DENSO, one of the largest suppliers in the woflgarts to the

automotive industry, is trying to improve safety through eobdrdriver visibility by

94



doing research concerning the image recognition and theaglang technique. In this
approach DENSO, is combining eye-tracking technology, whichreeognise what
the driver has or hasn't seen, with image recognition, hwbkitracts necessary
information from images taken by a camera installed oneghecle. There are various
obvious applications, such as informing drivers about pedestimaa blind spot or
hidden behind another object, road signs which alert therariieazards, temporarily
obstructed by larger vehicles, alerting the driver ohpproaching vehicle which they
might have missed [68]. Another, company that uses theragkitg technique both
in a car simulator and in real-life condition, is teeh. That company produces and
sales innovative solution for behaviour analysis, esjwai@ncerning the ocular
activity. The French car manufacturer RENAULT is aduistrial partner of them in
order b optimize the driver’s cockpit [69].

Nakayasu et al in 2009, tried to use eye-tracking tasl measuring the driver’s
skill of visual perceptions and motor behavior in variousiitraituations. In that study
they found that the visual stimuli in the periphery affé® eye movements during
driving. Whenever there were not lots of objects needitention, there were also less
eye movements with bigger fixation times in comparisdh situations there were lots
of things to attract the attention. In general and inifalhgons it was found, as we
would expect that the eye movements have a lot to do gnehdden the driver’s
experience [70].

As this topic is rather “hot” nowadays, there are more companies developing their
own solutions in order to analyze the behavior of somednile driving. A worldwide
known company that is interested in this area of resaar@loshiba which in 2009
showed off a new system that will not only let the drix@ntrol the A/C or radio with

the glance of the eye, but also alert him if he happeteke his eyes off the road for
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too long. That will be possible by using a camera mounted ahe\&eering wheel, in
order to detect the driver’s face, giving to the car’s computer the chance to detect several
clues of the driver’s performance such as the head movement, the eye direction and
eyelid blinks. According to Toshiba those measurements couttwally be used to
alert drowsy drivers. Nevertheless, until now, Toshiba doehave any immediate
plans to commercialize the technology [71].

A company that uses the eye-tracking technology combinetl wiiving
simulators is eye-com. At the moment, in the faesitof the company there is a driving

simulator used in a variety of applications:

e Research (drowsiness detection, effects of inattenigtrddtion, etc.)

e Testing for fitness or ability to safely operate a vehicl

e Clinical rehabilitation (patients with mild dementia, &govictims, etc.)

e Gathering of oculometric data when used in conjunctioih Wie Eye-Com

Biosensor, Communicator and Controller

This company conducted a research project in cooperatiom thé U.S.
Department of Defense and the U.S. Department of Transpartemed PERCLOS
(PERcentage of eyelid CLOSure over the pupil over timée findings of the
PERCLOS study have been used in order to develop in the ueme the first
Composite Oculometric Fatigue Index (COFI) and some Sa&teponse (SAFE)
algorithms, which would be used to predict driving accidents afpsreven prevent
them. Eyecom is also using this kind of technology in rothiéitary projects such as
SBIR for the U.S Army (Soldier-Mounted Eye MonitoringsBgm for the Measurement

of Ocular Fatigue and Drowsiness-related Performance Faillireeems that that
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specific company is a leader on this field as, in 2009, a@ssional Initiative grant
was awarded to it in order to fund a series of complex egkitigachallenges for the
U.S. Department of Defense [72].

Furthermore, Noldus, a well-known software developmentpemy offers the
Observer XT solution which analyses the data from eyeitrgattevices and was
acquired by Volvo, the Swedish car manufacturer, back in 1f96ts Cognitive
Ergonomics laboratoryn Goéteborg. That laboratory offers a variety of research
services to the Swedish company and as members of thdikeathe human factors
engineer Trent Victorpoticed: “By accurately recording and analyzing the driver's
actions in response to all sorts of signals coming faiside the car or from on-board
information sources, we hope to improve the design of tinealn-machine interface"
as their motto say$Our ultimate goal is to design cars which are safer and easier to
use." [73].

Another, solution which is already in use and mostlyraei@ to companies with

fleets of trucks is the Seeing Machines’ DSS (Driver State Sensor) suite.

97



Figure 3. 1: The Seeing Machines' DSS suite [74]

That suite is a robust, automatic platform that ugsg edge face tracking techniques
to deliver information on operator fatigue and operator distraclibe DSS has been
specifically designed for straightforward deployment intbicles & environments
where fatigue and inattention need to be monitored and manalged3S-IVS (in
vehicle system) measures the eyelid opening of the diwet,based on this data
derives the drowsiness state. No sensors need to be witira tgiver; a remote sensor

on the dashboard observes the face of the driver andireasyelid closure.
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Figure 3. 2: The DSS software [74]

With its dashboard mounted sensor, the DSS “sees” the driver’s face and measures
the amount of eyelid closure and orientation of the driver’s head. Eyelid closure
information is processed to determine the level of difague, and by tracking head
movement, the DSS is able to detect driver distractione@rstalled in the vehicle,
the DSS is fully automatic. There is no calibration prhae for new drivers, and slip-
seat operations are handled transparently. Any drivegeipehind the wheel without
a time consuming setup process, annoying sensor attachmamy,special knowledge
about the system. There is no disruption to work prosessd no additional driver

training required.

Seeing Machines has also produced a similar product named\Bcel
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Figure 3. 3: The Seeing Machines' faceLAB approach. [74]

The tracking technology behind faceLAB is deployed in veliielts around the
world to manage fatigue and operator attention on a large. $aa€LAB is uniquely
capable of providing head and eye-tracking data for res@acihuman behavior in
real vehicles, cabins and cockpits, both indoors and owddacelLAB has been
successfully used in cars, trucks, trains, planes, submandesteer vehicles. Network
remote-control allows seamless integration into youeaeh vehicle. To capture
subject interactions in large cockpits, additional camesa easily be added to extend
the tracking range. The additional cameras can alsodatingependently, as separate
eye-trackers. Forwartkcing cameras can be used to capture the subject’s interactions
with the dynamic scene in-front of the vehicle. Any numbiethese cameras can be
used, together, to cover a large field of view, or independefateLAB tracks
calibrated gaze fixations against any number of objects,aaichckpit controls or in-
vehicle devices. The system provides instant feedback on igeeractions with
customizable regions of interest. At the moment Seblachines is working closely

with simulator provider Realtime technologies, who ndfercsimulators with turn-key
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faceLAB integration. The simulator data analysis sofenautomatically correlates the
eye fixation data from faceLAB with the dynamic sintida scenario in real-time. All

data is synchronized and available via the network as B singput stream.

faceLAB can also be used in collaboration with ansegtsmponent available by the
same company. That component is called SceneCamera and afloording and
analysis of gaze intersections with objects in dynamaying environments objects in
dynamic, moving environments.

In more details the SceneCamera provides a subject\deay®f the experiment as the

user can.

e Watch as the subjects drive, observing other vehicles, stg@md traffic
signals.

e Study gaze behavior in two-person face to face interactiatch eye contact
and glances in a naturalistic setting.

e Provide objective feedback backed up by video evidence for traohogyers,

pilots, or critical task operators [74].

Figure 3. 4: Fixations of a user while driving, using the faceLAB approach74]
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Tobii, the Eye-tracking devices manufacturer, proposesadalitional results of
that technology, the detection of the position of theedy which will give the means
to personal adjustments of the driver environment, suchdagdually tuned airbag
deployment, rear mirror adjustment, seat to pedals,irsge@heel adjustment and so
on. By integrating a sort of “black box” data storage in the car which will include eye
and face tracking it is possible to analyze the driver’s actions before and during
collisions. Thanks to those captures we will have thetgplbdi replay the scene of an
accident, fact which is vital in understanding how to impranaffic situations and
develop road safety [75].

In general, there are lots of papers and presentatiahfidve to do with driving
safety and the variety of reasons and factors whiclaffect it. Even though some first
steps have been made by big automobile industries it is tbig@still lots of things
need to happen and take place in order to have eye-tradangreent as a standard
tool in a car. Nevertheless, it seems that this is a hat fopthe industry and steadily
the interest on this kind of technology is increasihg $afe to assume that in the next
years more and more companies are going to introduce nelelsnaf vehicles with
their approach on eye-tracking tools that are going to inepttoe safety standards and,
in the future, the convenience of the user during his drivitigitées. In addition, it is
clear that up to now the vast majority of the approabhes to do with the use of eye-
tracking technology concerning the detection of the driver’s fatigue and drowsiness.
We can assume that in the near future the uses ofitidsolk technology could be
expanded and the fixations of the user would be used to pesfrraific tasks while
driving. For example, a short of display panel can b@gptred on the lower part of the

windscreen and the user might be able to change raatiorst or change the air-
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conditioning settings by fixating on that panel (in thagecthe eye fixations would be
used instead of pressing buttons). In that case, the dvillebe able to proceed in
specific actions without having to move his eyes for a laetadce and with having
the ability to keep the road on the periphery of his vifakl. Of course, when the eye-
tracking technology will be integrated in the automobitustry the whole equipment
used in that field will be optimized for that use and mom @more applications, that
now we can only imagine, might become available (e.g. imagimg a corner of the
windscreen that isn’t that vital while driving-like an upper corner-to visualize a GPS

application or a phone’s keypad).
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Chapter 4

Presentation of the objective and initial algorithm design

4.1 Overview

This chapter introduces the approach of this thesis aoingethe usage of the eye-
tracking technology not only alone but also in combinatth the GPS devices that
are already widely used nowadays in vehicles. Those GPSedevan either be
standalone devices planted on the car or the smartpfitdmedriver with GPS software
installed. At the time being it seems that eye-trackingdriving is mostly used indoors
with driving simulators and also in a small variety of thingjsfortunately, even though
some experiments of this type do take place in realgifeitions, the results rarely get
published in journals as, most probably, the knowledge atjisrconfidential and for
use only by the company conducting the experimiens safe to assume that, since
nowadays the automobile companies seem to get more andntevested in that kind
of applications, a variety of them will be developed arfigred to the drivers.
Eventually, this area of interest is going to be expanded giadunal perhaps in some

years the eye-tracking technology will be commonly usdtie driving industry.

104



4.2 Presentation of the objective of this study

The main objective of this thesis is to present the pailaadvantages, especially
concerning safety, that the eye-tracking technology dan when used while driving.
As it was mentioned above, there already exist devicesdhatantly check the closure
of the eye in order to make sure that the driver is noatslo fall asleep, nevertheless,
practically, in that case we have to do with eye-detecaiod not eye-tracking as the
system is able to “tell” if the driver is about to close his eyes but there is no information
about where he sees even when they are open. In @jvoasire proposing the usage
of equipment that will have all the original eye-trackieghnology characteristics
targeting at making the driving procedure easier and, more iamlyrtsafer.

It is obvious that while driving we are surrounded by a variétligiractors such
as cell phones, radios, and passengeggiring multitasking Those distractors, no
matter if they origin from the inside or the outsideh® vehicle can potentially put in
danger the driver’s life and others. By using the eye-tracking technology, the system
installed would be able to detect gazes of the drivehemphone or on another person
triggering an alarm to remind where he should be focusirtad been proposed also
that in the near future, and after the required extensseareh, eye-tracking systems
could collect oculometric signs connected with intoxaathot only helping the
authorities detect non-sober drivers but also preventiaghgine from starting. It is
obvious that in that case, that application would prelas of accidents only by not
allowing people drive when they are under the influencetokicating factors. [85]

As technology, advances rapidly there are thoughts abog Hsiad-Up Display
panels (HUDSs) in vehicles to project vital information ba front window so that the

driver has not to look around for them. Even though, thig idenot new, as it was
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firstly introduced by General Motors in 1988, with their Oldsnm®kiltlass Supreme
model it is not widely used 25 years after that. Since, thiner car manufacturers also
adopted the technology (e.g. Lexus) on their sportaurl vehicles and BMW was
the first European one. [86] The latter, has launeheelw HUD for its vehicles in April
2012 which thanks to modern technology is a full colour onehasdan improved
resolution (640x480) that is enough even for the moving mapG®& application.
[87]

In March 2012 General Motors has also offered some infawmabncerning the
HUDs some of its vehicles uses. According to the companiyaads up display in the

car is designed in such a winat the drivercankeep the eyes on the road and still see

important details such as the speed, and R.P.M of theleehic

Figure 4. 1: General Motor's recent HUD capture [88]
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The technology will also indicate other things in teenpany’s vehicles such as
vehicle warnings, and radio information. The driver has ftleedom to adjust the
position of the display on the windshield, which can inengded or brightened.

That kind of displays is becoming increasingly available mdpction cars, and
usually they offer speedometer, tachometer, and navigayistem displays. Night
vision information is also displayed via HUD on certain &ah Motors, Honda,
Toyota and Lexus vehicle®ther manufactures such as Audi, Citroén, Saab, Nissan,
and Kia currently offer some form of HUD system. [88]

By combining, the above mentioned HUDs with eye-trackinguld be possible
to use applications, like a map, and collect data concerninganwithout having to
move the eyes from the road. Gazes and fixations carsé@ to control the radio,
change the projected information according to the nektlte ariver and in general as
input data by using already existing and well-known applicatiotrabalgorithms that
are used to help people with moving disabilities.

Tobii, one of the most key eye-tracking companies annoutgedn platform for
drowsiness and distraction detection in driver safetyesys [89] and since then it
continued research on that area. In April 2012, they habvispad a video that actually
uses eye-tracking and HUD technology in their approach &fngaa user-friendly

interface that can make driving a safer procedure. [90]
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’ 3

Figure 4. 2 Capture from the Tobii’s approach about eye-tracking and HUD
[90]

In general, we can assume that the new technologiesakié the already existing
panel that gives us information about the car (e.gcitgjoand its condition (e.g. fuel,
temperature etc.) obsolete and that all the informatesded will be projected on the
front window making easier for the driver to stay focusethemroad. Yet, it is the eye-
tracking technology that will also offer the ability not obdygather information but
also interact with the new projected panel using only eyeements as an input.

In this thesis we propose also another new approach waithelp drivers avoid
crashes, caused by any kind of concentration or attewissn by alerting them when a
collision is imminent. For that purpose, the informatiaken in the car concerning the
gaze of the driver is combined with the information takertlie vehicle thanks to the
GPS device.

On this section we propose an algorithm that combines déttergd both from an
eye-tracking and a GPS device in order to increase thty safsmdards during the
driving procedure. The goal of the algorithm is to extracidbation of a vehicle and
the gaze of the driver relating with the information gagl by the system concerning

vehicles that will come too close in the near future. dlgerithm begins by tracking
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the gaze of the user as the vehicle’s engine starts and continues by locating the exact
location of the vehicle each specific moment. Thernthaseye-tracker continuously
checks if the driver is looking at the specified areasntdrest (through the front
window or at the mirrors), the data concerning the velfloation, speed, direction)
are sent to the server. At this stage the server, wgeth GPS data from the other
vehicles in the area also, computes the probability of @enpat meeting with one of
them and sends a feedback messagigteehicle’s receiver in order to alert the driver.
Finally, the system either keeps tracking the gaze of tlierdand the location of the
vehicle or, in case, according to the message, anaghele is about to come too close

it alerts the driver.
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i Alert the { : YES

Figure 4. 3: Initial design of the algorithm concerning the problem poposed
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4.3 Theoretical challenges in the design

Even though, the solution proposed in this thdsisn’t import any kind of new
technology that did not exist before; it introduce®w,noriginal approach concerning
the combination of existing and well-known technologies wimaght significantly
reduce accidents caused by the concentration loss afritrexs. Undoubtedly, there
will be also problems if this approach ever comes inréla¢ world as making totally

different technologies work together can become a raiifferult task.

What is for sure is that eye-tracking in combinationhvihe HUDs can make
driving safer as by definition the driver won’t have to move his eyes from the road to
check the velocity, the map or change the radio volukmel, as the display cannot
project everything a driver might want at the same time effe-tracking equipment,
which constantly checks if he is not too fatigue and aboubse dis eyes, calculates
the gaze and the fixations that would act as input dataatee rall the appropriate

adjustments.

Practically, the main challenge into getting the HUD to wam# look good is the
seemingly simple task of making a square look square wisepritjected onto a curved
surface. Nevertheless, it seems that the recent apy@®aave managed to overcome
that obstacle. General Motors in particular solved pnablem thanks to a series of

mirrors and a display screen projecting the HUD on thelshiield.

One major question iow the GPS system in the car is going to send the vehicle’s

data to the computer server. Nevertheless, thanks tet¢katradvances on that area
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and the wide spread of GPS systems, that problem has beleddsy numerous ways.

Actually, there are three basic ways to receive traffarmation:

e Bluetooth: The navigation device uses the GPS in the car to receiveatfie
information, which is beamed to the unit via Bluetooth teagwIThis method
effectively requires from the user to have a data packagea constant
connection is needed to ensure continuous updates alormutke r

e FM: Using the same FM Radio Data System (RDS) that delivat®rs IDs
and song information to modern stereos, traffic updatesielivered over the

airwaves. An external antenna may be optional to asglstreception.

A new twist on the traffic sources is MSN Direct froncktisoft. An FM-based service,
MSN Direct is available on just a handful of models duthe box and several more
are compatible with the purchase of an additional FMivec. This service combines

traffic information with weather, movie times, and gases.

Another solution which was given recently, at least in Gees the GPS device
with a SIM card inside. Thanks to that SIM traffic dara@ received by the vehicle
thanks to information taken from the Traffic Manageméetwork which was built for
the Olympic Games of Athens in 2004. Such, an approachecasda widely but in
certain cases the data can be too many or interfereabeprs may occur because of
the large number of vehicles. A probable solution coulctcbpying the mobile phone
networks, to divide the big urban areas into cells withrapzder server in each cell.
Those servers would, obviously be linked together, and theedatputed would have
to do only with a specific cell minimizing the workload. Ripaas at the moment there

are services in which the driver can send an SMS argiveedback a message
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concerning the traffic news we can expect, in the neareuthose messages to be sent

automatically to the GPS device and display the traffic datae GPS’ map.

The other important task that has to be resolved hdert@inly with the procedure
of eye-tracking during driving. One of the biggest problems thats»nd has been in
great percentage resolved is the one caused by the sunligtite A&ye-trackers are
using infrared light to detect the pupil of the user the suintigh cause extra corneal
reflections and differences of the pupil’s size making the tracking of the eye impossible.
Another difficulty that may occur is when a driver is we@ prescription glasses. Even
in that case though, significant progress has been adhiwe in most cases the
tracking of the eye can be done without any problem. Ofsegufra driver is wearing
sunglasses things become worse for the system to wiedtieély and a malfunction
is almost certain. Finally, even the height of the @lrimnight cause problems as the
cameras have to be centered on the eyes of theQfsmrurse if there is only one person
driving the vehicle then this centration must be done dffee majority of vehicles can
be driven by a variety of people (members of the samédyfamcompany) and as a
result the cameras installed in the camera shouldapiplbe on a motor-moving base
which would focus on the eye(s) of the driver with the loélthe software which will

try to detect the face, and thus the eyes, of the user.

As a conclusion, a significant drawback can be thetlfeatta new hardware device
has to be built which has to have a reasonable cosh lbioé same time to be able to
detect the gaze of the driver, collect the vehicle’s information and manipulate data of
completely different nature. Nevertheless, as the ®ptie getting less expensive and
the processors can compute a significant amount of dd¢asnime such a challenge

does not seem utopic and impossible to be achieved nowadays.
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Chapter 5

Integrating an eye tracker to an automobile

5.1 Consideration in installation of an eye-tracker in a vehicle

As specified above, the vast majority of eye-trackiygjesms used in automobiles,
have to do with the detection of the fatigue of the driVeose products are mountable
units that can be placed on any vehicle. The figure belemicts a standard driver
fatigue monitor, which consists of a camera system caingrof camera and InfraRed
(IR) sensors and a control unit. The control unit cosgi§the microcontroller (this is

responsible for decision making) and the alert soundistesy

LED light

Infrared lighting tube Power Socket

Speaker ;
Fatigue signal output

4
Foundation stand
o

Fatigue signal output Cable

O

3M removable double-sided adhesive pad

All around turning

power adapter Power Socket Cable

Non-slip magnet for vehicle

Figure 5. 1: Components of Driver Fatigue Detection systems [95]

Nevertheless, a fully working eye-tracking system wouldb@able to function

the same way as it needs a computer analysing the datayass it is operational. As
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a result, and since the modality proposed here hastheuanication between the eye-
tracker and the vehicle as a prerequisite, the only vialllgien seems to be an
approach with a direct connection to the automobile’s internal sensors and systems.
However, there are several similarities on the way#mera has to be installed in an
automobile, no matter if it is an eye-tracker or a singpieer fatigue detection system,
in order b guarantee the systems’ functionality the best possible way.

The camera unit is the main component of such a systamNai [95] describes

the main requirements for placing the components ivehdcle:

® Monitor is best located within 20 degrees of the driver’s normal sitting position.

e The camera lens must face the driver directly. This lmarmplaced on the

dashboard on various locations, as shown in the pibalosv

S e R §7 e ¥
Figure 5. 2: Placement of camera unit [95]

If the dashboard is too low (such as in a truck or in 3 thes the installation

must be done at a higher position.
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e |f the camera is installed on the side front, theshtuld not be placed at an
angle greater than 15 degrees (the angle can be setabgpgdhe foundation

lens).

e The distance from the lens to the driver’s eyes should be between 600 mm to
700 mm for drivers with glasses or little eyes whetbadistance can be up to

900 mm for normal sized eyes.

e The control unit is typically placed on the dash, righthe steering wheel. It is
small in size and light in weight [96]. The power to thewt is provided by

means of the 12V car adapter provided with the Kkit.

e In case of vehicles, where a driver fatigue detectiotesyss inbuilt as part of

the safety system, the dashboard consoles can be useer asterface.

Researchers have argued that there are many considetiaéibngist be taken into
account before installing in-vehicle technologies. Fotamse Hartley [97] argues
various factors such as validity, reliability, generalisahibensitivity and specificity
must be addressed for eye-tracking systems in a velilde.the system must not
startle or confuse the driver thereby causing negativetefféhese factors have a direct
effect on the general design, installation of theesysand its usage. The system must
be assistive and not distracting. Hartley [97] suggestsihnay systems solely adopt a
warning tone or signal, which can be either auditory aralisAuditory signals can be
relayed through the car's speaker system, but the gfaess of alarm systems remain
only up to a certain limit, after which the user can geh@to them. Visual signals can

be displayed as a flashing light on the Dash board (sitaléie check engine light)
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but again, these signals are often ignored by drivelss Teduces the system
effectiveness. Unfortunately most of the available systare portable, mountable

products that can prove to be ineffective.

A more successful system can be obtained with techesiahat include interface
of in-vehicle Electronic Control Units (ECUs) thatoall auto braking and relying of
message to a centrally manned unit, that can contactittes dnd make sure correct
action has been taken. This forms a trade-off betwdeat®keness and complexity of
interface with the car. With the increasing complexfyon-board electronics in
vehicles, addition of further systems can cause issuesnplying with safety features

and on board electronics (as discussed in the sectiow)hel

5.2 Communication between the eye-tracker and vehicular electronics

As seen from the above examples, certain paramaterseaded for an interface
between an eye-tracker and the vehicle. These can framysimpler systems that are
basically mountable products that require only power supply oditpuat the car
dashboard, to more complex systems that pass data owtroler Area Network
(CAN) bus to communicate to other electronic units in tigicle. In case of systems
where an eye-tracker should be used as a channel that ngdhit information back
to the control unit about the driver’s state (e.g. vigilance), further network

communication might be required.
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Figure 5. 3: Typical ECUs on CAN-bus [98]

The car consists of a multi-master CAN bus baseesyarchitecture as depicted
above. Each of the ECUs has a specific function icdh@nd can communicate to each
other over CAN. To the central dashboard (which acts asmé#ie user interface), are
connected all the other ECUSs, via high speed links (withdmigriority) and low speed
links (with lower priority). The high speed links are ECUs peimg to safety critical
aspects of the car such as engine control, brakesototmansmission, gear shifts
whereas the low speed links are for non-safety aspectsasuafotainment systems,
windows, doors and seat switches. This form of systeandistributed one, wherein,
the control is not fixed to one centralized body, naikedistributed among several
ECUs, each performing a dedicated task. This system ensatethe¢hreliability of
performance is not centred on one ECU alone, therelwirgghat if one ECU fails,
other components can function and provide the driver théyatol safely take a

preventive action.
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5.3 A more detailed view on the CAN bus system

The reason for using a CAN bus system in an automobhe isdssibility to create
a network connecting several modules and sensors thateatenus. That approach
makes the CAN bus a sort‘@fata highway and it was chosen because it offers several

advantages [99]:

v' Concerning a more technical point of view, the CAN busasagably flexible
as there is the ability to use a variety of media tostraninformation (e.g.
copper cable, optical fibres). In parallel, it is possita perform cross-system
diagnostic tests across a number of control units

v It is a uniform platform used to exchange data among theatepapntrol units
simplifying the whole procedure

v' The automobiles systems and subsystems can be expantetstatied more
easily. This is extremely helpful, especially in cabas systems involving more
than one control units (e.g. ESP) have to be implerdente

v' The CAN bus can also be used to perform diagnosis ins&dear (e.g. airbag

control unit). In that case, it is referred as “K-wire” or “virtual K-wire”

Since there is a variety of modules connected on a RANts design has to follow

certain requirements to ensure it is functioning properly [99]:

1. High degree of certainty concerning the ability to deteabrercaused by

transmission interferences (either internal or exgr
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2. In case a control unit fails for any reason, the résh® systems have to keep
being operational and exchange information (as far itssipte)

3. To make sure that the system meets the requirementsabfime driving
conditions there has to be a high data transmissten ra

4. There has to be a high data density, meaning all the cedheatles must have
the same information status. That way, if an erraleiected all the users will

be informed simultaneously

Nowadays, copper wires are used to transmit the informatien @ AN bus. This
transmission has a secure maximum rate of 1 Mbps (1000 Kdges)rding to the time
requirements, the signal repetition rate and the datanebf each unit, the CAN bus
is divided in 3 subsystems. Firstly, there is the dima@én CAN bus at 500 Kbps that
has practically real time requirements. Then, thetteeisnfotainment CAN bus and the

convenience CAN bus both at 100 Kbps and with low time reqeinén

Data transmission rates on the CAN bus

1000 Syste m 1000

900
800
700
g0 500
500
400
300 100 100
200

(1]

Drive train CAN bus Convenience CAN bus  Infotainment CAN bus Maximum data
(Kbps) (Kbps) (Kbps) transmission rate

(Kbps)

Figure 5. 4: Data transmission rates on the CAN bus system
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Figure 5. 5: A typical CAN bus system [99]

(The figure above depicts the CAN bus system of a VW Polo)

As in all the network systems the information is exchangslg packets known
as messages. Any of the connected control units is pidue obBtwork and it can receive
and send messages. Such messages transmit values sueh fasltlevel. This

information (fuel level), is represented as a binaryedh string of ones and zeroes)
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which is converted into a serial bit stream [99]. In tivagf the new bit stream is sent
over the transmission line to the transceiver (thatasctm amplifier). The transceiver
converts again the bit stream, this time into voltadeesg which are then seabne by
one-over the bus line. At the time the message redbba®ceiver the voltage values
are converted back into a bit stream by the transceivesetdver the reception line
to the control units. Finally, the control units conved binary values into messages
[99]. As it was noted above, a sent message can be received lof the existing
control units The whole procedure is similar to the way a radio staijmerates, so in
our case a message is broadcasted and any unit can riecéhat approach ensures
that the last requirement mentioned before concernindesign issues, meaning that

all control units connected to the bus have the samemafayn status, is met [99].

5.3.1 CAN bus Architecture

Because of the augmentation of the control units usadverhicle there had to be
developed a technology allowing their intercommunication. Assalt, the CAN bus
was developed. The following figure depicts a typical exampb CAN bus used in a

vehicle.
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Figure 5. 6: Typical CAN bus architecture [100]

Each control unit, before sending a message has to sebelms is not currently
busy using the same media access control protocol used&th&Ns which is known
as CSMA/CD (Carrier Sense Multiple Access, Collisione@gbn). In case the bus is
busy, then the control unit holds the data until the bdiee, and then transmits them.

The Collision Detection part is used when more thanconérol units are about to
transmit a message at the exact same time aftengedhst the bus is free. In that case
the data from the different control units would collidd get corrupted [L00Bimilarly
to computer networks, in order to avoid such an incident, (OkNritizes the
information and allows the transmission of high priorityg(espeed) delaying
information of lower importance (e.g. air condition fuattion) [100].

Moreover, to avoid the risk of delay of critical data @wntrol units of low
importance are connected to an independent CAN bus whiclthisrfieonnected to the
high importance CAN using a gateway that filters the date exbhanged between the

two CAN buses [100].
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5.3.2 ECU CAN Interface

Nowadays, almost all the in-vehicle control units aterconnected using CAN
bus. As it shown in the figure below a control unit corsa microcontroller and an
interface (CAN controller and CAN transceivemhe microcontroller contains the
corresponding program in each case and the CAN contr@ilwork interface)
extracts and puts into frames data from it in order tohgeh transferred to other ECUSs.
It is the CAN transceiver that sets up the electricghaliing needed for the
transmission [100].

ECU 1 ECU 2
_Input/Output Ports _ Input/Output Ports

Microcontroller

CAN Controller

CAN Controller

TXO0 | TX1 RX0 | RX1 TXO0 | TX1 RXO0 | RX1

CAN Transceiver

|
|
|
|
|
|
|
|
|
CAN Transceiver !

|
I
|
|
|
|
|
1
|
|
|
|
|
|
I
|
|
|
|

s s . Sl - iy s i it S S e o e e - c— el — o — v —

CAN_L CAN_H CAN bus CAN_H CAN_L

OO

Twisted pair wire
Figure 5. 7: ECU CAN structure [100]
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5.3.3 CAN Bus protocol

A message containing data has to have a specific foroflatving several

specifications in order to be transmitted over the CAN bus {101]

1 bit

Figure 5. 8: CAN message layout [101]

1. Start of frame- Contains a dominant bit, which is used to synchronize all units
on the bus.

2. Arbitration field— Contains a message identifier

3. Control field- Contains information on how big the message’s data field is.

4. Data field- Contains the actual information that is being transahit@an range
from O to 64 bits (with 8 bit increments).

5. CRC field— Contains information that allows the receiver to detee if an
error has occurred in the transmission

6. ACK field— Contains a gap in the message where the receiving unisend a
dominant bit if they have detected an error in transmssio

7. End of frame- Contains seven recessive bits, this effectively workmpdefore

the next message.

Here follow some more details on the most important pditach a message:
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5.3.3.1 Start of frame

To begin with all CAN units must be synchronised. Thet stiaframe bit is used
by all the units on the network to get synchredisAfter being synchroised, every
control unit knows when a bit is sent and can of cotisEniread it. Since, the majority
of clocks in the ECUs is quartz based it is also temperaependent and as a result
they have to be frequently re-synchronised. This is done asiaghnique named bit
stuffing and is performed in the 5 first fields in thessege (Start of frame, Arbitration
field, Control field, Data field and CRC field). In the biuffing technique, an opposite
bit (0 or 1) is added after 5 identical bits while the messag@ansmitted (so 000000
becomes 000001 and 11111 becomes 111110). Practically, the ECEsycaninronise
themselves using any or every change of the bus state (@ tbtth 0). The bit that was
added at the end is removed by all the units and as a resulietit date are not

compromised or affected [101].

5.3.3.2 Arbitration field

The arbitration field (known also as message ID) is semhe beginning of a
message. This field is consisted of 11 or 29 bits dependitigeo@BAN protocol used.
There is CAN 2.0A and CAN 2.0B, the first one has an 11rgitthe second one a 29
bit arbitration field with the most significant bit firgtigure 5.9). It is the message with

the smallest value that has the highest priority [101].

126



Converted from binary
Message ID — 11 bits form to numerical form

1024 | 512 | 256 | 128 | 64 32 16 8 4 2 1

0 0 0 0 0 0 0 1 1 0 1 =13

o[ o] o | 1 1o | 1|0 ]| 0| 1 1 | o211

\ Most significant bit Least significant bit/
Figure 5. 9: CAN arbitration field. The message ID is sent in binary formA
message ID equal to 211 is transmitted by sending bits for 128+64+16+2214
[101]

5.3.3.3 Data field

In this field, the really useful information is includddhe length of the information
can vary everywhere up to 64 bits. Nevertheless, usually adataitfield is used to

inform about the status of an ECU (e.g. 0 bit data might mean ECU’s failure) [101].
5.4 Fusing an eye-tracker in a vehicle

From the above sections, it is obvious that the eykéra to be installed in a
vehicle could be categorised into two types; off the ghrelflucts that can be installed
in any car and inbuilt systems found as part of the sadetyifes in a car (provided by
the car manufacturer). The former are self-contaipeatiucts, which are readily
available in the market and do not have to join the CANibwsder to function. As
discussed before, they are basically mounted on the ashbnd interfaced with the
power supply output. The second type of those systemsasghef interest in our case

here. They could provide more elaborate features asibeld be part of the vehicular
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electronics and information would be shared over the CANwitinsother modules. In
such systems, the eye tracker could provide information ssclgaze and head
movement to the main safety system which could combineitit other safety
assessment parameters such as steering wheel informbtaking information,
accelerometer information, lane tracking etc. This coatimn of inputs will allow the
safety system to decide whether the driver is inatter@nd whether any action needs
be taken or not. All this information is passed over CAN-bisis an eye-tracker could

potentially become part of the safety features of the car

Inagaki [102] has describedmethod of sensor fusion of various inputs to create
driver assistive system that can provide safety functi@ensory information is

received as depicted in the figure below:
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1) The eye fixation point and length of
fixation is measured with eye trackers

position, pitch, yaw and
roll angles of the head

2) The head position {pitch, yaw and
roll angles) is measured with the use
of head tracker which is vision based

3) Ear Plethysmogram provides blood
flow information at the ear lobe.

4} Infrared thermal imagery
cameras are used to provide nose
tip temperature information

5} Pressure distribution on the seat
cushion and the back detected using
pressure sensors

6) Steering wheel angle, brake
pressure and pressure applied on the
accelerator received as input from the
vehicle CAN-bus

pressure distributions on the
seat cushion and the back

strokes of gas
and brake pedals

Figure 5. 10: Various sensory inputs to Driver assistive system [102]

(1) & (2) provide information about driver gaze, attentiomlbliate and direction in
which the driver is facing. (3) & (4) provide information about driver’s mental workload.
(5) provides information about the driver’s body posture and (6) provides information

about the reaction from the driver.

These sensory inputs, or some of them, could be usddaritbms in order to
decide the state of the driver and what preventive/ciiveegctions should be taken by

the vehicle or proposed to the driver
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Figure 5. 11: Algorithm for Driver Fatigue Detection Systems [103]

Above, there is a standard schematic representing nest detection algorithms
and mitigation systems. The idea is based on getting iatiom from the various
sensors and feed them into a decision making algorithinptbeesses the information
to produce the desired output in the form of the warning.l&uail now, the main aim

of these inbuilt systems is to alert the driver in timéhsd accidents can be avoided.
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5.5 Further recommendation for an improved system

As seen until now, eye-tracking systems are practicakyl just as driver fatigue
detection systems. In our case here, in which we amniexg the possibility to take
advantage more of the potentials this technology ctar,ofehicular data fusion is
needed in order to create safety systems that canirhelpcident avoidance. The
efficiency of such system is dependent on the algorithich aise the end decision taken
by the system. In order to make the system efficianly, audio alerts are not enough,
since these can be ignored by the driver. A more efficsystem could aim to take
preventive action on its own, in case the driver is vigtlant. This poses many
challenges, such as complexity of cir¢algorithm, issue with data interpretation .etc
In addition, external factors such as environment vanadifferent driver profiles,
different vehicle architectures and processing capabilittesse a major challenge in

making a robust system of this kind

Current implementations classify the scene as aitésegerous or not, but in reality
scene is a dynamic quantity, that is constantly changidgtarefore the corrective
action also needs a constant update. A further recommemdatimprove the system
may be to provide an algorithm that is more definitive indeott avoidance. For this,
the analysed scene can be categorised into differegis le¥ severity and corrective
action can be taken based on the category to which déee sbelongs. This
caegorisation can be updated constantly based on a fdedtmhanism, to replicate

the dynamic scene.

The central processing unit of the system gets useful ifrpat the sensor

technology such as gaze intent, head movement, nurlidinks of the eyes, GPS

131



location, traffic information etc. that are provided byioas peripheral inputs installed
in the car. The central unit can now make an informed idecés to how severe the
warning level should be based on the danger posed at the Acd@eision matrix to

aid such a decision can be based on the combination of mguaised as follows:

Inputs Gaze | Head Number of | Lane Ultrasonic
intent | movement blinks tracking distance
sensing
Gaze intent
Head
movement
Number of
blinks

Lane tracking

Ultrasonic
distance

sensing

Table 5. 1: Mitigation Strategy based on severity of input

Severity levels and suggested outcomes

Table 5.1 represents a dynamic learning algorithm that wntategorise the
warning levels. The interpretation of inputs is based ostilgies described in the end

of section 5.4 (Inagaki [102] (Figure 5.10))

The scenes can be described as follows:

1) If the driver looks away from the road, such as whileqishe mobile phone or
infotainment unit or distracted by a fellow passenger fong duration (eyes off road
scenario), then the severity level is low. In sugtenario, the alert can be in terms of
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audio signalling alone, as no immediate threat of antidaletected. Therefore merely

reminding the driver to remain focussed should be enough.

2) If the rumber of blinks has reduced (as the driver’s eyes are shut) and the head
movement is either still or in nodding motion, thee #ystem can interpret that the
driver has fallen asleep. Severity level 2 outcome itartierms of audio alert
accompanied by seat vibration to wake up the driver. Herethéssystem has not yet
discovered a big threat of accident, but it is immineat tihe driver remains vigilant at

all times during driving.

3) If the driver is not driving in his lane, then thetseys can interpret that either the
driver is distracted or asleep. This requires more warnincg & can be dangerous for
the other cars on road. Severity level 3 outcome eamlierms of steering wheel

correction along with level 2 outcome.

4) This is the most serious case and it will be neededsetba distance sensors detect
an immediate warning level as well as the system detedtthie driver is not attentive.
Severity level 4 outcome must take control of th&imgasystem and work in a constant
feedback loop, to ensure that the controls are passedddidnekdriver once he becomes

vigilant again.

Classification of warning levels and constant feedback flmrscene ensure that

the system caters to the dynamic features of the chasgamg, whilst driving.
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Chapter 6

Conclusion

As computers have become faster, the way we apply theomas increasingly
complex. This opens a wide range of possibilities, forgusmmputers as a tool for
enhancing the quality of life, learning human behaviour, ancasong the general
safety. In reality, even today, eye-tracking is a teadgivith lots of its aspects in the
making, and a bright new world is opening in front of usefsure the success of eye-
tracking applications, wide accessibility is requirtidvas shown on this thesis that
slowly but gradually, the eye-tracking technology is being piathe areas of interest
of automobile companies.

Numerous approaches have been developed or proposed in ordeydode new
safety standards concerning the driving procedure and it skatns the near future
the vehicles while have integrated eye-tracking equipnpatialized and optimized
for this kind of use. In this thesis an innovative apphaa proposed based not only on
the abovementioned technology but also on HUDs and the deRSes which are
already widely spread and their ability to send and receigdaierning the vehicle’s
movement. Thanks to the combination of those technologésan achieve much
better security during driving as the driver would be focuseti®natad easier and also
notified in case another vehicle is going to come dangeraicsdg in a short period of
time. In the same time his concentration and focus wbeldontinuously inspected
alerting him in case he is not paying enough attention.

Nevertheless, we cannot expect this to happen without any pliérstly, the
right hardware has to be found and optimized in order to laefoseye-tracking during

driving. HUDs technology seems to be already adequate etopghform all the tasks
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needed during driving but future advances might positively surpsiskn addition, the
nature of the computer server that is going to computeaffee has to be decided to
make this approach possible. In addition, as the conneatesicoming closer to reality
security issues have to be taken into account. Thdeerabilities and concerns were
mentioned and examined in a study conducted by the Inter@ativerstising Bureau
(IAB) of Spain with Applicantes, Motor.com and Kasperslab [104]. In this study,
which hopes to be the first step for implementing a mmmh of unity to thehighly
fragmented software ecosystem currently offered by naahwrfers, it is mentioned
that on the one side new technologies offer to the driaecsss to social networks,
route calculation, in-car apps, etc. but on the otlerdhsafety concerns about the
communications and Internet services should not beégindrhese technologies offer
lots of advantages to their users, but, in the same timag,could become a liability as
privacy, software updates and applications focuses developeddge in a car could
become target of cybercriminals. Of course, all thosdvwere characteristics must lead
to anew device with special specifications and designing it andngatkwork might
be proved more difficult than expected. Even thoughethee still several issues to be
resolved, the approach proposed here seems to be vidd@plicable making driving

a lot safer than before and opening a new era of eyeigackvehicular applications.
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